Simulated maximum likelihood method for estimating kinetic rates in gene expression

Tian, T., Xu, S., Gao, J. and Burrage, K. (2007) Simulated maximum likelihood method for estimating kinetic rates in gene expression. Bioinformatics, 23(1), pp. 84-91. (doi: 10.1093/bioinformatics/btl552)

Full text not currently available from Enlighten.

Abstract

Motivation: Kinetic rate in gene expression is a key measurement of the stability of gene products and gives important information for the reconstruction of genetic regulatory networks. Recent developments in experimental technologies have made it possible to measure the numbers of transcripts and protein molecules in single cells. Although estimation methods based on deterministic models have been proposed aimed at evaluating kinetic rates from experimental observations, these methods cannot tackle noise in gene expression that may arise from discrete processes of gene expression, small numbers of mRNA transcript, fluctuations in the activity of transcriptional factors and variability in the experimental environment. Results: In this paper, we develop effective methods for estimating kinetic rates in genetic regulatory networks. The simulated maximum likelihood method is used to evaluate parameters in stochastic models described by either stochastic differential equations or discrete biochemical reactions. Different types of non-parametric density functions are used to measure the transitional probability of experimental observations. For stochastic models described by biochemical reactions, we propose to use the simulated frequency distribution to evaluate the transitional density based on the discrete nature of stochastic simulations. The genetic optimization algorithm is used as an efficient tool to search for optimal reaction rates. Numerical results indicate that the proposed methods can give robust estimations of kinetic rates with good accuracy.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Tian, Dr Tianhai
Authors: Tian, T., Xu, S., Gao, J., and Burrage, K.
Subjects:Q Science > QH Natural history > QH426 Genetics
College/School:College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Journal Name:Bioinformatics
ISSN:1367-4803
ISSN (Online):1460-2059
Published Online:26 October 2006

University Staff: Request a correction | Enlighten Editors: Update this record