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Abstract

The within-host evolution of influenza is a vital component of its epidemiology. A question of particular interest is the role
that selection plays in shaping the viral population over the course of a single infection. We here describe a method to
measure selection acting upon the influenza virus within an individual host, based upon time-resolved genome sequence
data from an infection. Analysing sequence data from a transmission study conducted in pigs, describing part of the
haemagglutinin gene (HA1) of an influenza virus, we find signatures of non-neutrality in six of a total of sixteen infections.
We find evidence for both positive and negative selection acting upon specific alleles, while in three cases, the data suggest
the presence of time-dependent selection. In one infection we observe what is potentially a specific immune response
against the virus; a non-synonymous mutation in an epitope region of the virus is found to be under initially positive, then
strongly negative selection. Crucially, given the lack of homologous recombination in influenza, our method accounts for
linkage disequilibrium between nucleotides at different positions in the haemagglutinin gene, allowing for the analysis of
populations in which multiple mutations are present at any given time. Our approach offers a new insight into the dynamics
of influenza infection, providing a detailed characterisation of the forces that underlie viral evolution.
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Introduction

The overall risk to human health posed by the novel H7N9

influenza virus [1], while potentially severe, is as yet unknown

[2,3]. Pandemic influenza is a zoonosis [4], and as such any new

pandemic may be expected to arise through a two-step process

[5,6], the virus first gaining the ability to cause sporadic, localised

infections in humans until, after a second transition, emerging into

a global pandemic. Each of these steps are evolutionary in nature,

being characterised in turn by the adaptation of a virus to be able

to infect a human host, and the development of increased

transmissibility between hosts. In the nH7N9 strain, the first of

these steps has already taken place, including the acquisition of

mutations responsible for human-specific receptor binding [7].

Progression to a global epidemic, therefore, depends upon the

evolution of increased transmissibility of the virus, a phenotypic

change which can only occur while the virus grows in a host

environment. As is true for other viral species [8], understanding

the intra-host evolution of influenza is an important task.

A vast array of mathematical modelling approaches have been

directed at the questions of influenza infection, transmission, and

evolution [9]. Of particular relevance to this study are models

which track the dynamics of a single infection. Based upon

observed changes in viral titre over time, inferences have been

made of many important properties of infection, including the

reproductive number for cellular infection, the timescale and

numbers of viruses produced during the infection of a cell, and the

impact upon the viral population of both innate and adaptive

immune responses [10–14]. Considering data of intracellular RNA

levels, the fine detail of viral replication within a cell has been

described [15]. Evolutionary models of competition between viral

strains have clarified the relationship between selection for growth

and transmission effects, and the dynamics of immune escape [16–

18].

In the cases above, the viral population was either modelled as a

population of identical individuals, or as a set of distinct classes of

virus, characterised by differing immune escape or transmission

properties. Building upon these approaches, a genetic classification

of viruses was used to model H5N1 influenza evolution [19]; the

fitness of a virus was defined according to the presence or absence

of a set of mutations. Here we divide the viral population in a

similar manner, expressing the fitness of a virus as a function of its

genetic composition. However, rather than analysing the conse-

quences of a proposed fitness landscape, we here infer how

selection was actually at work based upon observed genetic

sequence data.

In chronic infections such as HIV, time-resolved sequence data

from individual hosts is readily available [20]. However, the course

of an influenza infection, even in an immunocompromised host

[21], is relatively short. As such, time-resolved genetic data is rare,

the main examples having been collected from experimentally-

infected animal populations [22,23]. In this work, we consider data

from one such study, examining the evolution of H1N1 influenza

within individuals in a swine population [24,25].

The basic principle of our method is to learn the role of

selection acting upon a viral population by means of a maximum
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likelihood method. We adopt a coarse-grained quasispecies model

(cf. [26]) to describe the evolution of the viral population, in which

viruses are classified according to the nucleotides (here denoted

alleles) present at a limited number of positions (or loci) in their

genomic sequence. In this model, evolution proceeds determinis-

tically, contingent only upon the initial state of the population, and

the role of selection for or against specific alleles. By considering

the consequences for the population dynamics of different

proposed models of selection, and comparing these to the observed

evolution of the system, we estimate how selection was at work.

The low rate of recombination within RNA segments of

influenza [27,28], combined with a high viral mutation rate, leads

to complex evolutionary dynamics, with the fate of mutations

being strongly affected by genetic hitchhiking and clonal

interference [29–31]. As such, discerning the effects of selection

requires that interactions between alleles at different loci are taken

into account [32]. Here this is achieved by considering the

frequencies of haplotypes, sets of sequences with specific alleles at

specific loci (e.g. allele C at locus i and allele T at locus j).
In our model, the viral population can be described at

potentially any genomic resolution, keeping track of the popula-

tion in terms of haplotyes spanning arbitrary numbers of loci.

However, higher-locus models are more computationally demand-

ing. As such, we first apply a filtering process to cut out loci at

which alleles do not show statistical evidence of having evolved

under selection. For each polymorphic locus, we use a single-locus

model of evolution to find alleles that appear to evolve in a non-

neutral behaviour, changing in frequency over time. Change in

the frequency of an allele may occur as the direct result of

selection, or due to linkage disequilibrium with a selected allele, or

alleles, at other loci. As such, to distinguish between these cases,

wherever apparent non-neutrality is observed at more than one

locus, we apply a multi-locus model of haplotype frequency

change to the data. This model explicitly accounts for interactions

between alleles at different loci, and is used to identify the

maximum likelihood explanation for the changes observed in the

sequence data.

As has been noted elsewhere, the use of viral sequence data

to understand population structures requires substantial care

(e.g. [33,34]). Selective amplification of sequences, or general

sequencing bias, can produce a misleading picture of a population

as a whole. PCR-induced recombination can lead to false

measurements of linkage disequilibrium between alleles at different

loci. We discuss the potential impact of each of these factors upon

our results.

Results

Viral sequence data collected from a previous transmission

experiment [25] were analysed. An overview of the structure of

this experiment is shown in Figure 1. The chain of infection was

propagated by a process of housing pairs of uninfected pigs with

pairs of infected pigs, the previously-infected pigs being removed

after transmission had occurred. Throughout the experiment,

samples were collected from pigs using nasal swabs, with viral

sequences being amplified via RT-PCR and Sanger sequenced.

Viral sequences were collected from the majority of the pigs; for 16

of the 24 pigs involved in the experiment, data was collected at

more than one time-point, an essential prerequisite for our

method. For the samples collected in these animals the depth of

sequencing varied from 6 to 81 sequences (mean 51) from a pig at

a given time-point, with data being collected at up to five time-

points across the course of an infection. Limited transmission of

variants was observed between individual infections.

In our analysis, non-neutral behaviour was identified in six

populations. In general, signs of selection were relatively rare.

While very many individual mutations were observed in the

population as a whole, most of the substantial changes in allele

frequency occurred at a small number of sites (e.g. Figure 2). As

such, eighteen alleles in the dataset were identified as being

potentially non-neutral. Interference effects between alleles were

found to be of importance; of these eighteen alleles, a total of nine

were identified as being genuinely under selection, changes in

frequency at the other nine being explicable in terms of linkage

disequilibrium with other selected alleles. In the populations

Figure 1. Evidence for selection was found in viruses from six
animals across two experiments. Each pig is represented by a circle,
numbered by index. Arrows between pigs represent potential
transmission events. Pigs vaccinated before being infected are outlined
in red; non-vaccinated pigs are outlined in black. Numbers of pigs for
which data about the viral population was available for more than one
time-point are underlined. Pigs in which selection was identified are
highlighted in orange.
doi:10.1371/journal.pcbi.1003755.g001

Author Summary

The evolution of the influenza virus is of great importance
for human health. Through evolution, current influenza
viruses develop the ability to infect people who have been
vaccinated against earlier strains. New strains of influenza
that infect birds and pigs could evolve to infect and spread
between people, causing a global pandemic. The influenza
virus lives within a human or animal host, so that viral
evolution happens within, or in the spread between,
individuals. As such, what happens to the virus during the
course of an infection is a question of great interest. We
here describe a statistical method that uses viral genome
sequence data to measure how evolution affects the
influenza virus within a single host. Studying data from
infections transmitted between pigs, we find evidence for
evolutionary adaptation in six of sixteen animals for which
data were available. In one case, an immune response
mounted by a pig against the virus is apparent. Our
method provides a statistical framework for using se-
quence data to study viral evolution on very short
timescales, enabling new research into within-host viral
evolution.

Inference of Selection in Within-Host Influenza Evolution
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identified to be non-neutral, a variety of forms of selection were

found, including evidence for time-dependent selection, and for

selection acting simultaneously at more than one locus (a selection

of inferred trajectories are shown in Figure 3; further inferences

are presented in Supporting Figure S1). Our multi-locus model

discriminated between cases where multiple alleles changed in

frequency under independent selection, and cases where selection

acting upon one allele led to substantial changes in the frequency

of others (Table 1).

In Pig104, strong evidence [35] was found for negative selection

acting against the G R A mutation in locus 114, with an inferred

selection coefficient of 21.6 per 12 hours (h). Such a magnitude of

selection is relatively large; by comparison, an allele at frequency

50% with a selection coefficient of 21 per 12 h would decrease to

12% frequency after one day and to less than 2% after 2 days. The

mutation under selection in this case is synonymous, such that the

observation of strongly deleterious selection is perhaps a surprising

one. While, using our method, no statistical evidence for

selection upon this allele was identified in other pigs, the same

polymorphism was found in data collected at the earliest time

point for pigs 115 and 116, but not at subsequent time-points,

consistent with a hypothesis of negative selection for this

nucleotide across all viral populations.

In Pig109 strong evidence was found for positive selection upon

at least two of three alleles; in favour of the G R A polymorphism

at locus 553, the A R G polymorphism at locus 696, or the G R A

polymorphism at locus 914. Fixation of all three of these mutations

occurred between two samples, and models with any single one of

these mutations as the selected allele performed similarly well,

giving estimated selection coefficients between 3.0 and 3.1 per

12 h for the selected allele. Joint consideration of four-locus

haplotype frequencies provided evidence that at least two of these

mutations were independently under selection. The most likely

model had coefficients of 2.8 per 12 h at each of the loci 696 and

914. However, the difference between two-locus additive models

was small, and models in which any two of the three

polymorphisms were under selection performed similarly well

(Supporting Table S1). An interesting feature of this result is that

Figure 2. Observations of the viral population in Pig405. (A) Minor allele frequencies greater than zero recorded at each locus over time.
Vertical black lines indicate loci at which apparent non-neutral behaviour in a minor allele frequency was found; indices for these loci are displayed
above the figure. At locus 844 a continual increase in the minor allele frequency over time can be seen; at locus 553 the minor allele frequency
increases between days 2 and 3, then decreases to zero. At locus 447, the frequency of the minority allele reaches a value close to 0.4 at the final
time-point; a lower allele frequency is seen at the adjacent locus 446. (B) Haplotype frequencies for alleles at the three loci that exhibit non-neutral
behaviour.
doi:10.1371/journal.pcbi.1003755.g002
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Figure 3. Representative haplotype frequency plots for different models of selection. Comparative model fits for Pig104: A model of
constant selection against the GRA mutation at locus 113 outperforms the neutral model, Pig109: A model in which two of three mutations at loci
553, 696, and 914 outperforms models in which one or none of these mutations is under selection. Pig405: A two-locus selection model of constant
selection for the GRA mutation at locus 844, with variable, decreasing selection for the ARG mutation at locus 553 gave the best fit to the data.
Pig412: A model of time-dependent selection at the locus 696, with constant negative selection at locus 48 was optimal. Coloured error bars show
95% confidence intervals for the marginal frequency of each haplotype given the observation; error bars are offset from their respective time-points
to allow their identification. Inferences are shown only for haplotypes that were observed in the sequence data. In Pig405 the CAA haplotype
frequency is obscured below the TAA frequency.
doi:10.1371/journal.pcbi.1003755.g003
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the pairs of mutant alleles inferred to be under selection are highly

linked, the mutant alleles at loci 696 and 914 appearing only

jointly on a sequence, and never in isolation. The inference that

selection is acting at two loci, rather than at only one locus, arises

from the effect of mutation in the model; this result is explored

more fully in Supporting Information. We note that, while the

polymorphism at locus 696 is synonymous, those at 553 and 914

are non-synonymous in character, corresponding to the mutations

D185N and S305N (the former being contained within the Ca2

epitope region [36]).

In Pig115 weak evidence was found for positive selection in

favour of the G R A polymorphism at the locus 188, with an

inferred selection coefficient of 1.2 per 12 h. This polymorphism is

non-synonymous, representing the amino acid substitution G63E.

Bootstrapping of this result against inferences from sequence data

that had been randomised in time largely supported this inference;

from a total of 200 sets of randomised sequence data, a stronger

signal in favour of a model of constant selection was identified in

only eight cases. Details of the bootstrapping of all results are given

in Supporting Text S1 and in Supporting Figure S2.

In Pig405, strong evidence was found for positive selection

acting upon the G RA polymorphism at locus 844, with a

selection coefficient of 0.4 per 12 h, along with simultaneous, time-

dependent selection acting upon the A R G polymorphism at

locus 553. Selection at this second locus was inferred to be initially

positive, with mean strength 0.9 per 12 h during the first time-

interval, weakly negative during the second time interval, with

mean strength 20.1 per 12 h, then finally strongly negative, of

mean magnitude greater than 22 per 12 h for the final time

interval. Each of these polymorphisms are non-synonymous

(corresponding to the mutations V282I and N185D respectively;

the mutation at locus 553 is identical to that observed in Pig109,

albeit in the reverse direction). Identification of time-dependent

selection acting upon the latter, epitope mutation is of particular

interest, raising the possibility that this corresponds to an adaptive

immune response by the host to the virus. In this population the

magnitude of the time-dependent selection inferred for the final

time-point was large and negative, but hard to identify with

precision. This arises from a time-dependent model of selection

being coupled with an observed allele frequency of zero at the final

time-point. Excluding the influence of allele frequencies at other

loci, the data in such a case can lead to an inference of arbitrarily

strong negative selection; the time resolution at which data are

collected imposes a limit on the magnitude of selection that can

correctly be inferred [37].

In Pig410 we identified weak evidence for time-dependent

selection acting upon the synonymous C R T mutation at locus

447; in this case, a bootstrapping calculation produced a stronger

signal of selection than that for the real data in only three out of

200 cases (Supporting Figure S2). Time-dependent selection was

also identified in Pig412, where strong evidence was found for

time-dependent selection acting upon the synonymous G R A

mutation at locus 696, with further weak evidence for negative

selection acting upon the synonymous A R G mutation at locus

48. Under the multi-locus model, a selection coefficient of 1.8 was

identified at locus 696 for the first time interval. The inferred

strength of selection at this locus for the second, final time interval

was imprecise, but very large and negative; the value of 222.8 per

12 h reported in Table 1 again being caused by an observed

frequency of zero at the final time-point.

Alleles at which selection was inferred were distributed across

the HA protein (Supporting Figure S3). Significant changes in

allele frequency were identified in more than one infection at five

different loci (447, 553, 696, 824 and 844). Of these, selection was
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inferred to act at the loci 696 and 844 in more than one infection.

This repetition of mutations may be explained by the design of the

experiment; selection is most likely to be observed when

polymorphisms exist at non-negligible frequency in the population,

while polymorphisms at higher frequencies are more likely to be

transmitted between infections.

Under an initial scan for potentially non-neutral alleles, very

weak evidence for selection was identified in the data from Pig113

at the three loci 447, 824 and 844. However, under the full multi-

locus model, a neutral model of evolution was finally preferred. As

we discuss further in Supporting Text S1, our evolutionary model

is more conservative in identifying selection in cases where

multiple loci are considered simultaneously.

Discussion

We have here described a novel approach to understanding the

within-host evolution of the influenza virus, based upon

sequences collected at subsequent times within a single infection.

Our method combines a quasispecies model of viral evolution

with a hierarchical set of potential models of selection, identifying

the evolutionary scenario which best explains the observed

sequence data. A crucial component of our model is its

accounting for linkage disequilibrium between alleles at different

loci; while a single-locus model is sufficient for cases in which only

one mutation in a gene changes in frequency [38], the

observation of more than one simultaneous change in allele

frequency within a non-recombinant gene demands a more

sophisticated analysis.

Our approach to inferring selection differs substantially from

the calculation of dN/dS [25], not least in considering data at the

haplotype frequency level. While in earlier work dN/dS has been

applied to sequences collected across viral populations from all

observed infections, we allow for the landscape of selection acting

upon the virus to vary between animals, or potentially to change

within a single animal over time. The results of our analysis also

differ; while significant dN/dS ratios were identified at the codon

positions 204 and 257, we did not find evidence of selection for

alleles at either of these loci. We note that, over short time-scales,

difficulties may arise in using numbers of synonymous and non-

synonymous mutations to infer selection. While this approach is of

great value when applied to diverged sequences, such as those

collected from homologous genes in different species [39], its

application to sequences from a single population gives results that

may be harder to interpret [40,41].

Our approach to within-host viral evolution is rooted in the

interpretation of viral sequence data, collected at multiple times

from single infections. By modelling evolution, it is possible to

assess the consequences for a viral population of hypothetical

fitness landscapes (e.g. [16]). If it is known that a mutation fixes

with given probability in a given timescale, the requisite fitness

advantage conferred by that mutation can be learnt [42,43].

However, obtaining a detailed picture of within-host viral

evolution requires the use of time-resolved sequencing, describing

the population at multiple time points. Our method provides a

systematic approach to inferring selection; while the set of

potential fitness models is very large [44], we build upwards from

a neutral model to increasing complexity, as guided by the data.

Keeping data central to our approach means that we may miss the

influence of certain fitness effects; sufficient data may not be

available to infer the complete picture of how evolution is at work.

However, our hierarchical approach means that, given accurate

data describing a population, we should not generate false

inferences of the presence of selection.

Analysing the data, we identified selection acting upon both

synonymous and non-synonymous mutations. Weak selection

acting upon synonymous mutations has been identified for codon

usage in influenza [45] and against mutations that disrupt RNA

structure in HIV [46], although the magnitude of selection

inferred here is significantly higher than in either case. While

inferring the presence of selection, our method cannot match

occurrences of selection to specific biological mechanisms; further

data would generally be required to do this.

One result for which a biological mechanism may be proposed

is in the viral population of Pig405, where we identified variable,

and decreasing selection acting upon a non-synonymous mutation

in the Ca2 epitope region, potentially as a result of a specific

immune response. For this mutation the timing of the onset of

strong negative selection, in the fourth day after exposure to the

virus, is earlier than the five days before detection of an adaptive

response reported for an H3N2 influenza infection in mice [47].

Further to this, modelling studies have associated the innate

immune response with an initial decline in viral load, the adaptive

response leading to final clearance of the virus [13]. Here, no drop

in viral titre was seen at the time of inferred negative selection,

with clearance occurring eight days after infection [24]. Again,

further data would be required to produce a more specific

conclusion; combined data of viral sequence and immune response

would lead to greater understanding of systems such as this.

Modelling assumptions
Our evolutionary model assumes that the viral population is

genetically well-mixed in the host, and that it evolves in a

deterministic manner, both with respect to mutation, and to

selection. The first of these assumptions asserts that each sample of

viruses collected from the pig is representative of the viral

population in the animal at the time. This would not be true if, for

example, the viral population was split into diverse subsets, with

selection acting in very different ways in each. Study of these

effects was not possible given the data studied here.

Our assumption of deterministic evolution is based on the

underlying viral population being large in number, that is, large

enough that Nm and Ns are significantly greater than 1, where N
is the number of viruses in an animal, m is the mutation rate per

locus, and s is the magnitude of selection [48]. Considering

selection, the lowest resolution at which we report selection, of 0.1

per 12 h, is, accounting for two rounds of replication in the

lifetime of an infected cell [10,15], equivalent to a fitness difference

of 0.05 per generation. As such, this part of the assumption holds if

N is substantially larger than 20 viruses. Considering mutation, the

criterion that Nm&1 is stricter than that for selection (where m is of

order 1025 [49,50]), requiring N to be substantially larger than

105. In influenza, models of replication in a single cell suggest that

of the order of 104 virions are produced within each cell [51],

while in the samples from which viruses were sequenced, a viral

load of between 30 and 5500 particles per ml [24] was measured;

once an infection has progressed to the point where viral

sequencing is possible, the population is very likely large enough

for this to be fulfilled. In the earliest stages of an infection,

stochastic mutational behaviour could potentially lead to an

incorrect inference of the initial variant frequencies within the

population; however, these values are not used to draw any

biological conclusions about the system.

Horizontal transmission between co-housed animals was not

incorporated into the model; we believe this was unlikely to have

greatly influenced the collected data. If the viral populations in the

two simultaneously infected pigs were substantially different in

composition, transmission of viruses from one animal to the other

Inference of Selection in Within-Host Influenza Evolution
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might alter the composition of the viral population in the second

animal. However, the viral populations in this experiment were

not sufficiently different in sequence to be able to distinguish

superinfection from the growth of de novo mutations. Further,

while the viral titre implicated in transmission is unknown, we

believe that the incoming titre is likely to be substantially smaller

than the pre-existing number of viruses in the second infected

animal.

Accuracy of the data
A second assumption in our study is that the collected sequence

data are relatively accurate. That is, we assert that the sequences

obtained from the sample are representative of the sample itself.

The basis of our inference upon data means that the accuracy of

the data is vital for obtaining useful results. For example, in

addition to raw allele counts, our approach makes explicit use of

linkages between mutations. Our method allows for the possibility

of generic error in the sequencing process, and fully accounts for

the statistical noise inherent to a finite data sample. However,

there are systematic data biases that may also affect the results

obtained. For example, PCR-induced recombination has the

potential to alter the observed frequencies of multi-locus haplo-

types [52,53]. Testing for such an effect, by fitting an exponential

model to the observed absolute linkage disequilibrium between

pairs of alleles, we found no evidence for such recombination, no

decay in this statistic being observed with increasing distance

between alleles (Supporting Figure S4).

Sequencing bias also has an effect on whether or not a mutation

is recognised as being under selection. Mutations that are

preferentially identified by a sequencing method would appear

in the sample at higher frequencies, such that changes in their

frequencies were amplified, leading to a greater chance that such

mutations were found to be under selection. For this dataset, a

consistent sequencing method was used to process all of the

samples; we therefore assumed sequencing bias to be consistent

between samples, such that observed changes in allele frequency

were caused either by the finite sampling process, or by a process

of mutation and selection. Estimating the extent of sequencing bias

in the observed sequences is difficult, the sequences themselves

representing the only information about the real viral population.

Counting the mutations observed in the data showed a high

transition:transversion ratio of 9.7 (Supporting Figure S5). This is

broadly consistent with values observed for other RNA viral

populations [54,55], albeit that measurements of this ratio in

influenza have previously been based upon global, rather than

within-host, populations [56]. Biased sampling, whether occurring

via the collection of a biological sample that is unrepresentative of

the whole population, or as a result of the subsequent PCR

amplification, also has the potential to affect our inference. We

have here assumed that the data is an unbiased sample of the real

population.

Our inferences are partially limited by the use of sequences

describing only the HA1 region of the influenza virus. While our

inferences of deviation from neutrality in a population are not

affected by alleles elsewhere in the virus, the attribution of

selection to given alleles may be affected by unobserved

polymorphisms in the HA2 region of influenza, or if reassortment

were limited (though see [57]), with alleles in other viral segments.

The potential influence of selection acting upon polymorphisms

that have not been observed is of greatest relevance to the cases of

apparently time-dependent selection; constant selection acting

upon interfering mutations causes time-dependent selection effects

[32]. One example is the case of Pig412 where initially positive,

then negative selection is inferred. In this infection, many

haplotypes which are observed at the intermediate time point

are no longer seen in the final time point; this pattern is consistent

either with a switch in the direction of selection acting upon the

synonymous mutation at locus 696, as was inferred, or with very

strong positive selection acting upon an unobserved mutation on

the consensus haplotype causing a selective sweep later in the

observation. Such a scenario is much less likely in the case of

Pig405, where the haplotype containing the allele inferred to be

under negative selection is outcompeted in the final time interval

by four other haplotypes, including that of the initial consensus.

Conclusions
We have here described a framework for the inference of

selection acting upon a viral population within an individual host,

based upon time-resolved sequence data. Within-host selection is

of importance for the future evolution of the H7N9 influenza virus,

and for understanding the epidemiology of other influenza strains.

During an epidemic, both within-host growth, and the transmis-

sion of viruses, are important, and potentially competing factors; a

mutation which is beneficial for within-host growth may prove

deleterious for transmission and vice versa. While we have here

considered only the first of these factors, our method could easily

be used to infer the role of selection for transmission, given specific

conditions. First of all, substantial continuity would be required

between the native and the transmitted populations, such that

changes in allele frequencies before and after transmission were

primarily the result of selection; severe bottlenecking would distort

the population structure. Secondly, clarity would be required

about the source of each infection; in the experiments considered,

where an infection begins with an unknown mixture of viruses

from two other individuals, the role of selection in transmission

cannot be evaluated. Transmission events in the data analysed

here have been discussed elsewhere [58]. In more straightforward

cases, where transmission occurs between known individuals, and

where continuity between viral populations is more evident (e.g.

[59]), use of our method to infer selection acting across

transmission events is likely to be achievable.

The collection of sequence data describing the within-host

evolution of influenza is at present, relatively rare, although we

anticipate that improvements in sequencing technology will make

such data increasingly accessible. Increased collection of sequence

data from patients, and from evolutionary experiments, will

greatly add to our understanding of viral infection. Our approach

increases the value of such work, characterising in detail the forces

that underlie within-host viral evolution.

Methods

Description of viral dynamics
Quasispecies theory [26] provides a deterministic description of

the evolution of mutation-prone, self-replicating organisms; this

framework has profoundly influenced studies of RNA viral

evolution [60–63]. To describe the evolutionary dynamics of the

influenza virus within an individual host we apply a coarse-grained

quasispecies model, in which the viral population is described as

haplotypes spanning a limited set of loci, rather than as complete

viral sequences. Specifically, we represent the viral population as a

frequency vector q(tk), defined at discrete times tk, and comprised

of elements qa(tk), where qa(tk) is the fraction of sequences in the

population with the haplotype a; that is, with the nucleotides

a~a1a2 . . . aL at a subset of loci i1, . . . ,iL in the viral genome.

To model mutation between haplotypes, we assumed a constant

rate of mutation, m, between any two specific nucleotides at a given

locus, the probability of mutation from haplotype a to haplotype b

Inference of Selection in Within-Host Influenza Evolution
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in a single generation being given by

Mab~mH(a,b)(1{3m)L{H(a,b), ð1Þ

where H(a,b) is the Hamming distance between the two haplotype

sequences.

Selection was accounted for by ascribing to each haplotype a
the (potentially time-dependent) selection coefficient sa(tk). The

effect of selection on the haplotype frequency qa(tk) between times

tk and tkz1 was thus defined by the function Stk
:

Stk
½qa(tk)�~ qa(tk) exp (sa(tk)Dk,kz1)P

a qa(tk) exp (sa(tk)Dk,kz1)
, ð2Þ

where Dk,kz1~tkz1{tk. Considering the evolution of influenza,

we supposed time-points to be spaced at 12-hour intervals, roughly

approximating the time required for a round of intracellular

growth within a cell [10]. Within such a round of growth, each

virus undergoes two rounds of replication, modelled as having

equal mutation rates, with the parameter m~(1=3)|10{5

representing an overall rate of mutation per nucleotide per

generation of 1025 [49,50]. Selection was assumed to act upon the

viral population once it has exited the cell, giving the relation

q(tkz1)~Stk
½M2(q(tk))�: ð3Þ

where M is the matrix consisting of elements Mab, modelling a

single round of replication. The behaviour of the system is thus

specified in a deterministic manner by the selection parameters

sa(tk), and by the initial state of the system, given by the elements

of the vector q(t0).
We note that, while sequence data was collected at known times

throughout the course of each infection, the precise moment at

which each infection began is unknown. Here, we assumed t0 to be

precisely 24 hours before the first observed set of sequence data

from the infection. While the uncertainty in this value has

consequences for the accuracy of the elements of the inferred

vector q(t0), no conclusions were finally drawn from these values.

Inferring non-neutral behaviour and selection
An inference of selection was carried out by comparing

maximum likelihood values obtained under a hierarchical series

of models, each specifying the parameters q(t0) and sa(tk). The

coarse-grained quasispecies model can be expressed in terms of

haplotypes of arbitrary length. We describe the general model

below.
Evolutionary model. We consider a population with an

arbitrary number of polymorphic loci, D~fd1,d2, . . . ,dLg, each

containing alleles that may or may not be under selection. Each

locus may contain one of four nucleotides, such that the vector

q(t0), describing the initial state of the population, has 4L

elements, potentially a large number. To reduce the complexity

of the model, we therefore considered only the consensus and

largest minority alleles at each locus. At each locus, the consensus

allele, denoted 0, was defined as the majority allele in the sample

collected from the population at the first time of observation. The

largest minority allele, denoted 1, was then defined so as to

maximise the total number of observed sequences which had one

of the 2L haplotypes a1a2 . . . aL; ak[ f0,1g at the loci d1, . . . ,dL.

Where more than two alleles were present at a given locus, this

simplification distorts the resulting model likelihood. However, in

the dataset considered here, such cases were extremely rare; we

discuss this further in Supporting Text S1.

Parameters describing q(t0) and sa(tk) were defined indepen-

dently. The initial frequency qa(t0) of a haplotype a was included

as a variable in the model if that haplotype was observed at least

once in the sequence data, other initial frequencies being set to

zero. Selection parameters were included according to the model

of selection being applied. In the basic, neutral model, we set the

magnitude of selection sa(tk) for each haplotype a and time point

tk to be zero. In other models of selection, the variant allele could

be either neutral, or under constant or time-dependent selection at

each locus. Where more than one locus had an allele under

selection, the interaction between these alleles could be additive or

epistatic in nature. As such, arbitrary models of selection could be

considered.

In the model, selection was applied across all relevant

haplotypes. In a case of constant selection at a single locus, in

which the 1 allele at locus d1 was under selection with magnitude

s, the values sa(tk) would equal s for all haplotypes a in which the

locus d1 had the allele 1, and for all times tk.

A final error parameter, E, was included, defining the

probability that sequencing returns an erroneous haplotype for a

given sequence. Assuming that no more than one error occurs in

reading any given haplotype (i.e. the error rate is low), we define

the haplotype frequency ~qqa(tk), describing the frequency of the

haplotype a within the model at time tk, as

~qqa(tk)~qa(tk)z
X

H(a,b)~1

E(qb(tk){qa(tk)): ð4Þ

where qa(tk) is calculated as described above.

Given a set of parameters describing the initial state of the

population, and the selection coefficients acting upon the

population, we can write the likelihood of these parameters as

LD(q(t0),fsa(tk)g)~
X

k

log
Nk!

Pa[HD na(tk)!
P

a[HD
(~qqa(tk))na(tk )

� �
ð5Þ

where Nk is the total number of samples collected at point tk,

na(tk) is the number of samples with the haplotype a at time tk,

~qqa(tk) is the predicted frequency of the haplotype a at time tk, and

HD is the set of all haplotypes over the loci in D.

The Bayesian information criterion (BIC) [64] was employed to

allow comparison of models with different levels of complexity.

Given optimised log likelihood values LD
m for different models m

describing the same dataset, the best model was defined as that

giving the lowest BIC value

BICm~{2LD
mzkm log (n), ð6Þ

where km is the number of parameters included in model m, and n

is the total number of sequences in the dataset, summed across

timepoints. We note that the number of initial frequencies learnt in

a calculation is derived from the properties of the data; differences

in km between models for a system are entirely due to the number

of parameters describing selection.

Beginning with a neutral model, selection models of increasing

complexity were tested, adding loci under selection. This process

was continued either until adding selection to an allele at another

locus did not improve the BIC value, or until the model likelihood

was sufficiently close to the maximum theoretically achievable

likelihood (obtained when the inferred haplotype frequencies

~qqa(tk) were identical to the observed frequencies na(tk)=Nk) that

adding an additional parameter would inevitably increase the BIC.

Inference of Selection in Within-Host Influenza Evolution
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Identification of alleles potentially under selection. The

above method relies upon having a prior choice of loci in D,

containing alleles that are potentially under selection. In the

analysis conducted here, these loci were identified using a

single-locus version of the above model. For each polymorphic

locus, the observed allele frequencies over time were used to

calculate the likelihood that the largest minority allele was

under either constant or time-dependent selection, these values

being compared to the likelihood of the observation under a

neutral model. Likelihoods were calculated using the binomial

model

Li(q1
i (t0),fs(tk)g)~

X
k

log
Nk!

n1
i (tk)!(Nk{n1

i (tk))!
~qq1

i (tk)
n1
i

(tk )
(1{~qq1

i (tk))
n0
i

(tk )

� � ð7Þ

where n1
i (tk) is the number of sequences observed at time tk

with the allele 1 at locus i, and ~qq1
i (tk) is the inferred frequency

of sequences with the allele 1 at locus i at time tk. This

evaluates whether or not an allele exhibits apparently non-

neutral behaviour, changing in frequency either due to

inherent selection, or due to linkage disequilibrium with other

non-neutral alleles. All loci for which a model of non-zero

selection gave a better likelihood than did a model of neutrality

were included in the set D. A pictorial representation of our

method is given in Figure 4.

Describing the extent of support for a model. In the text,

we describe a difference in BIC of more than 2 units as providing

evidence in favour of a model, with a difference of more than 6

units providing strong evidence in favour of a model (cf. [35]). We

describe a BIC difference of less than 2 units as weak evidence in

favour of a model. As an additional test of the veracity of

inferences from the single-locus model, we conducted boot-

strapping estimates against BIC differences obtained from

randomised sequence data; for all cases where we identified more

than weak evidence for selection, these tests backed up our result

(see Supporting Text S1).

Validation of data
In order to test for the influence of PCR-induced recombination

upon the dataset, we calculated a measure of linkage disequilib-

Figure 4. Models of selection. (A) Example single-locus model. A single allele, denoted 1 (red) at driver locus i is considered to be potentially
under selection; the initial consensus allele is denoted 0. Changes in the frequencies of alleles at locus i are affected over time by mutation and
selection; the alleles denoted 2 and 3 refer to the remaining two nucleotides at this locus. Changes in allele frequency are compared to those
obtained under models in which the allele 1 is either neutral, or under constant or time-dependent selection; appropriate parameters for selection,
and for the initial state of the system, are learnt. (B) Example two-locus model. We suppose that alleles at loci i and j have been found to exhibit
apparent non-neutral behaviour, other alleles being indistinguishable from neutrality. We divide the population into haplotypes based upon the
alleles present at these loci, giving haplotype frequencies q11, q10, q01, and q00. Observed frequencies are then compared to those obtained under a
variety of models of selection at either one or two of these loci. In this figure, example sequences are shown for a single time-point.
doi:10.1371/journal.pcbi.1003755.g004
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rium between loci. For each pair of polymorphic loci i,j in the

dataset, we calculated the value D, equal to the absolute linkage

disequilibrium between these loci, normalised by the maximum

potential linkage disequilibrium given the allele frequencies in

question

D~
Dq11

ij (tk){q1
i (tk)q1

j (tk)D

max (q1
i (tk)q0

j (tk), q0
i (tk)q1

j (tk))
, ð8Þ

where the labels 0 and 1 represent the consensus and most

common minor alleles at each locus, qa
i (tk) represents the

frequency at time tk of the allele a at locus i, and qab
ij (tk)

represents the frequency at time tk of the haplotype ab at loci i and

j. Values of D were compared for loci at different positions in the

sequence, fitting a model of the form, D~A expBDi{jD for all points

for which Di{jDw1, where Di{jD is the sequence distance between

loci i and j. Here a greater negative value of B would indicate that

a higher mean rate of recombination in the viral sequences

occurred during the sequencing process.

Validation of the method
A test of the ability of the method to discriminate between

selected and non-selected alleles, and to correctly infer the

magnitude of selection acting upon a locus, was performed by

running analyses for simulated data. For simulated populations

with a single allele under selection, a correlation coefficient of of

more than 0.95 was found between real and inferred selection

coefficients, with an equivalent correlation of 0.91 for simulated

systems with two alleles under selection. Further details are given

in Supporting Text S1 and Supporting Figures S6 and S7.

Supporting Information

Figure S1 Inferences made under the single locus
method. Model fits and corresponding log likelihoods are shown

for the neutral, constant selection (s), and time-dependent (s(t))
selection models for selected loci in the data. A model of constant

selection gives the optimal BIC score for Pig115 locus 188, and

Pig405 locus 844. A model of time-dependent selection gives the

optimal BIC score for Pig410 locus 447; the neutral model is

favoured for Pig115 locus 114. Error bars give 95% posterior

probability intervals for each allele frequency at each time, given

the observed sequences. The optimal BIC score identified for each

dataset is highlighted in bold text.

(TIF)

Figure S2 Bootstrapping of BIC inferences. The difference

in BIC between selected and neutral models for the single allele giving

the strongest evidence for selection in each animal, measured using

BIC. Here a positive BIC difference shows in favour of the selected

model. Values from the real sequence data are here compared to the

equivalent statistic for random permutations of sequences collected

from each animal. Each histogram shows the real and random

statistics; a red arrow shows the position within the distribution of the

real inference. In Pig104, Pig109, and Pig412, the real data gave a

stronger signal of selection than all 200 random datasets. In Pig405,

Pig410, and Pig115, the number of random datasets giving stronger

signals of selection were one, three and eight respectively.

(PDF)

Figure S3 Approximate locations of residues affected by
nucleotide mutations in systems for which non-neutral
behaviour was identified. Residues corresponding to nucle-

otide polymorphisms are shown for both synonymous (orange) and

non-synonymous (red) mutations. The HA1 region for one unit of

the protein trimer is shown in yellow; the HA2 region, which was

not included in the sequence data, is shown in blue. The two other

units of the trimer are shown in grey. The residue corresponding

to the nucleotide position 553 is in the Ca2 epitope site.

(PDF)

Figure S4 No evidence found for PCR-induced recom-
bination. Gray dots show values of the normalised linkage

disequilibrium statistic D for alleles at varying distances apart. The

solid red line shows a sliding window average value of D, of width

100 bases. The dotted gray line shows the optimal fit to the data of

an exponential regression line. BIC comparison of the exponential

regression with a linear model favoured the latter, giving an

estimate for PCR-induced recombination of zero.

(TIF)

Figure S5 Spectrum of mutations observed in the
population. (A) Number of occurrences of mutations observed

in the sequence data. Mutations were counted with respect to the

consensus sequence, counting multiple observations of the same

mutation in the same animal as a single event. (B) Proportion of

mutations observed in the sequence data, scaled by the nucleotide

content of the consensus sequence.

(PDF)

Figure S6 Results inferred from simulated populations
in which a single locus was under selection. (A) True

positive (red) and false positive (black) rates for identifying selection

at a a selected locus, following use of the multi-locus inference

model described in the main text. The blue line shows the false

positive rate for identifying selection using the single-locus model;

accounting for interference between alleles gives a substantially

improved result. (B) Inferred selection coefficients obtained from

the multi-locus model. Individual inferences are shown as small

red circles; cases for which selection was not distinguished from

neutrality are represented as having zero inferred selection. The

black line is that of perfect agreement between real and inferred

selection coefficients.

(TIF)

Figure S7 Results inferred from simulated populations
in which alleles at two loci evolved under additive
selection. (A) Combined errors in the inference of pairs of

selection coefficients are shown. The error E in each case is

calculated as the Euclidean distance between the real and inferred

selection coefficients. (B) Inferred selection coefficients obtained

from the multi-locus model for individual alleles. Inferences are

shown as small red circles; cases for which selection was not

distinguished from neutrality are represented as having zero

inferred selection. The black line is that of perfect agreement

between real and inferred selection coefficients.

(TIF)

Table S1 Further inferences for Pig109. The optimal

model of each type is given in each case. Small BIC differences

were identified between cases in which different alleles, or

combination of alleles, were under selection. Model codes are s:

Constant selection at a single locus; 2s: Additive selection at two

loci. The BIC value for the optimal model is displayed in bold.

(PDF)

Text S1 Details of optimisation of log likelihoods.
Consideration of cases of multiple alleles at single loci. Importance

of mutation for inferences made for Pig109 and Pig113. Methods

used in constructing Figures. Inference of selection from simulated
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populations. Bootstrapping via inference of selection from

randomised sequence data.

(PDF)
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