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SUMMARY: This article presents a new method for modelling collective movement in continuous time with behavioural switching,

motivated by simultaneous tracking of wild or semi-domesticated animals. Each individual in the group is at times attracted to a

unobserved leading point. However the behavioural state of each individual can switch between ‘following’ and ‘independent’.

The ‘following’ movement is modelled through a linear stochastic differential equation, while the ‘independent’ movement is

modelled as Brownian motion. The movement of the leading point is modelled either as an Ornstein Uhlenbeck process or as

Brownian motion, which makes the whole system a higher-dimensional Ornstein Uhlenbeck process, possibly an intrinsic non-

stationary version. An inhomogeneous Kalman filter Markov chain Monte Carlo algorithm is developed to estimate the diffusion

and switching parameters and the behaviour states of each individual at a given time point. The method successfully recovers the

true behavioural states in simulated datasets, and is also applied to model a group of simultaneously tracked reindeer (Rangifer

tarandus).

KEY WORDS: Animal Movement; Bayesian inference; Kalman filter; Multivariate Ornstein Uhlenbeck process; Stochastic dif-

ferential equation; Switching diffusion.
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1. Introduction3

Understanding the collective movement of animals is an important challenge in ecology. Individual4

animals in many of the world’s taxa do not move independently of each other. For most, conspe-5

cific or heterospecific interactions influence decision making, behavioural choices and movement6

(Schlägel et al., 2019; Couzin et al., 2005; Merkle et al., 2016). Many species of birds, fish, insects7

and ungulates demonstrate highly cohesive and coordinated movements whose social interactions8

are being increasingly investigated (Herbert-Read, 2016; Westley et al., 2018; Buhl et al., 2006;9

Croft et al., 2015). In the past, simulation models have provided useful insights into the movement10

and decision making of animal groups (Aoki, 1982; Huth and Wissel, 1992). By assuming underly-11

ing laws of interaction these predictive models help us to understand certain ecological phenomena12

such as information sharing (Couzin et al., 2005), the effect of group size in obstacle avoidance13

(Croft et al., 2013) and how variation among individuals impacts the overall cohesion of the group14

(del Mar Delgado et al., 2018). Now with a wealth of tracking technologies it is possible to analyse15

real data of aggregations without such complete reliance on simulation models.16

However, recent studies using real data typically employ a metric based approach to quantify as-17

pects of collective movement such as dependency in acceleration or proximity rather than explicitly18

providing a model of movement. What’s more, most studies are restricted to dyadic interactions19

(Polansky and Wittemyer, 2011; Joo et al., 2018; Long et al., 2014) even when providing a model20

for movement for example by correlating an individual’s acceleration or turning angle with that of21

other members of its group (Polansky and Wittemyer, 2011). Some approaches do offer a stochastic22

model for multi-individual movement and may even account for behavioural heterogeneity (Cal-23

abrese et al., 2018) but still operate with metric based analysis whose behavioural transitions are24

dictated by the sampling scheme and whose inference can produce different results on different25

time-scales. Haydon et al. (2008) uses social structures of large groups to infer population dy-26

namics, mortality rates and fecundity. This is demonstrated with a unique dataset of elk where27
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all individuals are tracked. Whilst movement in this approach is modelled explicitly, each animal’s28

movement is modelled individually using a correlated random walk and the group structure is quan-29

tified by spatial-temporal proximity from other individuals. Nonetheless, the “socially informed”30

model gives enlightening results about the population growth rate in relation to fission-fusion31

processes. They found that solitary individuals (those outside of the proximity threshold) have32

a higher risk of mortality than their grouped counterparts. This stresses the importance of forming33

coherent models which capture the sophistication of collective motion and social interactions of34

gregarious animals.35

Existing realistic models of movement, which typically combine continuous locations in space36

with a discrete representation of behaviour, are generally limited to modelling single individu-37

als. Langrock et al. (2014) do model the movement of a group of animals explicitly, allowing38

both dependent and independent behaviours, but their model and inference method are limited39

to discrete time, and their ‘centroid’ mechanism to represent attraction is explicitly tied to the40

time-scale of observations. Niu et al. (2016) give a continuous-time collective movement model41

(see §2.1) which assumes consistent group movement at all times, without any variation in be-42

haviour. Here, we develop novel methodology which allows exact Bayesian statistical analysis for43

a class of group movement models with behavioural switching in continuous time, without any44

need for time-discretization error. We represent the group movement as a multivariate Ornstein45

Uhlenbeck process and allow the individuals to switch behaviour, either following the group or46

moving independently as Brownian motion. The times of changes in behaviour are represented as a47

thinned Poisson process, allowing exact simulation and Markov chain Monte Carlo inference. The48

methodology can be applied to data that are regular or irregular in time, with or without missing49

or incomplete observations. As well as much greater flexibility in modelling, our approach gives50

improved computational efficiency by integrating out part of the group movement process using a51

Kalman filter. In a set of simulation experiments, motivated in part by our analysis of data from52
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simultaneously tracked reindeer (Rangifer tarandus), we show that our approach can reconstruct53

unobserved behaviours from location data in a range of scenarios.54

The structure of the remainder of the article is as follows. We first review the existing models55

and extend the leader-follower framework to the non-stationary case and to include behavioural56

switching in Section 2. The simulation of the trajectories of the group using uniformization and57

the state space form of the model is explained in Section 3. The inhomogeneous Kalman filter58

Markov chain Monte Carlo algorithm is developed in Section 4 to estimate the behaviour states59

and diffusion parameters. The method is applied to model a simulation dataset in Section 5 and60

real data from reindeer movement in Section 6.61

2. Models62

Continuous-time models for movement are usually taken to be diffusion processes, the simplest63

case of which is Brownian motion. More general diffusion models for movement can be defined64

as solutions to stochastic differential equations (Brillinger et al., 2002). Here, we build on the65

approach of Niu et al. (2016) of modelling the group movement with a leader-follower framework66

(originating with Langrock et al., 2014) using a multivariate Ornstein Uhlenbeck process, and we67

start by summarising that model.68

2.1 Existing model69

Niu et al. (2016) represent the interaction between animals as a shared attraction to a leader L,70

which may be another animal, or simply an abstraction. If the leader is an animal, it may of course71

be observed or unobserved; in the former case the model still applies but much of the calculation72

is greatly simplified. For ease of exposition, we assume here that this is not the case, and the73

leader is either an unobserved animal or a mathematical abstraction. The observed individuals are74

conditionally independent, given full information about L. Thus animals do not interact directly,75

but only through their interactions with L. This formulation means that the model is robust to76
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incomplete observation of a group of animals, and to variation over time of the number or identity77

of the observed individuals. The interpretation of the parameters of the model does not depend78

on the numbers of observed or unobserved animals. This approach is therefore suitable for cases79

where there may be many unobserved animals, e.g. large herds of herbivores. See Langrock et al.80

(2014) and Niu et al. (2016) for further discussion.81

The movement of the unobserved leader L is modelled as a stationary Ornstein Uhlenbeck

process. Let the random variable Ly
t represent the location of the y coordinate of the location

of the leading point at time t. A stochastic process {Ly
t : t ! 0} in which Ly

t is attracted to θy is

given by the stochastic differential equation (Schach, 1971)

dLy
t = −β(Ly

t − θy)dt+ ρdV y
t (1)

where β is the attraction rate to θy; θy is a fixed location; ρ is the coefficient for the noise; V y
t82

is standard Brownian motion. By applying the rotational symmetry which is natural in practice83

(Blackwell, 1997), the model is identical for x coordinate Lx
t , with parameters β and ρ in common,84

and independent Brownian motions {V x
t } and {V y

t } used for Lx
t and Ly

t .85

A similar stochastic differential equation can model the movement of each of n followers at-

tracted at any instant to the current location of the leader. Let the random variable F y,k
t represent

the y coordinate of the kth follower’s location at time t. {F y,k
t : t ! 0} is defined by the following

stochastic differential equation with parameters α, σ, Ly
t and Brownian motion {W y,k

t }, where F y,k
t

is attracted to Ly
t :

dF y,k
t = −α

(

F y,k
t − Ly

t

)

dt+ σdW y,k
t

with α the attraction rate to Ly
t ; σ the coefficient for the noise. By rotational symmetry as before,86

F x,k
t and F y,k

t satisfy identical equations.87

For the present work, we express the idea of attraction to a leader by restricting α to be positive.88

Taking α to be negative would imply repulsion from the moving point at Ly
t , which is not a useful89

model of collective behaviour of the form that we are interested in, although a related model90
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involving repulsion of a single animal from a fixed centre is explored by Blackwell (1997) and91

Harris and Blackwell (2013).92

Combining the equations for the leading point and followers gives a stochastic differential equa-

tion for the y coordinates of both leader and followers which defines a particular multivariate

Ornstein Uhlenbeck process:

dYt = AYtdt+ ΣdBy
t (2)

where93

Yt =































θy

Ly
t

F y,1
t

...

F y,n
t































, A =

































0 0 · · · · · · 0

β −β
. . .

...

0 α −α
. . .

...

...
...

. . . . . . 0

0 α 0 · · · −α

































, Σ =

































0 0 · · · · · · 0

0 ρ
. . .

...

...
. . . σ

. . .
...

...
. . . . . . 0

0 · · · · · · 0 σ

































,94

ByTt =

(

0 V y
t W y,1

t · · · W y,n
t

)

.95

Yt is a vector representing the y coordinates of the attractor, the leader and the followers. The

attractor θy is a constant in Niu et al. (2016), but in general it could be modelled by another

diffusion process; we include it in the state vector for convenience in describing the inference

algorithm later. Note that each F y,k
t is indirectly attracted to θy. The matrix A is the attraction

rate matrix. We take the stochastic parts (Brownian motion) for the leader and the followers to

be uncorrelated, therefore Σ is diagonal; each diagonal element of the Σ, except the initial zero,

represents the coefficient of the individual variance. The solution of this multivariate stochastic

differential equation can be written as a multivariate normal distribution:

Yt|Y0 ∼ MVN(µ,Ξ) (3)

where

µT =

(

θy µL(L
y
0, t) µF(L

y
0, F

y,1
0 , t) · · · µF(L

y
0, F

y,n
0 , t)

)
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with

µL(L
y
0, t) = (Ly

0 − θy) e−βt + θy, (4)

µF(L
y
0, F

y,k
0 , t) = (Ly

0 − θy)
α

α− β

(

e−βt − e−αt
)

+
(

F y,k
0 − θy

)

e−αt + θy, (5)

and

Ξ =





































0 · · · · · · · · · · · · 0

... ξL ξLF · · · · · · ξLF

... ξLF ξF ξFF · · · ξFF

...
... ξFF

. . . . . .
...

...
...

...
. . . . . . ξFF

0 ξLF ξFF · · · ξFF ξF





































with

ξL(t) =
ρ2

2β

(

1− e−2βt
)

, (6)

ξLF(t) =
ρ2α

2β (α + β)
−

ρ2α

2β (α− β)
e−2βt +

ρ2α

α2 − β2
e−(β+α)t, (7)

ξF(t) =

{

σ2

2α
+

ρ2α

2β (α + β)

}

(

1− e−2αt
)

−
ρ2α2

2β (α− β)2
(

e−βt − e−αt
)2

−
ρ2α2

β (α2 − β2)

{

e−(α+β)t − e−2αt
}

, (8)

ξFF(t) =
ρ2α

2β (α + β)

(

1− e−2αt
)

−
ρ2α2

2β (α− β)2
(

e−βt − e−αt
)2

−
ρ2α2

β (α2 − β2)

{

e−(α+β)t − e−2αt
}

. (9)

For details of the derivation see Niu et al. (2016). The parameter α controls the strength of the96

attraction of the followers to the leader. One consequence of this is that higher values of α will lead97

to the followers typically being closer to the leader, although of course their distribution around it98

depends on the diffusion parameters ρ and σ too.99
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2.2 Behavioural Switching100

For realism in modelling animal group movement, the individual animals may not always follow101

the leader; they can move independently from time to time. The behaviour of the followers can102

switch between following the leader and independent Brownian motion. The Brownian motion103

type of movement can be modelled as F y,k
t |F y,k

0 ∼ N(F y,k
0 , tσ2

BM) where σ2
BM is the diffusion rate104

of the Brownian motion of the non-following animals.105

We need to combine the group diffusion model and independent movement model through a106

framework of behavioural switching, whereby animals switch between behavioural states with107

different movement characteristics (Blackwell, 1997, 2003). In mathematical terms, we can repre-108

sent this as a Markov process in continuous time with both a diffusion component, location, and109

a discrete one, behaviour, as in Berman (1994). The more complex case where behaviour itself110

depends on location is discussed below.111

For modelling a single animal, the idea of a switching diffusion process driven by a continuous-112

time Markov chain was proposed in Blackwell (1997) and formalised in Blackwell (2003). In113

group movement modelling, a discrete-time version was described by Langrock et al. (2014);114

here we develop a multivariate Ornstein Uhlenbeck process for a group of animals, driven by a115

continuous-time Markov chain on a space representing their joint behaviour. We let Jk
t denote the116

kth animal’s behavioural state at time t, taking values in {1, 2}, where 1 represents the state of117

following the leader and 2 represents the state of independent Brownian motion. Then we write Jt118

for the behavioural state for the whole group of animals at time t, taking values in {1, 2}n. We take119

each Jk
t independently to be a continuous-time Markov chain on {1, 2} having transition rates λ1,2120

and λ2,1, where λ1,2 is the switching rate of an individual from following the leader to Brownian121

motion and λ2,1 is the switching rate of an individual from Brownian motion to following the leader.122

The transition rates for Jt are then implied by that structure, although it would be straightforward123

to allow for additional structure.124
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The kth animal starts in some state Jk
0 = i and location F x,k

0 = x0, F
y,k
0 = y0, then follows the125

ith movement model; that is, F x,k
t |F x,k

0 and F y,k
t |F y,k

0 are realizations of the ith diffusion process.126

If i = 2 the diffusion process is Brownian motion; if i = 1 the animal is following the leader, so127

that its movement jointly with that of the leader is multivariate Ornstein Uhlenbeck. This continues128

until the time of the first switch in behaviour, at time T1, when the animal is at F x,k
T1

, F y,k
T1

. If the129

behaviour switches to Jk
t = j, the next part of the location trajectory is a realisation of the jth130

diffusion process, starting at F x,k
T1

, F y,k
T1

, and so on.131

The behavioural switching allows a much wider range of observed movement patterns. For132

example, if switching between behaviours is relatively slow, following individuals will tend to133

be found closer to the leader—and therefore closer together—the higher the value of α, while134

non-following animals will tend to drift away. However, faster switching between behaviours can135

complicate this picture, depending on the absolute and relative switching rates. For example, short136

periods of non-following behaviour will lead to the animals moving independently in the short137

term while generally remaining close together.138

2.3 Non-stationary case139

In the model described in §2.1, the leader and followers jointly define a multivariate Ornstein

Uhlenbeck process and therefore have a stationary joint distribution. However, in practice the

leader may not have a point of attraction, or at least not one that is relevant on the time scale

of available data. The most tractable way to allow for this is to simply allow the leader to undergo

Brownian motion instead of an Ornstein Uhlenbeck process, by setting β = 0 in equation 1. The

individual stochastic differential equations are then

dLy
t = ρdV y

t , dF y,k
t = −α

(

F y,k
t − Ly

t

)

dt+ σdW y,k
t .

Similarly to §2.1, we can combine the equations for the leading point and the followers to give a

stochastic differential equation for the y coordinates of both leader and followers. This defines an

intrinsic Ornstein Uhlenbeck process, in which the behaviour of the leader is no longer stationary,
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but the configuration of the followers around the leader is stationary. The solution of this stochastic

differential equation can again be written as a multivariate normal distribution:

Yt|Y0 ∼ MVN(µ∗,Ξ∗), (10)

where

µ∗T =

(

θy Ly
0 µ∗

F(L
y
0, F

y,1
0 , t) · · · µ∗

F(L
y
0, F

y,n
0 , t)

)

, (11)

with µ∗
F(L

y
0, F

y,k
0 , t) = Ly

0 (1− e−αt) + F y,k
0 e−αt. We retain θy in equation 11 in order to be

consistent with the existing model in equation 2. θy is fixed to be zero and not used in the inference.

The variance matrix can be written as

Ξ∗ =





































0 0 0 0 0 0

0 ξ∗L ξ∗LF · · · · · · ξ∗LF

0 ξ∗LF ξ∗F ξ∗FF · · · ξ∗FF

0
... ξ∗FF

. . . . . .
...

0
...

...
. . . . . . ξ∗FF

0 ξ∗LF ξ∗FF · · · ξ∗FF ξ∗F





































. (12)

Obtaining the conditional distributions in this case requires additional work, as the derivation of

the previous result in equation 3 relies on the stationarity. In this case the solution is as follows:

ξ∗L(t) =ρ2t, ξ∗LF(t) = ρ2t−
ρ2

α

(

1− e−αt
)

,

ξ∗F(t) =
σ2

2α
(1− e−2αt) +

ρ2

2α
(2αt− 3) +

2e−αtρ2

α
−

e−2αtρ2

2α
,

ξ∗FF(t) =
ρ2

2α
(2αt− 3) +

2e−αtρ2

α
−

e−2αtρ2

2α
.

The full derivations of these equation are given in Web Appendix A.140

3. Inference141

3.1 Exact Simulation142

The key to Bayesian inference for the above model is the simulation of trajectories augmented143

by switching times/locations, appropriately conditioned on the observed data. We introduce the144
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central idea by giving an algorithm for simulation of these models. We carry out the simulation145

exactly, rather than the typical approach of making a discrete-time approximation (Langrock et al.,146

2014) and assuming that a switch can only happen at a discrete observation time point. Here we147

want to avoid this unnatural assumption and the poorly understood discretization error involved.148

We take a uniformization approach, introduced in the animal movement context by Blackwell

et al. (2016), where the times of switches of behaviour form a Poisson process with rate κ,

which has been ‘thinned’, that is each potential switching time point either retained or deleted

probabilistically (Guttorp and Minin, 2018), in a way that depends on the movement process. This

device is not strictly necessary when the transition rates are spatially homogeneous, as in our

examples here, but it gives a useful framework which readily allows spatial heterogeneity. The rate

κ needs to be an upper bound for all the actual transition rates. Since the transition rates are all of

the form Nλ1,2 + (n−N )λ2,1, where n is number of members in the group and N is the number

in state 1, we take κ = nmax(λ1,2,λ2,1). The waiting time from any instant until the next switch

in behaviour is then bounded below, in a probabilistic sense, by the time that would apply if the

rate of switching was always κ. Starting at some known vector of states JT0
for all members of

the group, we can simulate the process forward as follows. Let T ∼ Exponential(κ) be the time of

the first event of a process with constant rate κ. This is the first potential time at which a change

in behaviour might occur. We can then determine whether the potential switch at T is an actual

switch, an event which has probability λ(T )/κ, where

λ(T ) = N 1,T0λ1,2 +N 2,T0λ2,1

is the actual transition rate at time T , N 1,T0 is the number of animals following the leader at time T0,149

and N 2,T0 is the number of animals moving as Brownian motion at time T0. If it is an actual switch,150

we switch the state of the kth animal with probability λk,T0/λ(T ), where λk,T0 is the switching rate151

of the kth animal at time T0. λk,T0 is λ1,2 if the kth animal’s previous state Jk
T0

is 1 or λ2,1 if the152
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previous state Jk
T0

is 2. If it is not an actual switch, nothing need be changed. Only one animal can153

switch at each actual switching time.154

Knowing JT , we can iterate this procedure forwards. This leads to a natural way of extending155

the simulation over as long interval as we desire. If we denote the events of the Poisson (κ) process156

by T1, T2, . . ., then for each Tj in turn, we generate location YTj
by forward simulation.157

3.2 The state space form of the model158

Given the behavioural states, we can transform the group dynamic model with behaviour switching

into a linear state space model, which can be expressed in the following form:

Yti+1
= eAi(ti+1−ti)Yti + qi, qi ∼ MVN(0,Ξi) (13)

Zti = HiYti + ε (14)

where qi ∼ MVN(0,Ξi) is the process noise, and Ai and Ξi can take different forms based on the159

behavioural states. The measurement model is constructed by defining Hi through which the model160

is observed at the discrete time step ti. Zti is the observation of the followers’ location and the161

leader location Lti is unobserved; in the case where the leader is observed, this is straightforward162

to accommodate by modifying Hi and hence Zti . We assume there is no observation error, and163

therefore we can set ε to zero. The state space form of the model is the discrete-time version of164

the continuous Ornstein Uhlenbeck and Brownian motion behavioural switching model. Here this165

discretisation is not an approximation, but is the so-called mild solution to the stochastic differential166

equation (Da Prato and Zabczyk, 2014).167

Given the behavioural states Jti of the whole group at time ti, the covariance matrix Ξi and

coefficient matrix Ai need to be changed by setting the corresponding row and column to the

Ornstein Uhlenbeck or Brownian motion version of the coefficient. For example, if we have one

leader and three followers, and at time ti, the second follower is moving as Brownian motion while
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the rest following the leader, then J2
ti
= 2, Jti = (1 2 1). The corresponding Ai and Ξi become

Ai =

































0 0 0 0 0

β −β 0 0 0

0 α −α 0 0

0 0 0 0 0

0 α 0 0 −α

































Ξi =

































0 0 0 0 0

0 Ξ11 Ξ12 0 Ξ14

0 Ξ21 Ξ22 0 Ξ24

0 0 0 σ2
BM 0

0 Ξ41 Ξ42 0 Ξ44

































.

The second follower being in the Brownian motion behavioural state is reflected by setting the168

fourth row and column of Ξti and Ati to zero, except for the diagonal element in Ξti which is set to169

σ2
BM, the diffusion parameter of the Brownian motion. This animal’s attraction rate to the leader is170

0 and its movement is independent of the rest of group. Here the first and second row and column171

of Ai and Ξi correspond to the attractor θ and the leader Lti . We keep the row for θ to be consistent172

with the setting in Niu et al. (2016), but since we concentrate here on the non-stationary case, θ is173

fixed to be 0 and is not used in the inference.174

4. Markov chain Monte Carlo and the inhomogeneous Kalman filter175

4.1 Sampling the trajectory176

Based on the simulation ideas above and the state space form of the model, we can produce an177

algorithm for Bayesian inference for these models combining Markov chain Monte Carlo with178

the inhomogeneous Kalman filter. Given data Z0, . . . ,Zt we want to sample from the posterior179

distributions for the parameters of the diffusion process and of the switching rates. Our approach180

involves augmenting the data with the times of all changes of behavioural state, and associated181

locations. We actually sample times, locations and states for all potential changes, that is at all182

times of a Poisson(κ) process. Since the true transition rates λ1,2,λ2,1 are unknown, we take their183

priors to be bounded above by κ1,κ2 respectively, and set κ = N max{κ1,κ2}.184

Let Tobserve = {t0, . . . , tN} be the set of the observation times, Tpotential = {Ti,j, i = 0, . . . , N −185
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1, j = 1, . . . ,Mi} be the set of all potential switching time points, where Mi is the number of186

potential switches with ti < Ti,j < ti+1, and Tactual be the actual switching time, with Tactual ⊂187

Tpotential. We may have zero, one or multiple switches between two consecutive observation time188

points. The state of our chain is the collection of all times T = Tobserve ∪ Tpotential, plus associated189

locations Yt for the whole group at t ∈ T , initial state Jt0 , the states Jt at potential switching time190

points, and implied states at the times of observations Jt1 , . . . ,JtN .191

The key Markov chain Monte Carlo step is to sample the trajectory, that is potential switches,192

locations and states, over some time interval (ta, tb) such that t0 " ta < tb " tN , conditional193

on the trajectory outside that interval, on the states Jta , Jtb and on the movement and switching194

parameters. We define T ab′

potential = {T ′
i,j, i = a, . . . , b − 1, j = 1, . . . ,mi} with ti < T ′

i,j < ti+1195

and mi the number of potential switches between ti and ti+1, as the set of all proposed potential196

switching times in the interval (ta, tb), a realisation of a Poisson (κ) process on (ta, tb). Once we197

propose all potential switches time points in the time interval (ta, tb), we can also propose the198

actual switches and the behavioural states.199

Starting with Jta , the behavioural states for the whole group at ta, the next actual switching200

time T ′
a,1 and corresponding behavioural states JT ′

a,1
can be proposed as in §3.1, iterating to obtain201

JT ′

a,j+1
for j = 1, . . . ,ma − 1. This proposal process is repeated on each subinterval (ti, ti+1) for202

i = a, . . . , b − 1. We require for consistency that the final simulated behavioural states JT ′

b,mb−1
203

match the existing augmentation Jtb ; if not, rejection is automatic. Conditioning on the proposed204

behavioural states, we can sample the trajectory by simulating the diffusion process forward. The205

simulation and inference of the continuous dynamic models (stochastic differential equations, see206

Øksendal, 2003), which are turned into the state space form in equation 13, can be done using the207

Kalman filter.208
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4.2 Inhomogeneous Kalman filter209

The Kalman filter (see e.g. Särkkä, 2013) is an algorithm for solving the state estimation problem,210

which refers to the inverse problem of estimating the state trajectory of the stochastic process Yt211

based on the noisy observations z1, . . . , zk. The Kalman filter can be used to compute the exact212

Bayesian posterior distributions of the state in the state space form of the group movement model213

with behaviour switching. The transition of the state of the Kalman filter depends on the behaviour214

states Jt, and so the system dynamics of the Kalman filter are inhomogeneous over time.215

Unlike the inference algorithm in Niu et al. (2016) which requires imputing the unobserved

leader’s location to compute the marginal likelihood, the Kalman filter allows us to integrate out

the leader’s location exactly, massively reducing the dimension of the space of unknown quantities

which the algorithm must explore. Here, a two-step scheme is presented, which first calculates the

marginal distribution of the next step using the known system dynamics, given the behavioural

states. In the prediction step, the mean and covariance matrix can be derived as:

mti|ti−1
= eAi(ti−ti−1)mti|ti−1

Pti|ti−1
= eAi(ti−ti−1)Pti|ti−1

(eAi(ti−ti−1))T + Ξi

Here the subscript ti|ti−1 represents the prediction at step ti conditional on the state at ti−1. The re-

cursive iteration is initialised by presenting the prior information in the form Y0 ∼ MVN(m0, P0).

In the stationary case, m0 and P0 follow form the stationary distribution, but in the non-stationary

case, some care is needed in the initialisation; details are given in Web Appendix B. The algorithm

then uses each observation to update the distribution to match the new information obtained by the

measurement in step ti. This is the updating step.

kti = Pti|ti−1
HT

i (HiPti|ti−1
HT

i )
−1

mti|ti = mti|ti−1
+ kti(Zti −Himti|ti−1

)

Pti|ti = Pti|ti−1
− ktiHiPti|ti−1

HT

i k
T

ti

where (.)−1 denotes the matrix inverse and (.)T the matrix transpose. As a result, the filtered
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forward-time posterior process in step ti is given by Yti ∼ MVN(mti|tiPti|ti). In this iterative

computation, Ai and Ξi will change according to the behavioural states Jti . Hi will also change

according to the availability of the observations at time step ti. The updating step is only run when

ti ∈ Tobserve, whereas we need to run the prediction step at every potential switching time and

observation time. Given the behavioural states JT ′

a,1
, . . . ,JT ′

b,mb−1
in the interval (ta, tb), the log

likelihood of trajectories in the interval (ta, tb) is

−
b

∑

i=a+1

{1

2
n log 2π +

1

2
log |HiPti|ti−1

HT

i |+
1

2
(Zti −Himti|ti−1

)T(HiPti|ti−1
HT

i )
−1
}

. (15)

4.3 Parameter inference216

The behavioural states, switching rates and the diffusion parameters can be estimated using Markov

chain Monte Carlo with a standard Metropolis Hastings algorithm. We propose new switching

rates λ′ using the symmetric Gaussian proposal distribution centered on the previous values λ. The

acceptance probability for λ′ depends only on J , since movement is independent of the rates given

the states, and since T depends only on κ. The new switching rates are accepted with probability

min{HR, 1} where HR is the Hastings ratio

p (λ′|J , T ,Y ,Z,Θ) q(λ|λ′)

p (λ|J , T ,Y ,Z,Θ) q(λ′|λ)
=

p(λ′)p(J |λ′)

p(λ)p(J |λ)

by conditional independence and symmetry.217

Given the trajectory and states, we know exactly what type of the movement processes the group218

of animals were following, so the inference about the movement parameters is straightforward.219

From the Markov property, the trajectory log-likelihood is calculated by summing over terms of220

the form given in equation 15 for the whole time interval. All followers are considered jointly.221

We use uniform priors on [0,+∞) and standard random-walk Metropolis-Hastings updates for222

diffusion parameters. The only non-standard aspect is the calculation of the likelihood, and so223

other details are omitted. Similar, lower-dimensional updates for a model of a single animal are224

described in detail by Blackwell (2003).225
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5. Implementation with simulated data226

We carried out several simulation experiments to demonstrate the model’s ability to pick up on a227

wide range of behavioural patterns. The first uses parameter values similar to those obtained from228

the analysis of real data from reindeer tracking in §6; results are described in §5.1. In the other229

simulations, the diffusion parameters are modified from these values in contrasting ways. In §5.2,230

the data are simulated with relatively high values for both α and σBM . Here we can imagine the231

animals are tightly grouped when in the OU state and widely separated when in the BM state,232

perhaps representing individual exploring behaviour. In contrast, the data in §5.3 are simulated233

with a much smaller σBM This leads to movement behaviour where, when the animals are not234

grouped together, they forage locally, leading to rather stationary behaviour.235

In each case, we simulated the location of five followers and one leading point in both x and236

y directions from the non-stationary intrinsic Ornstein Uhlenbeck model, for 50 steps forward by237

using equation 10 iteratively and taking each generated location as the origin for the next. We then238

applied the Markov chain Monte Carlo algorithm described above to reconstruct the trajectories239

and the parameters of the model.240

5.1 Reindeer-based simulation241

For simulated data based on the reindeer analysis, we ran the Markov chain Monte Carlo algorithm242

for 50,000 iterations after burn-in. The posterior mean and standard deviation of model parameters243

are shown in Table 1, along with the true values used in the simulation.244

[Table 1 about here.]245

Posterior density plots of the model parameters are given in the Supporting Information Web246

Appendix Figure C.1. All posterior distributions are consistent with the true values. The posterior247

means of the behavioural states (black crosses) for each follower at every time point are plotted248

against the true behavioural states (red circles) in Web Appendix Figure C.2. It is clear from Figure249

C.2 that most of the true states are captured by our estimates. However, some are more difficult250
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to estimate, like the true states of animals 1 and 2 at around time 39. In these two cases, the251

animals only stay in the Brownian motion behavioural state for very short times, relative to the252

observation time intervals, and then switch back to the Ornstein Uhlenbeck state following the253

leader. Inevitably, this makes it harder for the inference algorithm to capture the switching. On the254

other hand, if the animals move in certain behavioural states for somewhat longer time periods like255

animals 2 and 3 in the time interval 1 to 10, the estimated behaviour states match the truth very256

well. All these results show that our fully Bayesian approach can reconstruct the states of followers257

and their diffusion trajectories.258

5.2 Simulation with high attraction and diffusion259

For simulated data with a high attraction parameter and diffusion coefficients, we ran the Markov260

chain Monte Carlo algorithm for 100,000 iterations after burn-in. The true values of the parameters261

used are given in Supporting Information Web Appendix C in Table C.1 along with point estimates262

and standard deviations of the posterior distributions for each parameter. The posterior densities263

are given in Figure C.4. Posterior means for the states of each animal are given in Figure C.5. The264

model performed well at retrieving the true values, even with widely dispersed initial values.265

Visualisations of the movement trajectories are also given in in Web Appendix C. In Figure C.6,266

each animal’s path is plotted in one dimension against time whilst simultaneously indicating the267

posterior state estimation at each time step. For completeness the trajectories in two dimensions are268

presented in Figure C.7. In this simulation study, we set the true value of σBM = 5, λ1,2 = 0.1 and269

λ2,1 = 0.4. Since λ2,1 > λ1,2, each animal has a higher probability of being in the BM state than in270

the OU state. The state estimation also confirms that animals spent most of the time in OU states.271

The high value of σBM leads to large movement steps when animal is in BM states, as is clear272

from the trajectories plotted in Figures C.6 and C.7. Considering the individual trajectories, state273

estimation is difficult, compared with the results in §5.3, but carrying out the estimation jointly274

gives good results.275
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5.3 Simulation with low diffusion276

For simulated data with a low diffusion coefficient in the non-following state, we ran the Markov277

chain Monte Carlo algorithm for 100,000 iterations after burn-in. The true values of the parameters278

used are given in Table C.2 along with the point estimates and standard deviations of the posterior279

distributions for each parameter. The posterior densities are given in Figure C.8, and posterior280

means for the states of each animal are given in Figure C.9. For comparison with the previous281

example, the movement trajectories in one and two dimensions are shown in Figures C.10 and C.11282

respectively. In this simulation study, the true value of the BM diffusion parameter σBM = 0.1 is283

much smaller than in §5.2. The effect of this small BM diffusion parameter is clearly demonstrated284

in Figures C.10 and C.11, with movement in the BM state being much more localised than before.285

As expected, state estimation is generally good in this case; the parameter estimation also reflects286

the true values, and correctly captures the qualitative difference from the previous case.287

6. Implementation with real data288

We also illustrate this approach using the real movement data from 5 reindeer (Rangifer tarandus)289

from a study site in Njaarke reindeer herding community, Sweden. The data used are a subset290

of observations from 79 individual reindeer equipped with GPS collars, collected in 2009-2011291

(Rivrud et al., 2018). In an effort to test the model’s ability to capture behavioural heterogeneity,292

the specific subset was chosen through exploratory data analysis from which it appeared that at293

some times individuals switched from following the group to a Brownian motion behaviour. The294

data consist of up to 50 observations from each individual taken every two hours from 01/12/2009295

until 5/12/2009. Whilst they are subject to some of the usual irregularities when dealing with296

real data, i.e. missing values and observation spacing inconsistencies, the observations are almost297

regular insofar as they occur up to only 2 minutes before/after the intended timing. Thus, for298

the simplicity of implementation, the time steps of the data were rounded to the nearest hour.299
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However, in principle the methodology accounts for irregular times between observations. The300

original GPS data in the geographical projection WGS84 or ESPG:4326 were transformed to the301

Swedish coordinate system SWEREF99 or ESPG:3006, using the spTransform function within302

the sp package in R (Pebesma and Bivand, 2005), and then further scaled down by a factor of 100303

for numerical convenience, before analysis.304

Table 2 shows posterior means and standard deviations for the parameters of the model, and305

density plots of the posterior distribution of the model parameters are shown in Web Appendix306

Figure C.3. The results here are based on 100,000 iterations of Markov chain Monte Carlo runs307

fitting the switching non-stationary model, with over-dispersed initial values, every second iteration308

being recorded after 10,000 iterations of burn-in. The corresponding posterior mean states are309

shown in Figure 1.310

[Table 2 about here.]311

[Figure 1 about here.]312

In order to compare with the method in Niu et al. (2016), we also fitted the real data with the non-313

switching model as in equation 2. The posterior mean of the non-switching variance coefficients314

of the leader ρ is 11.3, compared with the much smaller parameter 4.58 in the switching case.315

Similarly, the attraction rate parameter α is 0.32 for the non-switching case and 1.33 for the316

switching case. The non-switching model treats the independent movement of followers as the317

part of the group movement. This leads to the larger estimated variance of the leader’s location318

and smaller estimated attraction rate, while in the switching group movement model, we success-319

fully distinguished the group movement and independent movement of the followers using the320

behavioural states.321

A partial visualization of the data as a trajectory over time in one dimension is given in Figure322

2. The points are classified as OU or BM if their point estimates are " 1.5 or > 1.5 respectively323

where 1 denotes the OU state and 2 denotes the BM state. Some experimentation was done with324
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a less strict threshold to account for an uncertain category (say, between 1.4 and 1.6) but this had325

only a few points as most estimates are confidently assigned to one behaviour or the other.326

[Figure 2 about here.]327

Since the estimated switching rate λ21 = 0.63 is substantially higher than the reverse rate λ12 =328

0.16, the proportion of time that the reindeer spend in the BM state is quite low, as can be seen in329

Figure 2. The BM diffusion parameter σBM = 2.49 is small compared with the actual movement in330

the OU state, due to attraction, even though the independent component of OU movement is even331

smaller (σOU = 0.64), and so the movement in the BM state is very localised, as is again clear from332

Figures 2. In the OU state, movement is generally faster, which is largely driven by the dependent333

component based on α. Furthermore, we can link the locations in two dimensions, categorised by334

estimated behaviour, to the actual terrain on the ground at that location; see Figure 3.335

[Figure 3 about here.]336

Comparing these plots with satellite data confirms that the forest areas being used by the reindeer337

contain lichen, on which the reindeer typically feed; so in this particular case, the grouping dy-338

namics are likely to be driven by the costs and benefits of collective foraging for lichen in winter,339

as discussed in §7.340

The true diffusion parameters and the behaviour states are unknown. However, we have generated341

the simulation data and behaviour states in §5.1 based on parameters similar to those estimated342

from the real data in this section. The results in §5 and §6 give us confidence about our approach343

and interpretation.344

7. Discussion345

We have described the formulation of a group movement model with behaviour switching in346

continuous time, building on some of the strengths of previous approaches, and an algorithm for347

fully Bayesian inference. We have shown that we can successfully estimate the behavioural states348
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and diffusion parameters. Compared to Niu et al. (2016), we have introduced behaviour switching349

in the continuous movement model and also extended the model to the non-stationary case by350

defining the leader’s movement process as Brownian motion.351

Behaviour switching is important in real applications in realistic representation of movement352

c.f. Blackwell (1997, 2003), Gurarie et al. (2010), Haydon et al. (2008), Morales and Ellner353

(2002), Langrock et al. (2014). Simpler single-behaviour models fail to capture the heterogeneity of354

movement exhibited by animals as they respond to their environment. When considering multiple355

animals, these behaviours represent complex trade-offs between environmental and social factors.356

For example, although an individual reindeer may reduce its grazing competition by moving away357

from the herd, it then also stands a greater chance of being killed by predators or, in summer, being358

harassed by insects, and therefore the choice an individual reindeer makes about how and where359

to move is balanced between finding enough food for itself but also staying within the safety of360

the group (Mooring and Hart, 1992). In winter reindeer usually graze in groups digging for lichens361

underneath the snow. Staying with a group where several animals are digging could be beneficial362

for the individual reindeer as this saves time and energy from digging. However, this also means363

competition among the animals for the best lichens forage and individuals may be pushed away and364

thus need to search for new places to dig (Kojola, 1989). Our approach is unique in allowing this365

behavioural complexity for group movement while retaining the theoretical and practical benefits366

of formulation in continuous time.367

Of course, if changes in behaviour are rapid compared to the time scale of the information from368

observations, for example if there are frequently multiple switches between observations, then it369

becomes impossible to reconstruct the sequence of behaviours, much less their precise timing, with370

any certainty. That is inevitable in any model of this kind; our approach does at least allow properly371

for the different underlying possibilities, and the associated uncertainty, rather than ignoring them372

as would be necessary in a discrete-time model. Our introduction of the Kalman filter also saves373
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us from the need to impute the location of the leading point as in Niu et al. (2016). By massively374

reducing the dimension of the space to be explored by the Markov chain Monte Carlo algorithm,375

this makes the computation feasible even in this more complex model.376

Even with the gains from the use of the Kalman filter, our exact approach to reconstruction of377

the animals’ behaviour means that computational costs will limit the size of the dataset that can be378

analyzed in this way. For large datasets, it would be possible to carry out an approximate analysis,379

using time discretization. In such cases, we believe that it is preferable to formulate the model380

as we have done in continuous time, and then approximate, rather than attempting to formulate a381

discrete-time model that is unable to accommodate irregular data, missing values etc.382

We have neglected observation error, as is common in movement modelling. However, the use of383

the Kalman filter means that it would be straightforward to allow for observation error, taking ε to384

be non-zero in equation 14. Similarly, the specific models discussed in detail and applied here have385

switching rates for each individual which are spatially and temporally homogeneous. However, the386

method is formulated and implemented within a uniformization approach which makes it possible387

to incorporate heterogeneity in switching rates, following Blackwell et al. (2016).388

Our approach considers a herd represented by a single ‘leader’ and animals who follow the leader389

for part of the time. A model which allows switching between multiple separate leaders, suitable390

for species with more complex social structures, but which relies on a more complete tracking of391

individuals, is explored by Milner et al. (In press).392
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Figure 1: Posterior mean states of all followers for the real dataset . The circles (red) represent the
true states of the follower. The vertical axis represents the states, 1 for Ornstein Uhlenbeck and 2
for Brownian motion. The crosses (black) represent the mean posterior of the estimated behaviour
states. This figure appears in colour in the electronic version of this article, and the colours refer to
that version.
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Figure 2: Plot of locations in the y-direction (i.e. scaled northings in SWEREF99; see main text)
against time, for each animal in the real dataset. At each time step the points indicate whether the
individual’s posterior state is OU or BM. The orange square points indicate an BM state whilst the
purple circular points indicate OU states. This figure appears in colour in the electronic version of
this article, and the colours refer to that version.
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Figure 3: Plot of trajectories projected on to a terrain map for each animal in the real dataset.
At each time step the points indicate whether the individual’s posterior state is OU or BM. The
orange square points indicate an BM state whilst the purple circular points indicate OU states.
Start and end points are indicated by green and red diamonds respectively. The terrain is split
into four categories: anthropogenic, water body, mire and forest given in red, blue, tan and green
respectively. The latitude/longitude coordinates were used for visualization; see main text for
relationship with data as analysed.
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Table 1: Parameter estimates for the movement and switching model with reindeer-based simula-
tion data

Parameter Point estimate Standard deviation True value

α 1.23 0.06 1.2
ρ 5.02 0.34 5.0
σ 0.69 0.04 0.7
σBM 1.59 0.15 2.0
λ1,2 0.14 0.02 0.1
λ2,1 0.51 0.08 0.4
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Table 2: Parameter estimates for reindeer movement and switching model with real dataset

Parameter Point estimate Standard deviation

α 1.33 0.24
ρ 4.58 0.41
σ 0.64 0.07
σBM 2.49 0.39
λ1,2 0.16 0.03
λ2,1 0.63 0.05
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