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Abstract

We investigate possible preduals of the measure algebra M(G) of a locally com-
pact group and the Fourier algebra A(G) of a separable compact group. Both of these
algebras are canonically dual spaces and the canonical preduals make the multiplica-
tion separately weak∗-continuous so that these algebras are dual Banach algebras. In
this paper we find additional conditions under which the preduals C0(G) of M(G) and
C∗(G) of A(G) are uniquely determined. In both cases we consider a natural comulti-
plication and show that the canonical predual gives rise to the unique weak∗-topology
making both the multiplication separately weak∗-continuous and the comultiplication
weak∗-continuous. In particular, dual cohomological properties of these algebras are
well defined with this additional structure.

1 Introduction

A dual Banach algebra is a Banach algebra A which is a dual Banach space such that the
product on A is separately weak∗-continuous. Important examples include group algebras
`1(G) with the canonical predual c0(G), and their generalisations the group measure algebras,
the Fourier algebra and the Fourier-Stieltjes algebra, and the algebra of bounded operators
on any reflexive Banach space, and, of course, von Neumann algebras. A classical theorem
of Sakai characterises von Neumann algebras as those C∗-algebras which are isometrically
isomorphic to the dual space of some Banach space. Furthermore, the weak∗-topology in-
duced by this duality is the unique weak∗-topology making the multiplication separately
continuous and the adjoint continuous.

However, in general, the weak∗-topology on a dual Banach algebra is not uniquely deter-
mined. Indeed, consider any Banach space E which admits two distinct weak∗-topologies,
such as `1(N) for example, and equip it with the zero product to obtain a dual Banach
algebra with multiple weak∗-topologies. The main objective of this paper is to examine
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naturally occurring Banach algebras which are canonically dual spaces and find conditions
which imply that the canonical predual is unique.

In [15], Runde studied some cohomological properties of dual Banach algebras, although
the idea had been recognised before. A theory of amenability known as Connes-amenability
was developed paralleling that for von Neumann algebras. It was shown in [3] that any dual
Banach algebra is isometrically weak∗-isomorphic to a weak∗-closed subalgebra of B(E), for
some reflexive Banach space E. Furthermore, a characterisation of Connes-amenability in
terms of an injectivity condition was given, again paralleling the von Neumann algebra the-
ory. Unfortunately, the non-uniqueness of the weak∗-topology means that these concepts
may possibly depend on the choice of the weak∗-topology involved. Our objective in this
paper is to give natural conditions on important examples of dual Banach algebras which
ensure that the weak∗-topology is uniquely determined and is induced by the canonical pre-
dual. We show that for a locally compact group G, the measure algebra M(G) has a unique
weak∗-topology induced by the duality between C0(G) and M(G) which makes a certain
natural comultiplication weak∗-continuous. That is, M(G) has a unique weak∗-topology as
a Hopf algebra. These examples include the group convolution algebras `1(G) for discrete
groups G for which the weak∗-topology is not in general unique. Indeed, with Haydon and
Schulmprecht, the first and third author have constructed uncountably many distinct weak∗-
topologies on the convolution algebra `1(Z) making the multiplication separately continuous,
[4]. Our second class of examples consists of the Fourier algebras A(G) for separable compact
groups G. In this case we show that there is a unique isometric predual for A(G) making
the Hopf algebra operations continuous.

Let us outline the ideas involved for the special case of the convolution algebra `1(G)
for some countable discrete group G. Any weak∗-topology on `1(G) is induced by a closed
subspace E of `∞(G) = `1(G)′. Continuity of the comultiplication making `1(G) into a Hopf
algebra is equivalent to E being a subalgebra of `∞(G) with the usual pointwise product.
Some commutative C∗-algebra theory allows us to conclude that E must actually be a C∗-
subalgebra of `∞(G). Thus the Gelfand transform allows us to identify E with C0(K) for
some locally compact Hausdorff space K. The dual pairing between E and `1(G) allows
us to conclude that characters on E must arise from elements of G, so there is a natural
bijection between G and K inducing a group structure on K. We then show that this group
structure is compatible with the topology on K, that this topology must be discrete, and
finally that E must be the subspace c0(G) of `∞(G). Thus the weak∗-topology induced on
`1(G) by E is the canonical one. This outline extends to the M(G) case, which we consider
in section 3.

To consider A(G), the suitable non-commutative analogue of the character space, crucial
to the outline above, is the spectrum of a type I C∗-algebra. Again, any weak∗-topology
making the comultiplication continuous is induced by a subalgebra E of V N(G), and if
the canonical isomorphism between A(G) and E ′ is isometric, then E is a C∗-subalgebra of
V N(G), as shown in Theorem 2.5. In section 2 we examine the general properties of preduals
which are also C∗-subalgebras in this fashion, giving a bijective correspondence between the
representation theory of E and the canonical predual. The main remaining difficulty is to
ensure that this bijection is a homemorphism between the spectrums of E and C∗(G). This
is pursued in Section 4. We need the additional isometric assumption, as our arguments
above in the non-isometric case crucially depended upon commutative theory.
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In section 5, we consider classes of dual Banach algebras whose weak∗-topology is uniquely
determined. In particular, we extend the earlier work of the first author [3] to show that a von
Neumann algebra has this property, that is a weak∗-topology which makes the multiplication
separately continuous automatically makes the adjoint continuous and so is the usual weak∗-
topology.

Acknowledgements: Part of this research was undertaken during a visit of the first
author to Texas A&M University in 2007. He would like to thank the faculty of Texas A&M
for their hospitality. We would like to thank Brian Forrest and Nico Spronk for pointing
us in the direction of the papers [1] and [18]. Yemon Choi was a careful proofreader, and
contributed useful comments throughout this project. Finally, we would like to thank the
referee for their useful comments.

2 Preliminaries

Let A be a Banach algebra. For a moment, let us forget the multiplication and just consider
A as a Banach space. A weak∗-topology on A is induced by a Banach space Ẽ whose dual
Ẽ ′ is isomorphic as a Banach space to A, via j : A → Ẽ ′ say. We do not assume that
j is isometric. Let E be the closed subspace (j′ ◦ κẼ)(Ẽ) of A′ whose dual is canonically
identified with A′′/E⊥, where

E⊥ = {x ∈ A′′ : 〈µ, x〉 = 0, ∀µ ∈ E}.

Here, and throughout, we write 〈x, µ〉 = µ(x) for µ ∈ A′ and x ∈ A′′ for the dual pairing
between A′ and A′′.

The natural map ιE : A → E ′ = A′′/E⊥, arising as the composition of κA and the
quotient map onto A′′/E⊥ = E ′, is an isomorphism, and the weak∗-topologies induced by
Ẽ and E agree. Thus it suffices to consider weak∗-topologies induced by subspaces E of A′
for which the natural map ιE : A → A′′/E⊥ is an isomorphism. Furthermore, by concretely
realising preduals as subspaces ofA′, we have the following useful fact. Two preduals E0 ⊆ A′
and E1 ⊆ A′ induce distinct weak∗-topologies on A if, and only if, E0 6= E1 as subspaces.

Suppose that j is isometric, so that j′ : Ẽ ′′ → A′ is also isometric, and hence j′κẼ is an
isometry onto its range. Hence, for a ∈ A, we have

‖ιE(a)‖ = sup
{
|〈µ, a〉| : µ ∈ E, ‖µ‖ ≤ 1

}
= sup

{
|〈j′κẼ(x), a〉| : x ∈ Ẽ, ‖j′κẼ(x)‖ ≤ 1

}
= sup

{
|〈j(a), x〉| : x ∈ Ẽ, ‖x‖ ≤ 1

}
= ‖j(a)‖ = ‖a‖.

We conclude that j isometric implies that ιE is isometric.
Now let us examine when a weak∗-topology makes the multiplication separately contin-

uous. The dual A′ is naturally an A-module via the definitions

〈a · µ, b〉 = 〈µ, ba〉, 〈µ · a, b〉 = 〈µ, ab〉 (a, b ∈ A, µ ∈ A′).

Given a closed subspace E ofA′ such that ιE : A → A′′/E⊥ = E ′ is an isomorphism, it is easy
to check that the multiplication in A is separately weak∗-continuous in the weak∗-topology
induced by E if, and only if, E is a submodule of A′. Thus, in considering weak∗-topologies
on dual Banach algebras A′ it suffices to consider closed A-submodules of A′.
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Definition 2.1. Let A be a Banach algebra. A predual for A is a closed submodule E of
A′ such that the composition q ◦ κA is an isomorphism, where q : A′′ → A′′/E⊥ = E ′ is the
quotient map. Given a predual E for A, write ιE = q ◦κA for the natural isomorphism from
A onto E ′. We say that E is an isometric predual for A if ιE is an isometric isomorphism.
If A has a predual, then A is a dual Banach algebra.

At this point it is worth noting that not all preduals need be isometric. This is most
easily seen by resorting to the trivial product on `1, however, in the forthcoming paper [4]
examples of non-isometric preduals for `1(Z) with the usual convolution multiplication will
be exhibited.

The two central classes of examples in this paper are the measure algebras M(G) of a
locally compact group and the Fourier algebra A(G) of a separable compact group. Both
these algebras are the unique isometric preduals of von Neumann algebras: M(G)′ ∼= C0(G)′′

and A(G)′ ∼= V N(G), and so any predual for M(G) or A(G) is a submodule of C0(G)′′ or
V N(G) respectively. We now consider this situation in more generality.

Let F be a C∗-algebra and suppose that the dual A = F ′ is a Banach algebra. Suppose
that E ⊆ A′ is a predual for A which is in addition a C∗-subalgebra of the von Neumann
algebra F ′′. Let ιE : A → E ′ be the canonical map, which is assumed to be an isomorphism
as E is a predual for A.

Proposition 2.2. With the notation above, ι′E : E ′′ → A′ = F ′′ is a ∗-homomorphism. In
particular ιE and ι′E are isometries and E is an isometric predual.

Proof. Let q : A′′ → A′′/E⊥ = E ′ be the quotient map, so that ιE = q ◦ κA and hence
ι′E = κ′A ◦ q′. Now, if we identify E ′′ with E⊥⊥ ⊆ F ′′′′ = A′′′, then q′ : E ′′ → A′′′ = F ′′′′ is
just the inclusion map, and is the second adjoint of the inclusion map E → A′ = F ′′, which
is a ∗-homomorphism. Hence q′ is a ∗-homomorphism. Furthermore, κ′A : A′′′ → A′ = F ′′ is
a ∗-homomorphism, a fact shown in much more generality by Palmer in [11].

Thus the isometry ιE : A = F ′ → E ′ is a isomorphism between the duals of two C∗-
algebras. Next we confirm that it respects the order structure.

Proposition 2.3. Let E,F and A be as above. Let m ∈ E ′ be a functional, and let a =
ι−1
E (m) ∈ A = F ′. Then we have the following:

1. a is positive on F if ,and only if, m is positive on E;

2. a is a state on F if, and only if, m is a state on E;

3. a is a pure state on F if, and only if, m is a pure state on E;

Proof. 1. The functional a is positive on F if, and only if, κF ′(a) is positive on F ′′. Since
ι′E is an injective ∗-homomorphism from E ′′ onto F ′′, it follows that κF ′(a) is positive
if, and only if, (ι′′E ◦ κF ′)(a) = κE′ ◦ ιE(a) = κE′(m) is positive.

2. This is immediate as ι′E is an isometry and a state is a positive linear functional of
norm one.
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3. A pure state is an extreme point of the state space, and so this follows by linearity and
the previous part.

There is also a 1-1-correspondence between ∗-representations of E and F . Following the
notation of [17, Section III.2], given a representation π : E → B(H) of the C∗-algebra E on
some Hilbert space, there is a canonical representation π̃ : E ′′ → B(H). This is the unique
normal representation of E ′′ satisfying π̃ ◦ κE = π. Take u, v ∈ H, and define a functional
ω(π;u, v) on E by

〈ω(π;u, v), x〉 = (π(x)(u)|v) (x ∈ E).

Here, and throughout, we use the notation (·|·) for the inner product on a Hilbert space, to
avoid confusion with the dual pairing used elsewhere. Then π̃ is defined by

(π̃(x)(u)|v) = 〈x, ω(π;u, v)〉 (x ∈ E ′′, u, v ∈ H).

We can then define a map φ : F → B(H) by φ = π̃ ◦ (ι−1
E )′ ◦ κF . This is certainly a

representation, since ι′E is a ∗-isomorphism. We then apply the process above again to form
the canonical extension φ̃ to F ′′, which is the unique normal representation of F ′′ satisfying
φ̃ ◦κF = φ. This uniqueness ensures that the restriction of φ̃ to E is equal to φ. Let us state
this formally for later reference.

Proposition 2.4. With notation as above, φ is a ∗-representation, and φ̃ restricted to E is
equal to π.

Next we consider preduals E ⊂ A′ which are subalgebras of the von Neumann algebra F ′′.
In the situations of interest later, this will occur precisely when the natural co-associative
products we consider on A are weak∗-continuous on the topology induced by E. Under the
additional assumption that E is an isometric predual, the next result enables us to reduce
to the case when E is a C∗-subalgebra and hence use the machinery developed above.

Theorem 2.5. Suppose that F is a C∗-algebra, and set A = F ′. If E ⊂ A′ is an isometric
predual for A, and E is also a subalgebra of F ′′ = A′, then E is a C∗-subalgebra of F ′′.

Proof. Let j denote the inclusion map from E into F ′′ so that j = ι′E ◦ κE, where ιE is the
canonical isomorphism from A to E ′ which is an isometry by hypothesis. Since ιE factorises
as q ◦ κA, where q : F ′′′ → F ′′′/E⊥ it follows that ι′E is an algebra homomorphism, just as in
Proposition 2.2. Thus α = j′′ ◦ (ι′E)−1 is an isometric algebra homomorphism from F ′′ into
F ′′′′. Let 1F ′′ denote the unit of F ′′, so that p = α(1F ′′) is an idempotent of norm one in
F ′′′′ and therefore is a projection. Let B be the C∗-subalgebra of F ′′′′ generated by α(F ′′),
which by the preceding calculation, has identity p = α(1F ′′). Then α : F ′′ → B is a unital
contractive map between C∗-algebras, so it’s adjoint sends states to states, and hence we see
that α is positive. It follows that α is ∗-preserving, and so a ∗-homomorphism.

The pre-adjoint β : F ′′′ → F ′ of the isometric ∗-homomorphism α is also a ∗-preserving
map. Given any φ ∈ F ′′′, it follows that φ|j(E) = 0 if, and only if, β(φ) = 0 since

〈β(φ), x〉 = 〈φ, α(x)〉 = 〈φ, (j′′ ◦ (ι′E)−1)(x)〉 = 0, x ∈ F ′′.

Thus, if φ|j(E) = 0, then β(φ) = 0 and so β(φ∗) = 0 when φ∗|j(E) = 0. Therefore

φ|j(E) = 0 =⇒ φ|j(E)∗ = 0, φ ∈ F ′′′,

so the Hahn-Banach theorem implies that j(E) = j(E)∗, as required.
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3 Group measure algebras

Let G be a locally compact group, and form the Banach space C0(G) of continuous functions
on G which vanish at infinity. The dual is M(G), the space of regular finite measures on G,
which becomes a Banach algebra under the convolution product, defined by

〈µλ, f〉 =

∫
G×G

f(st) dµ(s) dλ(t) (µ, λ ∈M(G), f ∈ C0(G)).

For each s ∈ G, let δs be the point mass measure at s, so δs is the character on C0(G)
formed by evaluation at s. Then δsδt = δst for each s, t ∈ G, and the family {δs : s ∈ G} has
weak∗-dense linear span in M(G).

An extension of Wendel’s Theorem (see [2, Theorem 3.3.40]) due to Johnson [10] shows
that M(G) is an isometric invariant for the locally compact group G. However, for example,
`1(Z/4Z) and `1(Z/2Z × Z/2Z) are isomorphic Banach algebras, but are not isometric. To
more fully capture the group structure, we introduce a comultiplication, now a common
concept from the theory of quantum groups. This idea was developed in [6], which we shall
turn to later when considering the Fourier algebra, but for M(G), we can sketch the theory
in an elementary way.

For a locally compact group G, we define Γ∗ : C0(G×G)→ C0(G) to be the map given
by restriction onto the diagonal. That is,

Γ∗(f)(s) = f(s, s) (f ∈ C0(G×G), s ∈ G).

We identify C0(G)⊗C0(G) with a dense subspace of C0(G×G) in the natural way, and then
for f, g ∈ C0(G), we see that

Γ∗(f ⊗ g)(s) = (f ⊗ g)(s, s) = f(s)g(s) (s ∈ G).

Hence Γ∗ induces the usual multiplication on C0(G).
Then ΓG = Γ = (Γ∗)

′ : M(G) → M(G × G) satisfies ΓG(δs) = δ(s,s) for s ∈ G. Further-
more, for f ∈ C0(G×G) and µ, ν ∈M(G),

〈Γ(µν), f〉 =

∫
G

f(s, s) d(µν)(s) =

∫
G

∫
G

f(st, st) dµ(s) dν(t),

=

∫
G×G

∫
G×G

f(su, tv) dΓ(µ)(s, t) dΓ(ν)(u, v) = 〈Γ(µ)Γ(ν), f〉.

Hence Γ is a Banach algebra homomorphism for the convolution products on M(G) and
M(G×G).

It is no surprise that with this additional structure, M(G) fully captures the group G.

Proposition 3.1. Let G and H be locally compact groups, and let θ : M(G) → M(H) be
a Banach algebra isomorphism. Suppose furthermore that θ intertwines the Hopf-algebra
products, that is, (θ ⊗ θ)ΓG = ΓHθ. Then there is a group isomorphism α : G → H such
that θ = α∗, that is,

〈θ(µ), f〉 =

∫
G

f(α(s)) dµ(s) (µ ∈M(G), f ∈ C0(H)).

In particular, θ is automatically weak∗-continuous.
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Proof. Let f, g ∈ C0(H)′′, and let µ ∈M(G), so we see that

〈θ′(fg), µ〉 = 〈f ⊗ g,ΓHθ(µ)〉 = 〈f ⊗ g, (θ ⊗ θ)ΓG(µ)〉
= 〈θ′(f)⊗ θ′(g),ΓG(µ)〉 = 〈θ′(f)θ′(g), µ〉.

Hence θ′ : C0(H)′′ → C0(G)′′ is an algebra homomorphism. As θ′ is also an isomorphism,
we conclude that θ′ is an isometry, as it maps between commutative C∗-algebras. So θ :
M(G)→M(G) is an isometric isomorphism, and so by Johnson’s Theorem, [10], there exists
a continuous character χ : G → (0,∞) and a topological group isomorphism α : G → H,
such that

〈θ(µ), f〉 =

∫
G

f(α(s))χ(s) dµ(s) (µ ∈M(G), f ∈ C0(H)).

In particular, θ(δs) = χ(s)δα(s) for each s ∈ G. For f, g ∈ C0(H), we hence have that

〈θ′(fg), δs〉 = χ(s)f(α(s))g(α(s)) = 〈θ′(f), δs〉〈θ′(g), δs〉 = χ(s)2f(α(s))g(α(s)).

Consequently χ(s) = χ(s)2 for each s ∈ G. Thus χ ≡ 1, which completes the proof.

Now suppose that E ⊆ M(G)′ is a predual for M(G). We need a slight digression into
the theory tensor products of Banach spaces, for which we refer the reader to [16]. We form
the injective tensor product of E with itself, E⊗̌E.

Proposition 3.2. With notation as above, (E⊗̌E)′ is naturally isomorphic to M(G×G).

Proof. The dual of E⊗̌E can be identified with the space of integral operators E → E ′,
written I(E,E ′), by the dual pairing

〈T, x⊗ y〉 = 〈T (x), y〉 (x⊗ y ∈ E⊗̌E).

We identify C0(G)⊗̌C0(G) with C0(G×G), and so identify I(C0(G),M(G)) with M(G×G)
by, for µ ∈M(G×G), we define Tµ ∈ I(C0(G),M(G)) by

〈Tµ(f), g〉 = 〈µ, f ⊗ g〉 (f, g ∈ C0(G)).

Given µ ∈M(G×G), as Tµ is weakly-compact, Tµ takes C0(G)′′ into κM(G)(M(G)), and
so there exists T0 ∈ B(C0(G)′′,M(G)) such that κM(G)T0 = T ′′µ . Then T0 = κ′C0(G)κM(G)T0 =

κ′C0(G)T
′′
µ is integral, as the integral operators form an operator ideal. Define Sµ ∈ B(E,E ′)

by Sµ = ιET0ι
′
EκE, so that Sµ is integral, hence Sµ ∈ (E⊗̌E)′. Let x ∈ E ⊆ M(G)′, so that

T ′′µ (x) = κM(G)(µ) say, for some µ ∈ M(G). We can verify that ι′EκE : E → M(G)′ is just
the inclusion map, and so, for y ∈ E,

〈Sµ, x⊗ y〉 = 〈Sµ(x), y〉 = 〈S ′µκE(y), x〉 = 〈κ′Eι′′ET ′0ι′EκE(y), x〉
= 〈κ′Eι′′ET ′′′µ κ′′C0(G)ι

′
EκE(y), x〉 = 〈ιEκ′C0(G)T

′′
µ ι
′
EκE(x), y〉

= 〈ιEκ′C0(G)κM(G)(µ), y〉 = 〈ιE(µ), y〉 = 〈T ′′µ (x), y〉.

We have hence defined a map φ : M(G×G)→ (E⊗̌E)′ by φ(µ) = Sµ.
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Similarly, define ψ : (E⊗̌E)′ = I(E,E ′)→ I(C0(G),M(G)) = M(G×G) by

ψ(S) = κ′C0(G)(ι
−1
E )′′S ′′(ι−1

E )′κC0(G) (S ∈ I(E,E ′)).

Again, this is well-defined, as if S ∈ I(E,E ′) then S ′ ∈ I(E ′′, E ′) and so ψ(S) ∈ I(C0(G),M(G)).
Let µ ∈M(G×G), so that

ι−1
E S ′µ(ι−1

E )′κC0(G) = ι−1
E κ′Eι

′′
ET
′
0ι
′
E(ι−1

E )′κC0(G) = ι−1
E κ′E

(
ιET

′
µκC0(G)

)′′
κC0(G)

= ι−1
E κ′EκE′

(
ιET

′
µκC0(G)

)
= ι−1

E ιET
′
µκC0(G) = T ′µκC0(G),

and so
ψ(Sµ) = κ′C0(G)T

′′
µκC0(G) = κ′C0(G)κM(G)Tµ = Tµ.

Hence ψ = φ−1, and we see that E⊗̌E is a predual for M(G×G).

The key idea is that given a predual E for M(G), we have a natural way of forming
a predual for M(G × G), namely taking some completion of the tensor product E ⊗ E.
It hence makes sense to ask when Γ is weak∗-continuous for the predual E. Let us call a
predual making Γ weak∗-continuous a Hopf algebra predual of M(G), and the induced weak∗-
topology for M(G) a Hopf-algebra weak∗-topology. Firstly let us characterise these preduals
algebraically.

Lemma 3.3. Let E ⊂M(G)′ = C0(G)′′ be a predual for M(G). Then Γ is weak∗-continuous
if, and only if, E is a subalgebra of the von Neumann algebra C0(G)′′.

Proof. If Γ is weak∗-continuous, then there exists Γ∗ : E⊗̌E → E such that Γ′∗ = Γ. Let
µ ∈M(G), so

〈Γ(µ), f ⊗ g〉 =

∫
G

f(s)g(s) dµ(s) (f, g ∈ C0(G)),

so we see that, in the notation of the previous proof, TΓ(µ)(f) = fµ where fµ ∈ M(G) is
the measure given by 〈fµ, g〉 = 〈µ, fg〉 for g ∈ C0(G). Let x, y ∈ E, so we can find bounded
nets (fα) and (gα) in C0(G) such that

〈x, λ〉 = lim
α
〈λ, fα〉, 〈y, λ〉 = lim

α
〈λ, gα〉 (λ ∈M(G)).

We then see that

〈Γ∗(x⊗ y), µ〉 = 〈x⊗ y,Γ(µ)〉 = 〈x, T ′Γ(µ)(y)〉 = lim
β
〈T ′Γ(µ)(y), fβ〉

= lim
β

lim
α
〈TΓ(µ)(fβ), gα〉 = lim

β
lim
α
〈µ, fβgα〉 = 〈xy, µ〉,

by the definition of the Arens products (see after [2, Theorem 2.6.15] for example). Conse-
quently, we see that Γ∗ maps into E only when the multiplication on C0(G)′′ restricts to E,
that is, E is a subalgebra of C0(G)′′.

In fact Hopf-algebra preduals for M(G) are automatically isometric.
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Lemma 3.4. Let K be a locally compact Hausdorff space, let L be a compact Hausdorff space,
and let A be a closed subalgebra of C0(K) such that A′′ is a Banach algebra isomorphic to
C(L). Then A is a C∗-subalgebra of C0(K).

Proof. Let B be the C∗-subalgebra of C0(K)′′ generated by A′′. Thus B is unital, and so
we identify B with C(S) for some compact Hausdorff space S. Let θ : C(L) → A′′ be an
algebra isomorphism. By composing θ with the inclusion of A′′ into B, we get an algebra
homomorphism θ0 : C(L) → C(S). Hence there exists a continuous map α : S → L such
that

θ0(f)(s) = f(α(s)) (f ∈ C(L), s ∈ S).

As A′′ separates the points of S, we see that α is injective. As S is compact, α is a homeomor-
phism onto its range. As θ is an isomorphism, it follows that α must be a homeomorphism
between S and L. We hence conclude that A′′ = B = C(S).

Suppose that A is not a C∗-subalgebra of C0(K), so there exists a0 ∈ A such that a∗0 6∈ A.
Hence there exists λ ∈ C0(K)′ such that 〈λ, a∗0〉 = 1 and 〈λ, a〉 = 0 for all a ∈ A. As λ is a
normal functional on C0(K)′′, we can regard λ as a functional on C(S). As λ kills A, λ also
kills A′′ = C(S). Hence also λ∗ kills C(S). However, we then see that

1 = 〈λ, a∗0〉 = 〈λ∗, a0〉 = 0,

a contradiction, as a0 ∈ A ⊆ C(S). So A is a C∗-subalgebra of C0(K).

Corollary 3.5. Any Hopf-algebra predual for M(G) is automatically an isometric predual
and is a C∗-subalgebra of C0(G)′′.

Proof. Let E be a Hopf algebra predual of M(G), so E is a subalgebra of C0(G)′′. Let
ιE : M(G) → E ′ be the canonical isomorphism. Using a similar argument to that used in
the proof of Proposition 2.2, we can show that ι′E is an algebra homomorphism (see also [11]).
It follows that E ′′ and C0(G)′′ are isomorphic as Banach algebras, and so by Lemma 3.4, E
is a C∗-subalgebra of C0(G)′′, and hence is an isometric predual by Proposition 2.2.

Our main result in this section is that there is a unique Hopf algebra weak∗-topology on
M(G).

Theorem 3.6. The canonical predual C0(G) is the unique Hopf algebra predual of M(G).

Proof. Let E ⊂ C0(G)′′ be a Hopf-algebra predual for M(G). By Corollary 3.5, E is a
C∗-subalgebra of C0(G)′′. Let ιE : M(G)→ E ′ be the canonical isomorphism. Let K denote
the character space of E and let G : E → C0(K) be the Gelfand transform. Identify the
characters on C0(G) with G. By Proposition 2.3, ι−1

E restricts to a bijection θ : G → K
and we use this bijection to induce a group structure on K. Notice that for f ∈ C0(K) and
k ∈ K,

f(k) = 〈δk, f〉 = 〈G−1(f), δθ−1(k)〉.

We now claim that K is a semitopological semigroup, i.e. the product induced by θ is
separately continuous. Let (kα) be a net in K converging to k, and let l ∈ K. Then, for
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f ∈ C0(K), using the fact that E ⊆M(G)′ is an M(G)-bimodule, we have

lim
α
〈δkαl, f〉 = lim

α
〈G−1(f), δθ−1(kα)δθ−1(l)〉 = lim

α
〈δθ−1(l) · G−1(f), δθ−1(kα)〉

= lim
α
〈G
(
δθ−1(l) · G−1(f)

)
, δkα〉 = 〈G

(
δθ−1(l) · G−1(f)

)
, δk〉

= 〈G−1(f), δθ−1(k)θ−1(l)〉 = 〈δkl, f〉.

Hence kαl→ kl. Analogously, lkα → lk, which establishes the claim.
Ellis’s Theorem, see [7], says that any locally compact semitopological semigroup which is

algebraically a group is in fact a topological group, that is, the product is jointly continuous
and the inverse is continuous. In particular K, equipped with the product induced by θ is
a locally compact topological group. Now we show that θ is also a homeomorphism from G
to K and so is a topological group isomorphism.

Define T = (G ′)−1ιE : M(G) → M(K). Since ιE is an isometric isomorphism, T is an
isometric isomorphism of Banach spaces. Let (µα) be a net in M(G) which converges to µ
in the weak∗-topology induced by E. Then, for f ∈ C0(K),

lim
α
〈T (µα), f〉 = lim

α
〈G−1(f), µα〉 = 〈G−1(f), µ〉 = 〈T (µ), f〉.

Thus T is weak∗-continuous. For f ∈ C0(K) and k ∈ K, we have that

〈δk, f〉 = 〈G−1(f), δθ−1(k)〉 = 〈T (δθ−1(k)), f〉,

so that δθ(s) = T (δs) for s ∈ G. By weak∗-continuity and density, we conclude that T
is also an algebra homomorphism. By Johnson’s result in [10] (which itself follows from
Wendel’s Theorem, see [2, Theorem 3.3.40]) there exists a continuous character χ on G and
a topological group isomorphism ψ : G→ K, such that

〈T (µ), f〉 =

∫
G

f(ψ(t))χ(t) dµ(t) (µ ∈M(G), f ∈ C0(K)).

Hence, for f ∈ C0(K) and k ∈ K, we have that

f(k) =

∫
G

f(ψ(t))χ(t) dδθ−1(k)(t) = f(ψθ−1(k))χ(θ−1(k)),

so we conclude that χ = 1 identically, and that ψ = θ.
Let x ∈ E, and define f : G→ C by

f(t) = 〈x, δt〉 (t ∈ G).

Then f(t) = G(x)(θ(t)), and so f ∈ C0(G). For µ ∈M(G), we see that

〈x, µ〉 = 〈T (µ),G(x)〉 =

∫
G

G(x)(θ(t)) dµ(t) = 〈µ, f〉.

Thus x = f ∈ C0(G), and we conclude that E = C0(G).
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4 Fourier algebras

In this section we shall study the ‘Fourier transform’ of the `1 group algebra for a discrete
group, namely the Fourier algebra of a compact group. Let G be a locally compact group,
and let Ĝ be the collection of equivalence classes of irreducible unitary representations of
G. Recall that every unitary representation π : G → B(H) extends to a ∗-representation
π : L1(G)→ B(H), and that C∗(G), the group C∗-algebra of G, is the completion of L1(G)
with respect to the norm

‖f‖C∗(G) = sup{‖π(f)‖ : π ∈ Ĝ} (f ∈ L1(G)).

The dual space of C∗(G) is B(G), the Fourier-Stieltjes algebra of G, which can be identified
as the space of coefficient functions

G→ C; g 7→ (π(g)u|v) (g ∈ G),

where π : G→ B(H) is a unitary representation, and u, v ∈ H. Then B(G) is a subalgebra
of C(G) and the product is given by tensoring unitary representations.

In [8], Eymard defined A(G), the Fourier algebra of G, to be the closure in B(G) of
those functions with compact support. Alternatively, consider the left-regular representation
λ : G→ B(L2(G)),

λ(s)(f) = g, g(t) = f(s−1t) (f ∈ L2(G), s, t ∈ G).

Then A(G) is the space of coefficient functions associated to λ. The dual of A(G) may be
identified with V N(G), the group von Neumann algebra, which is the von Neumann algebra
in B(L2(G)) generated by {λ(s) : s ∈ G}. The norm closure of λ(L1(G)) in B(L2(G)) is the
reduced group C∗-algebra C∗r (G).

When G is a compact group,

C∗r (G) = C∗(G), A(G) = B(G) = C∗(G)′, V N(G) = A(G)′ = C∗(G)′′.

In this section, we shall investigate weak∗-topologies on A(G).
In contrast to the `1 case, and perhaps surprisingly, it is possible for A(G) to be a dual

Banach space when G is not compact. For example, in [18], K. Taylor shows that when G
is separable and has the [AR] property, then A(G) has a predual (which can be taken to be
a C∗-algebra). A group G has the [AR] property if and only if V N(G) is atomic, and for
example, it is shown in [1] that the “ax + b” group is a non-compact group with the [AR]
property.

The following argument was suggested to us by Brian Forrest. When G is an amenable
group and A(G) is a dual Banach algebra, then by Leptin’s theorem A(G) has a bounded
approximate identity, and so by taking weak∗-limits, A(G) is unital, and hence G is compact.
We do not know of an example of a non-amenable G for which A(G) is a dual Banach algebra.
Henceforth, we consider the case of compact G.

The natural co-multiplication on A(G) is simply the pre-adjoint of the multiplication on
V N(G), say m : V N(G)⊗̂V N(G)→ V N(G). The naive (although natural) norm to consider
on A(G) ⊗ A(G) is the predual of the von Neumann tensor norm on V N(G)⊗V N(G) =
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V N(G × G). In [14, Section 5], Quigg considers exactly this problem. He shows that
m has a bounded pre-adjoint, with respect to this norm, only when G is compact, and the
irreducible representations of G have uniformly bounded dimension (which of course excludes
even G = SU(2)). In [6], Effros and Ruan work out the details in a manner which handles
all compact groups by introducing the extended Haagerup tensor product on A(G)⊗ A(G).

Let us briefly develop this theory. For a von Neumann algebraM, the normal Haagerup
tensor product M⊗σhM is such that the multiplicationM⊗M→M extends to a weak∗-
continuous (complete) contraction m : M ⊗σhM → M. The predual of M ⊗σhM is
M∗ ⊗ehM∗, the extended Haagerup tensor product of M∗ with itself. Hence, in particular,
we get the preadjoint of the multiplication, m∗ : A(G)→ A(G)⊗eh A(G). In [6], it is shown
that m∗ is an algebra homomorphism.

Let G be a compact group, and let E ⊆ V N(G) be a predual for A(G). Then E becomes
an operator space by restricting the natural operator space structure on V N(G), and so we
can form E⊗hE, the Haagerup tensor product of E with itself. Then [6, Theorem 5.3] shows
that (E ⊗h E)′ = E ′ ⊗eh E ′. It is easily checked that ιE : A(G)→ E ′ is completely contrac-
tive, and so ι−1

E is completely bounded. The discussion before [6, Lemma 5.2] constructs a
linear map ι−1

E ⊗eh ι
−1
E : E ′ ⊗eh E ′ → A(G) ⊗eh A(G) which is easily seen to be a complete

isomorphism. Thus we can naturally identify E ⊗h E as a predual for A(G)⊗eh A(G).
We have that A(G) ⊗eh A(G) can be identified with the space of normal functionals on

V N(G)⊗h V N(G) (see Page 143 in [6], and noting the misprint there). Hence the inclusion
map V N(G) ⊗h V N(G) → V N(G) ⊗σh V N(G) is a complete isometry. As the Haagerup
tensor product is injective, we see that the inclusion map E ⊗h E → V N(G) ⊗h V N(G)
is a complete isometry, and so the natural embedding E ⊗h E → V N(G) ⊗σh V N(G) is a
complete isometry.

Proposition 4.1. With the notation above, we have that E makes the product map m∗ :
A(G) → A(G) ⊗eh A(G) weak∗-continuous if and only if E is a (possibly not self-adjoint)
subalgebra of V N(G).

Proof. Suppose that m∗ : A(G)→ A(G)⊗ehA(G) is weak∗-continuous, so there exists a map
m∗∗ : E ⊗h E → E making the diagram below commute.

E ′
m′∗∗ //

ι−1
E

��

(E ⊗h E)′ = E ′ ⊗eh E ′

ι−1
E ⊗

ehι−1
E

��
A(G)

m∗ // A(G)⊗eh A(G)

Dualising, the diagram below also commutes.

E ′′ (E ⊗h E)′′ = E ′′ ⊗σh E ′′
m′′∗∗oo

V N(G)

(ι′E)−1

OO

V N(G)⊗σh V N(G)
moo

(ι′E)−1⊗(ι′E)−1

OO

So let x, y ∈ E, and let j = ι′E ◦κE : E → V N(G) be the inclusion map. Then (ι′E)−1j = κE
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and so

κEm∗∗(x⊗ y) = m′′∗∗(κE(x)⊗ κE(y)) = m′′∗∗((ι
′
E)−1 ⊗ (ι′E)−1)(j(x)⊗ j(y))

= (ι′E)−1m(j(x)⊗ j(y)).

Hence jm∗∗(x⊗ y) = m(j(x)⊗ j(y)), and so m∗∗ is just the multiplication map induced by
V N(G). We conclude that E is thus a subalgebra (but maybe not self-adjoint).

The converse is now simply a matter of reversing the argument.

Just as with the measure algebra, the Hopf algebra structure on A(G) fully captures the
group.

Proposition 4.2. Let G and H be compact groups, and let θ : A(G)→ A(H) be a Banach
algebra isomorphism. Suppose furthermore that θ intertwines the comultiplication on A(G)
and A(H). Then θ is an isometry, and there exists a bicontinuous group isomorphism φ :
H → G such that

θ(a)(s) = a(φ(s)) (a ∈ A(G), s ∈ H).

Proof. As in the proof of Proposition 3.1, as θ intertwines the comultiplication on A(G) and
A(H), we see that θ′ : V N(H) → V N(G) is an algebra homomorphism. Let s ∈ H, and
consider the map

A(G)→ C; a 7→ θ(a)(s) (a ∈ A(G)).

This is a character on A(G), and so is evaluation at some point φ(s) ∈ G, say. Hence
θ(a)(s) = a(φ(s)) for a ∈ A(G) and s ∈ H. Let λG : G → V N(G) and λH : H → V N(H)
be the left-regular representations, so that, for a ∈ A(G) and s ∈ H,

θ(a)(s) = 〈λH(s), θ(a)〉 = 〈θ′λH(s), a〉 = a(φ(s)) = 〈λG(φ(s)), a〉.

Hence θ′λH(s) = λG(φ(s)) for s ∈ H. As θ′ is a homomorphism, we see that for a ∈ A(G)
and s, t ∈ H,

a(φ(st)) = θ(a)(st) = 〈λH(st), θ(a)〉 = 〈θ′(λH(st)), a〉 = 〈(θ′λH(s))(θ′λH(t)), a〉
= 〈λG(φ(s))λG(φ(t)), a〉 = 〈λG(φ(s)φ(t)), a〉 = a(φ(s)φ(t)).

Hence φ is a group homomorphism.
In particular, for s ∈ H,

θ′(λH(s)∗) = θ′(λH(s−1)) = λG(φ(s−1)) = λG(φ(s)−1)

= λG(φ(s))∗ = (θ′(λH(s)))∗.

As {λH(s) : s ∈ H} generates V N(H), we see that θ′ is a ∗-homomorphism. Hence θ′ and θ
are isometries. By Walter’s Theorem, [19] and [20], there hence exists

1. either a topological group isomorphism ψ : H → G, or a topological group anti-
isomorphism ψ : H → G, and

2. a fixed t0 ∈ G,
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such that
θ(a)(s) = a(t0ψ(s)) (a ∈ A(G), s ∈ H).

Hence t0ψ(s) = φ(s) for all s ∈ H, and so we conclude that t0 = eG and ψ = φ, showing
that φ is bicontinuous, as required.

Our main objective in this section is the following result, which shows that the canonical
predual is the only isometrically induced weak∗-topology for A(G) which respects the Hopf
algebra structure. Unlike the analogous result Theorem 3.6, we only consider isometric
preduals. In the previous section, we used Lemma 3.4 to allow us to reduce to the isometric
case. However, this argument seems to have no non-commutative generalisation. The best
result we can use is hence Theorem 2.5, which tells us that an isometric Hopf-algebra predual
is automatically a C∗-algebra predual.

Theorem 4.3. Let G be a separable compact group. If E ⊂ V N(G) is an isometric predual
for A(G), making the multiplication separately weak∗-continuous and the comultiplication
continuous, then E = C∗(G).

The arguments used in Section 3 relied heavily upon the Gelfand transform for a com-
mutative C∗-algebra, and in particular upon the character space. A suitable (for us) non-
commutative analogue is the spectrum of a C∗-algebra, which we now recall. We follow the
presentation in [13, Chapter 4], see also [5, Chapter 9]. Many of these results follow fairly
easily from work of Fell in [9] which nicely exhibits the link with group algebras.

Let E be a C∗-algebra, and let P (E) be the set of pure states on E, with the weak∗-
topology, which need not be compact. However, when E is separable, then P (E) is a Polish
space, that is, a separable complete metrisable space, [13, Proposition 4.3.2]. Recall that
a state φ is pure if and only if the GNS representation πφ associated to φ is irreducible.
Conversely, if π : E → B(H) is an irreducible representation, then for any unit vector
u ∈ H, the vector state ω(π;u, u) is a pure state.

Let Ě be the Primitive Ideal Space of E, that is, the collection of kernels of irreducible
representations. We give Ě the Hull-Kernel topology, so that the closed sets are of the form

{t ∈ Ě : I ⊆ t} (I ⊆ E).

Alternatively, the topology can be defined by the observation that the map P (E)→ Ě;φ 7→
kerπφ is open and continuous, [13, Theorem 4.3.3]. Furthermore, Ě is a Baire space and Ě
is locally compact, but not necessarily Hausdorff, [13, Theorem 4.3.5, Proposition 4.4.4].

Let Ê be the equivalence classes of irreducible representations of E, so that there is a
natural surjection Ê → Ě, which we use to induce a topology on Ê, by defining this map
to be open and continuous. In many ways Ě is easier to deal with that Ê, but Ê carries
more information. Fortunately, in our case, we have no problem, as we shall be dealing
with Type I C∗-algebras. Recall that a C∗-algebra E is of Type I when every irreducible
representation π : E → B(H) satisfies K(H) ⊆ π(E). Also E is a Type I if, and only if,
Ê = Ě, [5, Theorem 9.1].

Let G be a locally compact group. As the unitary representations of G and C∗(G) agree,
for our purposes, we may define the Fell topology on Ĝ (the unitary representations of G)
to be the topology on C∗(G)̂. It is well known that when G is a compact group, then Ĝ has

14



the discrete topology and that each member of Ĝ is finite dimensional, [5, Theorem 15.1.3].
For π ∈ Ĝ, let π : G → B(Hπ) where Hπ is a dim(π)-dimensional Hilbert space. It hence
follows that

C∗(G) ∼= c0 −
⊕
π∈Ĝ

B(Hπ), V N(G) ∼= `∞ −
⊕
π∈Ĝ

B(Hπ).

Let T (Hπ) be the trace-class operators on B(Hπ), so as Hπ is finite-dimensional, we have
that B(Hπ)′ = T (Hπ) and T (Hπ)′ = B(Hπ). Then, as a Banach space,

A(G) ∼= `1 −
⊕
π∈Ĝ

T (Hπ),

but the algebra product on A(G) is not easily expressed under this identification. Essentially,
this is because the tensor product of two irreducible representations need not be irreducible.

For the remainder of this section, we shall let E ⊆ V N(G) be an isometric Hopf algebra
predual for A(G). Hence by Proposition 4.1, E is a subalgebra of V N(G) and so by Theorem
2.5 E is a C∗-algebra. By Propositions 2.3 and 2.4, every irreducible representation of E
is induced in the canonical way by an irreducible representation of C∗(G). That is, as
sets, Ê = Ĝ, although the topologies may differ. Thus E is a Type I C∗-algebra, and so
Ě = Ê. The above direct sum matrix form for C∗(G) and V N(G) shows that the irreducible
representations of Ĝ are simply the projections onto one of the factors B(Hπ). Just as in
section 3, it will suffice to show that Ê has the same topology as Ĝ.

Let us note that singletons in Ê are closed. Indeed, let π ∈ Ê, and suppose that φ ∈ Ê
is in the closure of {π}. As Ê = Ě, using the hull-kernel topology, we see that kerπ ⊆ kerφ.
Hence we get a natural map E/ kerπ → E/ kerφ. As π : E → B(Hπ) is irreducible, with
Hπ being finite-dimensional, E/ kerπ is simple, and so either this map is the zero map, so
kerφ = E, that is, φ = 0, contradiction; or the map is injective, and hence ker π = kerφ, so
π and φ are equivalent, that is, π = φ in Ê.

Proposition 4.4. With notation as above, E = C∗(G) if, and only if, Ê has the discrete
topology.

Proof. Clearly we need only show that if Ê is discrete, then E = C∗(G). As Ê is discrete,
for any π ∈ Ê, the singleton {π} is open (and closed by a comment above).

By the hull-kernel topology, as Ě \ {π} is closed, we have that ker(Ě \ {π}) 6⊆ kerπ,
where

ker(Ě \ {π}) =
{
w = (wρ) ∈ E : wρ = 0 (ρ 6= π)

}
.

So there exists w = (wρ) ∈ E with wρ = 0 for all ρ 6= π, and with wπ 6= 0. As π is an
irreducible representation of E, for any a ∈ B(Hπ), we can find y ∈ E with yπ = a. As

B(Hπ) is simple, it follows that for any a ∈ B(Hπ), we can find
∑

n y
(1)
n ⊗ y(2)

n ∈ E ⊗E such

that, if z =
∑

n y
(1)
n wy

(2)
n , then zπ = a; clearly we have that zρ = 0 for ρ 6= π.

It is now immediate that E has the same form as C∗(G), so E = C∗(G) as subspaces of
V N(G).

We now sketch some theory about compact groups and their representations. See, for
example, [5, Chapter 15]. Let G be a compact group, and let π : G → B(H) be a finite-
dimensional representation. The character of π is the map χπ : G→ C defined by

χπ(g) = Tr(π(g)) (g ∈ G).
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A class function on G is some function constant on conjugate classes. Then χπ is a continuous
class function, and χπ only depends upon the equivalence class of π. The collection {χπ :
π ∈ Ĝ} is dense in the space of continuous class functions equipped with the supremum
norm, and also forms an orthonormal basis for the space of L2 class functions with the inner
product

[χ1, χ2] =

∫
G

χ1(g)χ2(g) dg.

Here we use the notation [·, ·] for the inner-product on the space of L2 class functions to
avoid confusion with the inner-product on the Hilbert space H, which is written as (·, ·).

The character of a finite-dimensional representation π determines the equivalence class
of π in the following way. For n ∈ N and ρ ∈ Ĝ, write nρ for the representation ρ⊕ · · · ⊕ ρ,
where ρ is repeated n times. Then π is equivalent to∑

ρ∈Ĝ

[χπ, χρ]ρ.

Here we really only sum over ρ ∈ Ĝ such that [χπ, χρ] 6= 0, and it is part of the theory
that [χπ, χρ] is always a positive integer. A simple calculation shows that χπ⊗ρ = χπχρ,
so characters allow us to work out the equivalence class of π ⊗ ρ. However, we have no
concrete way to actually find a unitary which implements this equivalence. Recall too, that
the contragradient representation π∗ associated with a representation π of G on H is given
by representing G on the conjugate Hilbert space H. The character of π∗ is given by

χπ∗(g) = χπ(g) (g ∈ G).

For π0 ∈ Ĝ, let α, β ∈ Hπ0 , and let α⊗ β ∈ A(G) be the (normal) functional on V N(G)
defined by

〈x, α⊗ β〉 = (xπ0(α)|β)
(
x = (xπ) ∈ V N(G) = `∞(B(Hπ))

)
.

Lemma 4.5. Let G be a compact group, let π0, ρ, π ∈ Ĝ be such that [χπ0χρ, χπ] > 0. Then
there exists ξ ∈ Hπ0 with ‖ξ‖ = 1, α ∈ Hρ and w ∈ B(Hπ) such that, if a = ξ ⊗ ξ, b =
α⊗ α ∈ A(G), and c = ab = (cπ) ∈ `1(T (Hπ)), then [w, cπ] 6= 0.

Proof. We know that the representation π0 ⊗ ρ is equivalent to the representation∑
φ∈Ĝ

[χπ0χρ, χφ]φ.

Let I = {φ ∈ Ĝ : [χπ0χρ, χφ] > 0} a finite set and let J be the finite collection of irreducible
representations of G formed by taking φ ∈ I with the multiplicity [χπ0χρ, χφ]. Hence there
exists some unitary

U : Hπ0 ⊗Hρ →
⊕
φ∈J

Hφ,

such that, if Uφ is the component of U mapping to Hφ for each φ ∈ J , then

Uφ(π0(g)⊗ ρ(g)) = φ(g)Uφ (φ ∈ J, g ∈ G).
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Notice that each Uφ is a partial isometry. With a and b as defined, we have

〈x, c〉 = 〈x, ab〉 =
∑
φ∈J

(xφUφ(ξ ⊗ α)|Uφ(ξ ⊗ α)) (x ∈ V N(G)).

So if our claim is false, as we can vary w, we must have that Uπ(ξ ⊗ α) = 0, for all ξ and α,
which implies that Uπ = 0. As [χπ0χρ, χπ] > 0, we have that π ∈ J , giving a contradiction,
as required.

We are now in a position to establish Theorem 4.3.

Proof of Theorem 4.3. By Proposition 4.4, we need to show that Ê is discrete. Suppose,
towards a contradiction, that Ê is not discrete, so we can find π0 ∈ Ê with {π0} not open.
As each singleton in Ê is closed, and Ê is a countable Baire space, there exists π1 ∈ Ê with
{π1} open. We claim that there exists some ρ ∈ Ê with [χπ0χρ, χπ1 ] 6= 0. Notice that

[χπ0χρ, χπ1 ] = [χρ, χπ∗0χπ1 ],

so if our claim is false, then χρ is orthogonal to χπ∗0χπ1 for every ρ ∈ Ê. However, {χρ : ρ ∈ Ê}
is an orthonormal basis of the L2 class functions, so χπ∗0χπ1 = 0 in L2(G). As χπ∗0χπ1 is
continuous, this implies that χπ∗0χπ1 = 0 identically. This is patently untrue, simply evaluate
at the identity of G. Thus we can find some ρ, as claimed.

The set I = {π ∈ Ê : [χπχρ, χπ1 ] 6= 0} is finite and contains π0. As singletons in Ê are

closed, it follows that finite sets are closed, and so we can find an open set U ⊆ Ê such that
U ∩ I = {π0}. Let f : P (E) → Ê be the natural map, which is open and continuous. We
see that for π ∈ Ĝ,

f−1({π}) =
{
ξ ⊗ ξ : ξ ∈ Hπ, ‖ξ‖ = 1}.

That {π0} is not open means that f−1({π0}) is not open in P (E), that is, there exists some
ξ0 ∈ Hπ0 with ‖ξ0‖ = 1, such that for each finite set F ⊆ E and ε > 0, there exists π 6= π0

and η ∈ Hπ with ‖η‖ = 1 and∣∣〈ξ0 ⊗ ξ0 − η ⊗ η, x〉
∣∣ < ε (x ∈ F ).

That is, every weak∗-open neighbourhood of ξ0 ⊗ ξ0 contains some member of f−1({π}) for
some π 6= π0.

As f−1(U) is open in P (E) and contains ξ0 ⊗ ξ0, there exists a finite set F0 ⊆ E such
that, if π ∈ Ĝ, η ∈ Hπ with ‖η‖ = 1 and∣∣〈ξ0 ⊗ ξ0 − η ⊗ η, x〉

∣∣ < 1 (x ∈ F0),

then π ∈ U . Let F ⊆ E be a finite set, so by the previous paragraph, there exists πF 6= π0

and ηF ∈ HπF with ‖ηF‖ = 1 and∣∣〈ξ0 ⊗ ξ0 − ηF ⊗ ηF , x〉
∣∣ < |F |−1 (x ∈ F ∪ F0).

In particular, πF ∈ U . Let a0 = ξ0⊗ξ0 ∈ A(G) and for each F ⊆ E finite, let aF = ηF ⊗ηF ∈
A(G). By construction, aF → a0 in the weak∗-topology on A(G) induced by E.
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Now suppose that ξ ∈ Hπ0 is arbitrary, with ‖ξ‖ = 1. As the GNS representations for ξ0

and ξ are equivalent, there exists some unitary u = (uπ) ∈ E with uπ0(ξ0) = ξ. Then, for
x ∈ E,

lim
F
〈uaFu∗, x〉 = lim

F
〈aF , u∗xu〉 = 〈a0, u

∗xu〉 = (u∗π0
xπ0uπ0(ξ0)|ξ0) = (xπ0(ξ)|ξ),

so that uaFu
∗ → ξ ⊗ ξ weak∗.

As {π1} is open in Ê, by the same argument as used in the proof of Proposition 4.4 we
see that for any w ∈ B(Hπ1), there exists x = (xπ) ∈ E with xπ = 0 for π 6= π1, and with
xπ1 = w. Let ρ ∈ Ĝ. Let α ∈ Hρ, let b = α ⊗ α ∈ A(G), let ξ ∈ Hπ0 with ‖ξ‖ = 1, and let
a = ξ ⊗ ξ ∈ A(G). Then let c = ab ∈ A(G), say c = (cπ) ∈ `1 −

⊕
T (Hπ). We see that

〈c, x〉 = 〈cπ1 , w〉 6= 0

for some choice of α, ξ and w, by Lemma 4.5.
Let u ∈ E be some unitary with uπ0(ξ0) = ξ. Let c(F ) = (uaFu

∗)b for F ⊆ E finite, and

suppose that c
(F )
π1 6= 0. Thus [χρχπF , χπ1 ] > 0, but as πF ∈ U , this is a contradiction. In

conclusion, we have that 〈uaFu∗, b · x〉 = 0 for each finite F ⊆ E, so that

〈c, x〉 = 〈a, b · x〉 = lim
F
〈uaFu∗, b · x〉 = 0,

a contradiction. Hence Ê is discrete, and the result follows from Proposition 4.4.

5 Algebras with unique preduals

For certain classes of dual Banach algebras, the predual is uniquely determined so that
there is one weak∗-topology. The first example of this phenomenon is in [3, Theorem 4.4],
where B(E) is shown to have a unique predual for any reflexive Banach space E with the
approximation property. A careful examination of the proof of this theorem yields the
following result, since the hypothesis stated below are the only properties of B(E) used. We
refer the reader to the discussion after [2, Theorem 2.6.15] for details on the Arens products.

Theorem 5.1. Let A be an Arens regular Banach algebra such that A′′ is unital, and A is
an ideal in A′′. Then A′ is the unique predual of A′′.

Von Neumann algebras can be characterised abstractly as those C∗-algebras which are
isometric to the dual space of some Banach space. There is a unique isometric weak∗-
topology on a von Neumann algebra and this topology makes the multiplication separately
continuous and the adjoint continuous. In contrast, a classical example of Pelcyznski [12]
shows that the commutative non-isomorphic von Neumann algebras `∞ and L∞[0, 1] are iso-
morphic as Banach spaces, and so the non-isomorphic Banach spaces `1 and L1[0, 1] induce
two distinct weak∗-topologies on `∞ — of course the topology induced by L1[0, 1] does not
respect the von Neumann algebra structure. It was shown in [3] that if θ : M → N is
merely a Banach algebra isomorphism, andM and N are commutative von Neumann alge-
bras, then θ is weak∗-continuous and so a commutative von Neumann algebra has a unique
weak∗-topology making the multiplication separately continuous. The weak∗-continuity of
the adjoint follows for free. The theorem below extends this to the non-commutative setting
by passing through maximal abelian subalgebras.
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Theorem 5.2. LetM be a von Neumann algebra, let B be a dual Banach algebra with predual
B∗, and let θ :M→ B be a Banach algebra isomorphism. Then θ is weak∗-continuous.

Proof. As in the proof of [3, Theorem 5.1], it is enough to show that if X ⊆M′ is a predual,
then X is the usual predual for a von Neumann algebra, that is, each functional in X is
normal. This equivalence follows by setting X = θ′(B∗).

So let X ⊆M′ be a predual, and pick µ ∈ X. Then, by [17, Chapter III, Corollary 3.11],
µ is normal if, and only if, the restriction of µ to each maximal abelian self-adjoint subalgebra
(masa) is normal. Take a masa A in M. By maximality, A is weak∗-closed in any weak∗-
topology arising a predual, and in particular in that induced by X. Identify M with X ′, so
that A has the predual X/⊥A. By [3, Theorem 5.1], it follows that each member of X/⊥A
is normal. Hence µ + ⊥A is normal, and 〈a, µ+ ⊥A〉 = 〈a, µ〉 for a ∈ A, so that µ, when
restricted to A, is normal. We hence conclude that µ is normal, as required.

Corollary 5.3. There is a unique weak∗-topology on a von Neumann algebra which makes
the multiplication map separately continuous.
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