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I. LINEARIZED EQUATIONS AND THEORY

In this section we derive the linearized Eqs. (3-4) of the main text that govern the evolution of the signal and idler
fields in the photon fluid in the presence of the strong pump field. We start from the nonlinear Schrödinger equation
for a monochromatic field of frequency ω0 and a local nonlinearity describing propagation in the photon fluid

∂E

∂z
=

i

2k
∇2
⊥E + ik0n2|E|2E, (S1)

where E is a monochromatic light field with wavelength λ, n0 the linear refractive index of the medium, k = 2πn0/λ =
n0k0 = n0ω0/c is the wavenumber, and ∇2

⊥ is the transverse Laplacian, accounting for optical diffraction. We observe
that optical fluids are two-dimensional , that is, they live in the plane (x, y) orthogonal to the direction of propagation
z. We consider a defocusing nonlinearity (n2 < 0) and a vortex pump solution of the form

E(r, θ, z) = E0(r)ei(β`z+`θ)

=
√
I` u`(r)e

i(β`z+`θ), (S2)

where I` is the background intensity of the vortex of OAM `, u`(r) is the corresponding vortex profile which has a
core size denoted r`, and β` = k0n2I` < 0. The vortex profile, which we take as real without loss of generality, obeys
the equation

β`u` =
1
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`u` + k0n2I`u

3
` , (S3)

where u`(r)→ 1 for r >> r`, and we have defined ∇2
p = ∂2

∂r2 + 1
r
∂
∂r −

p2

r2 .
To proceed we make use of the fact that in the presence of the strong pump E0 of OAM ` and a weak externally

applied signal field Es of OAM n, the total field may be written as

E(r, θ, z) =
[
E0(r)ei`θ + Es(r, z)einθ + Ei(r, z)eiqθ

]
eiβ`z, (S4)

=
[
E0(r) + Es(r, z)ei(n−`)θ + Ei(r, z)e−i(n−`)θ

]
ei(β`z+`θ), (S5)

with Ei the generated idler field with OAM q = (2`− n).
Then substituting the expansion (S4) into the starting Eq. (S1), linearizing in the signal and idler fields, and

separating the signal and idler equations on the basis of their differing OAM yields
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− iβ`Ei. (S6)

Finally we substitute the strong vortex pump in Eq. (S2) into the above equations to obtain

∂Es
∂z

=
i
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nEs + iβ`u

2
`(r) [2Es + E∗i ]− iβ`Es,
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2
`(r) [2Ei + E∗s ]− iβ`Ei. (S7)

These equations are the basis for the manuscript discussion and describe the parametric interaction between the signal
and idler fields in the presence of the pump, this parametric interaction arising from Four Wave Mixing (FWM).
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II. TRAPPING OF THE IDLER WAVE

A. Idler propagation

The idler propagation equation (S7) can be rearranged as

∂Ei
∂z

=
i

2k
∇2
qEi + i 2β`[u

2
`(r)− 1]︸ ︷︷ ︸

waveguide

Ei + iβ`Ei + iβ`u
2
`(r)E∗s︸ ︷︷ ︸

source

. (S8)

Since the nonlinear parameter β` is negative, the underbraced term 2|β`|[1 − u2
`(r)] = k0∆n(r) defines a two-

dimensional refractive-index profile which is guiding since u2
`(r) is zero at the pump vortex center r = 0, so

∆n(r) = 2|β`| is maximum there, and is unity for r >> r` away from the vortex core, so that ∆n(r) goes to
zero. The pump vortex therefore creates a cross-phase-modulation (XPM) induced waveguide that is experienced by
the idler wave.

The underbraced source term in the above equation describes how the idler wave, that is absent at the input, is
driven by the signal beam via the parametric interaction. As shown in the manuscript (see Eq. (6) of the manuscript)
the signal field can be approximated as

Es(r, z) ≈ csVn(r, z)e−i(1+|n|)φG(z)e2iβ`Γn(z)z−iβ`z, (S9)

where Vn(r, z) is the normalized z-dependent Laguerre-Gauss mode profile, φG(z) = tan−1(z/z0) is the Gouy phase-
shift at the focus with Rayleigh range defined as z0 = kw2

0/2 and Γn(z) =
∫∞

0
2πrdr |Vn(r, z)|2u2

`(r) being the signal
phase variation induced by the pump core on the signal.
In the following section we compute the guided idler modes spectrum.

B. Guided idler modes

The spectrum of guided idler waves with OAM q can be found by solving the wave equation (S8) combining beam
diffraction and the XPM-induced refractive-index profile. Neglecting the source for the time being, and for idler fields
of the form

Ei(r, z) = ciUpq(r)e
i(β`+Λpq)z, (S10)

with radial mode-index p, this leads to the equation for the modes (p = 0, 1, 2 . . .)(
1

2k
∇2
q + 2β`[u

2
`(r)− 1]

)
Upq(r) = ΛpqUpq(r). (S11)

This eigenproblem can be solved for the guided idler modes for a given pump vortex profile u`(r) and value of the
nonlinear parameter β`. Note that it is possible that no guided idler modes exist in which case the Penrose process
cannot occur. The eigenvalues Λpq are positive and decrease with increasing p, and for the present purposes the lowest
radial mode p = 0 is the relevant one. We hereafter drop the radial mode index for simplicity in notation, and assume
Uq(r) and Λq exist and we obtain them numerically.

The modal solution Uq(r) allows us to evaluate the ergosphere radius in a more systematic way: this mode has a
single-ringed intensity profile and one can find the radius rq of the peak intensity. Physically any idler energy excited
this guided mode will effectively be confined or trapped within the radius rq, so we identify rq with a viable measure of
the radius of the ergosphere re. The approach re = rq agrees quite well with the previous approximation, particularly
for larger q.


