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Particles or waves scattered from a rotating black hole can be amplified through the process of
Penrose superradiance, although this cannot currently be observed in an astrophysical setting. Here
we theoretically show that analog Penrose superradiance arises naturally in the field of nonlinear
optics. A loosely focused signal beam can experience gain or amplification as it glances off a strong
vortex pump beam in a nonlinear defocusing medium. Amplification occurs only with the generation
and trapping of negative norm modes in the core of the pump vortex, as predicted by Penrose. Our
results elucidate a new regime of nonlinear optics involving the notion of an ergoregion, providing
further insight into the processes and transient dynamics involved in Penrose superradiance.

Introduction. Penrose or rotational superradiance is a
process in which waves scattered from a rotating black
hole can extract energy at the expense of the black hole
rotational energy. In 1969 Penrose predicted this effect
noticing that for an asymptotic observer, particles that
fall inside the ergoregion around a rotating Kerr black
hole will have negative energy and thus lead to amplifi-
cation of a reflected positive energy component [1]. This
concept was later extended by Zel’dovich to the predic-
tion of amplification of waves reflected from a rotating,
metallic (i.e. absorbing) cylinder [2–4], with recent the-
oretical [5–7] and experimental studies [8] using sound
waves.
In the last decades, analogue gravity studies have at-
tracted considerable attention revealing the possibility
of investigating inaccessible gravitational phenomena in
generic rotating geometries and flows by testing them
through table top experiments. Since the proposal to
study analogue Hawking radiation in hydrodynamics [9],
many different astrophysical phenomena have been pro-
posed: Hawking radiation, boson stars and superradiance
analogues have been investigated in a variety of fields of
physics, ranging from nonlinear optics to Bose-Einstein
condensates (BECs) and hydrodynamics [10–20]. In this
framework, the first measurement of analog superradi-
ance was reported in a recent study in classical fluid-
dynamics in the form of over-reflection of waves carry-
ing Orbital Angular Momentum (OAM) scattered from
a rotating vortex in a water tank [21]. Several proposals
have extended the concept of superradiance to superflu-
ids, providing a generalized framework for superradiant
scattering in terms of Bogoliubov excitations [22–25]. A
range of studies have focused on superfluids or photon
fluids realised with light, i.e. with an optical beam prop-
agating in a medium with a defocusing nonlinearity that
mediates the background repulsive photon-photon inter-
action. This can be tailored so as to reproduce superfluid
dynamics and physical phenomena ranging from shock
dynamics to analogue black holes [26–37].
In this Letter, we show that analog Penrose superradi-
ance arises naturally in the field of nonlinear optics and
identifies an unexpected phase-matching mechanism that
transforms a weak interaction process into one that ex-

hibits significant amplification dynamics. We consider a
geometry in which a weak, loosely focused probe beam
carrying OAM co-propagates with a strong vortex pump
beam onto a nonlinear defocusing medium. Four-wave
mixing (FWM) in turn generates an idler mode that can
be trapped in the core of the pump vortex via nonlinear
cross-phase modulation. We verify that the conditions
for this to occur correspond to the trapped modes having
a negative norm, as suggested by Penrose and in which
case the reflected signal power can be amplified.
Basic model and equations – We consider the interaction
between a continuous wave monochromatic pump field
E0 with OAM ` and a weak probe signal Es with OAM
n as described by the Nonlinear Schrödinger Equation
(NSE) (see Fig. 1 for a conceptual drawing of interac-
tion geometry). This is solved for the total light field
E = E0 +Es +Ei, where Ei is the ‘idler’ field generated
by degenerate FWM, with idler OAM q = 2l − n. The
NSE for the system is given by [38]

i
∂E

∂z
+

1

2k
∇2
⊥E + k0n2|E|2E = 0, (1)

where n0 is the linear refractive index, k = 2πn0/λ =
k0n0 is the wave-number, ∇2

⊥ is the transverse Laplacian
accounting for optical diffraction, and we consider a de-
focusing medium with nonlinear coefficient n2 < 0. For
co-propagating fields along the z-axis, the total field E
may be written in cylindrical coordinates (r, θ, z) as

E(r, θ, z) = E0 + Es + Ei (2)

=
[
E0(r)ei`θ + Es(r, z)einθ + Ei(r, z)eiqθ

]
eiβ`z,

where β` = k0n2I` < 0, E0(r) =
√
I`u`(r) with I` the

background intensity of the strong pump vortex with
OAM `, and u`(r) the vortex profile with core size r`,
such that u`(r) → 1 for r � r`. We employ the approx-

imate vortex profile u`(r) = tanh|`|(r/W ) described in
Ref. [39]. By substituting Eq. (2) in Eq. (1), linearising
in the signal and idler fields and separating them on the
basis of their different OAM, we find

∂Es
∂z

=
i

2k
∇2
nEs + ik0n2

[
2|E0|2Es + E2

0E∗i
]
− iβ`Es, (3)

∂Ei
∂z

=
i

2k
∇2
qEi + ik0n2

[
2|E0|2Ei + E2

0E∗s
]
− iβ`Ei, (4)
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FIG. 1. Conceptual drawing of the interaction geometry. The
signal beam is focused on the collimated pump vortex core.
Under conditions corresponding to those identified by Pen-
rose, an idler beam is generated that is trapped inside the
pump cortex core and the output signal beam is amplified.
The inset shows the pump and signal beam transverse pro-
files at the input (all beams have the same optical frequency).

which describe propagation of the signal and idler fields
(see Supplementary Information (SI) [40]). Here we have

defined ∇2
p = ∂2

∂r2 + 1
r
∂
∂r −

p2

r2 as the transverse Laplacian
for a given OAM p.
We note that in Eqs. (3-4), the longitudinal wavevector-
shifts for the signal (s) and idler (i) fields ∆Ks,i

z = ks,i−
β` are referenced to the pump value β`. Hence, all corre-
sponding effective frequency shifts ∆ωs,i = (ωs,i −ωp) =
−c∆Ks,i

z /n0 are with respect to the associated pump fre-
quency ωp = −cβ`/n0, and correspond to phonon fre-
quencies that is, oscillation frequencies in the transverse
plane, analogous to phonons in a 2D fluid [34].
Ergoregion – We consider two characteristic speeds: the
underlying flow speed v and the speed of sound cs of the
photon fluid, i.e. transverse perturbation modes [22, 34–
36]. The ergoregion is defined as the region in the (x, y)
plane where v > cs. In photon fluids, the speed of sound
is defined as cs = (c/n0)

√
|∆n|/n0, where ∆n = n2I` is

the nonlinear change in refractive-index due to the pump

intensity I` [34]. The flow speed is v = |Ω|r = (c/n0) |n−`|kr
where Ω is the pump rotational frequency with respect to
the perturbation [24]. Equating cs = v at the ergoradius

yields re = (|n− `|/k)
√
n0/|∆n|.

Positive and negative modes and currents – Penrose su-
perradiance is based on the concept of positive and neg-
ative energy modes: Negative energy modes can remain
trapped within the ergoregion, allowing positive energy
modes to escape, thereby gaining energy [1, 20]. It
has been shown [24, 32] that Eqs. (3-4) exhibit a con-
served quantity N(z), also referred to as a Noether cur-
rent which, in our system, corresponds to J0(r, z), where
∂zJ

0 = 0 and J0 = |Es|2 − |Ei|2, such that

N(z) =

∫ ∞
0

(
|ES |2 − |EI |2

)
rdr = const. (5)

Negative norm modes arise here from the idler wave in-
tensity |EI |2. Assuming the signal has unit incident
norm, from Eq. (5) we may define the reflection, R,
and transmission, T , coefficients for the modes scattering

from the ergoregion: R(z) =
∫∞
re

(
|ES |2 − |EI |2

)
rdr and

T (z) =
∫ re

0

(
|ES |2 − |EI |2

)
rdr.

Superradiance results in a reflection coefficient larger
than 1, such that the reflected field has gained energy
(or has been over-reflected) after scattering with the ro-
tating body. The current J0 is therefore a key signature
for establishing the presence of superradiance, which can
be identified by the presence of negative current (J0 < 0)
inside the scattering region re, balanced with a positive
current (J0 > 0) outside re [24].
A negative current inside re will naturally arise if the
idler wave becomes trapped inside the ergoregion, while
the signal is scattered outwards (i.e. the signal and idler
beams are spatially separated from each other). In real
black holes the trapping can be provided by the event
horizon [20].
Trapping of the idler wave – Neglecting any effect of the
idler on the signal propagation to lowest order in Eq. (3),
and assuming that the signal beam is not too tightly
focused, we take the signal field as a focused Laguerre-
Gaussian (LG) beam with radial mode index p = 0, OAM
n, and focused spot size w0:

Es(r, z) ≈ csVn(r, z)e−i(1+|n|)φG(z)e2iβ`Γn(z)z−iβ`z, (6)

where cs is the signal field amplitude, Vn(r, z) is the
normalized z-dependent LG mode profile. Γn(z) =∫∞

0
2πrdr |Vn(r, z)|2u2

`(r) describes the variation of the
signal phase due to penetration of the LG mode into the
pump vortex core. From Eq. (6) we can write the signal
wavevector (nonlinear) shift as

∆Ks ≈ ∆Ks(0) = 2β`Γn(0)− β`, (7)

where we accounted for the fact that most of the non-
linear interaction will occur within a Rayleigh range
around the beam focus at z = 0. The overlap fac-
tor 0 ≤ Γn(0) ≤ 1 may be evaluated numerically. At
the focus, the radius of the single-ringed LG beam is
rn = w0

√
|n|/2. Moreover, we require rn ≈ re in order

for the signal LG ring beam to glance off the ergosphere
at it goes through its focus.
We now consider the idler propagation according to
Eq. (4). This can be re-arranged as

∂Ei
∂z

=
i

2k
∇2
qEi + i 2β`[u

2
`(r)− 1]︸ ︷︷ ︸

waveguide

Ei + iβ`Ei + iβ`u
2
`(r)E∗s︸ ︷︷ ︸

source

.

(8)
such that it is composed of two terms: (i) a two-
dimensional waveguide term, 2|β`|[1−u2

`(r)] = k0∆n(r),
that arises from the cross-phase-modulation induced by
the pump vortex on the idler wave and, (ii) a source
term describing how the idler wave (absent at the input)
is driven by the signal beam [40].

It is useful to assess the idler guided modes Upq(r) that
arise in the presence of the waveguide term in Eq. (8)
while ignoring the source term

Ei(r, z) = ci(z)Upq(r)e
i(β`+Λpq)z, (9)
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with ci(z) the idler amplitude, radial mode-index p,
eigenvalue Λpq, and idler wavevector ∆Ki = β` + Λpq.
To verify the existence of guided modes, we compute the
spectrum of the idler waves with OAM q for a given pump
vortex profile u`(r) and value of the nonlinear parameter
β` (see the SI [40]). We can then find a condition for
the incident signal field to excite a guided idler mode by
substituting the guided idler field of the form of Eq. (9)
into Eq. (4), with the signal field in Eq. (6), giving

dci
dz

= ic∗sβ`F (z) e−i(2∆Kz−(1+|n|)φG(z))︸ ︷︷ ︸, (10)

where

∆K =

(
∆Ks + ∆Ki

2

)
,

F (z) =

∫ ∞
0

2πrdr V ∗n (r, z)u2
`(r)U

∗
q (r),

(11)

where ∆K is the average wave-vector shift of the to-
tal perturbation formed by the signal plus idler fields.
It is possible to solve Eq. (10) numerically to explore
how effectively the signal excites the idler guided mode
for a given set of parameters, but the main insight can
be gained by looking at phase-matching conditions dic-
tated by the underbraced exponential phase factor. In
the vicinity of the origin, the phase factor is approxi-
mately (2∆Kz − (1 + |n|)z/z0), so that

∆K = (2β`Γn(0)− β`) + (β` + Λq). (12)

If the Gouy phase-shift term is zero (φG = 0), then
∆K = 0 for phase-matching and efficient generation but
a more general condition ∆K > 0 guarantees the possi-
bility of phase-matching. Indeed, similar phase factors as
in Eq. (10) along with the ∆K > 0 condition appear in
the theory of harmonic generation using focused beams
[38]. In our system, the ∆K > 0 condition can be used to
determine whether the guided idler waves can be excited,
with consequent observation of Penrose superradiance.
Zel’dovich-Misner condition – The condition ∆K > 0
can be recast in terms of transverse perturbation (i.e.
phonon) frequencies as ∆ω = −(c/n0)∆K < 0, where
∆ω =

(
∆ωs+∆ωi

2

)
is the average of the frequency shifts

of the signal and idler fields, with ∆ωs,i = −(c/n0)∆Ks,i.
We note that ∆ω = (ω − ωp) = (ω − mΩ), with
m = (n − `). So the condition to see Penrose super-
radiance is (ω − mΩ) < 0. This has the same form as
the Zel’dovich-Misner condition [2, 41], therefore estab-
lishing the connection between the nonlinear dynamics of
the optical beams and the cornerstone relation for Pen-
rose superradiance.
Numerical simulations – To quantitatively study our pro-
posed nonlinear optics platform for Penrose superradi-
ance, we numerically simulate Eqs. (3-4) in a defocusing
nonlinear medium. We assume a strong vortex pump
beam that does not vary with propagation distance z,
and neglect absorption. To reveal the generic nature of

our results we employ dimensionless variables with trans-
verse coordinates in units of the signal spot size w, and
z is in units of the Rayleigh range ZR = kw2/2 [42].
Since multiple charge vortices are dynamically unsta-
ble due to physics akin to the processes discussed here
[43], we consider a pump beam with OAM ` = 1. The
background fluid is then generated by a vortex pump,
E0(r) =

√
I1 tanh(r/2)eiθ (based on W = 2w). In addi-

tion, the input signal with OAM n is taken as a Laguerre-
Gaussian beam

Es(r, z = 0) = Ns

( r
w

)|n|
e−

r2

w2 einθ, (13)

where Ns is a normalization constant, and the idler beam
is chosen to have zero amplitude at the input.

Figures 2(a-h) show the signal and idler evolution for
two cases: (1) Figs. 2(a-d) - in this case ∆K > 0 and
the signal undergoes superradiant amplification while the
idler remains trapped inside the ergoregion; (2) Figs. 2(e-
h) - in this case ∆K < 0 and superradiance does not oc-
cur. The horizontal dashed white lines in Figs. 2(a-b,e-f)
indicate the location of the dimensionless radius r/w of
the ergoregion.
In more detail, for Figs. 2(a-d) the signal with OAM
n = 2 intensity profile |Es(x, y = 0, z)|2 versus (z/ZR)
is shown in (a) along with the corresponding idler inten-
sity with OAM q = 0 in (b). The idler field is initially
absent. As the signal diffracts away from the ergoregion
for (z/ZR) > 0 it experiences a transient amplification.
Conversely, the idler is generated and becomes trapped.
In the context of Penrose superradiance, we interpret this
as evidence that negative energy waves are trapped dur-
ing the interaction, while positive energy waves are re-
flected (no signal inside the ergoregion). This is further
confirmed by the plot of the current J0(r/w) versus r/w
at (z/ZR) = 4 in (c). We see that within the ergoregion
the current is negative as implied by our theoretical anal-
ysis. Plot (d) shows the (change in) reflection (R-1) and
transmission (T) coefficients, defined in Eq. (5), indicat-
ing an amplification of 19%.
Figures 2(e-h) show the corresponding results for the case
with no superradiance, ∆K < 0. Here the signal OAM
is n = −1 giving OAM q = 3 for the idler. The signal
(e) is no longer amplified and the idler (f) is no longer
trapped inside the ergoregion. The current (g) is now
positive near the origin and the reflection coefficient is
(R − 1) ' −2% (h), i.e. the signal experiences a small
loss (no amplification). These results illustrate that trap-
ping of a negative mode (the idler) inside the ergoregion
and amplification of the signal go hand-in-hand, as ex-
pected for Penrose superradiance.
In order to validate the possibility of superradiance in
a real photon fluid experiment, we simulate the inter-
action with the full NSE (1) in a defocusing nonlinear
medium. The sample parameters are chosen based on
previous experiments in photon fluids experiments with
linear refractive index is n0 = 1.32, and nonlinear re-
fractive index n2 = 1.2 × 10−10 m2/W [34, 35, 37]. The
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FIG. 2. For all cases the pump has OAM ` = 1. (a-d) For this case the signal has OAM n = 2 and idler OAM q = 0, and
Penrose superradiance occurs, ∆K > 0. Cross-sections for the intensity profiles |Es,i(x, y, z)|2 versus x/w and z/ZR for y = 0
for the signal (a) and idler (b), calculated using the linearized theory: (c) Current J0(r/w) versus radius r/w for z/ZR = 4,
and (d) reflection (R− 1) and transmission T versus propagation distance z/ZR. (e-h) As in panels (a-d) for signal with OAM
n = −1 and idler with OAM q = 3 for which Penrose superradiance is absent, ∆K < 0. (i-l) as in (a-d) calculated using the
full NSE (1). The horizontal dashed white lines in panels (a-b,e-f) indicate the location of the dimensionless radius r/w of the
ergoregion

nonlinearity is assumed to be local as in experiments with
Rb atoms [36] or in time-gated measurements in thermal
media [37].
The initial field is a beam at wavelength λ = 532 nm
given by the superposition of a pump super-Gaussian

vortex e−(r/w0)10tanh|`|(r/W )ei`θ with ` = 1, and a
Laguerre-Gaussian probe signal with n = 2. The
Rayleigh range for the signal beam is ZR ' 2 cm. The
pump power is chosen as 140 mW as in [37], with a weak
signal beam Ps = 10−2Ppump. Figures 2(i-l) in the bot-
tom row show the same quantities as the top row for the
chosen parameters, and the results show all of the main
features of Penrose superradiance, including a negative
current near the origin in plot (k), trapping of the idler
beam in plot (j), and amplification up to 50% in plot
(l). The relevance of these results is that they no longer
rely on the assumption that the pump vortex does not
evolve with propagation distance. The amount of am-
plified reflection is greater for the full simulation as the
strict phase-matching condition for a fixed pump is re-
laxed and allows for a net stronger and spatially extended
interaction.
Conclusions – Optical signal amplification in a nonlinear

medium is a well-known process that conserves momen-
tum and also OAM. However, these processes are efficient
only in the presence of phase-matching that allows accu-
mulation of energy at both signal and idler waves at the
expense of the pump beam. Here we have shown an inter-
action geometry involving beams with OAM that is not
phase-matched and under normal circumstances leads to
a decrease of the input signal power. By making a phys-
ical connection between the conditions dictated by Pen-
rose for rotating black holes and the optical case, we were
able to identify the interaction conditions that transform
the interaction from lossy (1-R<0) or no amplification
to one with amplification up to 50%. The results im-
ply a new amplification regime in nonlinear optics that
is tightly connected to the trapping and spatial separa-
tion of the idler beam that leads to a transient gain in
the signal beam. This bears a close connection to non-
normal dynamics in a coupled resonator system in the
presence of loss in one of the resonator modes [44]. These
results pave the way towards future experiments on su-
perradiant amplification in nonlinear optics and a deeper
understanding of the fundamental physics and transient
dynamics of Penrose superradiance.
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