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LOGARITHMIC DEFORMATIONS OF THE RATIONAL

SUPERPOTENTIAL/LANDAU-GINZBURG CONSTRUCTION OF

SOLUTIONS OF THE WDVV EQUATIONS

JAMES T. FERGUSON AND IAN A. B. STRACHAN

Abstract. The superpotential in the Landau-Ginzburg construction of solu-
tions to the Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equations is mod-
ified to include logarithmic terms. This results in deformations - quadratic in
the deformation parameters - of the normal prepotential solution of the WDVV
equations. Such solution satisfy various pseudo-quasi-homogeneity conditions,
on assigning a notional weight to the deformation parameters. This construc-
tion includes, as a special case, deformations which are polynomial in the flat
coordinates, resulting in a new class of polynomial solutions of the WDVV
equations.

1. Introduction

One of the most basic classes of Frobenius manifolds is comprised of those which
are defined on orbit spaces Cn/W , W being a finite Coxeter group [7]. Following
from the observation of Arnold that the three polynomial solutions in 3-dimensions
were related to the Coxeter numbers of the Platonic solids it was realized that
the earlier Saito construction [18] provided a construction of Frobenius manifolds
and that the prepotentials (solutions to the WDVV-equations - see below) were
automatically polynomial with respect to a distinguished coordinate system, the
so-called flat coordinates {ti} .

Such prepotentials are quasihomogeneous, a property that may be expressed in
terms of an Euler vector field

E =
∑

i

diti
∂

∂ti

as

LEF = (2h+ 2)F ,

where the di are the degrees of the basic W -invariant polynomials and h is the
Coxeter number of W . Such solutions are semi-simple and it was conjectured by
Dubrovin that all semi-simple polynomial solutions arise from this construction for
some Coxeter group. This was later proved by Hertling [12].

In this paper we construct a new class of semi-simple polynomial solutions to the
WDVV equations. This does not contradict the result of Hertling as the solution
does not satisfy the full set of axioms of a Frobenius manifold, in particular the
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solutions are not quasi-homogeneous. These solutions may be regarded as a defor-
mation of the AN -polynomial solutions, in the sense that the prepotential takes the
form

F (t1 , . . . , tN , b) = F (0)(t1 , . . . , tN ) + kF (1)(t1 , . . . , tN , b)

where F (0) is the polynomial solutions defining the Frobenius manifold structure
on the space CN/AN and k is some deformation parameter. Such solutions satisfy
a pseudo-quasi-homogeneity condition. With the Euler vector field

E =
N∑

i=1

(N + 2 − i)ti
∂

∂ti
+ b

∂

∂b

each part is separately quasi-homogeneous:

LEF
(0) = (2N + 4)F (0) ,

LEF
(1) = (N + 3)F (1) .

By assigning a fictitious scaling degree of (N + 1) to the deformation parameter k
the full solution may thought of a pseudo-quasi-homogeneous. These solutions will
appear as a special case of a more general construction.

The Frobenius manifold structure on the orbit space CN/AN may also be derived
[7, 13, 14] via a Landau-Ginzburg formalism as the structure on the parameter space
of polynomials of the form

(1) λ(p) = pN+1 + s1p
N−1 + . . .+ sN .

More explicitly, the metric

(2) η(∂si
, ∂sj

) = −
∑

res
dλ=0

{
∂si
λ(p) ∂sj

λ(p)

λ′(p)
dp

}

is flat (though, in these variables, it does not have constant entries) and the tensor

(3) c (∂si
, ∂sj

, ∂sk
) = −

∑
res

dλ=0

{
∂si
λ(p) ∂sj

λ(p) ∂sk
λ(p)

λ′(p)
dp

}

defines a totally symmetric (3, 0)-tensor which further satisfies various potentiality
conditions from which one may construct a so-called prepotential F which satisfies
the Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equations of associativity

∂3F

∂tα∂tβ∂tλ
ηλµ ∂3F

∂tµ∂tγ∂tδ
−

∂3F

∂tδ∂tβ∂tλ
ηλµ ∂3F

∂tµ∂tγ∂tα
= 0 , α , β , γ , δ = 1 . . . , N

where the coordinates {ti} are a set of flat coordinates for the metric η defined by
(2). Geometrically, a solution defines a multiplication ◦ : TM × TM → TM of
vector fields on the parameter space M , i.e.

∂tα ◦ ∂tβ =

(
∂3F

∂tα∂tβ∂tσ
ησγ

)
∂tγ ,

:= cγαβ(t) ∂tγ ,

the metric η being used to raise and lower indices.

Example 1. With

λ(p) = p4 + s1p
2 + s2p+ s3
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the formula (2) gives the metric1

η =
1

2
ds1ds3 +

1

4
ds22 −

s1
8
ds21 .

While this metric is flat, the si are not flat coordinates. With

s3 = t1 +
1

8
t23 ,

s2 = t2 ,

s1 = t3

one obtains a metric with constant coefficients. The tensor given by the formula
(3) may then be used to construct the prepotential

F =
1

8
t21t3 +

1

8
t1t

2
2 −

1

64
t22t

2
3 +

1

3840
t53 .

Such polynomial solution may be seen from a variety of different points of view
(and part of the rich mathematical structure of Frobenius manifold arises as from
the fact that it lies at the intersection of seemingly disconnected areas of mathe-
matics):

(i) as a basic example of an orbit space construction. Here the manifold is
Cn/AN where AN is a Coxeter group;

(ii) as a topological Landau-Ginsburg field theory;
(iii) as a reduction of the dispersionless KP hierarchy.

The point of view that will be taken in this paper is last, i.e. that a solution to the
WDVV equations may be obtained from a specific reduction of the dispersionless
KP hierarchy [13, 14]. In particular it will be shown that the so-called water-bag
reduction of the KP hierarchy [11] (see also [3]) also results in a solutions of the
WDVV equations, though not, as in earlier examples, a full Frobenius manifold
because of the non-existence of an Euler vector field. This builds on a recent
preprint [5] where a 2-component system was studied.

2. The dispersionless KP hierarchy

The dispersionless KP (or dKP) hierarchy is defined in terms of a Lax function

λ(p) = p+

∞∑

n=1

un(x, t)p−n

by the Lax equation

∂Tn
λ(p) = {λ(p), [λn(p)+]}

where {f, g} = fxgp−fpgx is the ordinary Poisson bracket and [ ]+ denotes the pro-
jection onto non-negative powers of p . Various reduction of this infinite component
hierarchy have been studied, the most fundamental being the AN -reduction

λ(p) =
[
pN+1 + s1p

N−1 + . . .+ sN

] 1
N+1

and this leads to a Frobenius manifold structure, defined above, on the space of
parameters {si} . More recently a so-called ‘water-bag’ reduction has been studied,

1In all examples indices are lowered for notational convenience
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where one takes

λ(p) = p+

N∑

i=1

ki log

(
p− pi

p− p̃i

)
.

In a recent preprint Chang [5] showed that in the N = 1 case one may construct
a solution of the WDVV equation by analysing the recursion relations satisfied by
the conservation laws of the associated 2-component dispersionless hierarchy. Here
we generalise this setting and consider functions of the form

λ(p) = (rational function) (p) +

M∑

i=1

ki log(p− bi)

Formally one may expand this function for large p as a series, but this will have
terms of the form (

M∑

i=1

ki

)
log p

and the constraint
∑
ki = 0 is often imposed. Here we show that one still gets a

solution without such a constraint. To make λ single valued one has to make various
cuts on the complex plane. For simplicity we present proofs in the polynomial case,
with

(4) λ(p) = pN+1 + s1p
N−1 + . . .+ sN +

M∑

i=1

ki log(p− bi)

and state the result for the rational case - no essential new features will be present
in the rational case that are not already present in the polynomial case. Note
that without this constraint the function is not technically a reduction of the dKP
hierarchy, but one may associated a ‘regularised’ function

λ(p) → λ(p) −

(
M∑

i=1

ki

)
log p

which is [16]. For this reason we call the form (4) a generalised water-bag reduction.
We denote the space of such superpotentials M(M,N) or just M .

3. Solutions of the WDVV equations from the generalised

Water-bag reduction of the dispersionless KP hierarchy

We begin by proving that the formulae (2,3) with the function (4) define a com-
mutative, associative, semi-simple multiplication on the tangent space to the mani-
fold of parameters. This will be done using canonical coordinates - the critial values
of λ (i.e. λ evaluated at its critical points). Since λ(p) only involves logarithms its
derivative is a rational function which may be written in the form

λ′(p) =
(N + 1)

∏M+N
i=1 (p− ξi)∏M

j=1(p− bj)

(we assume that we are considering the generic case, where the poles and zeros are
all distinct). The canonical coordinates are then

ui = λ(ξi) , i = 1 . . . , N +M
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(for such a formula to be single-valued, various cuts have to be made in the complex
plane). The proof follows [7], Lemma 4.5. From the formulae

∂

∂ui
λ(p)

∣∣∣∣
p=ξj

= δij , i = 1 . . . , N +M

and

∂

∂ui
λ(p) =

{
M∏

r=1

(p− br)

}−1

Bi(p)

(where Bi is a polynomial of degree N +M − 1) one obtains

Bi(ξj) =

{
0 , i 6= j∏M

r=1(ξi − br) , i = j .

The Lagrange interpolation formula then gives

Bi(p) =

∏
j 6=i(p− ξj)

∏M
r=1(ξi − br)∏

j 6=i(ξi − ξj)

and hence

∂λ(p)

∂ui
=

∏
j 6=i(p− ξj)

∏M
r=1(ξi − br)

∏
j 6=i(ξi − ξj)

∏M
r=1(p− br)

,

=
1

(p− ξi)
λ′(p)

{∏M
r=1(ξi − br)∏
j 6=i(ξi − ξj)

}
,

=
1

(p− ξi)

λ′(p)

λ′′(ξi)
.(5)

Note that this is the same functional form as in the polynomial case. With this

η(∂ui
, ∂uj

) = −
∑

res
dλ=0

{
1

(p− ξi)(p− ξj)

λ′(p)

λ′′(ξi)λ′′(ξj)
dp

}
,

= −
1

λ′′(ξi)
δij .

Note that while log-terms appear in λ , the metric formula involves derivatives of λ
and hence involves rational functions only.

Similarly

c(∂ui
, ∂uj

, ∂uk
) =




−

1

λ′′(ξi)
, i = j = k ,

0 , otherwise .

Collecting these results one arrives at the following:

Lemma 2. The formulae (2) and (3) with λ given by (4) define, at a generic point,
a semi-simple, commutative, associative multiplication

(6)
∂

∂ui
◦
∂

∂uj
= δij

∂

∂ui

,

compatible with the metric

(7) η = −
M+N∑

r=1

du2
i

λ′′(ξi)
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This multiplication has an identity. Since e(λ) = 1 , where the vector field e is
defined to be

e =
∂

∂sN
,

it is immediate from equations (2) and (3) that

c(∂, ∂′, e) = η(∂, ∂′) .

From this it follows that e is the identity for the multiplication. In semi-simple
coordinates it follows from the multiplication (6) that

e =

M+N∑

r=1

∂

∂ui
.

We prove next that the metric is flat and Ergoff. In the pure-polynomial case (or
AN -case) the flat coordinates are defined by an inverse series, using the so-called
thermodynamic identity. The presence of the logarithms makes such an inversion
problematical. However, it turns out that part of the flat-coordinates of the metric
are exactly the same as in the polynomial case.

Lemma 3. The formula (2) with λ given by (4) gives the following:

η(∂si
, ∂sj

) = −
∑

res
dλ+=0

{
∂si
λ+(p)∂sj

λ+(p)

λ′+(p)
dp

}
, i , j = 1 , . . . , N ,

where λ+(p) = pN+1 + s1p
N−1 + . . .+ sN is a truncation of λ , and

η(∂br
, ∂sj

) = 0 , r = 1 , . . . ,M , j = 1 , . . . , N ,

η(∂bi
, ∂bj

) = kiδij , i, j = 1 , . . . ,M .

It follows from these formulae that the metric is flat.

Proof. These formulae just involve the use of basic ideas from complex variable
theory.

η(∂si
, ∂sj

) = −
∑

res
dλ=0

{
p2N−i−j

λ′(p)
dp

}
,

= res
p=∞

{
p2N−i−j

λ′(p)
dp

}
.

Now

λ′(p) = λ′+(p) +

M∑

r=1

ki

(p− bi)
,

= λ′+(p)

{
1 +

1

λ′+(p)

M∑

r=1

ki

(p− bi)

}
.
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Hence

η(∂si
, ∂sj

) = res
p=∞




p2n−i−j

λ′+(p)

[
1 +

1

λ′+(p)

M∑

r=1

ki

(p− bi)

]−1

dp



 ,

= − res
p̃=0




p̃i+j−N−2

µ(p̃)

[
1 +

p̃N+1

µ(p̃)

M∑

r=1

ki

1 − p̃bi

]−1

dp̃



 ,

= − res
p̃=0

{
p̃i+j−N−2

µ(p̃)
dp̃

}
,

where p̃ = p−1 and λ′+(p) = p̃−Nµ(p̃) . Reversing the argument yields the result.
Similarly,

η(∂si
, ∂br

) =
∑

res
dλ=0

{
pN−i

λ′(p)

kr

(p− br)
dp

}
,

= −
1

N + 1
res

p=∞

{
krp

N−i
∏

r 6=i(p− br)
∏M+N

j=1 (p− ξj)
dp

}
,

=
1

N + 1
res
p̃=0

{
krp

i−1

∏
r 6=i(1 − brp̃)

∏M+N
j=1 (1 − ξj p̃)

dp

}
,

= 0 .

Finally,

η(∂bi
, ∂bj

) = −
1

N + 1

∑
res

dλ=0

{
ki

(p− bi)

kj

(p− bj)

∏M
r=1(p− br)∏M+N

k=1 (p− ξk)
dp

}
.

For i 6= j this, on deforming the contour around the Riemann sphere, gives zero:
there is no pole at infinity, and the simple poles cancel. For i = j ,

η(∂bi
, ∂bi

) = −k2
i

∑
res

dλ=0

{
1

(p− bi)2
1

λ′(p)
dp

}
,

= k2
i

1

N + 1

∏
k 6=i(bi − bk)
∏

i(bi − ξi)
.

On evaluating the residue at the poles using the two different formulae for λ′(p) ,

(N + 1)pN + (N − 1)s1p
N−2 + . . . s1 +

M∑

r=1

ki

(p− br)
= (N + 1)

∏M+N
i=1 (p− ξi)∏M
j=1(p− bj)

one obtains

ki = (N + 1)

∏
i(bi − ξi)∏

k 6=i(bi − bk)

from which the final formulae follows. �

Proof. (‘Thermodynamical identity’ -type proof of flat coordinates)
Following the polynomial case in [7], invert λ+(p) as

p+(k) = k +
1

N + 1

(
tN

k
+
tN−1

k2
+ . . .+

t1

kN

)
+ O

(
1

kN+1

)
,
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where λ+ = kN+1. Then

λ(p+(k, t), t, b) = λ+(p+(k, t), t) +
M∑

i=1

ki log(p+ − bi) ,

= kN+1 +

M∑

i=1

ki log(p+ − bi) .

Differentiating with respect to tα gives

dλ

dp

∣∣∣∣
p=p+(k)

∂p+

∂tα
+
∂λ

∂tα
=

M∑

i=1

ki

p+ − bi

∂p+

∂tα
.

= O

(
1

kN+2−α

)
.

So we have as our thermodynamical identity in this case

∂

∂tα
(λdp) +

∂

∂tα
(p+dλ) = O

(
1

kN+1−α

)
dk .

Although the right hand side is not zero as it is for polynomial λ, this identity is
sufficient to give

∂

∂tα
(λdp) = −kα−1dk +O

(
1

k

)
dk

(eqn. (4.68) in [7]), from which it follows, using

dλ = dλ+ +O

(
1

k

)
dk ,

that

η(∂tα , ∂tβ ) = −
δα+β,N+1

N + 1
.

�

The flat coordinates are therefore

{ti , i = 1 , . . . , N ; bj , j = 1 , . . . ,M}

where the ti are defined by the inverse series for the truncated function λ+ = λ+(p),
expanded as a Puiseaux series as λ→ ∞ ,

(8) p(k) = k +
1

N + 1

(
tN

k
+
tN−1

k2
+ . . .+

t1

kN

)
+O

(
1

kN+1

)

where k = (λ+)
1

N+1 , in the standard way [7]. Note that each ti is a polynomial in
the si and vice versa.

Consider the diagonal metric (7). Its rotation coefficients βij are defined by the
formula

βij =
∂ui

Hj

Hi

, H2
i =

1

λ′′(ξi)
.

Such a metric is said to be Egoroff if the rotation coefficients are symmetric. This
then implies that the metric may be written in terms of a single potential function
V (u) ,

η =

M+N∑

i=1

∂V

∂ui

(
dui
)2
.
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Lemma 4. The metric (7) is Egoroff.

Proof. In canonical coordinates η is diagonal with ith entry

−
1

λ′′(ξi)
.

From (5)

∂λ

∂ui
=

1

p− ξi

λ′(p)

λ′′(ξi)
,

=
N + 1

λ′′(ξi)

∏
r 6=i(p− ξr)

∏M
s=1(p− bs)

,

so we have

∂λ

∂ui

m∏

s=1

(p− bs) =
N + 1

λ′′(ξi)

∏

r 6=i

(p− ξi)

where each side is a polynomial of degree N +M − 1 .
Also

∂λ

∂ui
=
∂s1
∂ui

pN−1 +
∂s2
∂ui

pN−2 + · · · +
∂sN

∂ui
−

M∑

r=1

kr

p− br

∂br
∂ui

,

so

∂λ

∂ui

m∏

s=1

(p− bs) =

(
∂s1
∂ui

pN−1 + · · · +
∂sN

∂ui

) M∏

s=1

(p− bs) −

M∑

r=1

kr

∂br
∂ui

∏

s6=r

(p− bs) .

Comparing coefficients of pN+M−1 in ∂λ
∂ui

∏M
s=1(p− bs) in these two expressions

gives
N + 1

λ′′(ξi)
=
∂s1
∂ui

.

Hence

η(
∂

∂ui
,
∂

∂ui
) = −

1

λ′′(ξi)
=

∂

∂ui

(
−

1

N + 1
s1

)
.

�

This Egoroff property is equivalent to a potentiality condition on the (3, 0)-tensor
c , namely that the tensor ∇c is totally symmetric. Since the metric is flat one may,
in flat-coordinates, integrate by Poincaré’s lemma and express everything in terms
of a prepotential F which satisfies the WDVV equations. Collecting these results
together one obtains:

Proposition 5. The flat metric (2) and totally symmetric (3, 0) tensor (3), with
λ given by

λ = pN+1 + s1p
N−1 + . . .+ sN +

M∑

i=1

ki log(p− bi) , ki constant

define, on the space M(M,N) a solution to the WDVV equations. Geometrically they
define a semi-simple, associative, commutative algebra with unity on the tangent
space TM compatible with the flat metric.
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Before giving some examples, it must be remarked that we do not have a Frobe-
nius manifold, just a solution to the WDVV equations. As was remarked in one of
the earliest papers on water-bag reductions, such reductions do have have a scaling
symmetry and this fact manifests itself in the non-existence of an Euler vector field,
the existence of which is part of the definition of a Frobenius manifold (though it
should be remarked that some authors do not require such a field in their definition,
denoting manifolds with such a field as a conformal Frobenius manifold).

Example 6. N = 0 ,M = 2 . In the above proofs it has been assumed that N 6= 0 .
However one may adapt these proofs to deal with this case. In particular, the
identity field, normally associated to the variable sN , has to be carefully defined.
With

λ(p) = p+ k1 log [p− (t1 + t2)] + k2 log [p− (t1 − t2)]

one obtains the prepotential

F =
1

6

{
k1(t1 + t2)

3 + k2(t1 − t2)
3
}

+ 2k1k2 t
2
2 log t2 .

Note that if the condition k1+k2 = 0 is imposed, one obtains, after some rescalings,
the solution obtained by Chang. This example was the original motivation of this
work.

Lemma 7.

c

(
∂

∂bα
,
∂

∂bβ
,
∂

∂bγ

)
= 0 , α, β, γ distinct ,

c

(
∂

∂bα
,
∂

∂bα
,
∂

∂bβ

)
=

kαkβ

bβ − bα
, α 6= β ,

c

(
∂

∂bα
,
∂

∂bα
,
∂

∂bα

)
= kαλ

′
+(bα) +

∑

r 6=α

kαkr

bα − br
,

c

(
∂

∂bα
,
∂

∂bβ
,
∂

∂sγ

)
= 0 , α 6= β ,

c

(
∂

∂bα
,
∂

∂bα
,
∂

∂sγ

)
= kα(bα)N−γ ,

c

(
∂

∂bα
,
∂

∂sβ

,
∂

∂sγ

)
= kαSβ+γ(s1, . . . , sN , bα) ,

c

(
∂

∂sα

,
∂

∂sβ

,
∂

∂sγ

)
= R

(0)
α+β+γ(s1, . . . , sN ) +

M∑

j=1

kjR
(1)
α+β+γ(s1, . . . , sN , bj)

where Sσ, R
(0)
σ and R

(1)
σ are polynomial functions of their respective variables, and

independent of all ki’s.

In particular, the term independent of kj, R
(0)
α+β+γ(s1, . . . , sN ), is precisely the

value of c(∂sα
, ∂sβ

, ∂sγ
) found from (3) using the polynomial λ+(p) as the Landau-

Ginzburg potential (1).
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Proof. Here we write

λ′(p) =
ν(p)

∏M
j=1(p− bj)

where

ν(p) = λ′+(p)
M∏

j=1

(p− bj) +
M∑

j=1

kj

∏

k 6=j

(p− bk) ,

= (N + 1)

M∏

j=1

(p− ξj) .

After the substitution p→ 1/p̃ we will have cause to refer to the polynomial

µ(p̃) = p̃Nλ′+

(
1

p̃

)
= (N + 1) + (N − 1)s1p̃

2 + (N − 2)s2p̃
3 + · · · + sN−1p̃

N .

(bbb) From the definition (3),

c

(
∂

∂bα
,
∂

∂bβ
,
∂

∂bγ

)
=
∑

res
ν=0

kαkβkγ

(p− bα)(p− bβ)(p− bγ)

∏M
j=1(p− bj)

ν(p)
dp .

This is evaluated by deforming the contour to encompass the poles at p = ∞ and
possibly at p = bα if there is repetition in the b’s. The residue at infinity is zero,
and so in particular c(∂bα

, ∂bβ
, ∂bγ

) = 0 for α, β, γ distinct.
For the case (α, α, β), the pole at p = bα is simple, and the result follows imme-

diately, noting that ν(bα) = kα

∏
k 6=α(bα − bk).

For the case α = β = γ, the pole is second order, and is evaluated directly as

c

(
∂

∂bα
,
∂

∂bα
,
∂

∂bα

)
= − res

p=bα

k3
α

(p− bα)2

∏
k 6=α(p− bk)

ν(p)
dp ,

= −k3
α

d

dp

∣∣∣∣
p=bα

∏
k 6=α(p− bk)

ν(p)
.

(bbs)

c

(
∂

∂bα
,
∂

∂bβ
,
∂

∂sγ

)
= −

∑
res
ν=0

kαkβ

(p− bα)(p− bβ)

pN−γ
∏M

j=1(p− bj)

ν(p)
dp ,

=

(
res

p=∞
+ res

p=bα

+ res
p=bβ

)
kαkβ

(p− bα)(p− bβ)

pN−γ
∏M

j=1(p− bj)

ν(p)
dp .

Once again there is no pole at infinity, and there exists a (simple) pole at p = bα
only if α = β. The result again follows from ν(bα) = kα

∏
j 6=α(bα − bj).

(sss)

c

(
∂

∂sα

,
∂

∂sβ

,
∂

∂sγ

)
= res

p=∞

p3N−α−β−γ
∏M

j=1(p− bj)

λ′+(p)
∏M

j=1(p− bj) +
∑M

j=1 kj

∏
k 6=j(p− bk)

dp ,

= res
p=∞

p3N−α−β−γ

λ′+(p)


1 +

M∑

j=1

kj

λ′+(p)(p− bj)



−1

dp .
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This is expanded as a Taylor series in x =
∑
kj/λ

′
+(p)(p − bj) to give a series of

terms

c

(
∂

∂sα

,
∂

∂sβ

,
∂

∂sγ

)
=

∞∑

i=0

R̃
(i)
α+β+γ

where

R̃(i)
σ = (−1)i+1 res

p=∞

p3N−σ

λ′+(p)


 1

λ′+(p)

M∑

j=1

kj

p− bj




i

dp .

So, in particular, R
(0)
α+β+γ := R̃

(0)
α+β+γ = res

p=∞

∂sαλ+∂sβ
λ+∂sγ λ+

λ′

+
dp is cαβγ from the

AN orbit space corresponding to λ+.

R̃
(1)
σ (s1, . . . , sN , b1, . . . , bM ) can be decomposed as

∑M
i=1 kiR

(1)
σ (s1, . . . , sN , bi)

where

R(1)
σ (s1, . . . , sN , b) = − res

p=∞

p3N−σ

(p− b)(λ′+(p))2
dp ,

= res
p̃=0

1

(1 − bp̃)(µ(p̃))2
p̃σ−N−1dp̃ .

This is seen to be zero for σ ≥ N + 1, and 1/(N + 1)2 for σ = N . For σ < N it is
a pole of order N + 1 − σ and can be evaluated as

(9)
1

(N − σ)!

(
d

dp̃

)N−σ
∣∣∣∣∣
p̃=0

1

(1 − bp̃)(µ(p̃))2
.

Clearly this evaluates to a polynomial in {s1, . . . , sN , b}. Finally, by making the

substitution p→ 1/p̃ it can be seen that R̃
(i)
σ = 0 for i ≥ 2.

(bss) Proceeding as in the (sss) case, we are led to

c

(
∂

∂bα
,
∂

∂sβ

,
∂

∂sγ

)
= kα

M∑

i=1

S
(i)
β+γ

where

S(i)
σ = (−1)i+1 res

p=∞

p2N−σ

p− bα

1

(λ′+(p))i+1




M∑

j=1

cj
p− bj




i

dp ,

= (−1)i res
p̃=0

p̃σ−N−1+i(N+1)

(1 − bαp̃)(µ(p̃))i+1

[
cj

1 − bj p̃

]i

dp̃ .

From this we can see that S
(i)
σ = 0 for i ≥ 1. This leaves only

Sσ := S(0)
σ = res

p̃=0

p̃σ−N−1

(1 − bαp̃)µ(p̃)
dp̃ ,

which is zero for σ ≥ N + 1, and 1/(N − 1) for σ = N , whilst for σ ≤ N − 1 we
evaluate as

(10)
1

(N − σ)!

(
d

dp̃

)N−σ
∣∣∣∣∣
p̃=0

1

(1 − bαp̃)µ(p̃)
.

�
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For the Frobenius structure on the space of polynomials

λ(p) = pN+1 + s1p
N−1 + . . .+ sN ,

the variables si inherit a scaling symmetry from the scaling of the polynomial.
Namely if p → ǫp and we ask λ → ǫN+1λ, then we require si → ǫi+1si. Thus we
conclude si has degree i+ 1.

For the water-bag reduction

λ(p) = pN+1 + s1p
N−1 + · · · + sN +

M∑

i=1

ki log(p− bi),

the same degrees may be attached to the coefficients {si}, and to preserve homo-
geneity of the arguments of the logarithms, each bi is assigned degree 1. If, in
addition, an non-geometrically justified degree of N +1 is assigned to each ki, then
the regularised function λ(p) −

∑
ki log p is homogeneous of degree N + 1.

Lemma 8. Under the rescalings

si → ǫi+1si i = 1 . . .N ,

bi → ǫbi i = 1 . . .M ,

ki → ǫN+1ki i = 1 . . .M

the prepotential F associated to the water-bag reduction(4) is homogeneous of degree
2N + 4.

Proof. This may be verified from the explicit expressions for the components of the
tensor c(∂, ∂′, ∂′′) obtained in Lemma 7, remembering to add the degrees lost from
differentiating along ∂, ∂′, ∂′′.

In particular, for c(∂bα
, ∂bα

, ∂bα
) = kαλ

′
+(bα)+

∑
r 6=α

kαkr

bα−br
we note that λ′+(bα) =

(N + 1)(bα)N + (N − 1)s1(bα)N−1 + · · · + sN−1 has degree N .

The degrees of the polynomials R
(0)
σ , R

(1)
σ and Sσ, when they are not zero or

constant, can de determined from the differential expressions (9), (10) and the

corresponding expression for R
(0)
σ , which is

R(0)
σ =





0 σ ≥ 2N + 2
−1/(N + 1) σ = 2N + 1

1
(2N+1−σ)!

(
d
dp̃

)2N+1−σ
∣∣∣∣
p̃=0

1
µ(p̃) σ ≤ 2N

.

In this the degree of zero is undetermined, whilst for the middle case, the degree
of a constant is 0. Integrating with respect to sα,sβ and sγ adds to this degree
(α+1)+(β+1)+(γ+1) = σ+3 = 2N+4. In the final case, if p̃ = 1/p is considered
to have degree −1, then µ(p̃) has degree zero. Thus on differentiation we obtain
the quotient of two homogeneous polynomials with relative degrees 2N + 1 − σ.

Evaluation at p̃ = 0 merely makes this the ratio of constant terms, so that R
(0)
σ has

degree 2N + 1 − σ. Integrating will add σ + 3 to this, making 2N + 4 as required.

Sσ and R
(1)
σ proceed similarly. �

The degrees of the flat coordinates {ti, i = 1 . . .N} are inherited from the poly-
nomial transformations rules relating them to the si. They can also be deduced
from the Puiseaux series (8), in which we require both p and k to scale with degree
1, so that the degree of ti is N + 2 − i.



14 JAMES T. FERGUSON AND IAN A. B. STRACHAN

We now draw together some simple observations, which follow immediately from
lemmas 3, 7 and 8.

Proposition 9. The prepotential is at most quadratic in the parameters ki , that
is, up to quadratic terms in the flat coordinates:

F (t1, . . . , tN , b1, . . . , bM ) = F (0)(t1, . . . , tN )

+
∑

i

kiF
(1)(t1, . . . , tN , bi)

+
∑

i6=j

kikjF
(2)(bi, bj)

where F (0) , F (1) , F (2) are independent of the parameters ki. F
(0) is the prepotential

for the C
N/AN orbit space with λ+ as the Landau-Ginzburg potential, and as such

is a polynomial in the flat coordinates {t1, . . . , tN}. F (1) is also a polynomial, and

F (2)(bi, bj) =
1

8
(bi − bj)2 log(bi − bj)2 .

In place of quasi-homogeneity we have

deg
(
F (0)

)
= 2N + 4 ,

deg
(
F (1)

)
= N + 3 ,

deg
(
F (2)

)
= 2 , (modulo quadratic terms) .

The structure functions for the Frobenius algebra are always at most linear in the
parameters ki , that is:

cαβ
γ = c

(0)
αβ

γ
+
∑

i

ki c
(i)
αβ

γ
.

where the c
(0) γ

αβ and c
(i) γ

αβ are independent of the parameters.

An important class of solutions are polynomial in the flat coordinates.

Corollary 10. For M = 1, the prepotential on the space of functions

λ(p) = pN+1 + s1p
N−1 + · · · + sN + k log(p− b)

is polynomial in the flat coordinates {ti, b} Conversely, if the prepotential is poly-
nomial in the flat coordinates then M = 1 (or M = 0) .

Proof. This is an immediate consequence of the decomposition of F given in Propo-
sition 9: the component F (2) contains all non-polynomial terms appearing in F ,
and is present if and only if M ≥ 2.

�

We finish this main section with two simple examples.

Example 11.

• N = 2 ,M = 1 .

With

λ(p) = p3 + t2p+ t1 + k log(p− t3)
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one obtains the prepotential

F =
1

6
t21t2 −

1

2
k t1t

2
3 −

1

216
t42 −

1

6
k (t22t3 + t2t

3
3) −

1

20
k t53 .

• N = 1 ,M arbitrary.

In this case one has

λ(p) = p2 + t1 +

M∑

i=1

ki log(p− bi) .

With this, lemmas 3 and 7 give, on integrating, the following prepotential:

F = −
1

12
t31 +

M∑

i=1

ki

{
t1b

2
i

2
+
b4i
12

}
+

1

8

∑

i6=j

kikj(bi − bj)
2 log(bi − bj)

2 .

We note that the z2 log z-type terms have appeared in the WDVV-literature before
(see, for example, [10, 15]) but one normally considers these are being derived as
examples of dual Frobenius manifolds [8]. Their functional form suggests the type of
term that may be present in a construction of deformed solutions for other Coxeter
group orbit spaces.

4. Geometric and Algebraic Properties

In this section we study certain geometric and algebraic properties of the mani-
fold.

4.1. Geometric Properties. An important addition structure on a Frobenius
manifold is an addition flat metric known as the intersection form, It plays a vital
role in the understanding of various properties of the manifold, such as the mon-
odromy properties of the Gauss-Manin connection and associated bi-Hamiltonian
structures. Following this, we defined a second metric on manifold; while this is
not flat, it shares many properties of the intersection form of a genuine Frobenius
manifold.

Before this, we normalise the Euler vector field, so

(11) E =
1

N + 1

N∑

i=1

(N + 2 − i)ti
∂

∂ti
+

1

N + 1

M∑

j=1

bj
∂

∂bj
.

Definition 12. The metric g on M is defined as:

g−1(ω1, ω2) = iE(ω1, ω2) .

It follows immediately from this that

g(E ◦ u, v) = η(u, v)

and, in components,

gij = cijk E
k .

To understand the scaling properties of this metric we introduce an extended Lie
derivative Lext

X ,

Lext
X = LX +

M∑

r=1

kr ∂

∂kr
,
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so, for an arbitrary tensor ωi...j
a...b ,

(
Lext

X ω
)i...j
a...b

= (LXω)
i...j
a...b +

M∑

r=1

kr ∂

∂kr
ωi...j

a...b .

This may be used to clarify the pseudo-quasi-homogeneity properties of the various
structures, for example

Lext
E F = (3 − d)F , d =

N − 1

N + 1
.

Similarly the metrics g and η have various pseudo-quasi-homogeneity properties:

Lemma 13. The following equations hold:

[e, E] = e ,

Lext
E g−1 = (d− 1)g−1 , Lext

E η−1 = (d− 2)η−1 ,

Lext
e g−1 = η−1 , Lext

e η−1 = 0 .

However, the metric g is not flat, and moreover, despite being linear in t1 the
pencil g−1

Λ = g−1 + Λη−1 does not define an almost compatible pencil (the tensor
E◦ : TM → TM fails to satisfy the Nijenhuis condition [6]), let alone a compatible
pencil. The role of this second metric is therefore unclear. Given the origin of these
structures in reductions of the dKP hierarchy one would expect bi-Hamiltonian
structures of differential-geometric type. One possibility is the metric

g =
∑ 1

uiλ′′(ξi)
du2

i .

This does define a non-local bi-Hamiltonian structure [17] but finding its form in
the flat-coordinate system for the metric η is problematical. A related problem is
to relate the Euler vector field (11) with the vector field

E′ =

M+N∑

i=1

ui ∂

∂ui
,

the two being equal in the undeformed case.
The various structures on the manifold may be encoded in the deformed (or

Dubrovin) connection

D∇XY = ∇XY + z X ◦ Y , z ∈ P
1 .

For this connection to be torsion free and flat one requires commutativity and asso-
ciativity of the multiplication, flatness of the Levi-Civita connection ∇ and poten-
tiality, and visa-versa. Solutions of the system D∇αζβ are automatically gradients,

ζα = ∂αt̃ . Expanding t̃ =
∑

n ψ
(n)zn yields the recursion relation

∂2ψ(n)

∂ti∂tj
+ ckij

∂ψ(n−1)

∂tk
= 0 .

Starting with the seed solutions ψ(0) = ti , i = 1 , . . .dimM one may construct a
fundamental system of solutions.
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4.2. Algebraic deformation theory. In this section we examine the linearity of
the structure functions of the Frobenius algebra with respect to the parameters ki

from the point of view of deformation theory (we follow the notation of [4]). Let

Mk(V ) = {m : V × . . .× V︸ ︷︷ ︸
k

|m linear in each arguement}

Recall that a bilinear map c ∈ M2(V ) defines an associative structure if and only
if

[c, c]G = 0 ,

where [·, ·]G is the Gerstenhaber bracket. Owing to the super-Jacobi identity one
has δ2c = 0 , where

δc = [c, ·]G : M•(V ) →M•+1(V )

and this gives rise to the Hochschild complex of (V, c) .
From proposition 9 we have the following structure

c(k) = c(0) +
∑

i

kic
(i) ,

that is, linearity of the structure functions of the associative algebra. Decomposing
the condition [c(k), c(k)]G = 0 for all k one obtains the following conditions:

[c(0), c(0)]G = 0 ,

[c(0), c(i)]G = 0 , i = 1 , . . . ,M ,

[c(i), c(j)]G = 0 , i, j = 1 , . . . ,M .

Thus each c(i) , i = 0 , 1 , . . . ,M separately defines and associative structure on
TM . Each of these define a map δc(i) and each c(i) is a cocycle with respect to each
cohomology map δc(j) , that is:

[c(i), c(i)]G = 0 , i = 0 , 1 , . . . ,M ,

δc(i)c(j) = 0 , i, j = 0 , 1 , . . . ,M .

It is also interesting to note that the pair (◦, E) satisfy the conditions

LX◦Y (◦) = X ◦ LY (◦) + Y ◦ LX(◦)

(following from the semi-simplicity of the multiplication) and the pseudo-scaling
condition

Lext
E (◦) = d ◦ .

If one had LE(◦) = d ◦ then one would have a F -manifold [12]. Here on has
a modified version, where the scaling condition is replaced by the pseudo-scaling
condition. One could also regard the multiplication as defining a deformation of
the F -manifold based on the orbit space CN/AN .

5. Further Results

An immediate question these result raise is whether or not the ideas may be
applied to other classes of Frobenius manifolds, the obvious potential generalization
being to other Coxeter orbit spaces Cn/W , for an arbitrary Coxeter group W . By
this we mean is there a prepotential schematically of the form

F (t,b) = FW (t) + kF (1)(t,b) + k2F (2)(t,b)
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based on the Cn/W prepotential FW which is pseudo-quasi-homogeneous with re-
spect to some suitable Euler field.

For the group W = Bn this is immediate, using the idea originally due to Zuber
[19], of embedding the groupBn as a subgroup ofA2n+1 , or geometrically, as the Bn

Frobenius manifold as the induced manifold on certain hyperplanes submanifolds
in the A2n+1 Frobenius manifold. This idea generalizes to water-bag type type
reductions and this will be presented in section 5.1.

Another possible generalization, already alluded to above, is to replace the poly-
nomial part of λ by an arbitrary rational function, generalizing the construction of
[1, 2]. The Frobenius manifold structure on the space of such rational functions
has been much studied and these results can be generalized to include logarithmic
terms. These results are presented in section 5.2

5.1. BN -type Reductions. The Bn Frobenius manifold may be regarded as a
submanifold in the An Frobenius manifold [19]. This idea generalizes to water-bag
type potentials.

Proposition 14. On the space of functions

λ(p) = p2N+2 + s1p
2N + s3p

2N−2 + · · · + s2N+1 +

M∑

i=1

ki log(p2 − b2i )

the formulas (2) and (3) define a pseudo-quasi-homogeneous solution of the WDVV
equations.

Proof. The function λ above is obtained from the following waterbag deformation
of the A2N+1 superpotential:

λA(p) = p2N+2 + s1p
2N + s2p

2N−1 + s3p
2N−2 + · · · + s2N+1

+

M∑

i=1

ki log(p− bi) +

M∑

i=1

ki log(p− bi+M ) .

We restrict this to the submanifold

sr = 0 for r even,

bi+M = −bi for 1 ≤ i ≤M .

The restriction of the sr may be achieved in flat coordinates by setting all ti of
odd degree (i.e. even i) to zero. We introduce new flat coordinates b̃i = bi and

d̃i = bi + bi+M (i = 1, . . . ,M), and restrict to d̃i = 0. We check the following
components of the multiplication tensor restrict to zero on this hyperplane:

cd̃k

b̃ib̃j
, ct

r

b̃ib̃j
for r even,

cd̃k

b̃itr
for r odd, ct

s

b̃itr
for r odd, s even,

cd̃k

trts for r, s odd, ct
u

trts for r, s odd, u even.

Polynomial terms arising in these components can be seen to vanish from consider-
ation of their degrees; all polynomials in {t1, . . . , t2N+1} of odd degree must vanish
when all ti of odd degree vanish, whereas polynomials in {ti} of even degree are
always multiplied by (at least) a factor of bi + bi+M for some i, and hence vanish
on di = 0. Non-polynomial terms are given explicitly in Lemma 7.

�
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It would be of interest to see if these ideas can be applied to arbitrary Coxeter
group orbit space.

5.2. Rational Water-bag Potentials.

Proposition 15. On the space of functions

λ(p) = pN+1 + s1p
N−1 + · · · + sN

+

K∑

i=1

[
vi,1

(p− si)
+ · · · +

vi,Li

(p− si)Li

]

+

M∑

i=1

ki log(p− bi) ,

the formulas (2) and (3) define a solution of the WDVV equations.

Proof. Canonical coordinates are found as in Lemma 2.
The flat coordinates are {b1, . . . , bM} together with those obtained for the purely

rational case [1],[?]. Namely invert λ+(p) = pN+1 +s1p
N−1 + · · ·+sN about p = ∞

using the Puiseaux series (8), and invert

λ−i(p) =
vi,1

(p− si)
+ · · · +

vLi

(p− si)Li

for p ∼ si as

p =
1

Li

(
xi,Li+1 +

xi,Li

w
+ · · · +

xi,1

wLi

)
,

where λ−i = wLi , and xi,Li+1 = Lis. The flat coordinates are then {tα, xβ,γ , bδ}.
In these coordinates the metric has only the following non-zero components:

η

(
∂

∂tα
,
∂

∂tβ

)
= −

1

N + 1
δα+β,N+1 ,

η

(
∂

∂xi,j

,
∂

∂xi,k

)
= −

1

Li

δj+k,Li+2 ,

η

(
∂

∂bα
,
∂

∂bβ

)
= kαδαβ .

�

Note one may combine the results from the last to sections and consider Bn-type
reductions of the rational case, where the superpotential, including logarithmic
terms, is an even function.

In the above proposition the location of the poles {si} and the logarithmic poles
{bi} were taken to be distinct. However, a modified of the above proposition may
be formulated which takes into account possible coincidences in these sets. Rather
than state this we give an example.

Example 16. The superpotential

λ(p) = p2 + t1 +
t2

(p− t3)
+ k log(p− t3)

leads to the following solution of the WDVV equation

(12) F =
1

12
t31 + t1t2t3 −

1

2
k t1t

2
3 −

3

4
t22 +

1

2
t22 log t2 +

1

3
t2t

3
3 −

1

12
k t43 .
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This produces an interesting class of solutions, as no extra variables have had to
be introduced, so in a sense they are true deformations of the original solution.
The single pole case - generalizations of the above example - are isomorphic to
deformations of the extended-affine-Weyl orbit space [9], since

H0,N+L+1(N + 1, L) ∼= C
N+L+1/W̃ (L)(AN+L) .

Explicitly this is given by a Legendre transformation (which acts on solutions of the
WDVV equations, not just to those solutions which define Frobenius manifolds).

Example 17. Applying the Legendre transformation S2 (using the notation of [7])
to the solution (12) yields the solution

F̂ =
1

4
t̂1 +

1

2
t̂22t̂3 −

1

2
k t̂2t̂

2
3 −

1

96
t̂41 + t̂1e

t̂3 − k

(
1

4
t̂21t̂3 +

1

2
t̂2 t̂

2
3

)
+

1

6
k2t̂33 .

This defines a deformation of the extended-affine-Weyl space C
3/W̃ 1(A2) .

One would expect that the associated dispersionless integrable systems would be
related to water-bag type-reductions of the dispersionless Toda equations and their
generalizations [3].

6. Open problems

Some open problems have already been outlined above; here we draw them
together and raise some other open problems, potential generalizations and appli-
cations.

• Can the construction be applied, independent of the Landau/Ginzburg con-
struction, directly to an arbitrary Coxeter group orbit space, or more gen-
erally, to other orbit spaces? By this we mean, is there a Saito-type con-
struction of these solutions? The absence of a flat ‘intersection form’ would
seem problematical. A related question is whether one can formulate ax-
iomatically a theory of pseudo-quasi-homogeneous solutions of the WDVV
equations.

• The Frobenius manifold structure on the space of rational functions may
be generalized to the space of branched coverings of an arbitrary Riemann
surface (i.e. a Hurwitz space). All that is required for the direct calcu-
lation of the residues (2) and (3) is the meromorphicity of the derivatives

of λ rather than the meromorphicity of λ itself. This suggests that one
should look at generalizations where λ lies in some extension of the field of
meromorphic functions.

• In a semi-simple Frobenius manifold there exists interesting submanifolds:
discriminants and caustics [17]. What are the properties of such structures
in the present case?

• What are the properties of the dispersionless integrable systems associated
to such solutions of the WDVV equations, i.e. the water-bag reductions
of the dKP hierarchy itself, and how are they encoded in the geometry
of these pseudo-quasi-homogeneous manifolds? In particular, the (non-
local) bi-Hamiltonian structure, especially in the flat coordinates system
for the metric η is unknown in general. Can these dispersionless systems
be deformed, and how do the form of such deformations follow from the
geoemtry of the undeformed systems [5].
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• Finally, is there an algebraic description, say of the An-deformations, in
terms of a deformed Milnor ring? Are there field theoretic interpretation
of the results in terms of a topological quantum field theory [13, 14].

We hope to address some of these problems in the future.
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