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ABSTRACT

Social media platforms, like Twitter, are increasingly used by billions of people internationally to share information.
As such, these platforms contain vast volumes of real-time multimedia content about the world, which could
be invaluable for a range of tasks such as incident tracking, damage estimation during disasters, insurance risk
estimation, and more. By mining this real-time data, there are substantial economic benefits, as well as opportunities
to save lives. Currently, the COVID-19 pandemic is attacking societies at an unprecedented speed and scale, forming
an important use-case for social media analysis. However, the amount of information during such crisis events
is vast and information normally exists in unstructured and multiple formats, making manual analysis very time
consuming. Hence, in this paper, we examine how to extract valuable information from tweets related to COVID-19
automatically. For 12 geographical locations, we experiment with supervised approaches for labelling tweets into
7 crisis categories, as well as investigated automatic priority estimation, using both classical and deep learned
approaches. Through evaluation using the TREC-IS 2020 COVID-19 datasets, we demonstrated that effective
automatic labelling for this task is possible with an average of 61% F1 performance across crisis categories, while
also analysing key factors that affect model performance and model generalizability across locations.
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INTRODUCTION

Historically, the primary source of first-hand information during crises is reporting by first responders!. However, in
recent years the use of social media as an alternative communication platform has become popular (McCreadie et al.
2020). Indeed, recent statistics, indicate that one in three people worldwide and two thirds of those with Internet
access engage with social media2. Furthermore, regionally, particular social media platforms can dominate. For
instance, in the United States, with 68% of American adults reported they obtain news from social media.

With the significant worldwide impact of COVID-19, social media is widely used as a discussion platform, which
may contain valuable insights for the response effort. However, the vast volume of on-topic content posted in
contrast to the comparatively small volume of actionable content makes direct leverage of social media by response
personnel difficult and costly. Therefore, there is a clear and urgent need for support systems to help response
organisations filter this content to a degree that it becomes manageable.

In this paper, we report our experiences in developing a system that automatically analyses tweets posted during
emergency events and then labels then based on the content that they contain. In particular, we target tweet labelling
for 7 crisis categories, such as reports of services becoming available, or people providing advice (that may need
fact checked). We also examine automatic assignment of priorities to tweets, for use as a general filter for the large
volumes of irrelevant or non-useful content on social media. Indeed, based on these labels, we can forward tweets
with actionable information to response officers in need of that information. For example, tweets assigned the
‘Emerging-Threats’ label could be forwarded to officers managing the deployment of resources.

tThttps://training. fema.gov/is/courseoverview.aspx?code=IS-42
2https://ourworldindata.org/rise-of-social-media
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The contributions of this work are four-fold. First, to the best of our knowledge this is the first work to examine
automated content categorization for COVID-19 using the new TREC-IS 2020 COVID-19 dataset, and as such can
provide valuable insights for future researchers planning to use this new resource. Indeed, we provide an analysis of
a range of automatic classification models for this task. Second, as valuable content on social media is rare for
COVID-19, this makes it difficult to train automated approaches to find such content. We propose and evaluate a
new approach referred to as incremental rectified training (IRT) to alleviate this issue within state-of-the-art deep
neural models. Third, given the wide impact of COVID-19 as a topic, we examine whether automatic COVID-19
content classification approaches are able to generalize across locations. Finally, we also highlight some notable
insights we gained when analysing the models developed.

Based on experimentation over the TREC-IS 2020 A/B data sets, we believe the development of effective automated
tooling to aid in the filtering of COVID-19 data for personnel tasked with either finding localised information
or identifying information needing fact-checked is possible. The development of deep neural language models
such as BERT enable reasonably high precision and recall (approximately 65%) for the majority of information
types tested, meaning that while not perfect, such models can drastically improve the information-to-noise ratio
over simply scanning a keyword filtered feed. We also showed that our proposed IRT method can further improve
the quality of the classification models produced by around 17%. On the other hand, our analysis indicates that
while information categorization models seem to generalize for most information types, the same is not true for
information prioritization classifiers, indicating that what is considered as ‘high-priority’ in one location is not the
same in another.

The remainder of this paper is structured as follows. In the next section we provide a brief summary of relevant
works from the literature on content categorization for pandemics, the TREC-IS initiative, and machine learning over
social media data. Next, we provide a structured overview of the factors that might affect the quality of a COVID-19
content classifier, which are variables that we experiment with in our later experiments. This is followed by an
experimental setup section, where we provide more technical details about the dataset and training methodology
employed. Finally, we list our research questions, as well as report our results, analysis and conclusions.

RELATED WORK

In this section we provide a brief overview of recent papers in crisis informatics, as well as past works within TREC
Incident Streams track that are relevant to our investigation.

Social Media During Emergencies

Social media is a new but critical platform for relevant party to gather and analyse urgent information, especially
like Twitter. Information extraction from social media platforms like Twitter is a recent but increasingly critical
problem. Information collected via Twitter has previously been shown to be useful for detecting infectious disease
both spatially and temporally (Ye et al. 2016), HIV/AIDS (Fung et al. 2019), seasonal influenza (Nagar et al. 2014)
and Ebola (E. H.-J. Kim et al. 2016). Indeed, within social media streams, a common task for emergency responders
is to classify documents based on the information they contain. Twitter data, as a popular data source, can help
many emergency departments (Nagar et al. 2014) and public health agencies (Fung et al. 2019) to predict disease
spread. Moreover, geographically tagged social media content has shown to be a valuable tool for tracing and
mapping disease outbreaks (Widener and Li 2014). However, up until now, few agencies actively take advantage of
these resources.

TREC-IS Pilot Effort in 2020

The Text Retrieval Conference (TREC) Incident Streams track (denoted TREC-IS) is a public data challenge that
aims to tackle current issues with automatically extracting actionable content from social media during crises. At
a high level, participant TREC-IS systems can perform two tasks: classifying tweets by information type, and
ranking tweets by criticality. For both tasks, given an event, a participating system receives a stream of filtered,
event-relevant tweets and an ontology of information types from TREC-IS. The goal of that system is to produce
tweet-level labels and priority ratings, which they then submit for evaluation. TREC-IS has run editions in 2018,
2019 and 2020. Importantly for this work, in response to the global COVID-19 pandemic the 2020 editions of
TREC-IS introduced a COVID-19 sub-task and provided labelled tweets for evaluation. In particular, TREC-IS
2020 defines information ‘types’ to represent categories of information that emergency response officers might find
interesting, for TREC-IS 2020 COVID-19 task (Task 3), the information types are as follows:

1. GoodsServices: The user is asking for a particular service or physical good.
2. InformationWanted: The user is requesting information.
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Volunteer: The user asks people to volunteer to help the response effort.
EmergingThreats: The user reports problems may cause loss of life or damage.
NewSubEvent: The user reports a new occurrence that officers need to respond to.

ServiceAvailable: The user says that he or someone else is providing a service.

N o kW

Advice: The author provides some advice to the public.

To capture the importance a given message has to emergency response officers, TREC-IS defines four information
criticality labels: low, medium, high, and critical, where high- and critical-level messages require prompt or
immediate review and potentially action by an emergency manager. For instance, examples of critical information
might include calls for search and rescue, emergence of new threats (e.g., a infected patient), or calls for emergency
medical care.

Machine Learning Approaches

In this paper, we experiment with both classical and deep learned approaches to tackle the TREC-IS Task 3 (COVID).
For reference, we consider classical approaches to be those that rely on either bag-of-words or shallow embeddings
to represent tweet text. Indeed, according to a 2019 review conducted by McCreadie et al. for TREC-IS Task 1 and
2 (Crises), classical classifiers can still be very competitive and robust, even when comparing to state-of-the-art
deep neural network models (McCreadie et al. 2019), although that study did not cover pandemic-type events like
COVID-19.

In contrast, recently, pre-trained deep neural language models have become popular as they are very effective
methods to encode meaning contained within sequences of text (Simonyan and Zisserman 2014; Razavian et al.
2014; Antonellis et al. 2015). These models replace the traditional bag-of-words or shallow word embeddings used
by classical models. At the time of writing, the most widely used neural language model is the transformer BERT
model (Devlin et al. 2018) and its subsequent variants. For the purposes of classification, BERT and similar models
can be tuned to produce a numeric vector representing a text sequence, which can then be passed to a traditional
classification model. While models like BERT are widely seen as superior to more traditional text representation
approaches (Xia et al. 2020), they are not yet commonly used in production systems due to their high computational
cost and the need for dedicated GPU acceleration.

It is worth noting that models like BERT can be re-trained or tuned to make them more effective for particular
domains or tasks. In the COVID-19 space, Miiller et al. (2020) recently produced an updated BERT model by
re-training it over a COVID-19 twitter dataset. However, given the small gains in down-stream performance reported
(around 0.03 F1) and the large cost of retraining the model, it is unclear whether the benefits are worth the effort
and cost.

Tackling Class Imbalance

A concern with content classification for COVID-19 is the class imbalance (Japkowicz and Stephen 2002; Weiss
2004; He and Garcia 2009). For TREC-IS Task 3, there are 7 categories of interest, where only a small proportion
of the tweets belong to each class. This is a challenge when training models, as there are few positive examples
to learn from, leading to model bias towards the majority class. Moreover, from a task perspective, emergency
responders are more sensitive to failures regarding positive class, as this represents potentially useful information
not being surfaced to the user.

A common approach for solving class imbalance is to balance the number of positive or negative samples used
for training. For example, by down-sampling the majority class, over-sampling the minority class, or using a
combination of the two (Drummond, Holte, et al. 2003; Chawla et al. 2002; Maciejewski and Stefanowski 2011;
He and Garcia 2009). Alternatively, a number of learning methods that intrinsically account for class imbalance
have have been proposed, e.g. (Krawczyk 2016). However, these require larger numbers of positive samples
to be effective than is available for this task, hence we employ sampling methods here. Deep neural network
models also suffer from imbalanced training data (Huang et al. 2016; Jeatrakul et al. 2010). Hard sample mining
is a technique that has been exploited in computer vision to solve the class imbalance, e.g. for tasks such as
object detection (Felzenszwalb et al. 2010; Shrivastava et al. 2016), image categorisation (Song et al. 2016), and
unsupervised representation learning (X. Wang and Gupta 2015). Hard sample mining focuses on selecting samples
that represent difficult to classify, as they carry more discriminative power for the classifier to learn from. Inspired
by this work, we employ a similar approach for our task, referred to as incremental rectification training, where we
use direct sampling based on information criticality.
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TREC-IS Participant Systems

Participants to TREC-IS 2020 have developed a range of initial solutions for the COVID-19 task, where details can
be found in the associated technical reports (known as ‘notebooks’) provided by TREC.? For instance, C. Wang and
Lillis (2020) experimented with two multi-task transfer learning approaches, one is an encoder-based model like
BERT, while the other one leverages a sequence-to-sequence transformer, such as TS. These models do not explicitly
attempt to counteract the problems of class imbalance in the crisis data. In contrast Buntain and Sharma (2020) tackle
this problem via the automatic generation of additional examples via a synonym-augmentation strategy using the Cri-
sisMMD dataset as a ground truth. Notably, this work applies a VGG model to classify images attached to the tweets,
enabling both text and image data to be considered, which to some degree alleviates the issues with class imbalance.

VARIABLES WHEN BUILDING COVID CLASSIFICATION MODELS

In this paper we examine to what extent automatic approaches can be used to identify valuable information from
COVID-19 tweets. This section summarizes the variables that we experiment with when developing classical and
state-of-the-art models. When considering model creation in this context, it is useful to divide approaches along
five dimensions: data sampling; tweet representation; model type; training methodology; and model tuning. Data
sampling describes any alterations to the original dataset made prior to training. The tweet representation describes
how each tweet is converted into features used by the learning model while the model type defines the structure
of the resultant model. The training methodology describes how the model is trained, meanwhile model tuning
describes any additional steps that are taken to improve model performance. We describe each of these in more
detail below:

Data Sampling

* No Sampling (NS) In this case we use the dataset as provided by TREC-IS without any modifications. We
can expect performance for rare categories to suffer under this type of sampling, as there are few positive
examples for the learner to work with.

* Over Sampling (OS) Over sampling is a technique to counteract class-imbalance in a dataset by ‘cloning’
rare positive examples in the training set such that the learner is exposed to them more frequently when
training (Barandela et al. 2004). Over sampling has a hyper-parameter that defines the degree to which
positive examples should be cloned, which we tune per-information type based on the validation set for each
fold.

Tweet Representations

* Text: Bag of Words - Count/TFIDF: A bag-of-words approach is the simplest method for representing the
text in a tweet (Zhang et al. 2010). Here, the presence/absence of terms from a pre-defined dictionary are
used to represent the tweet text. The dictionary is constructed from the most frequently appearing 25,000
words in the dataset. Terms are either represented as a count of that term in the dataset (count), using the
TF-IDF weighting scheme (TFIDF) to emphasise rarer terms that are more informative.

* Text: Deep Neural Language Models: An alternative approach encoding a tweet’s text is to pass it to the
sequence encoder of a deep neural language model. This transforms the sequence of text into a numeric
vector that is suitable for learning and captures the ordering and semantics of the text. We experiment with
the popular BERT model (Devlin et al. 2018) in our later experiments. We set the maximum sequence length
to 144 characters (the maximum length of a tweet) to reduce the GPU memory overhead during training.

* Tweet Metadata: In addition to using the text of a tweet, we can also leverage some additional metadata
about that tweet (A. Kim et al. 2017). In particular, we encode the following numerical data into our models.
1) Favourite Count, 2) Retweet Count and 3) Quoted Status.

* Hashtags: In addition, we separately encode the presence/absence of common hashtags as binary fea-
tures (Antenucci et al. 2011).

3https://trec.nist.gov/proceedings/proceedings.html
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Model Type

* Logistic Regression (LR): Logistic regression (Wright 1995) is a classical machine learned model that
performs a (weighted) linear combination of features generated by the above tweet representations.

* Support Vector Machines (SVM) A classical supervised model designed for categorization tasks, which
leverages support vectors to influence the decision boundary (hyperplane) allowing for (typically) better
performance than simpler linear regression models (Drucker et al. 1997)

* Decision Trees (DT): A decision tree learner produces a tree-like model comprised of binary decision points
that each condition on an input feature. The primary advantage of these models is that they inherrently are
able to model non-linear interactions between features (Quinlan 1986).

e BERT: BERT is a transformer deep neural language model (Devlin et al. 2018) that can also be applied directly
as a classification model by training an additional layer which takes the last neural layer output and transforms
that output into classification predictions. There are two basic versions of the BERT model, BERT-Base and
BERT-Large. We use BERT-base here due to the very high memory overheads of BERT-Large.

Training Methodology

* Cross-fold Validation (CV) This is a technique to enable the evaluation of models in scenarios where there
is limited volumes of training data available. In this context, it involves splitting the dataset into five equally
sized sets of tweets (5-fold) (Wright 1995). Each of these sets are selected in turn as the ‘test’ set, and the
remaining tweets are used for training the machine learned model(s). The resultant model is applied to the
test set to evaluate performance. The next tweet set is then selected and the process repeated, until all 5 sets
have been used as the test set. Reported performance is then the average over the 5 experiments.

* Cross-Edition Training (CE) TREC-IS ran for two editions this year (2020-A and 2020-B). Under cross-
edition training, we train a model on tweets from one edition and then test the other edition. As there is little
in the way of location overlap between the editions, then this type of training can be used to evaluate whether
models trained from one location can generalize to other locations.

Model Tuning
* No Tuning (None) The models trained using default hyper-parameters are used.

* Hyper Parameter Tuning (HPT) Both classical and deep learned models have hyper-parameters, which
represent ways that the training process can be customised with the aim of improving performance (e.g. the
model learning rate) (Feurer and Hutter 2019). Prior to model learning, there is often no way to know what
hyper-parameter settings will result with the best model. Hyper-parameter tuning is the process of trying
different settings and checking the resultant performance on a validation set. The best performing model is
then used for testing.

* Incremental Rectified Training (IRT) Incremental Rectified Training is a new approach that we propose to
improve the performance of deep learned models in scenarios with highly class imbalanced data, which we
summarize in the next section.

PROPOSED INCREMENTAL RECTIFIED TRAINING APPROACH

The majority of the variables discussed above are commonly discussed in the literature and hence we direct the
reader to the associated citations. However, Incremental Rectified Training is a new approach that we developed
to explicitly tackle the issues of imbalanced classes when training models like BERT, hence we provide a more
in-depth summary of how this functions below.

The standard procedure for training a neural network is as follows. For a batch of training data, we first run a
forward pass of the current model and calculate the loss of this batch against the validation set. Then we calculate
the gradient based on the loss and use an optimizer to update the parameters of the neural model. This process is
repeated until the model performance stabilizes or a target maximum number of iterations is reached. The issue
with this approach is that as most examples in the COVID scenario for an information type will be negative due to
class imbalance, the model will naturally focus more on those negative examples, leading to poor performance on
the positive class.
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Algorithm 1 Incremental rectified training

Rectified neural model normal Fine-tuning procedure i « O incremental factor Every minority classes in the data
set select all samples in one batch which belong to this class

forward pass based on these samples

calculate loss and gradient

use optimizer two to optimize hyper-parameters

The intuition underpinning incremental rectified training (IRT) is to take better advantage of the small number of
informative ‘hard samples’ per information type (Krawczyk 2016), which for this task we can identify based on the
priority label of each tweet (e.g. those marked as ‘Critical’). There are two main stages of our training process.
The first stage is the same as the standard training procedure. We calculate the gradient and update the model
parameters using an initial optimizer over the whole training dataset. The second stage is incremental rectification
(see Algorithm 1 below).

For an IRT iteration, we sample from the whole dataset a sub-set that represents the type of examples we wish to
rectify (in this case we rectify twice, once using tweets marked as ‘Critical’ priority and once using tweets marked
as ‘High’ priority). We then calculate the loss and gradient only based on this sample, using a second optimizer
(with a lower learning rate) to update the model parameters.

EXPERIMENTAL SETUP

To evaluate to what extent we can automatically identify actionable content from COVID-19 tweet streams, we
evaluate using the TREC-IS 2020 Task 3 datasets and methodology. We summarize the technical details for the
dataset and model creation below.

Dataset: The TREC-IS 2020 A and B Task 3 datasets contain around 21k COVID-19-related tweets collected
from different geographical locations. 2020-A is comprised of three locations, while 2020-B is comprised of 8
locations. The locations are listed in Table 1. For each location tweets were sampled (based on textual diversity)
and subsequently manually labelled based on the information each contained (information types) and the perceived
critically of that information (priority). These tweets were assessed by between one and four human assessors (a
sample of tweets were redundantly assessed for the purposes of calculating inter-annotator agreement). To facilitate
evaluation where a tweet has been labeled multiple times (which may disagree), we collapse those labels as follows.
For the information type labels, we use the union from all assessors as the true label set. Meanwhile, as information
priority evaluation requires only a single label, we take the majority vote amongst the assessors where possible, in
cases where only two assessors labelled a tweet and disagreed on that label (3.4% of tweets), we randomly select
one to use as the ground truth.

Advice N
800
ServiceAvailable _“ o0
Newsubbven: NN 600
500
EmergingThreats -
400
volunteor M
Volunteer __l 300
InformationWanted N 200
=
100
GoodsServices El
0 J—
0 100 200 300 400 500 600 700 800 Critical High Medium Low
W2020-A H2020-B W 2020-A 2020-B

Figure 1. Number of tweets labeled as containing information for each of the 7 information types investigated and
4 priority labels in the 2020-A and 2020-B datasets.

Figure 1 reports the number of tweets labeled as containing information from each of the 7 information types
investigated and 4 priority labels for the 2020-A and 2020-B data sets. This covers around 3.3k of the 21k total
tweets (the remaining tweets were not assigned any of these 7 categories). As we can see from Figure 1, the
COVID-19 dataset only contains a very small number of positive examples of each information type (recall that
the number of tweets labeled was around 22k), i.e. potentially useful information is rare. Indeed, instances of
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Dataset | Identifier Event Name Event Type | Provided Tweets | Labeled Tweets
TRECIS-CTIT-H-Test-050 | 2020 COVID-19 Outbreak in Washington DC COVID-19 49,894 4,012
2020-A | TRECIS-CTIT-H-Test-051 | 2020 COVID-19 Outbreak in Washington State | COVID-19 48,499 5,697
TRECIS-CTIT-H-Test-052 | 2020 COVID-19 Outbreak in New York COVID-19 50,000 5,126
TRECIS-CTIT-H-Test-068 | 2020 COVID-19 Outbreak in Jacksonville, FL | COVID-19 13,506 664
TRECIS-CTIT-H-Test-069 | 2020 COVID-19 Outbreak in Houston, TX COVID-19 44,297 963
TRECIS-CTIT-H-Test-070 | 2020 COVID-19 Outbreak in Phoenix, AZ COVID-19 16,766 871
2020-B TRECIS-CTIT-H-Test-071 | 2020 COVID-19 Outbreak %n Atlanta, GA COVID-19 50,000 966
TRECIS-CTIT-H-Test-072 | 2020 COVID-19 Outbreak in New York, part 2 | COVID-19 50,000 1,396
TRECIS-CTIT-H-Test-073 | 2020 COVID-19 Outbreak in Seattle, WA COVID-19 50,000 966
TRECIS-CTIT-H-Test-074 | 2020 COVID-19 Outbreak in Melbourne, AU COVID-19 50,000 957
TRECIS-CTIT-H-Test-075 | 2020 COVID-19 Outbreak in New Zealand COVID-19 5,148 783

Table 1. TREC-IS 2020 COVID-19 Locations

tweets requesting goods/services or information are particularly few in number (which contrasts to what we might
see in natural disaster-type events (McCreadie et al. 2019)). Hence, why techniques for tackling class imbalance
(as discussed earlier) are needed here. When considering the priority labels, we observe a particularly skewed
distribution with almost no “Critical" tweets.

Model Training: For all information type categorization scenarios, we treat it as a series of 7 binary classification
tasks (one per information type). Meanwhile, prioritization is treated as a 4-class classification problem, where one
model is trained. When using cross-fold validation (CV), for each fold setting we divide the dataset into three parts,
three training folds, one validation fold and one test fold. We only use training set and validation set for model
tuning and use the test set to evaluate the model at last and only once. For experiments with BERT, we perform our
research on a GPU cluster supporting TITAN RTX GPUs with 24GB memory.

Model Tuning: For the logistic regression (LR), SVM and Decision Tree (DT) models for some settings we perform
hyper-parameter tuning over for 8 parameters. Here we use a randomized search of the hyper-parameter space as a
full grid-search would be computationally impractical. For example, when we conduct a randomized search for
10000 fits, the time cost is around 53 hours in our experiments. Furthermore, 10000 fits with 5 folds cross validation
is only very small subset of all combination of these 8 parameters. Therefore, we believe this level of searching is
not effective. For the BERT models, following best practices (Devlin et al. 2018) we tune the batch size ([16,32])
and learning rate ([5e-5,3e-5,2e-5]). We also use a learning rate decay function to decrease the learning rate step by
step during tuning. We use the Adam optimizer with an epsilon value of le-8.

Metrics: To evaluate the performance for both information type categorization and prioritization, we use four
traditional classification metrics: precision, recall, and F1 score.

RESEARCH QUESTIONS AND STRUCTURE

To evaluate to what extent automated approaches for covid content categorization are effective, we divide our
analysis into two parts. First, we examine four research questions that focus on the quantitative evaluation of
supervised models for both information type categorization within tweets, as well as for priority estimation. We
then follow this with a discussion section where we highlight some notable outcomes from our subsequent analysis
of the output of the developed models.

1. RQ1: How effective is a classical machine learning model at covid content classification?
2. RQ2: How does the tweet text representation affect performance?
3. RQ3: Is Incremental Rectified Training effective?

4. RQ4: Can covid categorization models generalize across locations?

RQ1: HOW EFFECTIVE IS A CLASSICAL MACHINE LEARNING MODEL AT COVID CLASSIFICATION?

To begin our performance analysis, as this is the first work looking at COVID-19 content classification for TREC-IS
Task 3, it is worth examining how difficult the two categorization tasks are (information types and priority) for a
classical machine learned model on COVID-19 data. Table 2 (RQ1) reports the performance of a logistic regression
model when trained using CV (5-fold) for the 2020-A dataset with oversampling (OS), both with and without
hyper-parameter tuning (HPT). For information type categorization, reported performance is macro-averaged across
the information types.
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Model Information Types Priority
Data Trainin; Tweet Model . L Time L. Time
Sample Method%)logy Representation Type Tuning || Precision | Recall Fl1 (min) Precision | Recall Fl1 (min)
RQ1 2020-A OS CV (5-fold) BoW (Count) + # + Meta | LR None 0.2096 | 0.5190 | 0.2875 | 264.22 0.3160 | 0.6770 | 0.3480 | 37.46
2020-A OS CV (5-fold) BoW (Count) + #+ Meta | LR HPT 0.1951 0.6239 | 0.2945 - 0.3300 | 0.6360 | 0.3540 -
2020-A OS CV (5-fold) BoW (Count) + #+ Meta | LR None 0.2096 | 0.5190 | 0.2875 | 264.22 0.3470 | 0.6500 | 0.3820 | 35.30
RQ2 2020-A OS CV (5-fold) BoW (TFIDF) + # + Meta | LR None 0.1843 | 0.4725 | 0.2652 | 255.30 0.3160 | 0.6770 | 0.3480 | 37.46
2020-A OS CV (5-fold) Word2Vec + # + Meta LR None 0.2103 | 0.1917 | 0.2200 | 384.50 0.2275 | 0.2138 | 0.2204 | 58.30
2020-A OS CV (5-fold) BoW (Count) + #+ Meta | DT None 0.1120 | 0.3860 | 0.1740 | 48.32 0.3333 | 0.3245 | 0.3289 | 6.58
2020-A OS CV (5-fold) BoW (TFIDF) + # + Meta | DT None 0.0970 | 0.3520 | 0.1520 | 50.29 0.3333 | 0.3245 | 0.3289 | 7.20
2020-A OS CV (5-fold) Word2Vec + # + Meta DT None 0.1480 | 0.2870 | 0.1950 | 136.70 0.3400 | 0.3280 | 0.3339 | 15.30
2020-A OS CV (5-fold) BoW (Count) + #+ Meta | SVM | None 0.1905 | 0.0016 | 0.0031 | 46.23 0.2623 | 0.2937 | 0.2684 | 7.15
2020-A OS CV (5-fold) BoW (TFIDF) + # + Meta | SVM | None 0.1714 | 0.0013 | 0.0026 | 48.10 0.3150 | 0.3018 | 0.3036 | 7.32
2020-A OS CV (5-fold) Word2Vec + # + Meta SVM | None 0.2033 | 0.0137 | 0.0256 | 111.03 0.3380 | 0.3110 | 0.3239 | 16.80
2020-A OS CV (5-fold) BERT + # + Meta LR None 0.5011 0.4526 | 0.4699 | 281.30 0.2505 | 0.2265 | 0.2275 | 43.70
2020-A OS CV (5-fold) BERT + # + Meta BERT | None 0.6155 | 0.5808 | 0.5880 | 330.70 0.3867 | 0.3529 | 0.3575 | 67.00
‘ RQ3 ‘ 2020-A OS ‘ CV (5-fold) BERT + # + Meta ‘ BERT ‘ None H 0.6155 ‘ 0.5808 ‘ 0.5880 ‘ 330.70 H 0.3867 ‘ 0.3529 ‘ 0.3575 ‘ 43.70 ‘
~ | 2020-A OS CV (5-fold) BERT + # + Meta BERT | IRT 0.6164 | 0.6130 | 0.6106 | 376.33 0.4326 | 0.4448 | 0.3839 | 52.19
2020-A OS CV (5-fold) BoW (Count) + #+ Meta | LR None 0.2096 | 0.5190 | 0.2875 | 264.22 0.3470 | 0.6500 | 0.3820 | 37.46
RQ4 2020-A/B OS | CE (AVG:A->B,B->A) | BoW (Count) + # + Meta | LR None 0.5001 | 0.4963 | 0.4691 | 611.84 0.2851 0.4944 | 0.3541 | 87.12
2020-A OS CV (5-fold) BERT + # + Meta BERT | IRT 0.6164 | 0.6130 | 0.6106 | 376.33 0.4326 | 0.4448 | 0.3839 | 52.19
2020-A/B OS | CE (AVG:A->B,B->A) | BERT + # + Meta BERT | IRT 0.6675 | 0.6684 | 0.6628 | 612.4 0.2232 | 0.3387 | 0.3262 | 87.2

Table 2. Performance analysis of different Covid Classificaton models for TREC-IS Task 3.

As can be seen from Table 2 (RQ1), in terms of information type categorization performance, categorization
precision is around 20%, with recall higher at between 51% and 62%. The precision performances, in particular, are
quite low here indicating that this is quite a difficult classification task, likely due to the very small number of tweets
for some information types like volunteering, emerging threats and requests for information or goods/services in the
2020-A dataset (see Figure 1). The other outcome of note here is that as expected, the addition of hyper-parameter
tuning (HPT) does improve performance by a small margin (e.g. 0.3480 F1 to 0.3540 F1 for priority estimation).
However this comes at the cost of increasing training time by around 52 hours, hence to keep training time tractable
given the large number of variables investigated here, we do not apply HPT for logistic regression in the following
experiments.

RQ2: HOW DOES THE TWEET TEXT REPRESENTATION AFFECT PERFORMANCE?

Having provided an initial baseline that we can use for comparison, we next need to evaluate what impacts
classification performance for this task. Hence, we next investigate the impact of the primary input to the learned
model, i.e. how we encode the tweet text for the learner. As discussed previously, we have two main options here.
1) use a bag-of-words representation (either with term counting, or via a term weighting model like TFIDF). 2) Use
an embedding of the text using a neural language model. Our expectation is that neural language modelling should
be more effective, as they can better encode the semantics of each tweet.

Table 2 (RQ?2) reports the performance of these three text representation approaches across both categorization tasks.
Note that we can use the BERT embedding of the sentence either as an input to a classical model or extend the neural
network to do end-to-end classification, hence we report the outcomes for both of these scenarios (RQ2 rows 3 and
4 in Table 2). From Table 2 (RQ2) we observe the following. First comparing the two bag-of-words approaches, we
observe interestingly the simpler approach (count) where we use the document frequency to represent the importance
of each term is more effective than the TFIDF representation. The primary difference between these two approaches
is that TFIDF introduces a term frequency component, which can be noisy when working with short tweets (Amati
etal. 2011). Secondly, contrasting the bag-of-words and neural embedding approaches, we see that both information
type categorization models that utilize the BERT-based text embeddings are markedly more effective than the
models that use the bag-of-words representation. This is expected given the impressive performances that deep
neural language models have shown for similar related tasks (Miiller et al. 2020). However, the picture is less clear
when we consider tweet priority/criticality prediction. In particular, while one of the BERT-based models does
demonstrate a clear advantage over the bag-of-words representation in terms of precision, this seems to come at a
large cost in terms of recall. This indicates that the semantic representation provided by the BERT model is not
well suited to capture the text features that are indicative of information priority, although further investigation is
needed to better understand why this is the case. To answer RQ2, it is clear that the text representation can have a
strong impact on model performance here, where neural language models are recommended for information type
categorization tasks, but not for priority estimation.

RQ3: IS INCREMENTAL RECTIFIED TRAINING EFFECTIVE?

In the previous section, we showed that using a neural language model for covid content classification was effective.
However, given the strong class imbalance inherent to the covid data, can our proposed incremental rectified training
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approach help alleviate this issue (in tandem with oversampling)? In this section, we compare the performance of
our BERT-based model both with and without IRT to see if it benefits performance. We would expect that if IRT is
useful, overall performance will increase, and that the benefits will be most present in information types where there
are very few positive examples.

Table 2 (RQ3) reports the performance of the BERT-based model both with and without IRT. As we can see from
Table 2, in terms of overall performance, IRT is effective, outperforming the BERT baseline under all metrics for
both information type and prioritization sub-tasks.# For instance, for information type categorization, performance
increases from 0.5880 F1 to 0.6106 F1, primarily due to increased recall for no loss in precision. Hence, to answer
RQ3, we conclude that incremental rectified training is indeed effective.

Advice
ServiceAvailable
NewSubEvent
EmergingThreats
Volunteer

InformationWanted

GoodsServices

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M BERT +IRT mBERT

Figure 2. F1 Performance of the BERT model with and without Incremental Rectified Training per Information

Type.

However, what information types are most benefited from this approach? Figure 2 reports the performance change
in terms of categorization F1 for the 7 information types. Counter to our expectations, we see that the performance
gains observed are not for the cases with very few examples (volunteering and requests for goods/services or
information), but rather the other categories. First, it is worth noting that even though these other four information
types have more examples (between 100 to 500), they are still rare in terms of the overall COVID-19 dataset (21k
tweets), so our expectation that IRT will help for rare categories is still upheld. On the other hand, although we
cannot definitively prove this, we believe that the reason that the extremely rare information types (volunteering and
requests for goods/services or information) are not benefited by IRT is that they simply lack the needed critical mass
of examples to learn any further meaningful patterns through tuning. Indeed, there are only between 14 and 53
examples for these information types. Hence, this may be a case where more examples need to be found to enable a
better model to be created.

RQ4: CAN COVID CATEGORIZATION MODELS GENERALIZE ACROSS LOCATIONS?

So far, we have focused on classification performance under a 5-fold cross validation for the TREC-IS 2020-A
dataset (covering 3 locations). Under this scenario, tweets from each location will be spread over the training,
validation and test sets for each fold, i.e. the model will have received at least some training examples from the same
location as is used for testing. In effect, this represents a scenario where some training is available for each location.
However, as the pandemic spread, a valid use-case might be to take a model trained in one location and then apply it
to a different location. Hence, it would be practically useful to test to what extent this is possible. To evaluate this,
we test model performance in a cross-edition training setting, i.e. we train on locations from one TREC-IS edition
and test on locations from the other TREC-IS edition. If performance is comparable to the cross-fold setting, then
we could conclude that model generalization is possible.

Table 2 (RQ4) reports the performance of both the best logistic regression and BERT models when trained either
in a cross-fold or cross-edition manner. Interestingly, from Table 2 (RQ4) we observe a clear split between the
information type categorization and priority sub-tasks here. In particular, for information type-categorization,
the performance was comparable or markedly better when training both model types in a cross-edition manner,
indicating that model generalization is indeed viable. However, when considering the prioritization sub-task, we
see the opposite picture, where performance degrades markedly when moving from cross-fold to cross-edition
training. This indicates that what might be considered as of ‘high’ priority in one location is not the same across
locations. Indeed, we observed quite a diverse set of tweets being marked as of high priority across locations in our

4]t is worth noting that while overall performance across categories is improved, this is only statistically significant for 3 of the 7 categories
(McNemar’s Test, p<0.05).
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subsequent manual analysis. Information about new cases emerging in an area appears to be commonly labelled as
a high priority across locations, but we also observe particular topics that seem to be localized, such as reporting on
pollution levels in one U.S. state, or the outcome of drug trials in another. Hence, to answer RQ4, we conclude
that the information type categorization models developed appear to generalise well across locations, however, the
priority estimation models do not.

ADDITIONAL OBSERVATIONS AND DISCUSSION

Having performed a quantitative analysis of the impact of different variables on model performance in the previous
sections, we now report some select outcomes from a manual failure analysis we performed on one of these models,
5 which may be useful to future researchers and practitioners working on this task.

URLSs can miss-lead classifiers: In terms of the 7 information types, requests for goods and services (‘GoodsSer-
vices’) is the most difficult (exhibits the lowest performance). To explain why, we analysed the key term features
that the model was focusing on when attempting to classify each tweet. Figure 3a lists the term features and their
weight according to the logistic regression model learned for the Washington State location. As we can see from
Figure 3a, the model is learning that some URLs are important (as indicated as term features with both the highest
and lowest weights). However, such URLSs are both location and time dependant and hence will not generalize. If
training a model for use across locations, it would be advisable to either filter out such URLs or encode them in a
location/time agnostic way, as unaltered they can confuse the learner.

Location-bearing hashtags are important relevance indicators: Additionally, also from Figure 3a (a), we
observe that hashtags like “seattle” and “coronavirusseattle” are weighted highly. In this case, the model has learned
that these are negative features because they indicate that the tweet is irrelevant to the current location, i.e. the model
was being applied on Washington State, not Seattle, hence Seattle-related tweets are defacto irrelevant under the
task guidelines. Indeed, we can see the same pattern in Figure 3a (b) for a different information type (Information
Wanted).

y=1 top features ... 22675 more negative ...
Weight? Feature 0332 full text_vaccine
+4411  full text_run tests -0.337  full text pandemic
+4411  full_text_run tests kirkland -0.345  full text center
+4382  full text_tests kirkland <0350  full text_spread
weioh?  Feat +4207  full_text_run -0.374  full_text_time
eight’ eature 3.463  hasht: hospital -0. i
+9.593  full text_https://t.co/7wi3vbisbd . 3357 ﬁjf p :ths-iﬁﬁ;g;ee" ospital giog ;”::JEXLZ“'S'P?G’ home
+9593  full_text_seattle https://t.co/7wi3vbigbd ¢ Lo | -0.41 ull_text_deaths
+7.711  full text_covid +2817  full text_tests -0.422  full_text_symptoms
#5252 full_text_dlinical trials +2519  hashtags_ fakenews -0.428 full text_seattle
+5.252  full_text_ready clinical +2.519  hashtags_jaketapper -0.433  hashtags_coronaviruswashington
+5.188  full text_vaccine ready S e o
+5017  full_text_trials seattle 22231 hashtags cnn -0436  full_text_amp
+4.944  full_text_trials . gs_cf -0.437  full_text_need
+4929  full text_seattle https://t.co/jntbswemsp +2211  hashtags_kirkland 0449 full text_nursing
+4929full text_organizing ... 27464 more negative .. oDl ies Lo 0464 full text
+4.929  full_text_https://t.co/jntbswemsp 0382 full textseattle area +2.061 hashtags_nokit = ull text_cases
+4.929  full text_people organizing =0 SA0H  [ediens e REEy -0.472  full_text quarantine
; -0.383  full_text_outbreak : gs_testki e
+4929  full text_organizing covid _text_ 5061 hash k 10483 full text_positive
+4929  full text_related mutual 0386 full text_test 2 ESilEen) BN ' -
+4.929  full text_aid seattle -0390 hashtags_covid +1.946  full text _queer <0532 full text_tested
+4.929  full_text_mutual aid -0.390  full_text_live +1.833  hashtags_ billgates -0.539  full_text_king county
44929 full_text_found people 0395  full_text_county +1.623  full_text_facilities -0.543  full_text_state
+3.§§3 ;u:He;Ldm(\cal‘ 20396 full_text_new +1.525  hashtags_corona -0.546  full text_king
e fﬁu’(:(x:duf -0.421  full_text_area +1.513  hashtags_seattlecoronavirus -0.548 full text new
14811 full text_aid -0.454  fulltext_washington +1.476  full text_covid L0548 full text seattle area
+4713  full text_covid related 0469  full_text_not +1.423  full text_circulating 4 6 wks -0.624  full text_county

+4.459  full_text_related -0471  full text_home +1.423  full text_4 6 wks

+4454  full text_testing -0535  full text_virus +1423  full text_circulating 4 WS il s vt

+4.400  full text_found . 10713 hashtags__coronavirusseattle +1423  full text 46 wks minimal -0.660 hashtags_covid
+4.039  full_text_coronavirus vaccine 0851 hashtags_seattle 1423 full text circulating 4 6 -0.794  full_text_home
+3.990  full text_6 wks o Tt 2 0.848  hasht: i
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(a) Request for Goods and Services (b) Information Wanted.

Figure 3. Top features by weighting factor for the Logistic Regression model

Images and videos can also be important: Notably, when analysing cases where the model made errors, we
encountered scenarios where we could not explain why the human assessors labelled them with particular tags
when looking only at their text. For example, consider the tweet “@realDonaldTrump Major coronavirus high
risk cities 4 Seattle. companies, need employees relief Amazon Boeing Microsoft walmart". The human assessor
marked this tweet as belonging to the request for goods and services category, but why? We might think that the
human assessor assigned the wrong label, but if we render this tweet on Twitter then we find that it contains a video
about how to get access to food supplies. This highlights that some cases will require more than just analysing the
text to effectively label some tweets.

CONCLUSIONS

In this paper we analysed to what extent automatic machine learned models are able to identify useful information
from high volumes of COVID-19-related social media content. In particular, using the TREC-IS 2020 COVID-19

SMore precisely, those trained on 2020-A OS using CV (5-fold), the BoW (Count) + # + Meta features using logistic regression.
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sub-task datasets, we trained a range of traditional and state-of-the-art deep neural models to both identify tweets
containing particular types of useful information (e.g. emerging threats or advice), as well as to estimate the
priority/criticality of that information. Our results show that accurate automatic identification of tweets containing
particular information types such as services becoming available, advice sharing, new relevant events and emerging
threats is possible. Indeed, deep neural language models such as BERT provide reasonably high precision and
recall ( 65%) for these information types. From a practical perspective, this means that while not perfect, such
models could be used to drastically improve the information-to-noise ratio for analysts who currently just use the
search tools provided by Twitter itself. Additionally, we proposed a new approach to alleviate issues stemming
from limited examples when training deep neural models for this task (denoted incremental rectified training or
IRT), with demonstrated improvements of up-to 17%. Furthermore, through analysis of model generalization
across geographical locations affected by covid, we showed that while information categorization models seem
to generalize across locations, the same is not true for information prioritization models, indicating that what is
considered as ‘high-priority’ in one location is not the same in another. Moving forward, we aim to investigate how
to better integrate non-text content into the categorization process, such as images and videos attached to each
tweet, as we found that both 1) tweets exist that need such information to be categorized correctly and 2) the current
models we tested were unable to perform effectively for such tweets.
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