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We establish a connection between the hyperbolic relativistic Calogero–Moser sys-
tems and a class of soliton solutions to the Tzitzeica equation �also called the
Dodd–Bullough–Zhiber–Shabat–Mikhailov equation�. In the 6N-dimensional phase
space � of the relativistic systems with 2N particles and N antiparticles, there
exists a 2N-dimensional Poincaré-invariant submanifold �P corresponding to N
free particles and N bound particle-antiparticle pairs in their ground state. The
Tzitzeica N-soliton tau functions under consideration are real valued and obtained
via the dual Lax matrix evaluated in points of �P. This correspondence leads to a
picture of the soliton as a cluster of two particles and one antiparticle in their lowest
internal energy state. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3110012�

I. INTRODUCTION

The equation

�uv = e� − e−2� �1.1�

has a curious history. It first arose a century ago in the work of the Rumanian mathematician
Tzitzeica.1,2 He arrived at it from the viewpoint of the geometry of surfaces, obtaining an associ-
ated linear representation and a Bäcklund transformation.

For many decades after Tzitzeica’s work, Eq. �1.1� was not studied, two papers by Jonas3,4

being a notable exception. Thirty years ago, it was reintroduced within the area of soliton theory,
independently by Dodd and Bullough5 and Zhiber and Shabat,6 see also Mikhailov’s paper.7 In this
setting, �1.1� is viewed as an integrable relativistic theory for a field ��t ,y� in two space-time
dimensions, written in terms of light cone �characteristic� coordinates,

t = u − v, y = u + v . �1.2�

Accordingly, the partial differential equation �1.1� is known under various names and has been
studied from several perspectives, including geometry,1–4 classical soliton theory,5–20 and quantum
soliton theory.21–26 Moreover, it has shown up within the context of gas dynamics.27,28

The principal aim of this paper is to tie in a class of soliton solutions to the Tzitzeica equation
�1.1� with integrable particle dynamics of relativistic Calogero–Moser type. �A survey covering
both relativistic and nonrelativistic Calogero–Moser systems can be found in Ref. 29.� The inti-
mate relation of the latter integrable particle systems to soliton solutions of various evolution
equations �including the sine-Gordon, Toda lattice, Korteweg–de Vries �KdV�, and modified KdV
equations� was already revealed in the paper in which they were introduced30 and was elaborated
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on in Ref. 31. Later on, the list of equations whose soliton solutions are connected to the relativ-
istic Calogero–Moser systems was considerably enlarged.32–34 In all of these cases, the N solitons
correspond to N point particles.

The novelty of the present soliton-particle correspondence is that the Tzitzeica N-soliton
solutions at issue correspond to an integrable reduction of the 3N-body relativistic Calogero–
Moser dynamics. Physically speaking, a Tzitzeica soliton may be viewed as a lowest energy bound
state of three Calogero–Moser “quarks,” one of which has negative charge, whereas the other two
have positive charge.

A crucial ingredient for establishing the correspondence is the relation between an extensive
class of two-dimensional �2D� Toda solitons and the relativistic Calogero–Moser systems, already
studied in Ref. 33. Indeed, the relation can be combined with the link between the Tzitzeica
equation and the 2D Toda equation. The latter link has been known for quite a while, and we
proceed to sketch it in a form that suits our later requirements.

Assume that �n is a solution to the 2D Toda equation in the form35

�n,uv = exp��n − �n−1� − exp��n+1 − �n�, n � Z , �1.3�

which has the symmetry property

�−n = − �n �1.4�

and which is moreover 3-periodic, i.e.,

�n+3 = �n. �1.5�

Then one has, in particular,

�0 = 0, �2 = − �1, �1.6�

so that

� = �1 �1.7�

satisfies �1.1�. Conversely, a solution � to �1.1� yields a solution �n to �1.3� satisfying �1.4� and
�1.5� when one sets

�3k = 0, �1+3k = − �2+3k = �, k � Z . �1.8�

The point is now that there exist soliton solutions to �1.3� that can be made to satisfy the extra
requirements �1.4� and �1.5�, hence yielding soliton solutions to �1.1�. The relevant 2D Toda
solitons are those found by the Kyoto school.36,37 These solitons also formed the starting point for
Ref. 33. They are most easily expressed in tau function form, the relation of �n to �n being given
by

�n = ln��n+1/�n�, n � Z . �1.9�

In terms of �n, the evolution equation becomes

�u�v ln �n = 1 − �n−1�n+1/�n
2, �1.10�

and the extra features �1.4� and �1.5� amount to

�−n+1 = �n �1.11�

and

�n+3 = �n. �1.12�

As we show in Sec. II, one can make special parameter choices in the 2D Toda 2N-soliton
solutions �n�u ,v� so that they satisfy �1.11� and �1.12�. The function
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� = ln��2/�1� �1.13�

then satisfies �1.1� and can be viewed as a Tzitzeica N-soliton solution. �In Lie algebraic terms, the
successive requirements �1.11� and �1.12� amount to reductions A�→B�→A2

�2�.�
More specifically, the 2D Toda 2N-solitons of Sec. II are of the form

�n�u,v� = det�12N + D�n,u,v�C� , �1.14�

where the dependence of the 2N�2N �Cauchy-type� matrix C and diagonal matrix D on the
parameters a , b , �0�C2N is suppressed. To satisfy the B� restriction �1.11� and to prepare for the
3-periodicity restriction �1.12�, these 6N parameters are expressed in terms of 2N parameters
� ,��CN and a coupling parameter c. We then show that the tau functions have period l for c
equal to 	 / l, so that the Tzitzeica restrictions are satisfied for c=	 /3.

In Sec. III we make a further parameter change, trading �1 , . . . ,�N for “positions” q1 , . . . ,qN.
This reparametrization ensures, in particular, that the summand involving all exponentials has
coefficient 1. Restricting attention to the parameter set

P = ��q,�� � R2N��N 
 ¯ 
 �1� , �1.15�

the tau functions take their simplest and most natural form. In particular, for parameters in P the
tau functions are real valued. Furthermore, their space-time dependence is such that the qj and � j

can be interpreted as relativistic positions and rapidities. Last but not least, it is in this form that
the c=	 /3 Tzitzeica N-soliton tau functions can be most easily compared to the tau functions
arising in the framework of the 3N-body relativistic Calogero–Moser systems.

Section IV is devoted to this comparison. The choice of regime for the Calogero–Moser
systems is the same as for almost all other soliton equations. Specifically, the regime is the
hyperbolic one, with the Poincaré group generators given by

H =
M0

2
�S+ + S−�, P =

M0

2
�S+ − S−�, B = �

i=1

N+

xi
+ + �

j=1

N−

xj
−, �1.16�

S� = �
1�i�N+

exp��pi
+�Vi

+ + �
1�j�N−

exp��pj
−�Vj

−, �1.17�

�Vi
+�2 = 	

1�k�N+,k�i

1 +

sin2 c

sinh2�xi
+ − xk

+�/2� 	
1�j�N−


1 −
sin2 c

cosh2�xi
+ − xj

−�/2� , �1.18�

�Vj
−�2 = 	

1�l�N−,l�j

1 +

sin2 c

sinh2�xj
− − xl

−�/2� 	
1�i�N+


1 −
sin2 c

cosh2�xj
− − xi

+�/2� . �1.19�

Here, the generalized positions and momenta vary over the phase space

� = ��x+,x−,p+,p−� � R2�N++N−��xN+

+ 
 ¯ 
 x1
+,xN−

− 
 ¯ 
 x1
−� , �1.20�

equipped with the symplectic form

 = �
1�i�N+

dxi
+ ∧ dpi

+ + �
1�j�N−

dxj
− ∧ dpj

−. �1.21�

�Only the Landau–Lifshitz solitons of Ref. 38 involve the more general elliptic regime.32� The
coupling c that is needed, however, differs from the value 	 /2 relevant for most soliton equations
�which correspond to A1

�1��. Indeed, as already mentioned, the connection of the space-time dy-
namics �1.16�–�1.19� to the Tzitzeica tau functions arises for the A2-value,
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c = 	/3. �1.22�

In order to clarify further restrictions and to describe our main result in some detail, a few
more ingredients need to be introduced. First, the Poisson commuting “light-cone” Hamiltonians
S+ and S− can be expressed in terms of an �N++N−�� �N++N−� Lax matrix on � via

S+ = Tr�L�, S− = Tr�L−1� . �1.23�

This matrix has a product structure DMD, with a diagonal matrix D and a matrix M that arises
by suitable substitutions in Cauchy’s matrix C�x ,y�, i.e., a matrix with elements �xi−yj�−1, whose
determinant is given by Cauchy’s identity

�C�x,y�� =
	i
j

�xi − xj��yj − yi�

	i,j
�xi − yj�

. �1.24�

Hence one can explicitly determine the symmetric functions of L and its inverse, and all of these
functions Poisson commute.

Specifically, the Lax matrix

L = DMD �1.25�

is given by

D = diag�exp�p1
+/2��V1

+�1/2, . . . ,exp�pN+

+ /2��VN+

+ �1/2,�

�exp�p1
−/2��V1

−�1/2, . . . ,exp�pN−

− /2��VN−

− �1/2� , �1.26�

Mik =
i sin c

sinh��xi
+ − xk

+�/2 + ic�
,

MN++j,N++l =
i sin c

sinh��xj
− − xl

−�/2 + ic�
,

MN++j,k =
sin c

cosh��xj
− − xk

+�/2 + ic�
,

Mi,N++l = − MN++l,i, �1.27�

where i ,k� �1, . . . ,N+� and j , l� �1, . . . ,N−�. It is clear from this that L is self-adjoint when N+ or
N− vanish. Physically speaking, this is the case in which only particles or antiparticles are present.
For N+N−�0, however, L is not self-adjoint. Instead, L is J self-adjoint, that is, the adjoint L�

equals JLJ, where

J = diag�1N+
,− 1N−

� . �1.28�

When one takes the interparticle distances to infinity, it becomes clear that there is a subset of
� on which L is diagonalizable with real eigenvalues. �Of course, for the one-charge case this is
true on all of �.� However, already for the simplest non-self-adjoint case N+=N−=1, complex-
conjugate eigenvalues are also present, reflecting the existence of bound states of a particle and
antiparticle. More precisely, choosing from now on
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c � �0,	/2� , �1.29�

these bound states are encoded by eigenvalues

exp��̂+�, exp��̂−�, �̂� = � � i�, � � �0,c� . �1.30�

Moreover, the case of an eigenvalue pair on the boundary of this sector corresponds to phase space
points

x+ = x− = x, p+ = p− = p . �1.31�

For p=0 this yields a one-parameter set with minimal energy H=2M0 cos c, see �1.16�–�1.19�,
and, more generally, no oscillation takes place for the two-parameter set �1.31�.

The special case just discussed is the only one that can be explicitly understood in an elemen-
tary way. Already for N++N−=3 �the simplest case relevant for this paper� a complete account
involves considerable analysis. The general case has been elucidated in great detail in Ref. 31, and
we need to make extensive use of Secs. 2 B–6 B of that paper, which pertain to the c-range �1.29�.
The action-angle map constructed there makes it possible to understand all of the Poisson com-
muting dynamics at once, including their soliton-type long-time asymptotics �conservation of
momenta and factorized position shifts�.

It is beyond our scope to recapitulate even the case N++N−=3, but we do mention the key
starting point for the analysis performed in Ref. 31. This is because it clarifies why the diagonal
matrix

A�x� = diag�exp�x1
+�, . . . ,exp�xN+

+ �,− exp�x1
−�, . . . ,− exp�xN−

− �� �1.32�

is of pivotal importance. This matrix is referred to as the dual Lax matrix, and its relation to L is
encoded in the commutation relation

i cot�c��LA − AL� = LA + AL − 2e � e . �1.33�

�This relation is readily verified; we do not need the dyadic in the sequel.�
One need only inspect �1.33� to see that A and L play symmetric roles. In the one-charge case

it is possible to diagonalize the self-adjoint matrix L in such a way that A takes essentially the
same form in terms of suitable variables �which are just the action-angle variables�. This self-
duality is no longer present for N+N−�0, however. Indeed, A is then still self-adjoint, whereas L
is not. Even so, �1.33� can again be used to great advantage in the construction of the action-angle
map, as detailed in Ref. 31.

We are now prepared to specialize the above to the arena with which the present paper is
concerned. First of all, we choose

N+ = 2N, N− = N . �1.34�

This choice ensures that there exists a 2N-dimensional Poincaré-invariant submanifold

�P � P , �1.35�

with P given by �1.15�, of the 6N-dimensional phase space � ,�. This submanifold will be
described in detail in Sec. IV, and we shall presently add a brief qualitative description.

Consider now the solution

exp�tH − yP�Q, Q = �x,p� � � , �1.36�

to the joint Hamilton equations for H and P. Such a joint solution exists and is given by �1.36�,
since the H-flow and P-flow commute. Using �1.2� and �1.16�, we can rewrite �1.36� as
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exp�M0�uS− − vS+��Q = �x�u,v�,p�u,v�� . �1.37�

Next, specializing to

M0 = �3, c = 	/3, �1.38�

we introduce

�n�u,v� = det�13N + exp�i	�1 − 2n�/3�A�x�u,v��� . �1.39�

For a given point Q in the phase space �, this yields a function depending on n�Z and �u ,v�
�R2.

We are finally in the position to state the principal result of this paper: When the tau function
�1.39� is restricted to the 2N-dimensional Poincaré-invariant subspace �P of �, it coincides with
the Tzitzeica tau function �1.14� evaluated on P �1.15�. Our demonstration of this equality uses, in
particular, special cases of the fusion identities obtained in Ref. 33. �For completeness we add the
proof of these specializations in Appendix A.� The reduction in the matrix size from 3N�3N to
2N�2N hinges on all points in �P yielding pairs of complex-conjugate eigenvalues
exp�� j � i	 /3� for the Lax matrix L on the boundary of the allowed angular sector. For each of
these pairs there is an additional eigenvalue exp�� j�, so that the spectrum of L on �P involves only
N degrees of freedom �1 , . . . ,�N�R �and not the 3N of the full phase space�. These variables may
be viewed as action variables, and there are N canonically conjugate “angle” variables
q1 , . . . ,qN�R. As a consequence, �P can be identified with P, see �1.35� and �1.15�.

A better understanding of how �P arises as a submanifold of the 6N-dimensional phase space
can only be achieved by invoking a great many details concerning the action-angle map con-
structed in Ref. 31, which are summarized in Sec. IV. At this point we only add a few qualitative
remarks, so as to render these details more accessible.

First, the above coordinates are not quite action-angle coordinates. Rather, the precise defini-
tion of �P involves the harmonic oscillator transform. This transform is an extension of the
action-angle transform, which takes into account that � contains an open dense subset that is the
union of submanifolds for which the angles vary over R3N−l�Tl, where T��−	 ,	� and l takes all
values in �0,1 , . . . ,N�. From a physical point of view, these submanifolds can be regarded as the
subsets of � on which l particle-antiparticle bound states are present. Now when the bound state
internal actions converge to their minima, the l-torus collapses to lower-dimensional tori in pre-
cisely the same way as for a harmonic oscillator Hamiltonian � j=1

l �pj
2+xj

2�, which motivates the
terminology.

In these terms, �P amounts to the subset that arises from the submanifold with N bound states
by taking the torus TN to a point, so that each of the pairs is in its ground state; moreover, each of
the remaining particles has action and angle variables that are paired with those of the bound
states, in such a way that the asymptotic space-time dependence of � is that of N three-body
clusters moving apart, each of the clusters staying together as in the N=1 case.

In Sec. V we present a close-up of the latter case. For N=1, various questions can be rather
easily answered, and this special case is also useful as an illustration of the general case. In
particular, we obtain some explicit information on the two-dimensional space �P for c
� �0,	 /2� and study the Tzitzeica one-soliton solution corresponding to c=	 /3.

In Sec. VI we compare the Tzitzeica solitons under consideration to the ones obtained by
Kaptsov and Shan’ko16 and to the solitons arising by the above two-step reduction �1.11� and
�1.12� from a class of 2D Toda solitons constructed via Darboux transformations. At face value,
these two types of Tzitzeica solitons seem different from the ones obtained from the Kyoto
solitons in Sec. II. As we show, however, the latter are a subclass of the former.

We have added Sec. VI primarily because it yields an affirmative answer to the two natural
equality questions at issue, but as a bonus it yields a new insight on the Tzitzeica tau function �0

�given both by �1.39� and �1.14��: It is in fact positive and equal to the square of a simpler tau
function occurring in the Kaptsov–Shan’ko work.16
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In Sec. VII we consider further aspects of our results, in the form of several remarks. Spe-
cifically, we show that the space-time translation generators restricted to �P give rise to a reduced
integrable system, introduce and comment on space-time trajectories for the Tzitzeica solitons,
isolate the difference with the setup of Ref. 33, and comment on an eventual quantum analog of
the correspondence between three-body clusters and solitons.

A final remark concerns the solitons of the Demoulin system of equations.39,40 As it turns out,
their tau function form is obtained by taking c=	 /6 in Secs. II and III. It is a challenging question
whether they can also be tied in with the relativistic Calogero–Moser systems.

We have relegated a proof of the fusion identities used in Sec. IV to Appendix A. In Appendix
B we collect some auxiliary results concerning Pfaffians, which we need in Sec. VI. Finally,
Appendix C contains a sketch of the Darboux-type construction of explicit tau function solutions
to the 2D Toda equation �1.10�.

II. THE SOLITON REDUCTION 2D Toda\Tzitzeica

Our starting point is the 2D Toda M-soliton solutions introduced by the Kyoto school36,37 in
the form

�n = �
�1,. . .,�M=0,1

	
1�j�M

exp�� j� j,n� · 	
1�j
k�M

f jk
�j�k, �2.1�

f jk =
�aj − ak��bj − bk�
�aj − bk��bj − ak�

, j,k = 1, . . . ,M , �2.2�

� j,n = � j
0 + n ln�aj/bj� + i�

l=1

�

�tl,+�aj
l − bj

l� + tl,−�aj
−l − bj

−l�� . �2.3�

The sequence of “times” tl,� encodes the hierarchy of commuting flows. Restricting attention to
the 2D Toda equation �1.10�, one should set

tl,+ = tl,− = 0, l � 1, t1,+ = − v, t1,− = u , �2.4�

to obtain a solution.
We proceed in several steps to show how a suitable specialization of the 3M parameters a, b,

and �0 gives rise to a tau function with the B�-symmetry �1.11�. This also involves the choice

M = 2N, N � N�, �2.5�

which will be in force from now on.
Proposition 2.1: Define a Cauchy-type matrix C with elements

Cjk =
aj − bj

aj − bk
, j,k = 1, . . . ,M , �2.6�

and a diagonal matrix

Dn = diag�exp��1,n�, . . . ,exp��M,n�� . �2.7�

Then �n may be rewritten as

�n = �1M + DnC� . �2.8�

Proof: Using Cauchy’s identity �1.24�, the principal minor expansion of the right hand side of
�2.8� yields
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�n = �
l=0

M

�
I��1,. . .,M�,�I�=l

	
j�I

exp�� j,n� · 	
j,k�I,j
k

f jk, �2.9�

which amounts to �2.1�. �

Next, we specialize the parameters so as to achieve the B� reduction. Specifically, we choose

bM−j+1 = − aj, j = 1, . . . ,M , �2.10�

exp�� j
0� = exp�� j�aM−j+1�aj + aM−j+1�−1, j = 1, . . . ,N , �2.11�

exp��M−j+1
0 � = − exp�� j�aj�aj + aM−j+1�−1, j = 1, . . . ,N . �2.12�

Proposition 2.2: With (2.10)–(2.12) in effect, �n has the B� symmetry (1.11).
Proof: Setting

� j = exp��� j + � j�/2�, j = 1, . . . ,M , �2.13�

with

�M−j+1 = � j, j = 1, . . . ,N , �2.14�

� j = − iv�aj + aM−j+1� + iu�aj
−1 + aM−j+1

−1 �, j = 1, . . . ,M , �2.15�

we clearly have

�M−j+1 = � j, j = 1, . . . ,M . �2.16�

Also, the reparametrized matrix DnC is the product of the matrix

J = diag�1N,− 1N� , �2.17�

and the matrix with jk-element

� j
2
−

aj

aM−j+1
�n aM−j+1

aj + aM−k+1
, j,k = 1, . . . ,M . �2.18�

After a similarity transformation �n may be rewritten as

�n = �1M + DAnDJ� , �2.19�

where

D = diag��1, . . . ,�N,�N, . . . ,�1� , �2.20�

An,jk =
�− aj�n�aM−k+1�−n+1

aj + aM−k+1
, j,k = 1, . . . ,M . �2.21�

From this definition of An we readily infer that

A−n+1,jk = − An,M−k+1,M−j+1. �2.22�

Hence we obtain

A−n+1 = − RMAn
t RM , �2.23�

where the superscript denotes the transpose, and RM denotes the M �M reversal permutation
matrix. Now we have
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RMDRM = D, RMJRM = − J . �2.24�

From these formulas we deduce

�−n+1 = �1M − DRMAn
t RMDJ� = �1M + RMDAn

t DJRM� = �1M + DAn
t DJ� = �1M + JDAnD� = �n,

�2.25�

as required. �

Finally, we show how by a further specialization of parameters periodic reductions of the
solitons of the B� Toda lattice arise. We trade the 2N parameters a1 , . . . ,aM for N parameters
�1 , . . . ,�N and another parameter c, which corresponds to the coupling parameter in �1.16�–�1.19�:

aj = exp�� j − ic�, j = 1, . . . ,N , �2.26�

aM−j+1 = − exp�� j + ic�, j = 1, . . . ,N . �2.27�

Proposition 2.3: With (2.26) and (2.27) in force, we have an implication

c = 	/l ⇒ �n+l = �n,l = 1,2, . . . . �2.28�

In particular, the tau function is 3-periodic for c=	 /3, and hence is a tau function form of the
Tzitzeica N-soliton solutions.

Proof: Using also �2.11�–�2.15�, we obtain

exp�� j,n� =
eic

2i sin c
� j

2e−2inc, �2.29�

exp��M−j+1,n� =
e−ic

2i sin c
� j

2e2inc, �2.30�

� j
2 = exp�� j − 2 sin�c��ve�j + ue−�j�� , �2.31�

where j=1, . . . ,N. From this �2.28� is obvious. �

III. EXPLICIT FORM OF THE TAU FUNCTIONS

In this section we first make the soliton formulas described in Sec. II more explicit, exempli-
fying them for the simplest case. A suitable parametrization of the � j in �2.11� and �2.12� then
yields a sum formula for the arbitrary-c tau function that is not only compact and informative but
which can also be tied in with the relativistic Calogero–Moser tau function �1.39� for the special
c-value 	 /3.

First, from �2.1�–�2.4�, the two-soliton solution of the 2D Toda lattice is

�n = 1 + e�1,n + e�2,n +
�a1 − a2��b1 − b2�
�a1 − b2��b1 − a2�

e�1,n+�2,n. �3.1�

After the reduction to the B� Toda lattice described in Proposition 2.2, �2.3� and �2.4� yield

exp�� j,n� =
�− 1�naj

naM−j+1
1−n

aj + aM−j+1
e�j�u,v�, exp��M−j+1,n� =

�− 1�n+1aj
1−naM−j+1

n

aj + aM−j+1
e�j�u,v�, �3.2�

where

� j�u,v� = � j + i��aj
−1 + aM−j+1

−1 �u − �aj + aM−j+1�v� , �3.3�

and j=1, . . . ,N, and �2.2� becomes
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f jk =
�aj − ak��aM−j+1 − aM−k+1�
�aj + aM−k+1��aM−j+1 + ak�

, �3.4�

where j ,k=1, . . . ,M. The two-soliton solution of 2D Toda �3.1� becomes the one-soliton solution
of the B� Toda equation, given by

�n = 1 +
�− 1�n�a1

na2
1−n − a1

1−na2
n�

a1 + a2
e�1�u,v� +

a1a2�a1 − a2�2

�a1 + a2�4 e2�1�u,v�. �3.5�

The result of the specialization �2.26� and �2.27� is that �3.2� and �3.3� become

exp�� j,n� =
e�1−2n�ic

2i sin c
e�j�u,v�, exp��M−j+1,n� =

e−�1−2n�ic

2i sin c
e�j�u,v�, �3.6�

� j�u,v� = � j − 2 sin�c��ue−�j + ve�j� , �3.7�

where j=1, . . . ,N. Using �2.26� and �2.27� in �3.4�, we finally obtain the following key expres-
sions for the functions f jk:

f jk =
sinh2��� j − �k�/2�

sinh2��� j − �k�/2� + sin2 c
, f j,M−k+1 =

cosh2��� j − �k�/2� − sin2 c

cosh2��� j − �k�/2�
�3.8�

for j , k=1, . . . ,N and

f jk = fM−j+1,M−k+1, �3.9�

for j , k=1, . . . ,M. Furthermore, the specialization of the one-soliton solution of B� Toda �3.5�
gives

�n = 1 +
cos��2n − 1�c�

i sin c
e�1�u,v� −

cos2 c

4 sin2 c
e2�1�u,v�. �3.10�

So far in this section we have simply restated various formulas in Sec. II in more explicit form.
Now we make a final reparametrization of the phase constants � j. Specifically, choosing from now
on �q ,���P �see �1.15��, we set

exp�� j� = 2i sin�c�exp�qj/2�Fj���, j = 1, . . . ,N , �3.11�

Fj��� = 	
k=1,. . .,M,k�j

f jk
−1/2, j = 1, . . . ,N . �3.12�

Substituting this in �3.6� and �3.7�, we obtain

exp�� j,n� = exp��1 − 2n�ic + qj�u,v�/2�Fj��� , �3.13�

exp��M−j+1,n� = exp��2n − 1�ic + qj�u,v�/2�Fj��� , �3.14�

qj�u,v� = qj − 4 sin�c��ve�j + ue−�j� , �3.15�

where j=1, . . . ,N. Note from �3.8� that the functions f jk are positive and hence so are F1 , . . . ,FN.
We have now arrived at the final form of the tau function. In the proof of the next proposition

we obtain an explicit sum formula to show that it is real valued.
Proposition 3.1: The tau function �n given by (2.9) with the factors defined by (3.8) and (3.9)

and (3.12)–(3.15) is real valued. In particular, for c=	 /3 it yields a real valued N-soliton solution
of the Tzitzeica equation.

Proof: It remains to prove that �n is real. It is clear from �2.9� that �n is equal to a sum of terms
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TS associated with all subsets S of �1, . . . ,M�. To obtain an explicit expression for TS, we write the
subsets as

S = �i1, . . . ,is,M − jb + 1, . . . ,M − j1 + 1� , �3.16�

where

1 � i1 
 ¯ 
 is � N, 1 � j1 
 ¯ 
 jb � N, s,b � �0,1, . . . ,N� . �3.17�

Then we deduce from �2.9� that the contribution to �n corresponding to S is given by

TS = exp
�b − s��2n − 1�ic + �
�=1

s

qi�
�u,v�/2 + �

�=1

b

qj�
�u,v�/2�FS��� , �3.18�

where

FS��� = 	
j�S,k�S

f jk
−1/2. �3.19�

Next, defining the reversal permutation r of �1,2 , . . . ,M� by r�j�=M − j+1, it follows from
�3.9� that

Fr�S� = FS �3.20�

and then from �3.18� that

Tr�S� = TS, �3.21�

where the overbar denotes the complex conjugate. Hence, if r�S� is equal to S then TS is real, and
otherwise TS+Tr�S� is real. Thus �n can be written as a sum of real terms. �

To illustrate this result, we write the one-soliton tau function in the explicit form described in
the above proof. We have

T0” = 1, T�1,2� = exp�q1�u,v��F�1,2�, �3.22�

T�1� = exp��1 − 2n�ic + q1�u,v�/2�F�1�, �3.23�

T�2� = exp��2n − 1�ic + q1�u,v�/2�F�2�, �3.24�

where �recall �3.8� and c� �0,	 /2��

F�2� = F�1� = f12
−1/2 = 1/cos c, F�1,2� = 1. �3.25�

Clearly, the terms T0” and T�1,2� are real, and so is the sum

T�1� + T�2� =
2 cos��2n − 1�c�

cos c
exp�q1�u,v�/2� . �3.26�

The one-soliton tau function is given by

�n = 1 +
2 cos��2n − 1�c�

cos c
eq1�u,v�/2 + eq1�u,v�. �3.27�

In particular, for the Tzitzeica case c=	 /3 we have

�0 = �1 = 1 + 2eq1�u,v�/2 + eq1�u,v� = �1 + eq1�u,v�/2�2 �3.28�

and
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�2 = 1 − 4eq1�u,v�/2 + eq1�u,v�. �3.29�

Finally, we sketch how to obtain the two-soliton tau function in a similar way. In this case M
equals 4 and for the 16 subsets of �1,2,3,4� there are ten real valued combinations

T0”, T�1,4�, T�2,3�, T�1,2,3,4�, T�1� + T�4�, T�2� + T�3�,

T�1,2� + T�3,4�, T�1,3� + T�2,4�, T�1,2,3� + T�2,3,4�, T�1,2,4� + T�1,3,4�, �3.30�

whose sum gives the two-soliton tau function.

IV. TZITZEICA SOLITONS VERSUS RELATIVISTIC CALOGERO–MOSER DYNAMICS

In Sec. I we have already sketched in general terms how the 2N-dimensional Poincaré-
invariant subset �P of the phase space � ,� arises. In order to fill in the details of this qualitative
picture, we begin by specifying the subspace of � on which the maximal number N of bound
states is present, choosing the internal actions at first larger than their minimum, so that there are
N angles varying over TN. Moreover, until further notice we work with c� �0,	 /2�, since this
eases the notation and adds insight on the Tzitzeica case c=	 /3. With this starting point under-

stood, the variables q̂ , �̂ in Eqs. �4.20�–�4.24� of Ref. 31 should be specialized as follows.
First, as already mentioned �see �1.34��, the particle and antiparticle numbers N+ and N− of

Ref. 31 must be chosen equal to 2N and N �so that the number N used in Ref. 31 becomes 3N�,
and the parameters of Ref. 31 should be specialized as

� = � = 1, � = g/2 = c . �4.1�

Second, the bound state number l of Ref. 31 should be taken equal to N. Thus the numbers k+ and
k− in �4.20�–�4.24� are equal to N and 0, respectively, and we obtain 2N particle variables

q̂1, . . . , q̂N � R, �̂N 
 ¯ 
 �̂1 �4.2�

and 4N bound state variables

q̂N+1, . . . , q̂2N, �̂N+1, . . . , �̂2N � C, I��̂N+j� � �0,c�, �̂N+j � �̂N+k, �4.3�

q̂2N+j = q̄̂N+j +
i	

2
�1 − �− �N�, �̂2N+j = �̄̂N+j , �4.4�

where j ,k=1, . . . ,N and k� j.
One advantage of these variables is that they give rise to compact expressions for the sym-

metric functions of the dual Lax matrix A. Specifically, they are given by

Sl�A� = �
�I�=l

exp
�
i�I

q̂i�pI��̂�, l = 0, . . . ,3N , �4.5�

with

pI��̂� = 	
i�I,j�I

�sinh2���̂i − �̂ j�/2� + sin2 c�1/2

sinh���̂min�i,j� − �̂max�i,j��/2�
, �4.6�

see �5.68� in Ref. 31 with parameters �4.1�.
The action-angle variables are now given by

xj
s = q̂j, pj

s = �̂ j , �4.7�
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xj = R�q̂N+j�, pj = 2R��̂N+j� , �4.8�

� j = I�q̂N+j� + �N + j − 1�	, � j = − 2I��̂N+j� , �4.9�

where j=1, . . . ,N and � j � �−	 ,	� �mod 2	�, see �4.26� in Ref. 31. To handle the limits � j↓
−2c, for which the � j-torus reduces to a point, we should switch from � j , � j to the “harmonic
oscillator variables” uj , v j, the minimum � j =−2c corresponding to the origin uj =v j =0, see Chap.
5 in Ref. 31. We shall presently analyze the behavior of Sl�A� under this limit. Before embarking
on this rather technical issue, however, we clarify how the limit gives rise to a 2N-dimensional
submanifold that is invariant under the Poincaré �inhomogeneous Lorentz� group.

To this end we use the explicit description of the commuting flows generated by Hamiltonians
of the form

Hh = Tr h�ln L� , �4.10�

with h�z� an arbitrary entire function �see �6.79� in Ref. 31�, which follows from �6.6� in Ref. 31.
It reads

exp�tHh��xs,ps;x,p,0,0� = �x1
s + th��p1

s�, . . . ,xN
s + th��pN

s �,ps;x1 + tR�h��p1/2 − ic�� ,�

�. . . ,xN + tR�h��pN/2 − ic��,p,0,0� . �4.11�

The time and space translation generators H and P �see �1.16��, for which h�z� equals M0 cosh�z�
and M0 sinh�z�, respectively, reduce to

H = M0�
j=1

N

�cosh�pj
s� + 2 cos�c�cosh�pj/2��,P = M0�

j=1

N

�sinh�pj
s� + 2 cos�c�sinh�pj/2��

�4.12�

on the submanifold at issue, yielding flows

etH/M0�xs,ps;x,p,0,0� = �x1
s + t sinh�p1

s�, . . . ,xN
s + t sinh�pN

s �,ps;x1 + t cos�c�sinh�p1/2� ,�

�. . . ,xN + t cos�c�sinh�pN/2�,p,0,0� , �4.13�

e−yP/M0�xs,ps;x,p,0,0� = �x1
s − y cosh�p1

s�, . . . ,xN
s − y cosh�pN

s �,ps;x1

− y cos�c�cosh�p1/2�, . . . ,xN − y cos�c�cosh�pN/2�,p,0,0� .

�4.14�

The boost generator is given by �see �1.16��

B = �
j=1

N

�xj
s + 2xj� , �4.15�

whence we have

e�B�xs,ps;x,p,0,0� = �xs,p1
s + �, . . . ,pN

s + �;x,p1 + 2�, . . . ,pN + 2�,0,0� . �4.16�

From these formulas it is obvious that the 2N-dimensional submanifold �P obtained by
requiring

xj = cos�c�xj
s, pj = 2pj

s, j = 1, . . . ,N , �4.17�

is Poincaré invariant. On �P we have
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H = p�c�M0�
j=1

N

cosh pj
s, P = p�c�M0�

j=1

N

sinh pj
s, B = p�c��

j=1

N

xj
s, �4.18�

where the prefactor p�c� is given by

p�c� = 1 + 2 cos�c� . �4.19�

Also, the symplectic form  reduces to

 = p�c��
j=1

N

dxj
s ∧ dpj

s. �4.20�

Thus, when we reparametrize �P with variables

qj = p�c�xj
s, � j = pj

s, j = 1, . . . ,N , �4.21�

then q ,� are canonical coordinates. Moreover the space-time flow reads

etH−yP�q,�� = �q1 + p�c�M0�t sinh �1 − y cosh �1�, . . . ,qN + p�c�M0�t sinh �N − y cosh �N�,�� ,

�4.22�

or, equivalently,

euS−−vS+�q,�� = �q1�u,v�, . . . ,qN�u,v�,�� , �4.23�

where

qj�u,v� = qj − p�c�M0�ue−�j + ve�j�, j = 1, . . . ,N . �4.24�

With �1.38� in force, this coincides with the Tzitzeica soliton space-time dependence �3.15�. Of
course, this state of affairs is still far from a proof that the tau function defined at the end of Sec.
III and the tau function �1.39� evaluated on �P are equal.

In order to demonstrate this equality, we return to �4.5� and �4.6� and the variables q̂ , �̂. On
�P the latter specialize as

q̂j = qj/p�c�, R�q̂N+j� = cos�c�qj/p�c�, j = 1, . . . ,N , �4.25�

�̂ j = � j, �̂N+j = � j + ic, j = 1, . . . ,N , �4.26�

and �4.4� still holds. More precisely, we have

�̂2N+j = � j − ic, j = 1, . . . ,N , �4.27�

but we can only infer

q̂N+j + q̂2N+j = 2 cos�c�qj/p�c� +
i	

2
�1 − �− �N� , �4.28�

since the imaginary parts are undetermined in the collapsing torus limit.
We proceed to analyze this limit for �4.5� and �4.6�. First, whenever I contains the index N

+ j but not the index 2N+ j, with j=1, . . . ,N, or vice versa, then it is clear from �4.6� that the limit

of pI��̂� vanishes. Thus we need only consider I that contain either both indices or neither. As a
consequence, we only encounter q̂N+j and q̂2N+j in the combination �4.28�, which confirms that the
limit is well defined.

Introducing the breather sets
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Bj = �N + j,2N + j�, j = 1, . . . ,N , �4.29�

we proceed to simplify the limit of pI��̂�2 for I of the form

I = �i1, . . . ,is� � Bj1
� ¯ � Bjb

, �4.30�

with �3.17� in effect. This boils down to a quite special case of the fusion procedure detailed on pp.
237–238 of Ref. 33. Thus we put

J = �i1, . . . ,is, j1 + N, . . . , jb + N� � �1, . . . ,2N� �4.31�

and

� j = � j, � j+N = � j, cj = c, cj+N = 2c, j = 1, . . . ,N , �4.32�

to obtain

lim pI��̂�2 = 	
j�J,k�J

sinh2��� j − �k�/2� + sin2��cj + ck�/2�
sinh2��� j − �k�/2� + sin2��cj − ck�/2�

, �4.33�

see �2.27� in Ref. 33. To render this step in our reasoning self-contained, we present a proof of
�4.33� in Appendix A.

Requiring �1.38� from now on, the following two cases arise for the product factor pjk on the
right hand side of �4.33�:

j,k � N or j,k � N with j � k ⇒ pjk =
sinh2��� j − �k�/2� + 3/4

sinh2��� j − �k�/2�
, �4.34�

j � N, k � N or j � N, k � N ⇒ pjk =
sinh2��� j − �k�/2� + 1

sinh2��� j − �k�/2� + 1/4
. �4.35�

Taking positive square roots of the pjk, we deduce from �4.33� that we have

lim pI��̂� = sJ 	
j�J,k�J

pjk
1/2 �4.36�

for a certain sign sJ. We shall determine this sign later on, see �4.45�.
Next, we focus on the principal minor expansion of the tau function �1.39�, restricted to the

submanifold of � with N bound states present, with internal actions �1 , . . . ,�N in �−2	 /3,0�. It
reads

�n�u,v� = �
l=0

3N

exp�i	l�1 − 2n�/3�Sl�A�x�u,v��� = �
l=0

3N

exp�i	l�1 − 2n�/3��
�I�=l

exp
�
i�I

q̂i�u,v��pI��̂� .

�4.37�

Taking the actions to their minima −2	 /3, we deduce from the above that the limiting tau function
is a sum of nonzero contributions CJ for all J of the form �4.31�, with

CJ = exp�i	�s + 2b��1 − 2n�/3�	
�=1

s

exp�qi�
�u,v�/2�

�	
�=1

b

exp
qj�
�u,v�/2 +

i	

2
�1 − �− �N�� · sJ 	

j�J,k�J

pjk
1/2. �4.38�

We are now prepared to state and prove the principal result of this paper.
Theorem 4.1: Let c=	 /3. Then the relativistic Calogero–Moser tau function (1.39) restricted
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to the subspace �P�P is equal to the Tzitzeica tau function (2.9) with the factors given by (3.8),
(3.9) and (3.12)–(3.15), and with parameters in P.

Proof: We need only show equality of the general contribution CJ to the general term TS in
�2.9�, see �3.18�. First, we compare f jk, given by �3.8� and �3.9� with c=	 /3, to pjk given by �4.34�
and �4.35�. From this we easily deduce

FS��� = 	
j�J,k�J

pjk
1/2. �4.39�

Next, we note that the factors involving qj�u ,v� are in agreement. Hence the asserted equality
comes down to an equality of the remaining numerical factors. Specifically, it remains to show

�− �bexp
 i	b

2
�1 − �− �N��sJ = 1. �4.40�

To this end we now calculate the sign sJ in �4.36�. We begin by noting that for �̂�C3N given

by �4.2� and �4.3�, the product pI��̂� �4.6� has a positive numerator. �Indeed, each radicand is either
positive or has a nonzero imaginary part; in the latter case it is matched by a factor with the
complex-conjugate radicand.� We are therefore reduced to analyzing the phase of

�I = 	
i�I,j�I

sij, sij = sinh���̂min�i,j� − �̂max�i,j��/2� �4.41�

for the special �̂ under consideration, namely,

�̂ = ��1, . . . ,�N,�1 + i	/3, . . . ,�N + i	/3,�1 − i	/3, . . . ,�N − i	/3�, �N 
 ¯ 
 �1.

�4.42�

We already know from �4.36� that this phase is just the sign sJ. Indeed, we have

sinh��� j − �k − i��/2�sinh��� j − �k + i��/2� � 0, � = 	/3, 2	/3, �4.43�

which confirms that �I is either positive or negative.
We continue to analyze the contributions to sJ from indices in I �4.30�, taking �4.42� into

account. First, we consider the contribution of i�� I. Due to the ordering of the � j in �4.42�, any
j� I with j�N yields si�j �0. Also, any Bk that is not a subset of I yields a contribution of the
form �4.43� with �=	 /3. Hence all indices i1 , . . . , is in I yield positive signs.

Next, we study the contribution of Bj�
� I. For i� I with i�N it again follows from �4.43� that

we get a positive sign. Now suppose Bk is not a subset of I and consider the pertinent product

sj�+N,k+Nsj�+N,k+Msj�+M,k+Nsj�+M,k+M . �4.44�

Both for k
 j� and for k� j� this product is easily seen to be negative. Therefore any pair Bj ,Bk

with Bj included in I and Bk not included in I gives rise to a minus sign in �I. Now I contains b
breather index sets, so there are N−b breather sets not contained in I. Thus we finally deduce

sJ = �− �b�N−b�. �4.45�

With this explicit formula in hand, it is routine to verify �4.40�. Consequently, our proof of the
asserted tau function equality is now complete. �

V. THE N=1 CASE

In this section we consider various aspects of the special case N=1, which yields an illumi-
nating illustration of the above constructions and equalities. More specifically, we focus on fea-
tures of the Tzitzeica one-soliton solution and the space �P for c� �0,	 /2�.

For N=1 it follows from �3.28� and �3.29� that we have
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�0 = �1 = 1 + 2F + F2, �2 = 1 − 4F + F2, F = exp�q�u,v�/2� , �5.1�

with

q�u,v� = q − 2�3�ue−� + ve�� = q + 2�3�t sinh��� − y cosh���� , �5.2�

see �1.2�. Thus the two �2-zeros for F=2��3 yield two parallel space-time lines,

y��t� = t tanh��� +
1

2�3 cosh���
�q − 2 ln�2 � �3�� , �5.3�

where � diverges, see Fig. 1. In this figure and in Fig. 2, which appears in Sec. VII B, we plot for
clarity −� rather than � and truncate −� at a finite cutoff value. The regions between the
singularities, where �2 is negative so that �=ln��2 /�0� takes complex values, are approximated by
the “plateaus” in these figures.

Recalling �1.39�, we see that the �2-zeros correspond to x1
+�t ,y� or x2

+�t ,y� being zero. The
space-time lines may therefore be viewed as the trajectories of the two particles in the one-soliton
cluster.

For N=1 it might seem an easy matter to locate the two-dimensional space �P within the
six-dimensional phase space �. In fact, however, it is not even easy to find the one-dimensional
submanifold of �P consisting of H-equilibrium points, i.e.,

�E = ��q,�� � �P � R2�� = 0� , �5.4�

in explicit form. �Note that for c=	 /3 this yields the stationary one-soliton tau functions.� Of
course, it is immediate from �1.16�–�1.19� that we need

p1
+ = p2

+ = p1
− = 0 �5.5�

for H to have an equilibrium. Requiring this, one expects from physical considerations to get an
equilibrium point for

x1
+ = − x2

+ = d � 0, x1
− = 0 �5.6�

and a suitable d. We now confirm this for c� �0,	 /2�. Then we have from �1.16�–�1.19�

H�d,− d,0,0,0,0�
M0

= 2�f+f−�1/2 + f−, f+ = 1 +
sin2 c

sinh2 d
, f− = 1 −

sin2 c

cosh2�d/2�
. �5.7�

Thus we have H→3M0 for d→� and H→� for d→0. Since H is equal to M0� j=1
3 cosh�� j�, it has

an absolute minimum M0p�c� for �̂= �0, ic ,−ic�. Now we can still choose x1
s ,x1�R �see �4.7� and

�4.8��, so H has a two-parameter family of stable equilibria. It is straightforward to check that for
d equal to

FIG. 1. �Color online� One-soliton solution. −��t ,y� is shown; the y-axis points left to right and the t-axis points into the
page. The plateau approximates the region in which ��t ,y� is complex valued.
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de = cosh−1�1 + cos c� , �5.8�

we have

f+ =
1 + 2 cos c

�2 + cos c�cos c
, f− =

�1 + 2 cos c�cos c

2 + cos c
. �5.9�

Hence the right hand side of �5.7� equals M0p�c�, so we do get a stable equilibrium for d=de. This
implies that all of the points

E��� = �de + �,− de + �,�,0,0,0�, � � R , �5.10�

are also equilibria.
Since H equals M0p�c� on �E, one might expect that the one-parameter family of equilibria

E��� yields �E. In fact, however, only E�0� belongs to �E. To be specific, we assert that it
corresponds to q=0. To show this, we use �4.5� with N=1 to find the symmetric functions of A on
�E. We determined the relevant limits below �4.28�. In particular, �4.33� yields p�c�2 for I equal to
�1� or �2,3�, since �1=0 on �E. Using also �4.25� and �4.28�, we readily obtain

S1�A� = p�c�exp�q/p�c�� , �5.11�

S2�A� = − p�c�exp�2 cos�c�q/p�c�� , �5.12�

S3�A� = − exp�q� . �5.13�

For q=0 this implies that the spectrum of A is given by

��A� = �1 + cos�c� � �cos2�c� + 2cos�c��1/2,− 1� . �5.14�

The first two eigenvalues can be written as exp��de�, see �5.8�. Thus the origin of �E�R
corresponds to generalized positions x1

+=de, x2
+=−de, x1

−=0. Since �E consists of H-equilibria, we
also have p1

+= p2
+= p1

−=0. Hence we deduce E�0���E and q=0, as asserted.
On the other hand, the equilibrium points in �P with q�0 are harder to find explicitly. As

already announced, they do not include the equilibria E��� for ��0. �Indeed, E�0� does belong to
�E, as just shown. Now the �-shift of the generalized positions corresponds to a shift of x1

s and x1

by �, so that the �P-condition x1=cos�c�x1
s no longer holds true for ��0.� Rather, they are

obtained by acting with the commuting flow exp�yP /M0�, y�R, on the equilibrium E�0�, yielding
translated equilibria

T�y� = �x1
+�y�,x2

+�y�,x1
−�y�,0,0,0�, y � R . �5.15�

In view of �5.13� and �4.22� this yields the sum rule

x1
+�y� + x2

+�y� + x1
−�y� = p�c�y . �5.16�

Also, from Hamilton’s equations for P /M0 we have

xj
+�y�� � cos�c�, j = 1,2, x1

−�y� � cos2�c� , �5.17�

so that x1
+�y�, x2

+�y�, and x1
−�y� are strictly increasing functions of y.

Next, we deduce from �5.11�–�5.13� that we have the reflection symmetry

x1
+�− y� = − x2

+�y�, x1
−�− y� = − x1

−�y� , �5.18�

so it remains to determine the functions for y�0. This is presumably possible, but we have not
pursued this. However, the large-y asymptotics can be established from the above. Specifically,
setting
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� = exp�cos c − 1�y , �5.19�

we obtain for �→0

x1
+�y� = y + ln p�c� + O��2� , �5.20�

x2
+�y� = cos�c�y − 1

2 ln p�c� − 1
2
�p�c��1 − p�c�−2�� + O��2� , �5.21�

x1
−�y� = cos�c�y − 1

2 ln p�c� + 1
2
�p�c��1 − p�c�−2�� + O��2� . �5.22�

A final observation of interest concerns the kinetic and potential energy densities of the
stationary one-soliton solution, i.e., the functions

EK�y� = ��y��2/2, EP�y� = exp��� + exp�− 2��/2 − 3/2, � = ln��2/�0� , �5.23�

obtained from �5.1� for �=0. It is far from obvious but true that these functions are equal. This
equality can be verified directly by a straightforward but quite tedious calculation.

A more conceptual derivation of this virial-type identity will now be given. First, we note that
any t-independent solution to �1.1� satisfies the ordinary differential equation

fyy = ef − e−2f . �5.24�

Now from �5.1� we obtain a solution to �5.24� of the form

f�y� = g�exp��q − 2�3y�/2��, g�z� = ln
1 − 4z + z2

1 + 2z + z2� . �5.25�

Defining

z� = 2 � �3, �5.26�

it satisfies

eg�z� � 0, z � z+, z 
 z−, �5.27�

eg�z� 
 0, z � �z−,z+� , �5.28�

and

g�z�, g��z� → 0, z → � � , �5.29�

exp�g�1�� = − 1/2, g��1� = 0. �5.30�

Next, consider the Hamiltonians

H��x,p� = p2/2 − V��x�, V��x� = � ex + e−2x/2 − 3/2. �5.31�

The potential −V+�x� has a maximum 0 at x=0 and yields a Newton equation

ẍ = ex − e−2x. �5.32�

Comparing this to �5.24�, �5.27�, and �5.29�, we see that g�z� for z�z+ corresponds to the E=0
orbit with x�t�
0 coming from 0 for t→−� and g�z� for z
z− to the E=0 orbit with x�t�
0
going to 0 for t→�. By energy conservation, we have ẋ2 /2=V+�x�, which implies EK�y�=EP�y�
for the y-intervals where ef�y��0.

It remains to show the identity for the y-interval where ef�y�
0. Then we can compare �5.24�
to the Newton equation
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ẍ = − ex − e−2x, �5.33�

corresponding to H−. The E=0 orbit stays to the left of the origin and has its turning point at x
=ln�1 /2�, see �5.31�. Comparing this to �5.30�, we see that it corresponds to the real part of g�z�
for z� �z− ,z+�. Hence EK�y�=EP�y� now follows from ẋ2 /2=V−�x�.

VI. THE DARBOUX AND KAPTSOV–SHAN’KO SOLITONS

In this section we begin by showing that the solitons obtained by the B�-reduction from the
Kyoto 2D Toda solitons are equal to those obtained by a similar reduction from a seemingly
different class of 2D Toda solitons. The latter are constructed via repeated Darboux transforma-
tions. As will transpire, this procedure yields a larger class of solutions, involving an arbitrary
constant antisymmetric matric C. In order to obtain equality to the B� solitons of Sec. II, this
matrix must be suitably specialized.

Our demonstration of equality leads to a new representation of the latter solitons. This repre-
sentation can be exploited to show that �0 equals the square of a simpler tau function. This is
because it readily leads to �0 being the determinant of an antisymmetric M �M matrix A. Hence
it follows that we have

�0 = �2, � = Pf�A� . �6.1�

The Pfaffian can be explicitly evaluated, and when the Tzitzeica substitutions of Secs. II and III
are made in A, then the resulting � is the one obtained by Kaptsov and Shan’ko in their study of
the Tzitzeica equation.16

We proceed with the details. We start from the tau function �n �2.19�, with J, D, and A given
by �2.17�, �2.20�, and �2.21� and with the quantities � j in D arbitrary at this stage. We claim that
�n is equal to the determinant �̃n of the matrix

Mn = CR + BÃnB , �6.2�

where

CR = 
 0 RN

− RN 0
� , �6.3�

B = diag��1, . . . ,�M� , �6.4�

Ãn,jk =
�− aj�nak

−n+1

aj + ak
, j,k = 1, . . . ,M , �6.5�

provided that �1 , . . . ,�M are chosen such that

� j�M−j+1 = � j
2, j = 1, . . . ,N . �6.6�

�Recall that RN denotes the N�N reversal permutation matrix.�
In order to prove this, we denote the columns of Mn by c1 , . . . ,cM and use

�̃n = �Mn� = �Col�c1, . . . ,cM�� = �Col�cM, . . . ,cN+1,− cN, . . . ,− c1�� . �6.7�

Thus, �̃n equals the determinant of the matrix

1M + NnJ, Nn,jk = � j�M−k+1
�− aj�n�aM−k+1�−n+1

aj + aM−k+1
. �6.8�

Transforming this matrix with the similarity matrix
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S = diag��1, . . . ,�M�, � j = ��M−j+1/� j�1/2, j = 1, . . . ,M , �6.9�

we obtain

�̃n = �1M + D̃AnD̃J� , �6.10�

with

D̃ = diag���1�M�1/2,��2�M−1�1/2, . . . ,��M�1�1/2� . �6.11�

Hence the �-constraint �6.6� entails equality of �̃n and �n, as advertised.
We can now compare the new representation

�n = �CR + DÃnD� , �6.12�

obtained by choosing

� j = �M−j+1 = � j, j = 1, . . . ,N �6.13�

�so that �6.6� is obeyed, and B and D̃ both equal D�, with the solitons obtained by a B� symmetry
reduction from the Darboux-type 2D Toda solitons. �See Appendix C for a sketch of their con-
struction.� The reduced solitons are of the form

�n
D = �C + B̃ÃnB̃� , �6.14�

where C is an arbitrary antisymmetric M �M matrix and B̃ is a diagonal matrix,

B̃ = diag��̃1, . . . ,�̃M� , �6.15�

with diagonal elements of the form

�̃ j = � j exp�− ivaj + iuaj
−1�, j = 1, . . . ,M . �6.16�

Recalling the definition �2.13�–�2.15� of � j, we see that �6.6� is obeyed when we choose
�1 , . . . ,�M such that

� j�M−j+1 = exp�� j�, j = 1, . . . ,N . �6.17�

Provided we also specialize the arbitrary antisymmetric matrix C to CR �see �6.3��, we therefore
conclude equality of the reduced Darboux-type solitons to the reduced Kyoto solitons.

We continue by using the new representation �6.12� to show the square property of �0, see

�6.1�. As it stands, the matrix CR+DÃ0D is not antisymmetric. But we have

Ã0,jk =
ak

aj + ak
=

1

2

1 −

aj − ak

aj + ak
� , �6.18�

so that we can write

Ã0 = 1
2� � � − 1

2A, � = �1, . . . ,1� , �6.19�

where A is the antisymmetric matrix with elements

A jk =
aj − ak

aj + ak
. �6.20�

As shown in Appendix B, the determinant
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�0 = �CR + 1
2 �D� � D� − DAD�� �6.21�

equals the square of

� = Pf�CR − DAD/2� , �6.22�

and the Pfaffian can be explicitly evaluated. The resulting formula is

� = �
l=0

N

�
1�j1
¯
jl�N

	
m=1

l

djm
· 	

1�m
n�l

cjmjn
, �6.23�

with

dj = − 1
2� j

2A j,M−j+1, j = 1, . . . ,N , �6.24�

cij = AijAi,M−j+1A j,M−i+1AM−j+1,M−i+1, i, j = 1, . . . ,N , �6.25�

see �B21�.
Next, we specialize a1 , . . . ,aM as in �2.26� and �2.27�. Using �2.31�, this yields

dj =
cos�c�

2i sin�c�
exp�� j − 2 sin�c��v� j + u� j

−1�� , �6.26�

cij = 
�i − � j

�i + � j
�2�i

2 + � j
2 + 2 cos�2c��i� j

�i
2 + � j

2 − 2 cos�2c��i� j

, �6.27�

where

� j = exp�� j�, j = 1, . . . ,N . �6.28�

We now substitute �3.11� and then choose c=	 /3 and introduce new parameters

kj = �3� j, exp�sj� = exp�qj/2�Fj���/2, j = 1, . . . ,N , �6.29�

x = − v, y = − u . �6.30�

Then we finally obtain

dj = exp�sj + xkj + 3ykj
−1� , �6.31�

cij = 
 ki − kj

ki + kj
�2ki

2 + kj
2 − kikj

ki
2 + kj

2 + kikj

. �6.32�

With �q ,�� varying over P �1.15�, we have kj �0 and exp�sj��0, so that dj �0 and cij �0.
The function � is therefore positive, implying �0 is positive. Note that � can be rewritten in the
form �2.1�, with M, � j,n, and f jk replaced by N, dj, and cjk, respectively.

Last but not least, the tau function �6.23� with the substitutions �6.31� and �6.32� coincides
with the tau function obtained in Sec. 2 of Ref. 16. Moreover, combining the relations

exp��� = �2/�0, �0 = �1, �0 = �2 �6.33�

�see �1.13�, �1.11�, and �6.1�� and the 2D Toda equation of motion �1.10� with n=1, we deduce

2�u�v ln � = 1 − exp��� . �6.34�

Therefore, the function exp��� coincides with the function v employed in Ref. 16.
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VII. CONCLUDING REMARKS

A. Integrability on ΩP

It is not hard to see that the flows generated by the Hamiltonians

Hr = Tr�Lr�, r � R�, �7.1�

leave �P invariant provided

cos�rc� = cos�c� . �7.2�

Indeed, this readily follows from �4.11� and �4.17�, noting that �7.1� corresponds to �4.10� with
h�z�=erz. Thus the restricted phase space �P ,� j=1

N dqj ∧d� j� and the Hamiltonians

Hr, � r = 1 + 2	k/c, k � Z , �7.3�

give rise to an integrable system on �P. For the Tzitzeica case c=	 /3, one can choose as the N
independent Hamiltonians the power traces

Tr�L1+6k�, k = 0,1, . . . ,N − 1. �7.4�

B. Space-time trajectories

As we have shown in Theorem 4.1, on �P the tau function �1.39� equals the Tzitzeica tau
function, and hence is real, see Proposition 3.1. This reality property is far from obvious for n
=0,1, but for n=2 reality on all of � is in fact clear from real-valuedness of A, see �1.32�.
Specializing to �P, we have

�2�u,v� = 	
i=1

2N

�1 − exp�xi
+�u,v��� · 	

j=1

N

�1 + exp�xj
−�u,v��� . �7.5�

Now it follows from Sec. VI that �0�u ,v� is positive. Therefore, the Tzitzeica solution

��u,v� = ln��2�u,v�/�0�u,v�� �7.6�

has logarithmic singularities at the zeros of �2, as we have already seen for N=1 in Sec. VI. We
proceed to analyze these in terms of the space-time coordinates t and y, see �1.2�.

Fixing t, the function �2 is positive for y→ �� and has 2N sign changes for finite y. The
locations of these zeros on the y axis are distinct for all t �since x2N

+ 
 ¯ 
x1
+�. Thus one obtains

2N space-time trajectories, which may be viewed as the locations of the particles in the N-soliton
solution. For t→ �� these trajectories exhibit soliton scattering, with a factorized phase shift in
terms of the function ln�cij�, see �6.32�. A more systematic analysis would be feasible by following
the path laid out in Chap. 7 of Ref. 31, but this is beyond our present scope. See, however, Fig. 2
for a plot of the two-soliton collision.

FIG. 2. �Color online� Two-soliton interaction. −��t ,y� is shown; the y-axis points left to right and the t-axis points into
the page. The plateau approximates the region in which ��t ,y� is complex valued.

043511-23 Tzitzeica solitons J. Math. Phys. 50, 043511 �2009�

Downloaded 26 Mar 2010 to 130.209.6.41. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



C. Comparison with Ref. 33

The 2D Toda soliton tau functions studied in Ref. 33 do not include the above real valued
Tzitzeica tau functions. This is because in Ref. 33 the condition �−n= �̄n is imposed �see �2.10� in
Ref. 33�, whereas for the Tzitzeica case we have �−1=�2��1= �̄1. To accommodate this different
starting point, the fusion procedure in Sec. 2 of Ref. 33 starts from tau functions that in terms of
the relativistic Calogero–Moser systems amount to

�n = �1M + exp�− 2inc�A�x�u,v���, A�x� = diag�exp�x1
+�, . . . ,exp�xM

+ �� . �7.7�

Even so, we could specialize the fusion identities of Ref. 33, since they only pertain to the action
variables, and the dependence on the latter is governed by the same function ��2.15� in Ref. 33� for
particles and antiparticles.

D. Quantum analogs

We have chosen N+=2N and N−=N throughout the paper �see �1.34��, but we could just as
well have started from N particles and 2N antiparticles. Indeed, this amounts to working with the
“charge conjugate” dual Lax matrix

AC�x� = diag�exp�x1
+�, . . . ,exp�xN

+�,− exp�x1
−�, . . . ,− exp�x2N

− �� �7.8�

and tau function

�n
C�u,v� = det�13N − exp�i	�1 − 2n�/3�AC�x�u,v��� �7.9�

instead of �1.32� and �1.39�. Clearly, one can then proceed in the same way as before.
On the other hand, one cannot enlarge the three-body soliton correspondence without ventur-

ing into complexified phase spaces, losing control of the action-angle map in the process. More
precisely, there exist real valued Tzitzeica soliton tau functions that correspond to two different
charges, hence giving rise to breatherlike bound states. �Indeed, this is not hard to see from the
explicit form of the solitons at the end of Sec. III; for example, one needs only perform a suitable
analytic continuation in the two-soliton solution to obtain the one-breather solution.� However, it
can be shown that these do not correspond to subspaces of the real Calogero–Moser phase spaces
with arbitrary N+ and N−.

It may be expected that this picture persists on the quantum level. To be specific, a suitable
reduction of the unitary joint eigenfunction transform for the commuting quantum Hamiltonians
with c=	 /3 and 3N variables �which, to be sure, is not even known to exist to date� should give
rise to a unitary transform with N variables, which can be interpreted as a transform for N quantum
solitons with the same charge. However, no such reductions are likely to exist when different
charges are involved. In particular, if quantum breathers for the Tzitzeica quantum field theory do
exist �a feature that is taken for granted in most of the work within the form factor program�, then
they are not likely to have analogs in the Calogero–Moser particle picture. �By contrast, for the
sine-Gordon case a complete correspondence is expected.41�

E. Demoulin solitons

From Propositions 2.2 and 2.3 it is clear that for

c = 	/6 �7.10�

the tau function satisfies

�−n+1 = �n, �n+6 = �n. �7.11�

As a consequence, we have
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�1 = �0, �2 = �5, �3 = �4. �7.12�

Setting

hn = �n+1�n−1/�n
2 = exp��n − �n−1� �7.13�

�where we used �1.9��, we deduce

h1 = h0, h2 = h5, h3 = h4 �7.14�

and

h1h2h3 = 1. �7.15�

Now from �1.3� we have

�ln hn�uv = 2hn − hn+1 − hn−1. �7.16�

Hence, setting

h = h1 = �2/�1, k = h3 = �2/�3 �7.17�

and using �7.15�, we obtain

�ln h�uv = h −
1

hk
, �ln k�uv = k −

1

kh
. �7.18�

This system of relativistic wave equations is the Demoulin system, see Ref. 40, p. 343, Eq.
�9.58�. Therefore the c=	 /6 tau functions with parameters in P yield real valued Demoulin
solitons in tau function form. In particular, from �3.15�–�3.27� we see that the one-soliton case is
given by �7.12� and

�1 = 1 + 2G + G2, �2 = 1 + G2, �3 = 1 − 2G + G2, G = exp�q/2 − ve� − ue−�� .

�7.19�

Note added in proof. The identity �B14� is indeed known. It is called Schur’s Pfaffian identity
�I. Schur, J. Reine Angew. Math. 139, 155 �1911�.�
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APPENDIX A: FUSION

In this appendix we detail how formula �4.6� for pI��̂�2 leads to �4.33� in the collapsing torus

limit. We begin by recalling that in this limit pI��̂� vanishes, unless the subset I of �1, . . . ,3N� has
the form

I = �
j�J

Ij , �A1�

where
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J = I � �1, . . . ,2N�, Ij = �j�, IN+j = �N + j,2N + j�, j = 1, . . . ,N , �A2�

see the paragraph preceding �4.30�. For a subset I of this form, �4.6� entails

pI��̂�2 = 	
j�J,k�J


 	
m�Ij,n�Ik

sinh2���̂m − �̂n�/2� + sin2 c

sinh2���̂m − �̂n�/2�
� . �A3�

Next, we substitute �4.26� and �4.27� in this formula and cancel terms in the interior product
using fusion identities. A general fusion identity, in which the sets Ik are of arbitrary cardinality,
can be found in Ref. 33, but here we only detail the special cases we need.

Using the trigonometric/hyperbolic identity

sinh2 x + sin2 y = sinh�x + iy�sinh�x − iy� , �A4�

the general pair factor in �A3� can be written as

sinh���̂m − �̂n�/2 + ic�sinh���̂m − �̂n�/2 − ic�

sinh2���̂m − �̂n�/2�
. �A5�

For a soliton-soliton interaction included in J, there is only one pair factor in the product. Spe-

cifically, we have Ij = �j�, Ik= �k� and �from �4.26� and �4.32�� �̂ j =� j , �̂k=�k, so the contribution
to the product for a soliton-soliton pair is

sinh2��� j − �k�/2� + sin2 c

sinh2��� j − �k�/2�
=

sinh��� j − �k�/2 + ic�sinh��� j − �k�/2 − ic�
sinh2��� j − �k�/2�

=
s�2�s�− 2�

s2�0�
,

�A6�

where we have set s�l�=sinh��� j −�k+ lic� /2�. For a soliton-breather interaction we have Ij = �j�,
IN+k= �N+k ,2N+k� and �̂ j =� j, �̂N+k=�k+ ic, �̂2N+k=�k− ic, yielding two pair factors

s�1�s�− 3�
s2�− 1�

s�3�s�− 1�
s2�1�

=
s�3�s�− 3�
s�1�s�− 1�

=
sinh2��� j − �k�/2� + sin2�3c/2�
sinh2��� j − �k�/2 + sin2�c/2��

. �A7�

Finally, for a breather-breather interaction in J, we get IN+j = �N+ j ,2N+ j�, IN+k= �N+k ,2N+k�,
and hence four pairs whose contribution to the product is

s�2�s�− 2�
s2�0�

s�4�s�0�
s2�2�

s�2�s�− 2�
s2�0�

s�0�s�− 4�
s2�− 2�

=
s�4�s�− 4�

s2�0�
=

sinh2��� j − �k�/2� + sin2�2c�
sinh2��� j − �k�/2�

.

�A8�

Using �l+N=�l and cl=c, cN+l=2c for l=1, . . . ,N �see �4.32��, these three cases may be encoded in
the single formula

sinh2��� j − �k�/2� + sin2��cj + ck�/2�
sinh2��� j − �k�/2 + sin2��cj − ck�/2��

, j,k = 1, . . . ,2N . �A9�

Hence �4.33� results.

APPENDIX B: PFAFFIAN IDENTITIES

In this appendix we show that the determinant on the right hand side of �6.21� equals the
square of the Pfaffian on the right hand side of �6.22�, and that the latter has the explicit form
�6.23�–�6.25�. We proceed in a slightly more general way, since this eases the notation and adds
insight.
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First we note that the determinant is of the form �v � v+A�, where A is a 2N�2N antisym-
metric matrix. Now we invoke the following lemma.

Lemma B1: Assume A is an antisymmetric 2N�2N matrix and v�C2N. Then one has

�v � v + A� = �A� . �B1�

Proof: By continuity it suffices to prove this for an invertible A. Then we have

�v � v + A� = �A��12N + A−1v � v� = �A��1 + �v̄,A−1v�� . �B2�

Now since �A−1�t= �At�−1=−A−1, it follows that A−1 is also antisymmetric. Hence the inner product
�v̄ ,A−1v�=vtA−1v vanishes, and �B1� results. �

As a consequence, we have

�0 = �CR − DAD/2� = �2, �B3�

with � given by �6.22�. We continue to show �6.23�. Again, we first study a slightly more general
situation. We begin by recalling the definition

Pf�A� = � �− �sgn���Ai1j1
¯ AiNjN

, A � M2N�C�, At = − A , �B4�

where the sum is over all index choices with

1 = i1 
 ¯ 
 iN � 2N − 1, i1 
 j1, . . . ,iN 
 jN, �B5�

and � is the permutation

�:�i1, j1, . . . ,iN, jN� � �1,2, . . . ,2N� . �B6�

Denoting Pf�A� by �1,2 , . . . ,2N�, this implies an expansion formula

�1,2, . . . ,2N� = �
n=2

2N

�− �n�1,n��2, . . . , n̂, . . . ,2N� , �B7�

where the notation on the right hand side will be clear from context. Consider now the Pfaffian of
the antisymmetric matrix

B = 
 0 �RN

− �RN 0
� + A, � � C . �B8�

The relevant �upper triangular� part of B is

A12 ¯ ¯ ¯ ¯ ¯ � + A1,2N

¯ ¯ ¯ ¯ ¯ ¯

AN−1,N AN−1,N+1 � + AN−1,N+2 ¯ ¯

� + AN,N+1 AN,N+2 ¯ ¯

AN+1,N+2 ¯ ¯

¯ A2N−2,2N

A2N−1,2N

. �B9�

Therefore we have
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Pf�B� = �
l=0

N

�N−lSl, �B10�

where Sl is a sum over certain “minors.” Specifically, taking �B7� into account to check signs, we
readily get

Sk = �
1�j1
¯
jk�N

�j1, . . . , jk,2N − jk + 1, . . . ,2N − j1 + 1� . �B11�

�Hence, in particular, S0=1 ,S2N= �1, . . . ,2N�.�
Applying this expansion to � �6.22�, we obtain

� = �
l=0

N

�
1�j1
¯
jl�N

	
m=1

l 
−
1

2
� jm

2 � · �j1, . . . , jl,2N − jl + 1, . . . ,2N − j1 + 1�A, �B12�

where �. . .�A denotes the reduced Pfaffians for A. We now obtain an explicit formula for the latter.
Lemma B2: Suppose A�M2l�C� is given by

A jk =
aj − ak

aj + ak
, j,k = 1, . . . ,2l . �B13�

Then we have

Pf�A� = 	
1�j
k�2l

A jk. �B14�

This explicit evaluation is proved in Ref. 42. It is presumably known, but we do not know a
reference. Indeed, up to its sign this lemma can be viewed as a consequence of Cauchy’s identity.
To see this, note that the lemma entails

�A� = 	
1�j
k�2l

A jk
2 . �B15�

If we now substitute aj→exp�2qj�, then �B15� becomes

��tanh�qj − qk���2l�2l = 	
1�j
k�2l

tanh2�qj − qk� , �B16�

an identity that readily follows from Cauchy’s identity �see �B42� in Ref. 43�. Thus, Cauchy’s
identity implies �B15�, so �B14� follows save for its sign.

Returning to �B12�, we substitute �B14� in the A-Pfaffians, yielding

	
j
k,j,k��j1,. . .,jl,2N−jl+1,. . .,2N−j1+1�

A jk. �B17�

Introducing

cjk = A jkA j,2N−k+1Ak,2N−j+1A2N−k+1,2N−j+1, 1 � j 
 k � N , �B18�

we can write �B17� as

	
m=1

l

A jm,2N−jm+1 · 	
j
k,j,k��j1,. . .,jl�

cjk. �B19�

Substituting this in �B12� and setting
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dj = − 1
2� j

2A j,2N−j+1, j = 1, . . . ,N , �B20�

we finally obtain

� = �
l=0

N

�
1�j1
¯
jl�N

	
m=1

l

djm
· 	

j
k,j,k��j1,. . .,jl�
cjk, �B21�

which amounts to �6.23�.

APPENDIX C: SOLUTIONS OBTAINED BY BINARY DARBOUX TRANSFORMATION

The A� Toda lattice �1.3� has a family of solutions obtained by an iterated binary Darboux
transformation. We follow the derivation given in Ref. 44 but make some small modifications so
as to conform with the notation and conventions used in the rest of this paper.

A Lax pair for �1.3� is given by

An,u = i exp��n+1 − �n�An+1, − An,v = iAn−1 + �n,vAn. �C1�

�Thus, equality of cross derivatives entails �1.3�.� It is covariant with respect to the Darboux
transformation45

Ãn = An,v − an,van
−1An, �C2�

�̃n = �n + ln�an/an−1� , �C3�

where an is an eigenfunction �i.e., any particular solution of �C1��. The adjoint Lax pair is

− Bn,u = i exp��n − �n−1�Bn−1, Bn,v = iBn+1 + �n,vBn. �C4�

Given an eigenfunction an and an adjoint eigenfunction bn for a seed solution �n=�n
0

=ln��n+1
0 /�n

0� to �1.3�, an eigenfunction potential ��an ,bn� is defined, consistently and uniquely up
to an additive constant, by the three requirements

��an,bn�,u = − i exp��n+1
0 − �n

0�bnan+1, �C5�

��an,bn�,v = − ibn+1an, �C6�

��an,bn� − ��an,bn−1� = − bnan. �C7�

The Lax pair �C1� is also covariant with respect to the binary Darboux transformation

Ân = An − an��An,bn�/��an,bn� , �C8�

�̂n = �n
0 + ln���an,bn�/��an−1,bn−1�� , �C9�

or, equivalently, �̂n=��an−1 ,bn−1��n
0. �In �C8� An denotes the general solution to �C1� with �

replaced by �0.�
The Mth iterated binary Darboux transformation is expressed in terms of an M-vector An,

whose components satisfy �C1� with �→�0, and an M-vector Bn, whose components satisfy �C4�
with �→�0. These eigenfunction and adjoint eigenfunction vectors are used to define an M
�M matrix eigenfunction potential �n=��An ,Bn� satisfying
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�n,u = − i exp��n+1
0 − �n

0�Bn � An+1, �n,v = − iBn+1 � An, �n − �n−1 = − Bn � An.

�C10�

The solutions obtained are then expressed as

�̂n = det��n−1��n
0. �C11�

From now on we omit the ˆ and write �̂n as �n.
The B� Toda lattice has �−n=−�n for n�Z, so that �0=0 and the system is semi-infinite,

expressed in terms of �1 ,�2 , . . .. This reduction can be achieved by choosing solutions satisfying
�−n+1=�n. In this reduction, it is consistent to choose adjoint eigenfunctions given by Bn

= �−1�nA−n. It then follows from �C10� that

�−n = − �n−1
t �C12�

and so provided M is even, M =2N, say, we indeed obtain �−n+1=�n.
In particular, to obtain soliton solutions for the A� Toda lattice, one chooses as seed solution

the vacuum solution �n
0=1 , �n

0=0, and then vectors of eigenfunctions and adjoint eigenfunctions
given by

An,j = � jaj
−ne−ivaj+iuaj

−1
, Bn,j = � jbj

neivbj−iubj
−1

, j = 1, . . . ,M , �C13�

where � j, � j, aj, and bj are arbitrary constants. Then, one obtains

�n = det
Cjk + � j�k

bj
nak

−n+1

ak − bj
e−iv�ak−bj�+iu�ak

−1−bj
−1�� , �C14�

where Cjk are arbitrary constants. In the B�-reduction, one must take bi=−ai and �i=�i giving

�n = det
Cjk + � j�k

�− aj�nak
−n+1

aj + ak
e−iv�aj+ak�+iu�aj

−1+aj
−1�� . �C15�

Here, Cjk are arbitrary constants satisfying, in accordance with the symmetry condition �C12�,
Ckj =−Cjk.

Thus we have arrived at expression �6.14� that is the starting point of comparison with the
Kyoto solitons in Sec. VI.
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