Bach, L.L. and Smith, B. (2021) Within and between day variability in coral reef fish assemblages: implications for fish community surveys. Journal of Applied Ichthyology, 37(6), pp. 847-
856. (doi: 10.1111/jai.14267)

The material cannot be used for any other purpose without further permission of the publisher and is for private use only.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

This is the peer reviewed version of the following art icle:

Bach, L.L. and Smith, B. (2021) Within and between day variability in coral reef fish assemblages: implications for fish community surveys. Journal of Applied Ichthyology, 37(6), pp. 847-856, which has been published in final form at: $10.1111 / \mathrm{jai} .14267$

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

http://eprints.gla.ac.uk/252549/

Deposited on 21 September 2021

$$
\begin{gathered}
\text { Enlighten - Research publications by members of the University of } \\
\text { Glasgow } \\
\text { http://eprints.gla.ac.uk }
\end{gathered}
$$

```
Title: Within and between day variability in coral reef fish assemblages: implications for fish community surveys
```


Short running title: Short-term variability in fish communities

Lydia Luise Bach ${ }^{1 *}$, Blair Smith ${ }^{1}$

```
\({ }^{1}\) Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, University Avenue, G12 8QQ, UK
*Corresponding author: lydia.bach@,gla.ac.uk
```


Acknowledgements

We would like to thank the Glasgow University Expedition team for the support and help during data collection, in particular, Guy Henderson, Steven Melvin, Anna Persson, Megan Kirton, Amy Dodson and Louise Montgomery. We thank the staff at Roots Luxury camp for their help in the field and throughout the whole research expedition. Finally, we would like to acknowledge Dr David Bailey and Dr Deborah McNeil for their support in the field and advice.

Data availability statement

All data is available on Figshare: 10.6084/m9.figshare. 16606442.
Keywords: reef fish, monitoring, survey, coral, community assemblage, temporal variability, diurnal patterns

Summary

Coral reef ecosystems are under increasing anthropogenic pressures making it ever more important to monitor changes in fish communities to implement appropriate management. In contrast to long-term spatial and temporal variation which has been extensively documented, little work has been carried out to identify variability in fish assemblages on short time scales, with few studies testing patterns of fish assemblages between and within days.

Here we investigated the diurnal changes in species richness, relative abundance and assemblage composition in a shallow coral reef fish community in Egypt. To do so, a section of coral reef was filmed during the morning (0600 hrs), midday (1000 \& 1400 hrs) and afternoon (1800 hrs) over eleven days.

Dusk (0600 hrs) and dawn samples (1800 hr) showed higher species richness compared to late morning (1000 hr) and mid-day samples (1400 hr) and borderline significantly higher numbers of total individuals, likely associated with feeding activity and predator avoidance. Assemblage composition varied across days and time-of-day, showing greater variability during dusk and dawn associated with a transition between day-time and night-time assemblages.

Our results have implications for designing coral reef fish surveys, emphasising that short-term changes in fish communities should be considered when designing experiments to monitor fish assemblages over time. Where possible, we suggest increasing replication within sites and time scales or randomising data within a specific time window at all sites, looking to exclude dusk and dawn.

Introduction

Anthropogenic impacts alter coral reef fish assemblages, affecting ecosystem processes (B. J. Harvey, Nash, Blanchard, \& Edwards, 2018; Hoegh-Guldberg \& Bruno, 2010; Hughes et al., 2017; Rice, Ezzat, \& Burkepile, 2019) and functions. Knowledge of the spatial and temporal variability of coral reef fish assemblages is crucial in order to implement effective monitoring and conservation measures, preserving ecosystem processes and functions (Bellwood, Hughes, Folke, \& Nyström, 2004; Hughes et al., 2017; Lindenmayer \& Likens, 2010). This depends on robust ecological studies and monitoring programmes that detect spatial and temporal changes in fish assemblages (Goldsmith, 2012; Ormerod, 2003; Thomas, 1996).

However, the spatial and temporal heterogeneity characterizing fish communities makes understanding ecological causes for changes in fish assemblage composition challenging (Levin, 1992). This requires the implementation of sampling designs that minimise sampling variance due to processes occurring at scales that are not of interest, such as within or between days (Underwood, 1991; Underwood \& Chapman, 2003; Winer, 1962).

The spatial variability in coral fish assemblages has been studied in great detail worldwide at multiple spatial and temporal scales, including across continents (Ahmadia, Tornabene, Smith, \& Pezold, 2018), regionally (Almany, 2004; Friedlander, Brown, Jokiel, Smith, \& Rodgers, 2003; I. D. Williams et al., 2015, 2008), locally between (Friedlander et al., 2003; Friedlander \& Parrish, 1998a; Hixon \& Beets, 1993) and within coral reef systems (Dollar, 1982; Friedlander \& Parrish, 1998b; Friedlander, Sandin, DeMartini, \& Sala, 2010) on short (Birt, Harvey, \& Langlois, 2012; Bond et al., 2018; Santos, Monteiro, \& Gaspar, 2002) and longer time scales (Santos, Monteiro, \& Lasserre, 2005; Jan, Chen, Lin, \& Shao, 2001). The large majority of studies
published on fish assemblages at large and medium scales are on based sampling with a single survey effort per site at one time during the day or at night (Choat, Ayling, \& Schiel, 1988; Gust, Choat, \& McCormick, 2001; Santos et al., 2002; Willis, Millar, \& Babcock, 2000). Finer-scale temporal variability, in particular daytime changes, remaining less well understood.

The environmental conditions within coral reefs can fluctuate dramatically throughout the day (Guadayol, Silbiger, Donahue, \& Thomas, 2014; Potts \& Swart, 1984; Santos et al., 2002), impacting behaviour and subsequent distribution of coral reef assemblages (Bond et al., 2018; González-Sansón, Aguilar, Hernández, Cabrera, \& Curry, 2009; Hammerschlag, Heithaus, \& Serafy, 2010). Much of the prior work on finer-scale temporal variability in fish assemblages has focussed on shifts in behaviour, distribution and reef fish abundance between diurnal (daylight hours) and nocturnal fish assemblages, documenting well-defined crepuscular change over periods (Colton \& Alevizon, 1981; Rooker \& Dennis, 1991; Starck \& Davis, 1966). In contrast, variability within and between days has attracted less attention (Colton \& Alevizon, 1981; Rooker \& Dennis, 1991; Starck \& Davis, 1966), despite its potential to confound abundance and density estimates in reef fish surveys (Spyker \& Van Den Berghe, 1995). Studies investigating diurnal fish assemblage changes found evidence for differences in the abundance of some fish species within days, but generally not between days (Colton \& Alevizon, 1981; Rooker \& Dennis, 1991; Santos et al., 2002). Willis (2006) found diurnal differences in the density of some fish species, but not in assemblage composition. Diurnal variation is likely the result of behavioural adaptations, including foraging (Hammerschlag et al., 2010; Ogden \& Buckman, 1973), predator avoidance (R. J. Fox \& Bellwood, 2011; Wolf, 1985) and spawning (Colin, 1978; Samoilys, 1997). Feeding times in fish vary diurnally (Polunin \& Klumpp, 1989), in particular in
herbivorous species, which exhibit marked feeding activities associated with time periods when algae have the greatest nutritional value (Hobson, 1973; Zemke-White, Choat, \& Clements, 2002), and in zooplanktivorous species, associated with currents delivering plankton (Bray, 1980; Kingsford \& MacDiarmid, 1988). This evidence suggests that diurnal, rather than between-day variation impacts fish assemblage composition.

Here, we used video imagery surveying a coral reef in Egypt to investigate whether species richness, number of individuals and community composition varied within and between days. Based on prior work (e.g. Colton \& Alevizon, 1981; Santos et al., 2005; Rooker \& Dennis, 1991; Spyker \& Van Den Berghe, 1995; Willis et al., 2006), we predicted that there will be differences in fish assemblage composition within days, but less so between days, with certain groups of species such as herbivores species showing diurnal patterns in relative density.

Materials and methods

This study was conducted at three sites at the house reef at the Roots Camp, approximately 13 km north of the town of El Quseir, Egypt $\left(26.2062^{\circ} \mathrm{N}, 34.2195^{\circ} \mathrm{E}\right)$ in July 2014. The three sampling sites, characterised by similar benthic composition, featuring south sloping reef walls enclosing a central sandy inlet allowing inshore access dominated by Acropora and Pocillopora at a depth of 5-7m, similar to reefs described in the area prior (Alexandroff, Zuschin, \& Kroh, 2016). The sites were located south of the entry point along the reef line at a distance of 250 m from each other, representing a typical section of the reef.

Experimental design and data collection

Data was collected using video at 0600-0700 hrs, 1000-1100 hrs, 1400-1500 hrs and 1800-1900 hrs. Sampling day was included as a factor to account for between-day
variability in community composition. Thus, the experimental design was a three-factor design including day (integer) and time-of-day (categorical, four levels: 0600, 1000, 1400 and 1800 hrs) and site (categorical, three levels). At the time that the study was carried out, sunrise was approximately 0454 hr and sunset was approximately at 1834 hr at the start of the sampling period.

The video system deployed consisted of a mount using 50 mm diameter PVC pipe holding a GoPro (Hero 3+ Black) camera at a 90-degree angle approximately 15 cm above the sandy bottom of the reef at an average depth of six meters. Defining the area or volume that is ultimately sampled using video recordings is a key challenge (E. S. Harvey \& Shortis, 1998; Willis \& Babcock, 2000). To avoid over or underestimating the sampling area, the camera was positioned two metres away from the reef wall on the sandy bed, allowing us to confidently identify species in the naturally enclosed sampling area of a volume of approximately $8.38 \mathrm{~m}^{3}$. On each day for 11 days, one surveyor placed the camera onto the mount and started recording. Different sites were recorded each day $(\mathrm{n}=8)$, after being randomly selected. Once recording began it was left in situ for 30 minutes; the first 10 minutes of footage were excluded to allow any disturbed fish to settle and the 20 minutes of footage after this was then used for the analysis.

The video footage was subsequently downloaded to a computer and trimmed to exclude any unwanted footage such as deployment. Where possible the individuals were identified down to species level by two researchers. In order to eliminate repeat counts of fish in the field, maximum number of individuals of the same species appearing in the field of view (MaxN) over the whole 20 min of filming was recorded, providing a conservative estimate of fish density recorded (Cappo, Harvey, Malcolm, \& Speare, 2003; E. S. Harvey, Cappo, Butler, Hall, \& Kendrick, 2007).

Statistical analysis

Levene's test (J. Fox, 1997) was used to analyse sample variance for the total number of individuals and species richness for the factors time-of-day and site using the levene.test function in the car package in r (J. Fox, 1997). Multivariate dispersions between groups, a multivariate equivalent of Levene's test for homogeneity in variance (Anderson, 2001), were analysed using the betadisper routine in the vegan for assemblage composition (Oksanen et al., 2013). Permutational multivariate analysis of variance (PERMANOVA with 9999 permutations) was used to analyse differences in fish assemblage composition at the four time intervals, between days and sites using the adonis2 function in vegan, based on square-root transformed assemblage composition data (Anderson, 2001) following the three factor design described above. Permutational distance-based approaches are appropriate for analysing abundance data that have many zero counts and are highly skewed (Anderson, 2001; Watson, Harvey, Anderson, \& Kendrick, 2005). The data were square-root transformed and analysed using a Bray-Curtis dissimilarity matrix adding a dummy variable. Pairwise tests were run between the significant groups using permutation tests of group mean dispersions (Anderson, 2006; Anderson, Ellingsen, \& McArdle, 2006) in vegan.

Univariate analyses were conducted on species richness, the total number of individuals and the relative abundance of individual species using the adonis2 function on Euclidean distance (see above) square-root transformed.

Differences in community composition were assessed using a non-metric multidimensional scaling plot (NMDS) for all videos using Bray-Curtis dissimilarity index on square-root transformed abundance data (Kruskal, 1964). The overlaid vectors indicate significant correlations among the relative abundances of species on the two axes of the NMDS using the vegan package (Oksanen et al., 2013; Oksanen, Kindt,

Simpson, \& Oksanen, 2018). Vectors of species contributions to beta diversity (species contribution to beta diversity) were computed, providing an insight into which species contributed most to changes in beta diversity across samples (Legendre \& Cáceres, 2013; Legendre \& Gallagher, 2001) in the package adespatial (Dray et al., 2018) in R with 999 permutation on Hellinger-transformed species abundance data. Changes in relative abundance of the five most abundant species and the five most important species contributing to beta diversity were analyzed using an ANOVA according to the three-factor design described above.

Results

A total of 4,258 individuals from 70 species were recorded during the study period. The five most abundant species were Zebrasoma desjardinii (763 individuals recorded), Ctenochaetus striatus (682 individuals recorded), Siganus luridus (383 individuals recorded), Acanthurus sohal (293 individuals recorded) and Siganus argenteus (292 individuals recorded) (Table 1).
[Table 1 here]

Number of individuals and species richness

Levene's Test for Homogeneity of Variance indicated that there were no significant differences in variances for the total number of individuals between time-of-day $\left(\mathrm{F}_{3,20}=1.005, \mathrm{P}=0.411\right)$ or site $\left(\mathrm{F}_{2,21}=1.524, \mathrm{P}=0.241\right)$, nor for species richness across time-of-day $\left(\mathrm{F}_{3,20}=1.054, \mathrm{P}=0.391\right)$ and site $\left(\mathrm{F}_{2,21}=0.470, \mathrm{P}=0.632\right)$.

Univariate analysis indicated that there were no significant differences in the total number of individuals across days, time-of-day or between sites (Table 2a, Figure 1a). Permutational analysis on untransformed species richness data suggested significant differences between time-of-day, but not days, the day and time-of-day interaction or sites (Table 2b). Pairwise tests indicated that species richness was
significantly lower at 1400 hrs compared to $0600 \mathrm{hrs}(\mathrm{P}=0.004)$ and $1800 \mathrm{hrs}(\mathrm{P}=0.04)$. There models indicated borderline statistical significance that was indicative of greater species richness at 0600 hrs compared to $1000 \mathrm{hrs}(\mathrm{P}=0.095)$ (Figure 1b).
[Figure 1 here]
[Table 2 here]

Fish assemblage composition

When analyzing the fish assemblages, betadisper indicated heterogeneity in assemblage composition between factors in time-of-day ($\mathrm{F}_{3,20}=5.39, \mathrm{P}=0.003$), but homogeneity in multivariate dispersions for site $\left(\mathrm{F}_{2,21}=0.56, \mathrm{P}=0.589\right)$. Pairwise comparisons of mean dispersions indicated lower variability in assemblage at 1000 hrs and 1400 hrs (but no significant pairwise difference), compared to significantly higher variability at 0600 and 1800 hrs (but no significant pairwise difference).

There were significant differences in community assemblage composition for day and time of day, but not for the interaction between day and time-of-day or site (Table 3). Pairwise tests indicated significant differences in community assemblage for the groups 0600 and $1400 \mathrm{hrs}(\mathrm{P}=0.044)$, and between 1400 and $1800 \mathrm{hrs}(\mathrm{P}=0.021)$. Ordination plots emphasized high time-of-day variability. The 1000 and 1400 hrs groups tended to cluster fairly closely; while group 0600 and 1800 hrs showed greater scatter, indicating more variable community assemblages and a separation between midday and crepuscular times (0600 and 1800 hrs) (Figure 2).
[Table 3 here]
[Figure 2 here]
We investigated effects of day and time-of day on the five most abundant species Zebrasoma desjardinii, Ctenochaetus striatus, Siganus luridus, Acanthurus sohal and Siganus argenteus, as well as the five species which showed the greatest
species contributions to beta diversity (SCBD, mean for each species across samples), including Abudefduf vaigiensis (mean SCBD: 0.0838), Siganus argenteus (also fifth most abundant species, mean SCBD: 0.0872), Siganus luridus (also third most abundant species, mean SCBD: 0.0786), Zebrasoma desjardinii (also most abundant species, SCBD: 0.0617) and Ctenochaetus striatus (second most abundant species, SCBD: 0.0348). Between and within-day variation was absent or stochastic, with no significant differences between sites for Ctenochaetus striatus $\left(\mathrm{F}_{1,14}=0.69, \mathrm{P}=0.419\right.$; $\mathrm{F}_{3,14}=0.43, \mathrm{P}=0.737$ and $\mathrm{F}_{2,14}=312, \mathrm{P}=0.206$ respectively $)$, Siganus luridus $\left(\mathrm{F}_{1,14}=0.74\right.$, $\mathrm{P}=0.405 ; \mathrm{F}_{3,14}=0.20, \mathrm{P}=0.893$ and $\mathrm{F}_{2,14}=0.44, \mathrm{P}=0.651$ respectively), Acanthurus sohal $\left(\mathrm{F}_{1,14}=4.07, \mathrm{P}=0.063, \mathrm{~F}_{3,14}=2.29, \mathrm{P}=0.123, \mathrm{~F}_{2,14}=0.22, \mathrm{P}=0.803\right.$, respectively) and Siganus argenteus $\left(\mathrm{F}_{1,14}=3.78, \mathrm{P}=0.072 ; \mathrm{F}_{3,14}=1.76, \mathrm{P}=0.201\right.$ and $\mathrm{F}_{2,14}=0.05, \mathrm{P}=0.953$ respectively)

Between day variation in relative abundance was significant but not within-day variation or site in Zebrasoma desjardinii $\left(\mathrm{F}_{1,14}=9.31, \mathrm{P}=0.009, \mathrm{~F}_{3,14}=1.46, \mathrm{P}=0.268\right.$; $\mathrm{F}_{2,14}=0.25, \mathrm{P}=0.781$, respectively). Similarly, Abudefduf vaigiensis showed significant differences between days, but not within days and across sites $\left(\mathrm{F}_{1,14}=23.83, \mathrm{P}=0.001\right.$, $\mathrm{F}_{3,14}=1.26, \mathrm{P}=0.326, \mathrm{~F}_{2,14}=4.03, \mathrm{P}=0.042$, respectively).

Discussion

Few studies have quantified short-term (between and within-day) variability in fish assemblages in sampling or monitoring programmes investigating medium spatial and temporal variation (i.e. in the order of seasons or years) (Hare \& Mantua, 2000; Lazzari et al., 1999). Yet, spatial patterns are potentially confounded by within or between-day variation due to sampling at different times (Gray, 1996; Willis et al., 2006). This study provides a valuable snapshot exploring variation in species richness and composition within and between days.

Species richness (i.e. mean number of species) showed significant differences within days, but not between days or sites. Species richness was greatest at dawn (0600 hrs) and dusk (1800 hrs) and there was some indication (approaching marginal significance given $\mathrm{P}=0.063$) that the total number of individuals was highest during dusk and dawn (Figure 1a). This is in contrast to Birt et al. (2012), who found significant differences in species richness between, but not within days. Feeding activity has been shown to be highest during dusk and dawn and coral reef species show a pronounced day-night changeover (Azzurro, Pais, Consoli, \& Andaloro, 2007; Collette, 1972), likely contributing to the patterns observed.

Overall, assemblage composition was similar of that reported by Kochzius (2007), who investigated community structure using visual census in El Wuadim Bay (El Queseir). In line the results of this study, they found that the families Acanturidae, Labridae and Pomacentridae dominated the community in terms of relative abundance, with the exception of Anthiinae (subfamily of Serranidae), which were not common in our study or others studies in the Red Sea (Khalaf \& Kochzius, 2002; Rilov_\& Benayahu, 1998). It is worth noting that species richness in this coral reef was relatively low compared to other sites in the Red Sea, sites with greater species richness might show different patterns.

Our study found significant between and within-day variability in fish assemblage composition, unlike other studies (Colton \& Alevizon, 1981; Rooker \& Dennis, 1991; Santos et al., 2002; Spyker \& Van Den Berghe, 1995; Willis et al., 2006). Pairwise-comparisons indicated that assemblage composition differed significantly between $0600 \& 1400$ and $1400 \& 1800$ hrs, likely associated with a transition between day-time and night-time assemblages. This is supported by the significant within-day heterogeneity evidenced by PERMDISP, suggesting greater variability in fish
assemblage composition during dusk and dawn. These results are associated with the emergence and retreat of diurnally or nocturnally active fish during dawn and dusk (Colton \& Alevizon, 1981; Hobson, 1965; Rooker \& Dennis, 1991). Moreover, reef species are more active in morning and evening associated with peaks in feeding activity in many species, predator avoidance during the day (Rickel \& Genin, 2005) and a pronounced day-night changeover (Azzurro, Pais, Consoli, \& Andaloro, 2007; Collette, 1972). We also found evidence for significant changes in assemblage composition between days. This may be associated with some temporal variability that is more subtle operating at between-day scales, including reproductive behaviour (e.g. spawning) (Tolimieri, Sale, Nemeth, \& Gestring, 1998; D. M. Williams, 1983), schooling and feeding behaviour (Milazzo, Badalamenti, Fernández, \& Chemello, 2005; Ogden \& Buckman, 1973), tidal or current state (Kingsford \& MacDiarmid, 1988).

Variation in abundance of individual species within daylight hours reflects feeding, habitat use and activity levels, and is likely species-specific (Holbrook, Schmitt, \& Brooks, 2008). Prior knowledge of such species-specific foraging behaviour and activity facilitates the design appropriate surveys, in particular if they are aimed a specific group of species (e.g. economically important targeted species). For example, diurnal variability in relative abundance will be lower in sedentary of territorial species such as Paracirrhites arcatus than that of larger, highly mobile species such as groupers (Holbrook, Schmitt, \& Brooks, 2008). Here, we investigated changes in relative abundance in six species, finding little to no evidence for a change in abundance with time-of-day. Zebrasoma desjardinii, Ctenochaetus striatus, Siganus luridus, Acanthurus sohal and Siganus argenteus often occur in roaming schools (Bos, CruzRivera, \& Sanad, 2017; Bouchon-Navaro \& Harmelin-Vivien, 1981; Lundberg \&

Lipkin, 1979) introducing variability that may make it difficult to distinguish between or within-day patterns. Despite exhibiting significant variation in their behavior and feeding ecology, surgeonfishes (including Zebrasoma desjardinii, Ctenochaetus striatus and Acanthurus sohal) tend to be the dominant herbivores on coral reefs (Barlow 1974; Fouda \& El-Sayed, 1996; Robertson,1983). Herbivores been shown to exhibit definite diurnal patterns in abundance, associated with either predator avoidance during dusk and dawn and/or the increasing nutrient peak of algae during midday (Hay. et al., 1988; Hobson, 1973; Zemke-White, Choat, \& Clements, 2002). Abudefduf vaigiensis is a generalist omnivore feeding on pelagic copepods, algae and sessile invertebrates (Clarke_\&_Bishop, 1948; Frédérich, Fabri,_Lepoint,_Vandewalle, \& Parmentier, 2009; Rowe, Figueira, Raubenheimer, Solon-Biet, \& Machovsky-Capuska, 2018), exhibiting diurnal feeding activities (Emery, 1973). While surprising that these species showed significant within-day changes in abundance, our results are in line with other studies (Andrew \& Jones, 1990; Azzurro et al., 2007; Birt et al., 2012; Choat \& Clements, 1993; Howard, 1989). The plasticity and flexibility of feeding habits has been highlighted in Siganidae (such as Siganus luridus and Siganus argenteus (Fox, 2012), which might have contribute to the lack of significant within and between-day patterns. Furthermore, temporal bias might arise from variability in fish or be an sampling or statistical effect. Birt et al. found significant differences between and within-days in their four-day study, arguing that rare species may be responsible for these observed differences in combination with the Bray Curtis resemblance matrix, which can be particularly sensitive to rare species and their use of bait. Indeed, any sampling technique will influence the observations, including video (Watson et al., 2005) or visual counts (Hay et al.. 1988; Zemke-White Choat, \& Clements, 2002). Observations are therefore snapshots, providing an indication of assemblage
composition, rather than a definite picture (Sale, 1997), and are influenced by the high variability of particular mobile species (such as planktivores) and schooling species.

Our results suggest that between and within-day variation in fish assemblage composition requires serious consideration. The changes in fish assemblage composition across daylight and hours and between days have the potential to affect abundance estimates of species and individual numbers (Casey \& Myers, 1998; Galzin, 1987; Hobson, 1965; D. M. Williams, 1983). Sampling is a trade-off between increasing replication within one site or increasing the number of sampling sites (i.e. spatial units) (Thompson \& Mapstone, 2002). To avoid this source of bias whilst dealing with logistical constraints, investigators should aim to randomize sampling with respect to time across all sampling sites including a range of microhabitats, accounting for variability in depth, rugosity and exposure (Milazzo et al., 2005; Thompson \& Mapstone, 2002) and considering specific sampling windows. It might the useful to avoid dusk and dawn sampling times when community turnover is highest.

Here, we focussed solely on diurnal patterns in fish assemblage composition. However, change in fish assemblage composition is driven by other factors including salinity (Allen, 1982), temperature (Marshall_\& Elliott, 1998), lunar cycle (Polunin_\& Klumpp 2 1989), turbidity (Abou-Seedo, Clayton, \& Wright, 1990), currents and tidal state (Polunin_\& Klumpp, 1989$)$, all of which are correlated. In particular tidal state is another important variable associated with changes in fish abundance related to change in directional movement of fish (e.g. sheltering) (Polunin and Klumpp, 1989) or heterogeneity of available prey resources (such as plankton) (Bray, 1980; Polunin and Klumpp, 1989). Due to the difficulty in sampling at consistent tidal states, this issue can only be minimised by sampling across the range of tidal cycles and increasing
replication where required. During our study, tidal influences were minimised using stratified sampling, which is a feasible solution for other surveys.

Diurnal variation in community composition is nested within larger scale temporal variation. Seasonal effects on fish assemblage composition have been reported previously and are the result of changes in environmental variables, life history characteristics and species interactions (Ogden \& Quinn, 1984; Pessanha_ \& Araújo, 2003; Tolimieri, Sale, Nemeth, \& Gestring, 1998). This variation at greater temporal scales has important impacts on small-scale diurnal patterns. Changes in abiotic and abiotic conditions at larger temporal scales impact diurnal patterns and variability in fish assemblage composition and should be taken into consideration. This may be more important in temporal fish assemblages, where seasonal shifts in abiotic conditions are more pronounced. This is an area that should be investigated in the future.

Despite the knowledge of changes in coral fish assemblages, diurnal changes in assemblage composition have received little attention when designing experiments or investigating ecological hypotheses. Here we argue that diurnal variability in fish assemblages, in particular, associated with a transition in community assemblage between dusk and dawn should be considered designing studies. Variation in abundances at short time scales has the potential to be misinterpreted as error or changes in population size and assemblage composition. Randomisation and replication are useful to deal with this variability in the light of common constraints faced by many research projects.

Author contributions

LB and BS designed the experiment; BS collected the data in the field; LB analysed the data; LB wrote the paper. All authors read and approved the final manuscript.

Conflict of interest

The authors declare no conflict of interest.
370

Tables
372 373

Table 1. Total species recorded during the survey.

Family	Species	Number of individuals
Acanthuridae	Acanthurus sohal	293
	Acanthurus nigrofuscus	2
	Ctenochaetus striatus	682
	Naso elegans	123
	Naso unicornis	30
	Zebrasoma desjardinii	763
	Zebrasoma xanthurum	106
Balistidae	Balistapus undulatus	7
	Rhinecanthus assasi	1
	Sufflamen albicaudatus	58
Carangidae	Caranx melampygus	4
Chaetodontidae	Chaetodon auriga	61
	Chaetodon austriacus	108
	Chaetodon fasciatus	56
	Chaetodon paucifasciatus	46
	Chaetodon semilarvatus	8
	Chaetodon trifascialis	8
	Heniochus.intermedius	3
	Paracirrhites forsteri	6
Cirrhitidae	8	
Dasyatidae	Taeniura lymma	2
Diodontidae	Diodon hystrix	2
Fistulariidae	Fistularia commersonii	5
Holocentridae	Neoniphon sammara	19
	Sargocentron caudimaculatus	9
	Sargocentron diadema	1
	Labridae	Anampses meleagrides

Lutjanidae	Lutjanus bohar	1
Monacanthidae	Amanses scopas	7
Mullidae	Mulloidichthys flavolineatus	44
	Parupeneus cyclostomus	1
	Parupeneus forsskali	84
Nemipteridae	Scolopsis ghanam	45
Ostraciidae	Ostracion cyanurus	1
Pinguipedidae	Parapercis hexophthalma	21
Pomacanthidae	Pygoplites diacanthus	25
Pomacentridae	Abudefduf vaigiensis	162
	Amblyglyphidodon indicus	7
	Dascyllus trimaculatus	1
	Pomacentrus sulfureus	40
	Calotomus viridescens	2
	Cetoscarus bicolor	3
	Chlorurus sordidus	39
	Scaridae	29
	Scarus ferrugineus	5
	Scarus fuscopureus	2
	Scaridae sp.	363
Scorpaenidae	Pterois miles	3
	Pterois radiata	1
Serranidae	Cephalopholis argus	7
	Diploprion drachi	2
	Grammistes sexlineatus	2
Siganidae	Siganus argenteus	292
	Signatus luridus	383
	Signatus stellatus	1
	Arothron diadematus	8
	Arothron hispidus	2
	Canthigaster margaritata	8

Table 2. PERMANOVA results based on Eucclidean dissimilarity matrix on the (A) total number of individuals (square root transformed) and (B) total number of species (untransformed).
(A) Total relative number of individuals

Source	df	SS	MS	Pseudo-F	P(perm)
Day	1	7.75	7.75	3.03	0.100
Time-of-day	3	23.05	7.68	3.02	0.063
Site	2	0.84	0.84	0.33	0.562
Day*Time-of-day	3	5.51	1.84	0.72	0.554
Residuals	15	38.32	2.56		

Total	23	75.46

(B) Species richness

Source	df	SS	MS	Pseudo-F	P(perm)
Day	1	53.25	53.25	3.75	0.072
Time-of-day	3	205.47	68.49	4.82	$\mathbf{0 . 0 1 8}$
Site	2	5.09	2.55	0.18	0.828
Day*Time-of-day	3	25.34	8.45	0.60	0.639
Res	14	198.80	14.20		
Total	23	487.96			

381
382 383

Source	df	SS	Pseudo-F	P(perm)
Day	1	0.03	2.58	$\mathbf{0 . 0 0 1}$
Time-of-day	3	0.04	1.50	$\mathbf{0 . 0 2 2}$
Site	1	<0.01	5	0.508
Day*Time-of-day	3	0.03	1.09	0.330
Res	15	0.15		
Total	23	0.26		

Table 3. PERMANOVA based on Bray Curtis dissimilarity matrix of the relative number of individuals (square root transformed with one dummy variable).
Significant values are highlighted bold.

List of figure captions

Figure 1. Mean number of individuals ($\pm \mathrm{SE}, \mathrm{n}=24$) (A). Significant differences are indicated using letters, and species richness (average number of species per video, \pm SE, $n=24$) at time-of-day: 0600, 1000, 1400 and $1800 \mathrm{hrs}(\mathrm{B})$.

Figure 2. Nonmetric multidimensional scaling ordination (NMDS) of community structure. Dashed ellipse represents the 95% confidence interval for the centroid of each stratification group as calculated by ordiellipse (Oksanen, Kindt Simpson $_{2}$ \& Oksanen, 2018). Points represent each video.

References

Abou-Seedo, F., Clayton, D. A., \& Wright, J. M. (1990). Tidal and turbidity effects on the shallow-water fish assemblage of Kuwait Bay. Marine Ecology Progress Series. Oldendorf.

Ahmadia, G. N., Tornabene, L., Smith, D. J., \& Pezold, F. L. (2018). The relative importance of regional, local, and evolutionary factors structuring cryptobenthic coral-reef assemblages. Coral Reefs, 37(1), 279-293.

Alexandroff, S. J., Zuschin, M., \& Kroh, A. (2016). Quantitative comparison of Pleistocene and Recent coral reef habitats in the northern Red Sea (El Quseir, Egypt). Facies, 62(2), 15.

Allen, L. (1982). Seasonal abundance, composition, and productivity of the littoral fish assemblage in upper Newport Bay, California [Fundulus parvipinnis, Clevelandia ios, Gillichthys mirabilis, Gambusia affinis]. Fishery BulletinUnited States, National Marine Fisheries Service (USA).

Almany, G. R. (2004). Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos, 106(2), 275-284.

Anderson, M. J. (2001). Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences, 58(3), 626-639.

Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62(1), 245-253.

Anderson, M. J., Ellingsen, K. E., \& McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9(6), 683-693.

Andrew, N., \& Jones, G. (1990). Patch formation by herbivorous fish in a temperate Australian kelp forest. Oecologia, 85(1), 57-68.

Arrington, D., \& Winemiller, K. (2003). Diel changeover in sandbank fish assemblages in a neotropical floodplain river. Journal of Fish Biology, 63(2), 442-459.

Azzurro, E., Pais, A., Consoli, P., \& Andaloro, F. (2007). Evaluating day-night changes in shallow Mediterranean rocky reef fish assemblages by visual census. Marine Biology, 151(6), 2245-2253.

Barlow, G. W. (1974). Extraspecific imposition of social grouping among surgeonfishes (Pisces: Acanthuridae). Journal of Zoology, 174(3), 333-340.

Bellwood, D. R., Hughes, T. P., Folke, C., \& Nyström, M. (2004). Confronting the coral reef crisis. Nature Letter, 429(6994), 827-833.

Birt, M. J., Harvey, E. S., \& Langlois, T. J. (2012). Within and between day variability in temperate reef fish assemblages: Learned response to baited video. Journal of Experimental Marine Biology and Ecology, 416, 92-100.

Bond, T., Langlois, T. J., Partridge, J. C., Birt, M. J., Malseed, B. E., Smith, L., \& McLean, D. L. (2018). Diel shifts and habitat associations of fish assemblages on a subsea pipeline. Fisheries Research, 206, 220-234.

Bos, A. R., Cruz-Rivera, E., \& Sanad, A. M. (2017). Herbivorous fishes Siganus rivulatus (Siganidae) and Zebrasoma desjardinii (Acanthuridae) feed on Ctenophora and Scyphozoa in the Red Sea. Marine Biodiversity, 47(1), 243246.

Bouchon-Navaro, Y., \& Harmelin-Vivien, M. (1981). Quantitative distribution of herbivorous reef fishes in the Gulf of Aqaba (Red Sea). Marine Biology, 63(1), 79-86.

Bray, R. N. (1980). Influence of water currents and zooplankton densities on daily foraging movements of blacksmith, Chromis punctipinnis, a planktivorous reef fish. Fisheries Bulletin, 78(4), 829-841.

Cappo, M., Harvey, E., Malcolm, H., \& Speare, P. (2003). Potential of video techniques to monitor diversity, abundance and size of fish in studies of marine protected areas. Aquatic Protected Areas-What Works Best and How Do We Know, 455-464.

Casey, J. M., \& Myers, R. A. (1998). Diel variation in trawl catchability: Is it as clear as day and night? Canadian Journal of Fisheries and Aquatic Sciences, 55(10), 2329-2340.

Choat, J. H., Ayling, A. M., \& Schiel, D. R. (1988). Temporal and spatial variation in an island fish fauna. Journal of Experimental Marine Biology and Ecology, 121(2), 91-111.

Choat, J. H., \& Clements, K. (1993). Daily feeding rates in herbivorous labroid fishes. Marine Biology, 117(2), 205-211.

Clarke, G. L., \& Bishop, D. W. (1948). The nutritional value of marine zooplankton with a consideration of its use as an emergency food. Ecology, 29(1), 54-71.

Colin, P. L. (1978). Daily and summer-winter variation in mass spawning of the striped parrotfish, Scarus croicensis. Fish Bull, 76(1), 117-124.

Collette, B. (1972). Activity patterns of coral reef fishes with emphasis on nocturnaldiurnal changeover. Bull Nat His Mus LA Count, 14, 98-124.

Colton, D. E., \& Alevizon, W. S. (1981). Diurnal variability in a fish assemblage of a Bahamian coral reef. Environmental Biology of Fishes, 6(3-4), 341-345.

Dollar, S. J. (1982). Wave stress and coral community structure in Hawaii. Coral Reefs, 1(2), 71-81.
dos Santos, Miguel Neves, Monteiro, C. C., \& Lasserre, G. (2005). Observations and trends on the intra-annual variation of the fish assemblages on two artificial reefs in Algarve coastal waters (southern Portugal). Scientia Marina, 69(3), 415-426.

Dray, S., Blanchet, G., Borcard, D., Guenard, G., Jombart, T., Legendre, P., \& Wagner, H. (2018). Package 'adespatial': Multivariate multiscale spatial analysis. See Https://Cran. r-Project. Org/Web/Packages/Adespatial/Index. Html.

Edgar, G. J., Barrett, N. S., \& Morton, A. J. (2004). Biases associated with the use of underwater visual census techniques to quantify the density and size-structure of fish populations. Journal of Experimental Marine Biology and Ecology, 308(2), 269-290.

Emery, A. R. (1973). Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bulletin of Marine Science, 23(3), 649-770.

Fouda, M. M., \& El-Sayed, A. M. (1996). Distribution and Feeding Habits ofTwo Surgeonfish, Zebrasoma xanthurum and Ctenochaetus striatus in the Gulf of Aqaba, Red Sea. Marine Scienes-Ceased Lssuerg, 17(1), 1-2.

Fox, J. (1997). Applied regression analysis, linear models, and related methods. Sage Publications, Inc.

Fox, R. J. (2012). The trophic and spatial ecology of rabbitfishes (Perciformes, Siganidae) on coral reefs.

Fox, R. J., \& Bellwood, D. R. (2011). Unconstrained by the clock? Plasticity of diel activity rhythm in a tropical reef fish, Siganus lineatus. Functional Ecology, 25(5), 1096-1105.

Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P., \& Parmentier, E. (2009). Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyological Research, 56(1), 10-17.

Friedlander, A. M., Brown, E. K., Jokiel, P. L., Smith, W. R., \& Rodgers, K. S. (2003). Effects of habitat, wave exposure, and marine protected area status on coral reef fish assemblages in the Hawaiian archipelago. Coral Reefs, 22(3), 291-305.

Friedlander, A. M., \& Parrish, J. D. (1998a). Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. Journal of Experimental Marine Biology and Ecology, 224(1), 1-30.

Friedlander, A. M., \& Parrish, J. D. (1998b). Temporal dynamics of fish communities on an exposed shoreline in Hawaii. Environmental Biology of Fishes, 53(1), 1-18.

Friedlander, A. M., Sandin, S. A., DeMartini, E. E., \& Sala, E. (2010). Spatial patterns of the structure of reef fish assemblages at a pristine atoll in the central Pacific. Marine Ecology Progress Series, 410, 219-231.

Galzin, R. (1987). Structure of fish communities of French Polynesian coral reefs. 1. Spatial scales. Marine Ecology Progress Series. Oldendorf, 41(2), 129-136.

Goldsmith, F. B. (2012). Monitoring for conservation and ecology (Vol. 3). Springer Science \& Business Media.

González-Sansón, G., Aguilar, C., Hernández, I., Cabrera, Y., \& Curry, R. A. (2009). The influence of habitat and fishing on reef fish assemblages in Cuba. Gulf and Caribbean Research, 21(1), 13-21.

Gray, C. A. (1996). Small-scale temporal variability in assemblages of larval fishes: Implications for sampling. Journal of Plankton Research, 18(9), 1643-1657.

Guadayol, O., Silbiger, N. J., Donahue, M. J., \& Thomas, F. I. (2014). Patterns in temporal variability of temperature, oxygen and pH along an environmental gradient in a coral reef. PloS One, 9(1), e85213.

Gust, N., Choat, J. H., \& McCormick, M. I. (2001). Spatial variability in reef fish distribution, abundance, size and biomass: A multi scale analysis. Marine Ecology Progress Series, 214, 237-251.

Hammerschlag, N., Heithaus, M. R., \& Serafy, J. E. (2010). Influence of predation risk and food supply on nocturnal fish foraging distributions along a mangrove-seagrass ecotone. Marine Ecology Progress Series, 414, 223-235.

Hare, S. R., \& Mantua, N. J. (2000). Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography, 47(2-4), 103-145.

Harvey, B. J., Nash, K. L., Blanchard, J. L., \& Edwards, D. P. (2018). Ecosystembased management of coral reefs under climate change. Ecology and Evolution, 8(12), 6354-6368.

Harvey, E S, \& Shortis, M. R. (1998). Calibration stability of an underwater stereovideo system: Implications for measurement accuracy and precision. Marine Technology Society Journal, 32(2), 3-17.

Harvey, E S, Cappo, M., Butler, J. J., Hall, N., \& Kendrick, G. A. (2007). Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Marine Ecology Progress Series, 350, 245-254.

Hay, M. E., Paul, V. J., Lewis, S. M., Gustafson, K., Tucker, J., \& Trindell, R. N. (1988). Can tropical seaweeds reduce herbivory by growing at night? Diel patterns of growth, nitrogen content, herbivory, and chemical versus morphological defenses. Oecologia, 75(2), 233-245.

Hixon, M. A., \& Beets, J. P. (1993). Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecological Monographs, 63(1), 77-101.

Hobson, E. S. (1973). Diel feeding migrations in tropical reef fishes. Helgoländer Wissenschaftliche Meeresuntersuchungen, 24(1-4), 361-370.

Hobson, E. S. (1965). Diurnal-nocturnal activity of some inshore fishes in the Gulf of California. Copeia, 291-302.

Hoegh-Guldberg, O., \& Bruno, J. F. (2010). The impact of climate change on the world's marine ecosystems. Science, 328(5985), 1523-1528.

Holbrook, S. J., Schmitt, R. J., \& Brooks, A. J. (2008). Resistance and resilience of a coral reef fish community to changes in coral cover. Marine Ecology Progress Series, 371, 263-271.

Howard, R. K. (1989). The structure of a nearshore fish community of Western Australia: Diel patterns and the habitat role of limestone reefs. Environmental Biology of Fishes, 24(2), 93-104.

Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B., ... Morrison, T. H. (2017). Coral reefs in the Anthropocene. Nature Letter, 546(7656), 82.

Jan, R.-Q., Chen, J.-P., Lin, C.-Y., \& Shao, K.-T. (2001). Long-term monitoring of the coral reef fish communities around a nuclear power plant. Aquatic Ecology, 35(2), 233-243.

Khalaf, M. A., \& Kochzius, M. (2002). Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea. Helgoland Marine Research, 55(4), 252-284.

Kingsford, M. J., \& MacDiarmid, A. B. (1988). Interrelations between planktivorous reef fish and zooplankton in temperate waters. Marine Ecology Progress Series, 48(2), 103-117.

Kochzius, M. (2007). Community structure of coral reef fishes in El quadim bay (El quseir, Egyptian red sea coast). Zoology in the Middle East, 42(1), 89-98.

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29(2), 115-129.

Lazzari, M. A., Sherman, S., Brown, C. S., King, J., Joule, B. J., Chenoweth, S. B., \& Langton, R. W. (1999). Seasonal and annual variations in abundance and species composition of two nearshore fish communities in Maine. Estuaries, 22(3), 636-647.

Legendre, P., \& Cáceres, M. D. (2013). Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecology Letters, 16(8), 951963.

Legendre, P., \& Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271-280.

Levin, S. A. (1992). The problem of pattern and scale in ecology: The Robert H. MacArthur award lecture. Ecology, 73(6), 1943-1967.

Lindenmayer, D. B., \& Likens, G. E. (2010). The science and application of ecological monitoring. Biological Conservation, 143(6), 1317-1328.

Lundberg, B., \& Lipkin, Y. (1979). Natural food of the herbivorous rabbitfish (Siganus spp.) in northern Red Sea.

Marshall, S., \& Elliott, M. (1998). Environmental influences on the fish assemblage of the Humber estuary, UK. Estuarine, Coastal and Shelf Science, 46(2), 175184.

Milazzo, M., Badalamenti, F., Fernández, T. V., \& Chemello, R. (2005). Effects of fish feeding by snorkellers on the density and size distribution of fishes in a Mediterranean marine protected area. Marine Biology, 146(6), 1213-1222.

Ogden, J. C., \& Buckman, N. S. (1973). Movements, foraging groups, and diurnal migratons of the striped parrotfish Scarus croicensis Bloch (Scaridae). Ecology, 54(3), 589-596.

Ogden, J. C., \& Quinn, T. P. (1984). Migration in coral reef fishes: Ecological significance and orientation mechanisms. In Mechanisms of migration in fishes (pp. 293-308). Springer.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'hara, R. B., ... Wagner, H. (2013). Package 'vegan'. Community Ecology Package, Version, 2(9).

Oksanen, J., Kindt, R., Simpson, G. L., \& Oksanen, M. J. (2018). Package 'vegan3d'. Ormerod, S. J. (2003). Current issues with fish and fisheries: Editor's overview and introduction. Journal of Applied Ecology, 40(2), 204-213.

Pessanha, A. L. M., \& Araújo, F. G. (2003). Spatial, temporal and diel variations of fish assemblages at two sandy beaches in the Sepetiba Bay, Rio de Janeiro, Brazil. Estuarine, Coastal and Shelf Science, 57(5-6), 817-828.

Polunin, N., \& Klumpp, D. W. (1989). Ecological correlates of foraging periodicity in herbivorous reef fishes of the Coral Sea. Journal of Experimental Marine Biology and Ecology, 126(1), 1-20.

Potts, D. C., \& Swart, P. K. (1984). Water temperature as an indicator of environmental variability on a coral reef. Limnology and Oceanography, 29(3), 504-516.

Rice, M. M., Ezzat, L., \& Burkepile, D. E. (2019). Corallivory in the Anthropocene: Interactive effects of anthropogenic stressors and corallivory on coral reefs. Frontiers in Marine Science, 5, 525.

Rickel, S., \& Genin, A. (2005). Twilight transitions in coral reef fish: The input of light-induced changes in foraging behaviour. Animal Behaviour, 70(1), 133144.

Rilov, G., \& Benayahu, Y. (1998). Vertical artificial structures as an alternative habitat for coral reef fishes in disturbed environments. Marine Environmental Research, 45(4-5), 431-451.

Robertson, D. R. (1983). On the spawning behavior and spawning cycles of eight surgeonfishes (Acanthuridae) from the Indo-Pacific. Environmental Biology of Fishes, 9(3), 193-223.

Rooker, J. R., \& Dennis, G. D. (1991). Diel, lunar and seasonal changes in a mangrove fish assemblage off southwestern Puerto Rico. Bulletin of Marine Science, 49(3), 684-698.

Rowe, C. E., Figueira, W., Raubenheimer, D., Solon-Biet, S. M., \& MachovskyCapuska, G. E. (2018). Effects of temperature on macronutrient selection, metabolic and swimming performance of the Indo-Pacific Damselfish (Abudefduf vaigiensis). Marine Biology, 165(11), 1-12.

Samoilys, M. A. (1997). Periodicity of spawning aggregations of coral trout Plectropomus leopardus (Pisces: Serranidae) on the northern Great Barrier Reef. Marine Ecology Progress Series, 160, 149-159.

Santos, M N, Monteiro, C. C., \& Gaspar, M. B. (2002). Diurnal variations in the fish assemblage at an artificial reef. ICES Journal of Marine Science, 59(suppl), S32-S35.

Spyker, K. A., \& Van Den Berghe, E. P. (1995). Diurnal abundance patterns of Mediterranean fishes assessed on fixed transects by scuba divers. Transactions of the American Fisheries Society, 124(2), 216-224.

Starck, W. A., \& Davis, W. P. (1966). Night habits of fishes of Alligator Reef, Florida. Ichthyologica, 38(4), 313-356.

Thomas, L. (1996). Monitoring long-term population change: Why are there so many analysis methods? Ecology, 77(1), 49-58.

Thompson, A. A., \& Mapstone, B. D. (2002). Intra-versus inter-annual variation in counts of reef fishes and interpretations of long-term monitoring studies. Marine Ecology Progress Series, 232, 247-257.

Tolimieri, N., Sale, P., Nemeth, R., \& Gestring, K. (1998). Replenishment of populations of Caribbean reef fishes: Are spatial patterns of recruitment consistent through time? Journal of Experimental Marine Biology and Ecology, 230(1), 55-71.

Underwood, A. (1991). Beyond BACI: experimental designs for detecting human environmental impacts on temporal variations in natural populations. Marine and Freshwater Research, 42(5), 569-587.

Underwood, A., \& Chapman, M. (2003). Power, precaution, Type II error and sampling design in assessment of environmental impacts. Journal of Experimental Marine Biology and Ecology, 296(1), 49-70.

Watson, D. L., Harvey, E. S., Anderson, M. J., \& Kendrick, G. A. (2005). A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Marine Biology, 148(2), 415-425.

Williams, D. M. (1983). Daily, monthly and yearly variability in recruitment of a guild of coral reef fishes. Marine Ecology Progress Series. Oldendorf, 10(3), 231-237.

Williams, I. D., Baum, J. K., Heenan, A., Hanson, K. M., Nadon, M. O., \& Brainard, R. E. (2015). Human, oceanographic and habitat drivers of central and western Pacific coral reef fish assemblages. PloS One, $10(4)$, e0120516.

Williams, I. D., Walsh, W. J., Schroeder, R. E., Friedlander, A. M., Richards, B. L., \& Stamoulis, K. A. (2008). Assessing the importance of fishing impacts on Hawaiian coral reef fish assemblages along regional-scale human population gradients. Environmental Conservation, 35(3), 261-272.

Willis, T. J., \& Babcock, R. C. (2000). A baited underwater video system for the determination of relative density of carnivorous reef fish. Marine and Freshwater Research, 51(8), 755-763.

Willis, T. J., Badalamenti, F., \& Milazzo, M. (2006). Diel variability in counts of reef fishes and its implications for monitoring. Journal of Experimental Marine Biology and Ecology, 331(1), 108-120.

Willis, T. J., Millar, R. B., \& Babcock, R. C. (2000). Detection of spatial variability in relative density of fishes: Comparison of visual census, angling, and baited underwater video. Marine Ecology Progress Series, 198, 249-260.

Winer, B. J. (1962). Statistical principles in experimental design.
Wolf, N. G. (1985). Odd fish abandon mixed-species groups when threatened. Behavioral Ecology and Sociobiology, 17(1), 47-52.

Zemke-White, L. W., Choat, J. H., \& Clements, K. (2002). A re-evaluation of the diel feeding hypothesis for marine herbivorous fishes. Marine Biology, 141(3), 571-579.

692

