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Summary 23 

Coral reef ecosystems are under increasing anthropogenic pressures making it ever 24 

more important to monitor changes in fish communities to implement appropriate 25 

management. In contrast to long-term spatial and temporal variation which has been 26 

extensively documented, little work has been carried out to identify variability in fish 27 

assemblages on short time scales, with few studies testing patterns of fish 28 

assemblages between and within days.  29 

Here we investigated the diurnal changes in species richness, relative abundance and 30 

assemblage composition in a shallow coral reef fish community in Egypt. To do so, a 31 

section of coral reef was filmed during the morning (0600 hrs), midday (1000 & 1400 32 

hrs) and afternoon (1800 hrs) over eleven days.  33 

Dusk (0600 hrs) and dawn samples (1800 hr) showed higher species richness 34 

compared to late morning (1000 hr) and mid-day samples (1400 hr) and borderline 35 

significantly higher numbers of total individuals, likely associated with feeding 36 

activity and predator avoidance. Assemblage composition varied across days and 37 

time-of-day, showing greater variability during dusk and dawn associated with a 38 

transition between day-time and night-time assemblages.  39 

Our results have implications for designing coral reef fish surveys, emphasising that 40 

short-term changes in fish communities should be considered when designing 41 

experiments to monitor fish assemblages over time. Where possible, we suggest 42 

increasing replication within sites and time scales or randomising data within a 43 

specific time window at all sites, looking to exclude dusk and dawn.   44 
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Introduction 45 

Anthropogenic impacts alter coral reef fish assemblages, affecting ecosystem 46 

processes (B. J. Harvey, Nash, Blanchard, & Edwards, 2018; Hoegh-Guldberg & 47 

Bruno, 2010; Hughes et al., 2017; Rice, Ezzat, & Burkepile, 2019) and functions. 48 

Knowledge of the spatial and temporal variability of coral reef fish assemblages is 49 

crucial in order to implement effective monitoring and conservation measures, 50 

preserving ecosystem processes and functions (Bellwood, Hughes, Folke, & Nyström, 51 

2004; Hughes et al., 2017; Lindenmayer & Likens, 2010). This depends on robust 52 

ecological studies and monitoring programmes that detect spatial and temporal changes 53 

in fish assemblages (Goldsmith, 2012; Ormerod, 2003; Thomas, 1996).   54 

However, the spatial and temporal heterogeneity characterizing fish 55 

communities makes understanding ecological causes for changes in fish assemblage 56 

composition challenging (Levin, 1992).  This requires the implementation of sampling 57 

designs that minimise sampling variance due to processes occurring at scales that are 58 

not of interest, such as within or between days (Underwood, 1991; Underwood & 59 

Chapman, 2003; Winer, 1962).  60 

The spatial variability in coral fish assemblages has been studied in great detail 61 

worldwide at multiple spatial and temporal scales, including across continents 62 

(Ahmadia, Tornabene, Smith, & Pezold, 2018), regionally (Almany, 2004; Friedlander, 63 

Brown, Jokiel, Smith, & Rodgers, 2003; I. D. Williams et al., 2015, 2008), locally 64 

between (Friedlander et al., 2003; Friedlander & Parrish, 1998a; Hixon & Beets, 1993) 65 

and within coral reef systems (Dollar, 1982; Friedlander & Parrish, 1998b; Friedlander, 66 

Sandin, DeMartini, & Sala, 2010) on short (Birt, Harvey, & Langlois, 2012; Bond et 67 

al., 2018; Santos, Monteiro, & Gaspar, 2002) and longer time scales (Santos, Monteiro, 68 

& Lasserre, 2005; Jan, Chen, Lin, & Shao, 2001). The large majority of studies 69 
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published on fish assemblages at large and medium scales are on based sampling with 70 

a single survey effort per site at one time during the day or at night (Choat, Ayling, & 71 

Schiel, 1988; Gust, Choat, & McCormick, 2001; Santos et al., 2002; Willis, Millar, & 72 

Babcock, 2000). Finer-scale temporal variability, in particular daytime changes, 73 

remaining less well understood.  74 

The environmental conditions within coral reefs can fluctuate dramatically 75 

throughout the day (Guadayol, Silbiger, Donahue, & Thomas, 2014; Potts & Swart, 76 

1984; Santos et al., 2002), impacting behaviour and subsequent distribution of coral 77 

reef assemblages (Bond et al., 2018; González-Sansón, Aguilar, Hernández, Cabrera, 78 

& Curry, 2009; Hammerschlag, Heithaus, & Serafy, 2010). Much of the prior work on 79 

finer-scale temporal variability in fish assemblages has focussed on shifts in behaviour, 80 

distribution and reef fish abundance between diurnal (daylight hours) and nocturnal fish 81 

assemblages, documenting well-defined crepuscular change over periods (Colton & 82 

Alevizon, 1981; Rooker & Dennis, 1991; Starck & Davis, 1966). In contrast, variability 83 

within and between days has attracted less attention (Colton & Alevizon, 1981; Rooker 84 

& Dennis, 1991; Starck & Davis, 1966), despite its potential to confound abundance 85 

and density estimates in reef fish surveys (Spyker & Van Den Berghe, 1995). Studies 86 

investigating diurnal fish assemblage changes found evidence for differences in the 87 

abundance of some fish species within days, but generally not between days (Colton & 88 

Alevizon, 1981; Rooker & Dennis, 1991; Santos et al., 2002). Willis (2006) found 89 

diurnal differences in the density of some fish species, but not in assemblage 90 

composition. Diurnal variation is likely the result of behavioural adaptations, including 91 

foraging (Hammerschlag et al., 2010; Ogden & Buckman, 1973), predator avoidance 92 

(R. J. Fox & Bellwood, 2011; Wolf, 1985) and spawning (Colin, 1978; Samoilys, 93 

1997). Feeding times in fish vary diurnally (Polunin & Klumpp, 1989), in particular in 94 
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herbivorous species, which exhibit marked feeding activities associated with time 95 

periods when algae have the greatest nutritional value (Hobson, 1973; Zemke-White, 96 

Choat, & Clements, 2002), and in zooplanktivorous species, associated with currents 97 

delivering plankton (Bray, 1980; Kingsford & MacDiarmid, 1988). This evidence 98 

suggests that diurnal, rather than between-day variation impacts fish assemblage 99 

composition. 100 

Here, we used video imagery surveying a coral reef in Egypt to investigate 101 

whether species richness, number of individuals and community composition varied 102 

within and between days. Based on prior work (e.g. Colton & Alevizon, 1981; Santos 103 

et al., 2005; Rooker & Dennis, 1991; Spyker & Van Den Berghe, 1995; Willis et al., 104 

2006), we predicted that there will be differences in fish assemblage composition within 105 

days, but less so between days, with certain groups of species such as herbivores species 106 

showing diurnal patterns in relative density. 107 

Materials and methods 108 

This study was conducted at three sites at the house reef at the Roots Camp, 109 

approximately 13km north of the town of El Quseir, Egypt (26.2062°N, 34.2195°E) in 110 

July 2014. The three sampling sites, characterised by similar benthic composition, 111 

featuring south sloping reef walls enclosing a central sandy inlet allowing inshore 112 

access dominated by Acropora and Pocillopora at a depth of 5-7m, similar to reefs 113 

described in the area prior (Alexandroff, Zuschin, & Kroh, 2016). The sites were 114 

located south of the entry point along the reef line at a distance of 250m from each 115 

other, representing a typical section of the reef.  116 

Experimental design and data collection 117 

Data was collected using video at 0600-0700 hrs, 1000-1100 hrs, 1400-1500 hrs 118 

and 1800-1900 hrs. Sampling day was included as a factor to account for between-day 119 
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variability in community composition. Thus, the experimental design was a three-factor 120 

design including day (integer) and time-of-day (categorical, four levels: 0600, 1000, 121 

1400 and 1800 hrs) and site (categorical, three levels). At the time that the study was 122 

carried out, sunrise was approximately 0454 hr and sunset was approximately at 1834 123 

hr at the start of the sampling period.  124 

The video system deployed consisted of a mount using 50mm diameter PVC 125 

pipe holding a GoPro (Hero 3+ Black) camera at a 90-degree angle approximately 15cm 126 

above the sandy bottom of the reef at an average depth of six meters. Defining the area 127 

or volume that is ultimately sampled using video recordings is a key challenge (E. S. 128 

Harvey & Shortis, 1998; Willis & Babcock, 2000). To avoid over or underestimating 129 

the sampling area, the camera was positioned two metres away from the reef wall on 130 

the sandy bed, allowing us to confidently identify species in the naturally enclosed 131 

sampling area of a volume of approximately 8.38m3. On each day for 11 days, one 132 

surveyor placed the camera onto the mount and started recording. Different sites were 133 

recorded each day (n=8), after being randomly selected. Once recording began it was 134 

left in situ for 30 minutes; the first 10 minutes of footage were excluded to allow any 135 

disturbed fish to settle and the 20 minutes of footage after this was then used for the 136 

analysis.  137 

The video footage was subsequently downloaded to a computer and trimmed to 138 

exclude any unwanted footage such as deployment. Where possible the individuals 139 

were identified down to species level by two researchers. In order to eliminate repeat 140 

counts of fish in the field, maximum number of individuals of the same species 141 

appearing in the field of view (MaxN) over the whole 20 min of filming was recorded, 142 

providing a conservative estimate of fish density recorded (Cappo, Harvey, Malcolm, 143 

& Speare, 2003; E. S. Harvey, Cappo, Butler, Hall, & Kendrick, 2007). 144 
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Statistical analysis 145 

Levene’s test (J. Fox, 1997) was used to analyse sample variance for the total 146 

number of individuals and species richness for the factors time-of-day and site using 147 

the levene.test function in the car package in r (J. Fox, 1997). Multivariate dispersions 148 

between groups, a multivariate equivalent of Levene’s test for homogeneity in variance 149 

(Anderson, 2001), were analysed using the betadisper routine in the vegan for 150 

assemblage composition (Oksanen et al., 2013). Permutational multivariate analysis of 151 

variance (PERMANOVA with 9999 permutations) was used to analyse differences in 152 

fish assemblage composition at the four time intervals, between days and sites using 153 

the adonis2 function in vegan, based on square-root transformed assemblage 154 

composition data (Anderson, 2001) following the three factor design described above. 155 

Permutational distance-based approaches are appropriate for analysing abundance data 156 

that have many zero counts and are highly skewed (Anderson, 2001; Watson, Harvey, 157 

Anderson, & Kendrick, 2005). The data were square-root transformed and analysed 158 

using a Bray-Curtis dissimilarity matrix adding a dummy variable. Pairwise tests were 159 

run between the significant groups using permutation tests of group mean dispersions 160 

(Anderson, 2006; Anderson, Ellingsen, & McArdle, 2006) in vegan.  161 

Univariate analyses were conducted on species richness, the total number of 162 

individuals and the relative abundance of individual species using the adonis2 function 163 

on Euclidean distance (see above) square-root transformed.  164 

Differences in community composition were assessed using a non-metric 165 

multidimensional scaling plot (NMDS) for all videos using Bray-Curtis dissimilarity 166 

index on square-root transformed abundance data (Kruskal, 1964). The overlaid vectors 167 

indicate significant correlations among the relative abundances of species on the two 168 

axes of the NMDS using the vegan package (Oksanen et al., 2013; Oksanen, Kindt, 169 
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Simpson, & Oksanen, 2018). Vectors of species contributions to beta diversity (species 170 

contribution to beta diversity) were computed, providing an insight into which species 171 

contributed most to changes in beta diversity across samples (Legendre & Cáceres, 172 

2013; Legendre & Gallagher, 2001) in the package adespatial (Dray et al., 2018) in R 173 

with 999 permutation on Hellinger-transformed species abundance data. Changes in 174 

relative abundance of the five most abundant species and the five most important 175 

species contributing to beta diversity were analyzed using an ANOVA according to the 176 

three-factor design described above.  177 

Results 178 

A total of 4,258 individuals from 70 species were recorded during the study 179 

period. The five most abundant species were Zebrasoma desjardinii (763 individuals 180 

recorded), Ctenochaetus striatus (682 individuals recorded), Siganus luridus (383 181 

individuals recorded), Acanthurus sohal (293 individuals recorded) and Siganus 182 

argenteus (292 individuals recorded) (Table 1). 183 

[Table 1 here] 184 

Number of individuals and species richness 185 

Levene's Test for Homogeneity of Variance indicated that there were no 186 

significant differences in variances for the total number of individuals between time-187 

of-day (F3,20=1.005, P=0.411) or site (F2,21=1.524, P=0.241), nor for species richness 188 

across time-of-day (F3,20=1.054, P=0.391) and site (F2,21=0.470, P=0.632). 189 

Univariate analysis indicated that there were no significant differences in the 190 

total number of individuals across days, time-of-day or between sites (Table 2a, Figure 191 

1a). Permutational analysis on untransformed species richness data suggested 192 

significant differences between time-of-day, but not days, the day and time-of-day 193 

interaction or sites (Table 2b). Pairwise tests indicated that species richness was 194 
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significantly lower at 1400 hrs compared to 0600 hrs (P=0.004) and 1800 hrs (P=0.04).  195 

There models indicated borderline statistical significance that was indicative of greater 196 

species richness at 0600 hrs compared to 1000 hrs (P=0.095) (Figure 1b).  197 

[Figure 1 here] 198 

[Table 2 here] 199 

Fish assemblage composition 200 

When analyzing the fish assemblages, betadisper indicated heterogeneity in 201 

assemblage composition between factors in time-of-day (F3,20=5.39, P=0.003), but 202 

homogeneity in multivariate dispersions for site (F2,21=0.56, P=0.589). Pairwise 203 

comparisons of mean dispersions indicated lower variability in assemblage at 1000 hrs 204 

and 1400 hrs (but no significant pairwise difference), compared to significantly higher 205 

variability at 0600 and 1800 hrs (but no significant pairwise difference). 206 

There were significant differences in community assemblage composition for 207 

day and time of day, but not for the interaction between day and time-of-day or site 208 

(Table 3). Pairwise tests indicated significant differences in community assemblage for 209 

the groups 0600 and 1400 hrs (P=0.044), and between 1400 and 1800 hrs (P=0.021). 210 

Ordination plots emphasized high time-of-day variability. The 1000 and 1400 hrs 211 

groups tended to cluster fairly closely; while group 0600 and 1800 hrs showed greater 212 

scatter, indicating more variable community assemblages and a separation between 213 

midday and crepuscular times (0600 and 1800 hrs) (Figure 2).  214 

[Table 3 here] 215 

[Figure 2 here] 216 

We investigated effects of day and time-of day on the five most abundant 217 

species Zebrasoma desjardinii, Ctenochaetus striatus, Siganus luridus, Acanthurus 218 

sohal and Siganus argenteus, as well as the five species which showed the greatest 219 
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species contributions to beta diversity (SCBD, mean for each species across samples), 220 

including Abudefduf vaigiensis (mean SCBD: 0.0838), Siganus argenteus (also fifth 221 

most abundant species, mean SCBD: 0.0872), Siganus luridus (also third most 222 

abundant species, mean SCBD: 0.0786), Zebrasoma desjardinii (also most abundant 223 

species, SCBD: 0.0617) and Ctenochaetus striatus (second most abundant species, 224 

SCBD: 0.0348). Between and within-day variation was absent or stochastic, with no 225 

significant differences between sites for Ctenochaetus striatus (F1,14=0.69, P=0.419; 226 

F3,14=0.43, P=0.737 and F2,14=312, P=0.206 respectively), Siganus luridus (F1,14=0.74, 227 

P=0.405; F3,14=0.20, P= 0.893 and F2,14= 0.44, P= 0.651 respectively), Acanthurus sohal 228 

(F1,14=4.07, P=0.063, F3,14=2.29, P=0.123, F2,14=0.22, P=0.803, respectively) and 229 

Siganus argenteus (F1,14=3.78, P=0.072; F3,14=1.76, P=0.201 and F2,14=0.05, P=0.953 230 

respectively) 231 

Between day variation in relative abundance was significant but not within-day 232 

variation or site in Zebrasoma desjardinii (F1,14= 9.31, P= 0.009, F3,14= 1.46, P= 0.268; 233 

F2,14= 0.25, P= 0.781, respectively). Similarly, Abudefduf vaigiensis showed significant 234 

differences between days, but not within days and across sites (F1,14=23.83, P=0.001, 235 

F3,14=1.26, P=0.326, F2,14=4.03, P=0.042, respectively).  236 

Discussion 237 

Few studies have quantified short-term (between and within-day) variability in 238 

fish assemblages in sampling or monitoring programmes investigating medium spatial 239 

and temporal variation (i.e. in the order of seasons or years) (Hare & Mantua, 2000; 240 

Lazzari et al., 1999). Yet, spatial patterns are potentially confounded by within or 241 

between-day variation due to sampling at different times (Gray, 1996; Willis et al., 242 

2006). This study provides a valuable snapshot exploring variation in species richness 243 

and composition within and between days.  244 
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Species richness (i.e. mean number of species) showed significant differences 245 

within days, but not between days or sites. Species richness was greatest at dawn (0600 246 

hrs) and dusk (1800 hrs) and there was some indication (approaching marginal 247 

significance given P=0.063) that the total number of individuals was highest during 248 

dusk and dawn (Figure 1a). This is in contrast to Birt et al. (2012), who found significant 249 

differences in species richness between, but not within days. Feeding activity has been 250 

shown to be highest during dusk and dawn and coral reef species show a pronounced 251 

day-night changeover (Azzurro, Pais, Consoli, & Andaloro, 2007; Collette, 1972), 252 

likely contributing to the patterns observed. 253 

Overall, assemblage composition was similar of that reported by Kochzius 254 

(2007), who investigated community structure using visual census in El Wuadim Bay 255 

(El Queseir). In line the results of this study, they found that the families Acanturidae, 256 

Labridae and Pomacentridae dominated the community in terms of relative abundance, 257 

with the exception of Anthiinae (subfamily of Serranidae), which were not common in 258 

our study or others studies in the Red Sea (Khalaf & Kochzius, 2002; Rilov & 259 

Benayahu, 1998). It is worth noting that species richness in this coral reef was relatively 260 

low compared to other sites in the Red Sea , sites with greater species richness might 261 

show different patterns.  262 

Our study found significant between and within-day variability in fish 263 

assemblage composition, unlike other studies (Colton & Alevizon, 1981; Rooker & 264 

Dennis, 1991; Santos et al., 2002; Spyker & Van Den Berghe, 1995; Willis et al., 2006). 265 

Pairwise-comparisons indicated that assemblage composition differed significantly 266 

between 0600 & 1400 and 1400 & 1800 hrs, likely associated with a transition between 267 

day-time and night-time assemblages. This is supported by the significant within-day 268 

heterogeneity evidenced by PERMDISP, suggesting greater variability in fish 269 
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assemblage composition during dusk and dawn. These results are associated with the 270 

emergence and retreat of diurnally or nocturnally active fish during dawn and dusk 271 

(Colton & Alevizon, 1981; Hobson, 1965; Rooker & Dennis, 1991). Moreover, reef 272 

species are more active in morning and evening associated with peaks in feeding 273 

activity in many species, predator avoidance during the day (Rickel & Genin, 2005) 274 

and a pronounced day-night changeover (Azzurro, Pais, Consoli, & Andaloro, 2007; 275 

Collette, 1972). We also found evidence for significant changes in assemblage 276 

composition between days. This may be associated with some temporal variability that 277 

is more subtle operating at between-day scales, including reproductive behaviour (e.g. 278 

spawning) (Tolimieri, Sale, Nemeth, & Gestring, 1998; D. M. Williams, 1983), 279 

schooling and feeding behaviour (Milazzo, Badalamenti, Fernández, & Chemello, 280 

2005; Ogden & Buckman, 1973), tidal or current state (Kingsford & MacDiarmid, 281 

1988). 282 

Variation in abundance of individual species within daylight hours reflects 283 

feeding, habitat use and activity levels, and is likely species-specific (Holbrook, 284 

Schmitt, & Brooks, 2008). Prior knowledge of such species-specific foraging behaviour 285 

and activity facilitates the design appropriate surveys, in particular if they are aimed a 286 

specific group of species (e.g. economically important targeted species). For example, 287 

diurnal variability in relative abundance will be lower in sedentary of territorial species 288 

such as Paracirrhites arcatus than that of larger, highly mobile species such as groupers 289 

(Holbrook, Schmitt, & Brooks, 2008). Here, we investigated changes in relative 290 

abundance in six species, finding little to no evidence for a change in abundance with 291 

time-of-day. Zebrasoma desjardinii, Ctenochaetus striatus, Siganus luridus, 292 

Acanthurus sohal and Siganus argenteus often occur in roaming schools (Bos, Cruz-293 

Rivera, & Sanad, 2017; Bouchon-Navaro & Harmelin-Vivien, 1981; Lundberg & 294 
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Lipkin, 1979) introducing variability that may make it difficult to distinguish between 295 

or within-day patterns. Despite exhibiting significant variation in their behavior and 296 

feeding ecology, surgeonfishes (including Zebrasoma desjardinii, Ctenochaetus 297 

striatus and Acanthurus sohal) tend to be the dominant herbivores on coral reefs 298 

(Barlow, 1974; Fouda & El-Sayed, 1996; Robertson, 1983). Herbivores been shown to 299 

exhibit definite diurnal patterns in abundance, associated with either predator avoidance 300 

during dusk and dawn and/or the increasing nutrient peak of algae during midday (Hay 301 

et al., 1988; Hobson, 1973; Zemke-White, Choat, & Clements, 2002). Abudefduf 302 

vaigiensis is a generalist omnivore feeding on pelagic copepods, algae and sessile 303 

invertebrates (Clarke & Bishop, 1948; Frédérich, Fabri, Lepoint, Vandewalle, & 304 

Parmentier, 2009; Rowe, Figueira, Raubenheimer, Solon-Biet, & Machovsky-Capuska, 305 

2018), exhibiting diurnal feeding activities (Emery, 1973). While surprising that these 306 

species showed significant within-day changes in abundance, our results are in line with 307 

other studies (Andrew & Jones, 1990; Azzurro et al., 2007; Birt et al., 2012; Choat & 308 

Clements, 1993; Howard, 1989). The plasticity and flexibility of feeding habits has 309 

been highlighted in Siganidae (such as Siganus luridus and Siganus argenteus (Fox, 310 

2012), which might have contribute to the lack of significant within and between-day 311 

patterns. Furthermore, temporal bias might arise from variability in fish or be an 312 

sampling or statistical effect.  Birt et al. found significant differences between and 313 

within-days in their four-day study, arguing that rare species may be responsible for 314 

these observed differences in combination with the Bray Curtis resemblance matrix, 315 

which can be particularly sensitive to rare species and their use of bait. Indeed, any 316 

sampling technique will influence the observations, including video (Watson et al., 317 

2005) or visual counts (Hay et al., 1988; Zemke-White, Choat, & Clements, 2002). 318 

Observations are therefore snapshots, providing an indication of assemblage 319 
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composition, rather than a definite picture (Sale, 1997), and are influenced by the high 320 

variability of particular mobile species (such as planktivores) and schooling species. 321 

Our results suggest that between and within-day variation in fish assemblage 322 

composition requires serious consideration. The changes in fish assemblage 323 

composition across daylight and hours and between days have the potential to affect 324 

abundance estimates of species and individual numbers (Casey & Myers, 1998; Galzin, 325 

1987; Hobson, 1965; D. M. Williams, 1983). Sampling is a trade-off between 326 

increasing replication within one site or increasing the number of sampling sites (i.e. 327 

spatial units) (Thompson & Mapstone, 2002). To avoid this source of bias whilst 328 

dealing with logistical constraints, investigators should aim to randomize sampling with 329 

respect to time across all sampling sites including a range of microhabitats, accounting 330 

for variability in depth, rugosity and exposure (Milazzo et al., 2005; Thompson & 331 

Mapstone, 2002) and considering specific sampling windows. It might the useful to 332 

avoid dusk and dawn sampling times when community turnover is highest. 333 

Here, we focussed solely on diurnal patterns in fish assemblage composition. 334 

However, change in fish assemblage composition is driven by other factors including 335 

salinity (Allen, 1982), temperature  (Marshall & Elliott, 1998), lunar cycle (Polunin & 336 

Klumpp, 1989), turbidity (Abou-Seedo, Clayton, & Wright, 1990), currents and tidal 337 

state (Polunin & Klumpp, 1989), all of which are correlated.  In particular tidal state is 338 

another important variable associated with changes in fish abundance related to change 339 

in directional movement of fish (e.g. sheltering) (Polunin and Klumpp, 1989) or 340 

heterogeneity of available prey resources (such as plankton) (Bray, 1980; Polunin and 341 

Klumpp, 1989). Due to the difficulty in sampling at consistent tidal states, this issue 342 

can only be minimised by sampling across the range of tidal cycles and increasing 343 
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replication where required. During our study, tidal influences were minimised using 344 

stratified sampling, which is a feasible solution for other surveys. 345 

Diurnal variation in community composition is nested within larger scale 346 

temporal variation. Seasonal effects on fish assemblage composition have been 347 

reported previously and are the result of changes in environmental variables, life history 348 

characteristics and species interactions (Ogden & Quinn, 1984; Pessanha & Araújo, 349 

2003; Tolimieri, Sale, Nemeth, & Gestring, 1998). This variation at greater temporal 350 

scales has important impacts on small-scale diurnal patterns. Changes in abiotic and 351 

abiotic conditions at larger temporal scales impact diurnal patterns and variability in 352 

fish assemblage composition and should be taken into consideration. This may be more 353 

important in temporal fish assemblages, where seasonal shifts in abiotic conditions are 354 

more pronounced. This is an area that should be investigated in the future. 355 

Despite the knowledge of changes in coral fish assemblages, diurnal changes in 356 

assemblage composition have received little attention when designing experiments or 357 

investigating ecological hypotheses. Here we argue that diurnal variability in fish 358 

assemblages, in particular, associated with a transition in community assemblage 359 

between dusk and dawn should be considered designing studies. Variation in 360 

abundances at short time scales has the potential to be misinterpreted as error or changes 361 

in population size and assemblage composition. Randomisation and replication are 362 

useful to deal with this variability in the light of common constraints faced by many 363 

research projects. 364 
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Tables 371 
 372 
Table 1. Total species recorded during the survey. 373 
Family Species Number of individuals 
Acanthuridae Acanthurus sohal 293 
 Acanthurus nigrofuscus 2 
 Ctenochaetus striatus 682 
 Naso elegans 123 
 Naso unicornis 30 
 Zebrasoma desjardinii 763 
 Zebrasoma xanthurum 106 
Balistidae Balistapus undulatus 7 
 Rhinecanthus assasi 1 
 Sufflamen albicaudatus 58 
Carangidae Caranx melampygus 4 
Chaetodontidae Chaetodon auriga 61 
 Chaetodon austriacus 108 
 Chaetodon fasciatus 56 
 Chaetodon paucifasciatus 46 
 Chaetodon semilarvatus 8 
 Chaetodon trifascialis 8 
 Heniochus.intermedius 3 
Cirrhitidae Paracirrhites forsteri 6 
Dasyatidae Taeniura lymma 8 
Diodontidae Diodon hystrix 2 
Fistulariidae Fistularia commersonii 2 
Holocentridae Neoniphon sammara 5 
 Sargocentron caudimaculatus 9 
 Sargocentron diadema 1 
Labridae Anampses meleagrides 1 
 Bodianus.anthioides 18 
 Chelio inernis 10 
 Cheilinus lunulatus 24 
 Coris aygula 21 
 Epibulus insidiator 16 
 Gomphosus caeruleus 31 
 Halichoeres hortulanus 26 
 Halichoeres iridis 1 
 Novaculichthys taeniourus 14 
 Oxycheilinus digramma 6 
 Thalassoma rueppellii 72 
 Labridae sp. 19 
Lethrinidae Lethrinus mahsena 16 
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Lutjanidae Lutjanus bohar 1 
Monacanthidae Amanses scopas 7 
Mullidae Mulloidichthys flavolineatus 44 
 Parupeneus cyclostomus 1 
 Parupeneus forsskali 84 
Nemipteridae Scolopsis ghanam 45 
Ostraciidae Ostracion cyanurus 1 
Pinguipedidae Parapercis hexophthalma 21 
Pomacanthidae Pygoplites diacanthus 25 
Pomacentridae Abudefduf vaigiensis 162 
 Amblyglyphidodon indicus 7 
 Dascyllus trimaculatus 1 
 Pomacentrus sulfureus 40 
Scaridae Calotomus viridescens 2 
 Cetoscarus bicolor 3 
 Chlorurus sordidus 39 
 Hipposcarus harid 29 
 Scarus ferrugineus 5 
 Scarus fuscopureus 2 
 Scaridae sp. 363 
Scorpaenidae Pterois miles 3 
 Pterois radiata 1 
Serranidae Cephalopholis argus 7 
 Diploprion drachi 2 
 Grammistes sexlineatus 2 
Siganidae Siganus argenteus 292 
 Signatus luridus 383 
 Signatus stellatus 1 
Tetraodontidae Arothron diadematus 8 
 Arothron hispidus 2 
  Canthigaster margaritata 8 

 374 
 375 
Table 2. PERMANOVA results based on Eucclidean dissimilarity matrix on the (A) 376 
total number of individuals (square root transformed) and (B) total number of species 377 
(untransformed). 378 
 379 

(A) Total relative number of individuals 
      
Source df SS MS Pseudo-F P(perm) 
Day 1 7.75 7.75 3.03 0.100 
Time-of-day 3 23.05 7.68 3.02 0.063 
Site 2 0.84 0.84 0.33 0.562 
Day*Time-of-day 3 5.51 1.84 0.72 0.554 
Residuals 15 38.32 2.56   
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Total 23 75.46                   
(B) Species richness 
                                  
Source df SS MS Pseudo-F P(perm) 
Day 1 53.25 53.25 3.75 0.072 
Time-of-day 3 205.47 68.49 4.82 0.018 
Site 2 5.09 2.55 0.18 0.828 
Day*Time-of-day 3 25.34 8.45 0.60 0.639 
Res 14 198.80 14.20                  
Total 23 487.96                         

380 
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Table 3. PERMANOVA based on Bray Curtis dissimilarity matrix of the relative 381 
number of individuals (square root transformed with one dummy variable). 382 
Significant values are highlighted bold. 383 
 384 

Source df SS Pseudo-F P(perm) 
Day 1 0.03 2.58 0.001 
Time-of-day 3 0.04 1.50 0.022 
Site 1 <0.01 5 0.508 
Day*Time-of-day 3 0.03 1.09 0.330 
Res 15 0.15   
Total 23 0.26                 

  385 
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List of figure captions 386 
 387 

Figure 1. Mean number of individuals (± SE, n=24) (A). Significant differences are 388 
indicated using letters, and species richness (average number of species per video, ± 389 
SE, n=24) at time-of-day: 0600, 1000, 1400 and 1800 hrs (B). 390 

 391 
Figure 2. Nonmetric multidimensional scaling ordination (NMDS) of community 392 
structure. Dashed ellipse represents the 95% confidence interval for the centroid of each 393 
stratification group as calculated by ordiellipse (Oksanen, Kindt, Simpson, & Oksanen, 394 
2018). Points represent each video. 395 
  396 
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