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Abstract

In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms
in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8
vaccine (during May-June 2008). Bluetongue virus (BTV) infection was also detected on a fourth farm (Oldenzaal) in the
same area while testing for export. BTV RNA was subsequently identified by real time RT-PCR targeting genome-segment
(Seg-) 10, in blood samples from each farm. The virus was isolated from the Heeten sample (IAH ‘‘dsRNA virus reference
collection’’ [dsRNA-VRC] isolate number NET2008/05) and typed as BTV-6 by RT-PCR targeting Seg-2. Sequencing confirmed
the virus type, showing an identical Seg-2 sequence to that of the South African BTV-6 live-vaccine-strain. Although most of
the other genome segments also showed very high levels of identity to the BTV-6 vaccine (99.7 to 100%), Seg-10 showed
greatest identity (98.4%) to the BTV-2 vaccine (RSAvvv2/02), indicating that NET2008/05 had acquired a different Seg-10 by
reassortment. Although Seg-7 from NET2008/05 was also most closely related to the BTV-6 vaccine (99.7/100% nt/aa
identity), the Seg-7 sequence derived from the blood sample of the same animal (NET2008/06) was identical to that of the
Netherlands BTV-8 (NET2006/04 and NET2007/01). This indicates that the blood contained two different Seg-7 sequences,
one of which (from the BTV-6 vaccine) was selected during virus isolation in cell-culture. The predominance of the BTV-8
Seg-7 in the blood sample suggests that the virus was in the process of reassorting with the northern field strain of BTV-8.
Two genome segments of the virus showed significant differences from the BTV-6 vaccine, indicating that they had been
acquired by reassortment event with BTV-8, and another unknown parental-strain. However, the route by which BTV-6 and
BTV-8 entered northern Europe was not established.
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Introduction

Bluetongue virus (BTV) is the ‘type’ species of the genus Orbivirus,

within the family Reoviridae [1]. BTV is transmitted primarily by

biting midges (Culicoides spp.) in which it also replicates, and is

capable of infecting a wide range of ruminant, free ranging and

captive species of wild ruminants [2,3] as well as camelid species

[4–7]. Some BTV strains have also been shown to be transmitted

vertically, or via an oral route between individual mammalian

hosts in the field [8–13], and after experimental infection [14,15].

There are also recorded cases of large carnivores becoming

infected after injection of BTV infected vaccines, or ingestion of

infected meat [16–18].

Bluetongue (BT) is listed as a ‘notifiable disease’ by the Office

International des Epizooties (OIE) [19], causing severe clinical

signs that can include fever, lameness (coronitis), swelling of the

head (particularly the lips and tongue) and death. The more severe

forms of the disease are most frequently seen in sheep (particularly

in the ‘improved’ mutton and wool breeds that are common in

Europe) and in white-tailed deer (particularly in North America)

[20–26]. Severe clinical signs and fatalities can occasionally also

occur in cattle, goats and camelids [5,27–29]. Although the

infection is often inapparent in these other species, they can act as

silent reservoirs, remaining viraemic for several months (particu-

larly cattle) [25,30]. However, even subclinical infection can carry

significant costs, including loss of condition, reduced milk yield,

PLoS ONE | www.plosone.org 1 April 2010 | Volume 5 | Issue 4 | e10323



infertility and abortion [31], as well as indirect costs associated

with the export restrictions and the surveillance requirements

imposed to limit the spread of the virus [32,33].

Prior to 1998, occasional BT outbreaks had occurred in Europe,

although in most cases these were relatively short lived (,4–5

years) and involved a single BTV strain/serotype on each occasion

(reviewed by Mellor et al. [34]). However, in 1998, a major series

of BT incursions began in Europe, with new introductions in

almost every subsequent year (to date), involving BTV-1, -2, -4, -6,

-8, -9, -11 and -16 [35-38-www.reoviridae.org/dsRNA_virus_

proteins/outbreaks.htm].

Live- BTV vaccines have been widely used to control the

disease in the USA and as multivalent preparations (containing

multiple serotypes) in Israel and southern Africa [39–41].

Monovalent ‘live-vaccines’ of BTV-2, 4, 8, 9 (western group)

and BTV-16 (eastern group) have also been used, in attempts to

minimise virus circulation in the Mediterranean region. Vector-

borne spread of vaccine viruses has been reported before [42–44].

The release of these vaccine strains, some of which (including

BTV-2 and 16) have persisted in the field, has further increased

the level of genetic diversity within the European BTV population

[45–47].

BTV incursions (from the east - possibly via Turkey and from

North Africa) were initially restricted to Mediterranean Europe.

However, during August 2006 sheep infected with a sub-Saharan

African lineage of BTV-8, were identified in the Maastricht region

of the Netherlands, the first time BTV had been detected in

northern Europe [35]. This represented the start of the largest

single outbreak of BT on record, subsequently spreading across the

whole of Europe [35,48,49].

The BTV genome consists of 10 linear double-stranded RNA

segments, which encode a total of 7 structural proteins (VP1 to

VP7) and 3 distinct nonstructural proteins (NS1, NS2 and NS3/

NS3a) [50–55]. The two inner layers of the BTV capsid (identified

as the ‘sub-core’ and ‘core’) are composed of major structural

proteins VP3 and VP7 (encoded by genome segments [Seg-] 3 and

7 respectively). The innermost subcore-shell surrounds the ten

segments of the virus genome (one copy of each segment per

particle) as well as three minor enzyme proteins VP1, VP4 and

VP6 (encoded by Seg-1, 4 and 9 respectively). These core proteins

and two of the non-structural proteins that are also synthesised in

infected cells (NS1 and NS2 - encoded by Seg-5 and 8 respectively)

are highly conserved and are antigenically cross-reactive between

different strains of BTV. Although, the genome segments encoding

these conserved proteins do show sequence-variations that reflect

the geographic origin of the virus isolate (topotype), they show no

significant correlation with the virus serotype [35,53,56–59]. Most

BTV isolates that have been analysed can be divided into two

major ‘eastern’ or ‘western’ topotypes, then into a number of

further geographic subgroups, based on phylogenetic analysis of

their nucleotide sequences [35,56,57,60,61].

Prior to 2008, 24 distinct serotypes of BTV had been identified,

which can be distinguished in ‘neutralisation’ assays by the

specificity of their reactions with the neutralising antibodies that

are generated during infection of mammalian hosts. These

neutralising antibodies interact with the more variable outer

capsid proteins VP2 and VP5 (particularly VP2) encoded by Seg-2

and 6, respectively [1,62–64]. Consequently Seg-2 and 6 vary in a

manner that correlates with both the geographic origins (topotype)

of the virus strain and virus serotype (particularly Seg-2), making

them the most variable components of the BTV genome [35].

Different BTV ‘types’ can also be identified by conventional or

real-time RT-PCR assays and/or sequence analyses targeting Seg-

2 [35,57]. Maan et al [57] showed that the Seg-2 sequencles of

different BTV strains not only form distinct clades for each

serotype, but also that the sequences of certain serotypes cluster

more closely together, identifying ten distinct nucleotypes

(identified as A–J).

In 2008 a virus was detected in goats from Switzerland

(Toggenburg orbivirus - TOV), which shows a significant level

of divergence in each of its genome segments, from the ‘major’

eastern and western topotypes of BTV. This virus has been

provisionally identified (by serological and nucleic acid based

analyses) as a novel 25th BTV serotype (BTV-25) and represents a

further nucleotype (K) [[65]–see discussion].

BTV Seg-7 and 10, which encode outer-core protein VP7 and

NS3/NS3a respectively, show intermediate levels of nucleotide

variation between different isolates, dividing them into a number

of different clades that show only partial correlation with the

geographic origin of the virus [35]. VP7 can mediate surface

attachment, penetration and infection of insect cells by BTV cores

[66], while NS3 has been associated with the release of virus

particles from insect cells [67,68], suggesting that these proteins

may collectively influence the efficiency of BTV infection and

dissemination within the vector insect. It has therefore also been

suggested that the variations observed in Seg-7 (VP7) and Seg-10

(NS3) may relate to transmission of the virus by distinct insect

vector species/populations in different geographical regions

[35,60,69–71].

By 2008 western strains of BTV-1 and BTV-8 (originating in

sub-Saharan Africa) had both become established in northern

Europe [34,72,73]. However, despite vaccination campaigns,

bluetongue infected animals were again identified during Septem-

ber 2008, on 4 farms in the east of the Netherlands (Heeten,

Luttenberg, Barchem and Oldenzaal–Figure 1) and on November

5th 2008 in Germany [74]. The virus was subsequently isolated

from a bovine blood sample, taken from an animal showing

clinical disease (Heeten), and was identified as BTV-6 (reported

here). As part of attempts to clarify its origins, the complete

nucleotide sequence of the virus genome was determined and

compared to other European field strains, BTV vaccine strains

used in the region, representative ‘eastern’ and ‘western’ BTV

strains from other parts of the world, as well as the BTV-6

reference, vaccine and field strains from South Africa and USA.

Methods

Virus isolation and propagation in cell culture
EDTA treated blood samples from three cows (from farms at

Barchem (10th October 2008), Luttenberg (16th October 2008) and

Heeten (17th October 2008) in eastern Netherlands), and one serum

sample (Heeten), were sent to the Community Reference Labora-

tory (CRL) and Arbovirus Molecular Research Group (AMRG) at

the Institute for Animal Health (IAH) Pirbright (21st October 2008).

These blood samples were taken from naturally infected animals in

the field, by qualified veterinarians, as part of normal veterinary

care and diagnostic testing procedures in the Netherlands. A sample

of the blood from Heeten (stars number A163/08-3) is stored as

sample ‘NET2008/06’ in the ‘dsRNA virus reference collection’

(dsRNA-VRC) at IAH Pirbright. dsRNA-VRC numbers for blood

samples, or virus isolates use a generic format: ‘three letter country

code, year of sampling/isolate number for that year’.

A 3.0 ml aliquot of the blood (NET2008/06) was washed three

times with 10 ml of sterile phosphate-buffered saline (PBS). After

each wash the red blood cells (RBC) were centrifuged at 30006g

for 5 min at 4uC and the supernatant was discarded. After the final

wash, the RBCs were resuspended in 3.0 ml of PBS and RNA was

extracted from 2.0 ml for RT-PCR and sequence analysis. One ml

BTV-6 in the Netherlands
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of the washed RBC was also used for virus isolation in C. sonorensis

(KC) cells. At 7 dpi KC culture supernatant (KC1 - NET2008/04)

was harvested and used to infect BHK-21 cells. The resulting virus

isolate (KC1/BHK1 - NET2008/05) along with NET2008/04

and NET2008/06 were used for sequencing studies. Further

details concerning the origins and passage history of individual

virus isolates can be found at www.reoviridae.org/dsRNA_virus_

proteins/ReoID/btv-6.htm.

Serum neutralisation tests
Antiserum from the Heeten farm (sample number A163/08-2)

from the same cow as virus isolate NET2008/05, was also sent to

CRL at IAH Pirbright (21st October 2008), for neutralising

antibody testing against the 24 BTV serotypes in ‘serum

neutralisation tests’ (SNT).

A standard ‘constant virus - varying serum’ method was used,

with appropriate controls [75]. Briefly the test serum sample was

heat inactivated at 56uC for ,30 minutes, then serially diluted

(1:10). A fixed amount (100 VERO cell-TCID50/100 ml) of each

of the 24 BTV serotypes was added to an equal volume of each

serum dilution, in a 96 well plate (in four repeats), then incubated

for ,1 hour at 37uC followed by an overnight incubation at +4uC.

This will allow antibodies to neutralise homologous virus. Fifty ml

of a VERO cell suspension (26105 viable cells/ml), was then

added to all wells, and the plate sealed with sterile cover then

placed at ,37uC (with 5% CO2). Plates were examined under a

light microscope for cytopathic effects (CPE) at 3–4 days and 6–7

days post addition of cells. The neutralising antibody level was

expressed as a ‘titre’ for each serotype, representing the inverse of

the final dilution of serum at which each virus was neutralised, as

Figure 1. Map of geographical location of the BTV-6 affected farms in east of the Netherlands. The positions of the four farms originally
sampled (Heeten, Barchem, Luttenberg and Oldenzaal) are indicated by red dots. Other farms where BTV-6 was detected are indicated by blue dots.
doi:10.1371/journal.pone.0010323.g001

BTV-6 in the Netherlands
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calculated from the duplicate assays using the Karber formula

[76]. Serum neutralising antibody titres of .10 were considered

significant.

Identification of BTV and molecular typing
Viral RNA for conventional and real time RT-PCR assays were

extracted from cell-free infected tissue culture supernatants, and

from EDTA treated blood, using the QIAamp Viral RNA Mini

Kit (QIAGEN) as per manufacturer’s protocol. RNA for synthesis

of full-length cDNA copies of BTV genome segments was also

purified from infected KC and from BHK cells using TRIzol

reagent (Invitrogen) [57,77,78].

Serogroup-specific real-time RT-PCR assays targeting Seg-1

were carried out as described by Shaw et al. [79]. Conventional

‘type-specific’ RT-PCR assays (targeting Seg-2 of all 25 established

BTV serotypes) were performed as described by Mertens et al.

([80] and–manuscript in preparation). Type specific real-time RT-

PCR assays were carried out for the European BTV types, using

assays kits supplied by (LSI–Laboratoire Service International),

according to the manufacturer’s instructions.

Terminal and internal primers that are specific for each genome

segment were also used in conventional RT-PCRs, to amplify

cDNAs for sequencing studies. These included type-specific and

‘nucleotype C’ specific primers targeting Seg-2 of BTV-6 (Table 1).

In brief, a single-tube reaction contained the SuperScriptTM III

one-step RT-PCR system (Invitrogen) and high fidelity platinumH
Taq was used with RNA templates extracted from blood or cell

culture supernatant. The primer-template mix was heated to 95uC
for 3 min to denature the viral dsRNA, followed by immediate

cooling on ice, and addition of the reaction mix. Amplification of

Seg-2, was carried out in 50 mL reaction volumes containing

25 mL of 2X reaction mix, 0.2 mM of each primer (1 mL of

10 mM,), 6 mL (1 pg–1 mg) of denatured RNA, 1 mL of Super-

ScriptTM III RT/PlatinumH Taq High Fidelity Enzyme Mix and

nuclease free water to 50 mL. The RNA was reverse-transcribed at

55uC for 30 min. This was followed by an ‘inactivation/activation’

step at 94uC for 2 min (in order to simultaneously inactivate

reverse transcriptase and activate the DNA polymerases), 40

amplification cycles (94uC for 15 sec, 55uC for 30 sec and 68uC
for 1 min/kb), and a terminal extension step at 68uC for 5 min.

The RT-PCR products were analysed and purified by 1% agarose

gel electrophoresis (AGE) in tris acetate EDTA (TAE) buffer. The

cDNA bands were stained with ethidium bromide, visualized

under UV light, then excised and recovered from the gel for

sequencing. Full length cDNA copies of individual BTV genome

segments were also synthesised and amplified by RT-PCR, using

the ‘anchor spacer–ligation’ method described by Maan et al.

[35,78] and Potgieter et al. [81].

The different cDNA amplicons were purified by AGE,

recovered using a GFXTMPCR DNA and gel band purification

kit’ (Amersham Pharmacia Biotech, Inc), then sequenced using an

Applied Biosystems BigDye ddNTP capillary sequencer. Consen-

sus sequences from each segment were assembled and analyzed

using SeqMan Software (DNAStar Inc.).

The sequences generated were aligned with data for BTV

genome segments from GenBank (Table S1) [35,57,72], using

CLUSTAL W software [82]. Phylogenetic trees were constructed

by neighbour-joining using distance matrices, generated by the p-

distance determination algorithm in MEGA version 4.1 software

(500 bootstrap replicates) [83]. Sequence relatedness is reported as

percentage identity. The sequences obtained for each genome

segment of NET2008/05 have been submitted to GenBank

(accession numbers are shown in Table 2 and 3). Additional BTV-

6 and BTV-8 field, reference and vaccine strains were also

sequenced and submitted to Genbank (Table 3).

Results

Identification of BTV in the Netherlands
Blood samples were taken during October 2008, from three

cows showing mild clinical signs, consistent with BTV infection,

from different farms in the eastern Netherlands (at Heeten,

Luttenberg and Barchem). Two if these animals (Heeten and

Barchem) had been vaccinated against BTV-8 during May/June

2008. A fourth apparently healthy cow was also sampled as part of

routine pre-export testing from a farm at Oldenzaal. These

samples tested positive for the presence of BTV RNA by RT-PCR

(targeting Seg-10). Partial sequence analyses of Seg-10 showed that

although one of the samples (Luttenberg) contained a ‘‘mixed

sequence’’ (and was therefore unreadable), the other three samples

(from Heeten, Barchem and Oldenzaal) showed significant

sequence differences when compared to the previous northern

European outbreak strain of BTV-8 (,95% identity over a 200

base pair region [35]) and BTV-1 (82.0–83.3% identity over full

length region). These PCR results were confirmed by re-sampling

and re-testing of the RT-PCR positive animals.

Virus isolation and propagation in cell culture
A sample of blood taken from a cow in eastern Netherlands

(Heeten) (sample number A163/08-3) in October 2008, which had

Table 1. Primers for specific amplification of Seg-2 of BTV-6, by RT-PCR.

Primer pairs
Individual forward and
reverse primers* Primer Sequence (59 to 39)

Position on genome
segment 2 (nt)

Predicted Product
Size (bp)

Primer pair I BTV-6/2/301F GGTGGTATGTATAGAGGAAG 875-894 1631**

BTV-6/2/790R ACCACGCTACTCTGTATGCC 2506–2487

Primer pair II BTV-6/2/153F CGAGGCGATTGGTGACACAGGT 461-482 2226

BTV-6/2/853R CAAAGGGAACCTCGCGCGTAATC 2687–2664

Primer pair III BTV-6/2/35F GAGCGAAGATGATGAGGT 107–124 1211

BTV-6/2/439R GTCTTCTTCGTCTGTGAGATCAA 1318–1295

*Individual primers are identified by the BTV serotype (e.g. BTV-6) followed by the number 2 (to indicate Seg-2), then a number to indicate the relative amino acid
position of the primer within VP2, followed by F or R to indicate forward or reverse orientation.
**This primer pair also amplifies Seg-2 of BTV-14 and BTV-21, the most closely related serotypes to BTV-6 within nucleotype ‘C’ and it is therefore regarded as
nucleotype ‘C’ specific.
doi:10.1371/journal.pone.0010323.t001
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tested positive for bluetongue in a Seg-10 based real time RT-PCR

assay conducted at the Central Veterinary Institute of Wageningen

UR (CVI), Lelystad, was sent to the CRL at IAH Pirbright in

October 2008 (stored as dsRNA-VRC sample number NET2008/

06). The virus was isolated (single passage) in KC cells without

CPE (generating isolate NET2008/04) then passaged in BHK-21

cells (isolate NET2008/05), causing 100% CPE at 4 days post

infection. Subsequent real-time RT-PCR assays (at IAH) targeting

BTV Seg-1 [79], gave CT values of 26 for the Heeten blood

sample (NET2008/06), and 12–35 for cell-culture supernatants

from isolates NET2008/05 and NET2008/04, confirming the

presence of BTV.

Identification and typing of BTV-6
Conventional RT-PCR assays (at CVI) using primers directed

against Seg-2 of the BTV serotypes recently detected in Europe

(BTV-1, 2, 4, 8, 9 and 16 [80] see: www.reoviridae.org/

dsRNA_virus_proteins/ReoID/BTV-S2-Primers-Eurotypes.htm)

failed to amplify any cDNA products of the appropriate sizes from

the four bovine blood samples previously identified as positive by

BTV group-specific RT-PCR. This indicated that the new virus

represented an additional European serotype. However, subse-

quent RT-PCR assays (at IAH) using two sets of experimental

primers targeting Seg-2 from each of the BTV serotypes (1 to 25)

(Mertens et al., [80] and manuscript in preparation), generated

cDNA amplicons of the expected sizes from two of the three blood

samples (Heeten and Barchem), but only with the BTV-6 specific

primers. These analyses not only identified the virus as BTV-6, but

also excluded the other 24 BTV serotypes, providing the first

positive identification of this type anywhere in Europe. However,

one of the blood samples (Luttenberg) from an unvaccinated cow

gave positive results with both the BTV-6 and BTV-8 specific

primers, indicating that this animal had recently been infected

with both serotypes.

RT-PCRs using two further pairs of BTV-6 specific primers and

one pair of primers specific for ‘nucleotype C’ (which includes

BTV-6, 14 and 21) (Table 1) were used to generate cDNAs of the

expected sizes from virus isolates NET2008/04 and NET2008/05

(derived from the Heeten blood sample), representing a total of

,75% of Seg-2. This confirmed the identification of BTV-6 and

provided cDNAs for sequence analyses (Figure 2). Type-specific

real-time RT-PCR assays (supplied by LSI), targeting Seg-2 of

BTV-1, 2, 4, 6, 8, 9, 11, 16 and 25, also subsequently generated

positive results for BTV-6 from these isolates (CT value of 38

[NET2008/04] and 14 [NET2008/05]), as well as from the

original Heeten blood sample (CT value of 27 [NET2008/06]).

Typing of BTV specific antibodies in sera from the
Netherlands

Antiserum from the BTV-8 vaccinated cow from the Heeten

farm (sample number A163/08-2), was also tested using serum

neutralisation tests (SNT) against reference strains of BTV

serotypes 1 to 24, and gave high neutralisation titres against both

BTV-6 and BTV-8 (in each case at a neutralisation titre of 1/

1280). Although, lower titres were also detected against two other

serotypes (1/80 [BTV-14] to 1/120 [BTV-18]), these results are

consistent with sequential infection by BTV-6 and either infection

or vaccination against BTV-8 [84,85].

Full-length sequence analyses and comparison of the
NET2008/05 genome

In an attempt to identify the origins of the BTV-6 strain from

Heeten, cDNAs were amplified and used to generate full length

sequence data for individual genome segments of the virus

(segments 1, 3, 4, 7 were sequenced from KC cell (KC1) isolate,

NET2008/04; while the whole genome was sequenced from the

KC1/BHK1 isolate, NET2008/05, and segments 2 (partial), 5 to

10 were sequenced from the Heeten blood sample NET2008/06).

The consensus sequences obtained for most of the genome

segments were identical in each case, except for Seg-7 and Seg-10

(see below). The remainder of the paper therefore refers to the

sequence of the Netherlands BTV-6 KC1/BHK1 isolate

(NET2008/05), except where specific changes were detected

between the different samples.

Genome segment 1. Seg-1 of BTV-6 NET2008/05 was

compared to other ‘eastern’ and ‘western’ BTVs, including other

strains of BTV-6 sequenced in this study (Table 2 & 3). In each

case Seg-1 is 3944 base pairs (bp) long, encoding the 1302 amino

acid (aa) RNA dependent RNA polymerase (RdRp - Pol) (Table 2),

and is highly ‘conserved’, showing .78.7% overall identity. Seg-1

of BTV-6 NET2008/05 was most closely related to the South

African BTV-6 vaccine strain (5011-60E-VP1) (99.9% nucleotide

[nt] identity), a BTV-6 strain from Germany (GER2008/05)

(99.9% identity), and the BTV-6 reference strain (RSArrrr/06–

99.8%).

The deduced aa sequence for BTV VP1 is also highly

conserved, showing .93.2% identity, with a clear separation

between ‘eastern’ and ‘western’ virus groups/topotypes (with a

maximum of 5.8/1.7% and 12.0/3.8% nt/aa intra-topotype

variation respectively within these two groups) (Figure 3) [35]. The

level of nt/aa identity in Seg-1/VP1 between these major eastern

and western virus groups was 78.7 to 80.7/93.2 to 95.4%

respectively (Figure 3). However, BTV-25 (TOV) does not cluster

Figure 2. Electrophoretic analysis of cDNA products generated
from Seg-2 of NET2008/04 using nucleotype ‘C’ and BTV-6
specific primer pairs. PCR amplicons were generated from cDNA of
BTV-6 isolate NET2008/04 with one nucleotype ‘C’ (lane 2) and two type
6 specific primer pairs (lanes 3 and 4 – Table 1). No specific amplification
was seen with these primers from mock KC cells (Lane 1). Lane M: 1 kb
marker.
doi:10.1371/journal.pone.0010323.g002
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Figure 3. A graphical representation of the levels of nucleotide and amino acid sequence identities detected in different genome
segments and proteins, within and between different BTV serotypes and topotypes. Estimates of the levels of identity in each genome
segment/protein, between different BTV strains are based on multiple datasets for widely distributed isolates, as described previously by Maan et al.
[35,57,72] and listed in tables 3 and S1. The values presented here show the levels of identity detected within the ‘major’ eastern and western
topotypes for each genome segment (black) and protein (red). The levels of identity that are shown between different topotypes, include data for all
genome segments of BTV-25 (Toggenburg orbivirus), as well as Seg-3 of BTV-15 Australia (Ac. No. AY322427) and Seg-5 of BTV-20 Australia (Ac.
No. X56735), as representatives of distinct topotypes.
doi:10.1371/journal.pone.0010323.g003
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with either group, showing ,75.8/88.1% and ,75.8/88.2% nt/

aa identity with the eastern or western BTV strains respectively,

suggesting that it represents a further distinct (western) group/

topotype.

Seg1/VP1 from the BTV-6 Netherland isolates was identical to

that of the BTV-6 vaccine strain, with 99.8% identity to the

reference strain (RSArrrr/06) from which the vaccine was

originally derived [39]. Seg-1/VP1 of BTV-6 NET2008/05 was

also closely related to those of other BTV-6 strains from South

Africa (95.1 to 95.2% nt and 98.6 to 98.8% aa identity), but

somewhat less closely related to the western strain of BTV-6 from

the USA (USA2006/01–88.9/98.4% nt/aa identity).

Genome segment 2. Multiple cDNAs were amplified from

Seg-2 of NET2008/05 and sequenced (full–length), showing that

like other BTV-6 strains, it is conserved at 2922 bp, encoding

VP2, which is 955 aa long (Table 2). Comparisons with Seg-2/

VP2 from the reference strains of BTV 1 to 25 (Table 3)

[57,65,72], showed that the Netherlands strain of BTV-6 groups

within ‘Seg-2 nucleotype C’ along with reference strains of BTV-6,

14 and 21 (Figure 3 and 4). It is very closely related to the

reference strain of BTV-6 (99.8/99.7% nt/aa identity) and is

identical to the vaccine strain of the same serotype from South

Africa (Figure 4). This analysis not only confirmed its initial

identification of BTV-6, but also demonstrates that NET2008/05

was derived from the ‘vaccine’ strain.

Comparisons to sequence data for Seg-2 from multiple

subsequent isolates of BTV-6 from northern Europe (2008-2009

- including GER2008/05) showed that they all group closely with

NET2008/05 (.99.9/100% nt/aa identity)–indicating a common

origin, with only 89.1/95% nt/aa identity to BTV-6 strain from

USA (USA2006/01). Field isolates of BTV-6 from South Africa

(Table 3) were also closely related to each other (with 99.3/99.5%

nt/aa identity) but more distantly related to NET2008/05 (95.7 to

95.9% nt and 98.5 to 98.6% aa identity) or USA2006/01 (88.6 to

88.7% nt and 94.7 to 94.8% aa identity–Figure 4). No BTV-6

strains belonging to the major eastern topotypes/origins were

available for comparison.

Genome segment 3. Seg-3 of the different European BTV

strains is 2772 bp long (regardless of serotype or topotype),

encoding the 901 aa of the highly conserved BTV sub-core-shell

protein, VP3(T2) (Table 2). The eastern and western virus isolates

formed two distinct clusters (major topotypes), which have nt/aa

identities of .89.80/98.1% (eastern topotype) and 87.5/97.7%

(western topotype) respectively. The overall level of nt/aa identity

in Seg-3/VP3 between these eastern and western virus groups, was

79.3 to 82.4/96.9 to 99.3% respectively (Figure 3). However a

single Australian strain of BTV-15 (Ac. No. AY322427) appears to

represent a further distinct ‘far eastern’ group, showing ,80.8/

97.9% nt/aa identity with the other eastern strains and 78.9 to

82.4/95.4 to 97.6% nt/aa identity with western strains. In a

Figure 4. Neighbour-joining tree showing relationships between Seg-2 of NET2008/05 with other BTV-6 isolates and the twenty-
five reference strains of different BTV serotypes. The tree was constructed using distance matrices, generated using the p-distance
determination algorithm in MEGA 4.1 (500 bootstrap replicates) [83]. The ten evolutionary branching points are indicated by black dots on the tree
(along with their bootstrap values), which correlate with the eleven ‘Seg-2 nucleotypes’ designated A–K. BTV-25 (Toggenburg orbivirus [TOV]) forms a
new 11th Seg-2 nucleotype (K). Members of the same Seg-2 nucleotype, are characterised by .66.9% identity in their Seg-2 nucleotide sequences,
while members of different nucleotypes show ,61.4% identity in Seg-2 [57,72] (see Figure 3). The trees shown in Figures 4-7 were drawn using same
parameters.
doi:10.1371/journal.pone.0010323.g004
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similar manner, BTV-25 (TOV) shows ,77/88.9% and ,76.6/

89.5% nt/aa identity, respectively, with the major eastern and

western topotypes of BTV, again indicating (as with Seg-1/VP1)

that it represents a further distinct (western) group/topotype.

Seg-3/VP3 of BTV-6 NET2008/05 showed .88.5% nt

identity to the other European viruses within the major ‘western’

topotype, but only 79.8 to 83.2% identity to the ‘eastern topotype’.

Within the western group Seg-3/VP3 of NET2008/05 was most

closely related to the BTV-6 vaccine and reference strains (99.8/

99.9% nt/aa identity), and more distantly related to South African

field isolates of BTV-6 (94.6 to 94.7/99.4 to 99.6% nt/aa identity),

or the North American BTV-6 (USA2006/01 - 90.1/97.2% nt/aa

identity). The Netherlands virus has a unique aa change in VP3,

when compared to the BTV-6 vaccine or reference strains, at

position 266 (Valine to isoleucine).

Genome segment 4. Seg-4 of BTV is consistently 1981 nt in

length, encoding the 644 aa of the highly conserved BTV capping

and transmethylase enzyme - VP4(CaP) (Table 2). The full-length

sequence of Seg-4/VP4 from BTV-6 NET2008/05 grouped with

other ‘western’ BTV strains (showing .89.6/95.3% nt/aa

identity), but only 79.4 to 79.9/90.4 to 91.8% nt/aa identity to

the ‘eastern’ isolates.

Analysis of Seg-4/VP4 sequences again divided the majority of

the isolates compared, into either an eastern or a western topotype,

with nt/aa identities of .89.8/94.6% (eastern topotype) and 87.1/

89.1% (western topotype) respectively. The level of nt/aa identity

between these major topotypes was 77.7 to 81.6/86.1 to 92.5%

(Figure 3). However, BTV-25 (TOV) showed ,73.4/82.1% and

,73.4/82% nt/aa identity with the eastern and western BTV

strains respectively, which is consistent with its membership of a

further distinct (western) group/topotype.

Seg-4/VP4 of BTV-6 NET2008/05 show 99.9/100% and

99.8/100%, nt/aa identity, to the South African vaccine and

reference strains of type 6 (respectively), indicating a common

origin. Like several of the other genome segments, Seg-4 of BTV-6

NET2008/05 also showed a slightly more distant relation with the

BTV-6 field strains from South Africa (93.7–93.8/98% nt/aa

identity), and the American BTV-6 (USA2006/01 - 90.1/97.2%

nt/aa identity). Four unique aa changes were detected in the

Netherlands and vaccine or reference strains of type 6, as

compared to other western BTV isolates (at positions 54 (V-I),

117 (F-Y), 166 (I-T) and 825 (I-V)).

Genome segment 5. Seg-5 of BTV- 6 NET2008/05 is

1772 nt long, encoding the 552 aa of the NS1 tubule protein

(TuP), with upstream and downstream NCRs of 34 and 81 bp in

length (Table 2). The downstream NCR of BTV Seg-5 varies in

length, even between isolates of the same serotype [35]. Seg-5 of

the BTV-6 isolates from the Netherlands and South Africa has an

85 bp long 39 NCR, while that BTV-6 from the USA (USA2006/

01) is only 78 bp.

Seg-5/NS1 from the majority of the different BTV isolates

compared also segregate into two ‘major’ groups, with nt/aa

identities of .95.4/98.2% (eastern topotype) and .87.4/92.8%

(western topotype) respectively (Figure 3). The overall level of nt/

aa identity between these major topotypes was 81.6 to 83.8/92.4

to 95.8%.

However a single Australian strain of BTV-20 (Ac.

No. X56735) appears to represent a further distinct eastern group,

showing ,81.5/92.4% nt/aa identity with the other eastern

strains and 78.9 to 80.9/89.7 to 91.7% nt/aa identity with western

strains. BTV-25 (TOV) shows ,74.3/78.1% and ,74.0/78.6%

nt/aa identity with the eastern and western strains of BTV

respectively, again suggesting that it represent a further distinct

(western) group/topotype.

Seg-5/NS1 of BTV-6 NET2008/05 belong to the major

western topotype, showing 100% identity with the South African

BTV-6 vaccine and reference strains (again indicating a common

origin), with 92.9/99.3% and 88.2/96.7% nt/aa identity to other

BTV-6 strains from South Africa and USA respectively. Seg-5/

NS1 of BTV-6 NET2008/05 also showed 98.8%, 98.6%, and

98.1% nt identity, to south African vaccine strains of BTV-1, 9

and 4 respectively, and up to 94.2/100% nt/aa identity to BTV-8

strains from Europe.

Genome segment 6. Seg-6 encodes VP5, the smaller of the

two outer capsid components and second most variable of the

BTV proteins. Although variations in Seg-6/VP5 can also be used

to identify eight nucleotypes (A-H - Figure 5, see

discussion[65,72]), unlike Seg-2/VP2, they show only partial

correlation with BTV serotype. This is demonstrated by the close

relationships between BTV-7 and 19 within nucleotype D, and the

more distant relationship between the reference strain of BTV-9 in

nucleotype C, and the Bosnian strain of BTV-9 in nucleotype B

(Figure 5). The levels of nt/aa identity in Seg-6/VP5 between

different serotypes that are also present in different nucleotypes are

56.7 to 76/54.2 and 85.9% respectively. However different

serotypes within the same nucleotype can show very high levels

of identity approaching 100% (Figure 3). Seg-6 of BTV types 1, 2,

9 and 16 all show evidence for separation into eastern and western

topotypes, [35,72]. In contrast the BTV-4, -6 and -8 strains that

have been analysed are exclusively from western origins, and

consequently there is (as yet) no evidence for separation of their

Seg-6 sequences into eastern and western topotypes.

Seg-6/VP5 of the BTV-6 isolates analysed (Table 2 and 3), are

conserved at 1637 bp/526 aa long, with .89.3/98.5% nt/aa

identity overall. Seg-6 of NET2008/05 grouping within ‘nucleo-

type B’, with reference strain of BTV-3 from South Africa

(RSArrrr/03–nt/aa identity of 96.1 to 96.5/99.6%) and BTV-6

from the USA (USA2006/01–nt/aa identity of 88.9 to 89.3/

98.7%) (Figure 5). The majority of these BTV-6 isolates (with the

exception of BTV-6 USA2006/01) belong to an African sub-

group, with .94.6/99.4% nt/aa identity. However, the European

strains (represented by NET2008/05) were even more closely

related to the reference strain of BTV-6 (RSArrrr/06) with only

5 nt and 2 aa differences (99.7/99.6% nt/aa identity) and are

identical to the BTV-6 vaccine strain (RSAvvvv/06). This

confirms the initial identification of the northern European isolate

as type 6 that was made by Seg-2 RT-PCR. Subsequent analyses

of multiple northern European isolates of BTV-6 (including

GER2008/05) show that they all contain Seg-6 that is identical to

that of NET2008/05, and therefore all appear likely to be derived

from the same origin.

Recent South African isolates of BTV-6 (Table 3) are closely

related to each other, with .99.7/100% nt/aa identity, but are

more distantly related to NET2008/05 (with only 94.6 to 94.8/

99.4% nt/aa identity), or BTV-6 from USA (USA2006/01) (89.5

to 89.6/98.5% nt/aa identity) (Figure 5), indicating that they do

not share a very recent common ancestry with the northern

European isolate.

Genome segment 7. Seg-7 of NET2008/05 is 1156 bp long,

encoding 349 aa of the major BTV serogroup-specific antigen and

core surface protein - VP7 (Table 2). The aa sequence of VP7 is

significantly more conserved (.73.6% identity) than the nt

sequence (.63.3%) reflecting large numbers of synonymous

mutations in the third base position (Figure 3) [35]. Seg-7 was

reported to form six distinct clusters: three of these are primarily

from western origins (western 1, 2 and 3) and three from an

eastern origin (eastern 1, 2 and 3) [35]. However, Seg-7 from the

Chinese strain of BTV-12 groups within western group 1,
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suggesting some movement of strains between geographic regions.

Analysis of additional isolates from around the world also

identified four additional western clusters, as well as an isolate

from Yunnan, China (AY386682) in western group 4, and BTV-

15 from Australia (Ac. No. L11723) within western group 2

(Figure 6). BTV-25 (TOV), showed 70 to 79.1%/79.9 to 93.4%

nt/aa identity with other BTV strains, representing a further

distinct group/topotype and forms a western group 7.

The nt/aa sequence of Seg-7/VP7 of NET2008/04 (KC isolate)

and NET2008/05 (KC1/BHK1 isolate) showed .70.5/99.7%

nt/aa identity to other BTV strains, and as observed with the

majority of other segments (except Seg-10), highest levels of

identity to the BTV-6 vaccine strains in ‘western cluster 3’.

However, in contrast Seg-7 from NET2008/06 showed 79.3 to

79.9/94.5 to 94.8% nt/aa identity with other BTV-6 strains, but

100% nt/aa identity with BTV-8 from the Netherlands 2006/

2007 (NET2006/04 and NET2007/01), within ‘western group 1’

(Figure 6).

Genome segment 8. Seg-8 of BTV is conserved at 1125 bp,

encoding the 354 aa of the viral inclusion body (VIB) matrix

protein - NS2 (Table 2). Seg-8 of the BTV isolates also showed

clear separation into major eastern and western topotypes, with

NET2008/05 grouping along with other western viruses,

including the vaccine strains of BTV-2, 4 and 9 and European

field strains of BTV-2 and 4 (data not shown). As observed with

the other conserved segments, BTV-25 (TOV) forms a second

distinct western topotype.

The BTV isolates that were compared from eastern origins, all

showed nt/aa identities in Seg-8/NS2, of .87.2/83.6%, while the

‘western’ viruses showed .82.8/86.9% identity (Figure 3). The

only exception was BTV-25 (TOV), which although showed

,70.4/70.1% nt/aa identity with eastern isolates, only ,71.1/

69.5% nt/aa identity with the other western BTV strains. Overall,

nt/aa identity levels of 75.0 to 80.5/80.0 to 87.2% were detected

between the ‘major’ eastern and western topotypes of BTV

(Figure 3). The results obtained, like those for the other conserved

genome segments are consistent with BTV-25 (TOV), as a

member of a further distinct (western) topotype (Figure 3).

Seg-8 of NET2008/05 and NET2008/06 showed .99.9% nt

and aa identity to the vaccine strains of BTV-6 and to other BTV-

6 isolates from Germany (GER2008/05). Although clearly

distinct, the Netherlands strain also showed relatively high levels

of nt/aa identity to South African field strains of BTV-6 (96/98%),

and to BTV-6 from USA (USA2006/01–88.8/93.7%).

Figure 5. Neighbour-joining tree showing relationships between Seg-6 of NET2008/05 with other BTV-6 isolates and the twenty-
five reference strains of different BTV serotypes. The seven evolutionary branching points are indicated by black dots on the tree (along with
their bootstrap values), dividing the sequences into eight ‘Seg-6 nucleotypes’ designated ‘A–H’. In previous studies [72], six Seg-6 nucleotypes were
identified, however the additional analyses described here indicate that the previous ‘nucleotype C’ should be subdivided (into nucleotypes ‘C’ and
‘G’). BTV-25 (Toggenburg orbivirus [TOV]) forms a new 8th Seg-6 nucleotype (H). Members of the same nucleotype show .76% nt identity in Seg-6,
while members of different nucleotypes show ,76% nt identity (see Figure 3).
doi:10.1371/journal.pone.0010323.g005
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Genome segment 9. Seg-9 codes for VP6, a minor core

protein and the helicase enzyme (Hel) of BTV. As in previous

studies [35], the BTV Seg-9 nt sequences analysed here were

clearly divided into eastern and western topotypes. Seg-9 of the

eastern BTV isolates is 1052 bp, encoding a protein 330 aa in

length, while Seg-9 from the western lineage is 1049 bp (329 aa)

(Table 2) [35]. Of the 112 BTV strains analysed, 96 isolates had

two in frame initiation codons, at nucleotides 16 to 18 and 28 to 30

of Seg-9, which can generate two related forms of VP6. This

agrees with previous observations of two closely migrating VP6

bands in purified BTV particles or in in vitro translation studies

[86]. Only 16 isolates (belonging to both eastern and western

topotypes) had a single start codon at nucleotides 28 to 30.

The level of nt/aa identity in Seg-9/VP6 within the ‘major’

eastern and western topotypes was .86.0/79.2% (eastern

topotype) and .85.9/86.2% (western topotype) respectively, with

69.1 to 79.1/57.3 to 76.0% nt/aa identities between these groups

(Figure 3). However, BTV-25 (TOV) showed ,71.4/66.2% nt/aa

identity with other western isolates; ,71.8/66.6% with most

eastern BTV isolates, but only (65.4/53.1% nt/aa) to BTV-15

Australia (Ac. No. DQ289044). As with the other genome

segments analysed, these data suggest that BTV-15 Australia

and BTV-25 (TOV) represent further distinct ‘far eastern’ and

western BTV topotypes respectively.

Seg-9 of NET2008/05 belongs to the major western topotype

and is identical to that of the South African BTV-6 vaccine, but

shows minor differences (99.7/99.4% nt/aa identity) when

compared to Seg-9/VP6 of the reference strain, from which the

vaccine strain was derived. It is also closely related to but distinct

from BTV-6 strains from South Africa (94.4 to 95.3/93.6 to

94.8% nt/aa identity), and the USA (USA2006/01 - 90.0/91.0%

nt/aa identity).

Genome segment 10. Seg-10 of NET2008/05 is 822 bp long

and codes for two small, related non-structural proteins, NS3 (229

aa) and NS3a (216 aa) (Table 2). Seg-10/NS3 sequences can be

divided into five groups, with .75.9/81.2% nt/aa conservation

overall (Figure 3 and 7). These include three major groups, two

from western and one from eastern origins containing the majority

of Seg-10 sequences, as well as minor eastern and western groups

each containing sequences from only a single isolate (type 15 from

China and BTV-25 [TOV] respectively).

The majority of the western viruses (western groups 1 and 2)

showed 80.0 to 97.4%/90.4 to 99.6% nt/aa identity to eastern

viruses (eastern groups 1 and 2). However ‘western group 3’

Figure 6. Neighbour-joining tree showing relationships between Seg-7 of NET2008/05 with other BTV-6 isolates and other BTV
strains from different serotypes from around the world.
doi:10.1371/journal.pone.0010323.g006
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represented by the newly discovered BTV-25 (TOV), showed

a maximum of 79.1 to 79.3 nt and 83.4% aa identity

with the eastern and western isolates respectively (Figure 3

and 7).

Seg-10 from European isolates of BTV-1, 9 and 16 cluster

together in eastern group 1, while European isolates of BTV-1, 2

and 4, and South African reference strain of type 1 cluster within

western group 2 along with BTV-8 reference strain, and vaccine

strains of BTV-8, 11 and 17. Seg-10 of the South African vaccine

strains of BTV-1, 2, 3, 4 and 6, cluster within western group 1

along with BTV-8 NET2006/04 and BTV-2 and 6 reference

strains and field strains of BTV-2, 6 and 12 from Portugal, USA

and Jamaica. NET2008/05 is also included in this western group

1 and was most closely related (98.4/99.6% nt/aa identity) to the

reference (Ac. No. AF481094) and vaccine strains of BTV-2 (Ac.

No. AF481094), a field strain of BTV-2 from Portugal

(EF434179/PT/26629/05) and another field strain of BTV-12

from Jamaica (Ac. No. AY426595). Seg-10 of NET2008/05 and

NET2008/06 was more distantly related (93.6/99.6% nt/aa

identity) to the BTV-6 vaccine/reference strain and BTV-6

strain from USA (USA2006/01–93.0/99.6%) in western

group 1.

Discussion

In September 2008, cows on three different farms in the eastern

Netherlands two of which had previously received an inactivated

BTV-8 vaccine, displayed mild clinical signs of BT (particularly

coronitis). A fourth apparently healthy cow that was tested for

BTV prior to international transport was also RT-PCR positive.

Blood samples from these animals gave positive results for the

presence of BTV RNA using RT-PCR targeting Seg-10 (at CVI).

Partial sequence-analyses of Seg-10 from these four samples

showed significant differences when compared to strains of BTV-1

(17.3%) and BTV-8 (3.3%) from northern Europe. These initial

data indicated that the virus represented a new introduction to the

region.

Conventional RT-PCR assays, using primers directed against

Seg-2 of BTV-1, 2, 4, 8, 9 and 16 failed to amplify any products of

an appropriate size, providing the first indication that the virus

also represented a serotype not previously detected in Europe.

Further RT-PCR assays using primers for the 25 established BTV

types (1 to 25) identified the virus as BTV-6, although one of the

original blood samples from an unvaccinated animal (Luttenberg)

also gave positive results with primers targeting Seg-2 of BTV-8,

Figure 7. Neighbour-joining tree showing relationships between Seg-10 from BTV-6 NET2008/05 with multiple other BTV-6 isolates
and other BTV strains of different serotypes from around the world.
doi:10.1371/journal.pone.0010323.g007
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indicating a mixed infection. This demonstrates that both BTV-6

and BTV-8 were circulating in the region. Real-time RT-PCR

assays targeting Seg-2 of BTV-1, 2, 4, 6, 8, 9, 11, 16 and 25

(supplied by LSI) subsequently also identified BTV-6 (CT values

14, 27, and 38) in both the blood sample and the virus isolates

from Heeten, demonstrating that this strain of BTV-6 could be

detected and identified by these assays.

Neutralisation assays demonstrated the presence of antibodies to

both BTV-6 and 8 in serum from the infected animal at Heeten,

reflecting infection with BTV-6 as well as infection and/or

vaccination with BTV-8.

BTV-6 had previously been isolated from Africa, Middle East,

India, Pakistan, USA, Central and South America [87] and

therefore exists as both eastern and western strains, although no

sequence data for the eastern strains were available for these

analyses. The data presented here represent the first complete

sequence (segments 1-10) of the northern European strain of BTV-

6, as well as BTV-6 field and vaccine strains from South Africa

and a BTV-6 field strain from North America (USA2006/01).

Sequence analyses of Seg-2 from the Heeten blood sample

(NET2008/06) and isolate (NET2006/05) showed that it clusters

in ‘Seg-2 nucleotype C’ (identified by Maan et al. [57,72]–

Figure 4), and revealed 5 nt differences (99.8/99.7% nt/aa

identity) from the reference strain of BTV-6 (RSArrrr/06 -

isolated in South Africa in 1958: reviewed by Alpar et al. [39]).

This not only confirmed the virus type, but also indicated that it

belongs to the major ‘western’ topotype, and groups with other

sub-Saharan African strains of BTV-6. Further comparisons of

Seg-2/VP2, showed that it is identical to the South African live

attenuated vaccine strain of BTV-6, providing the first indication

that it was in fact derived from this source.

Seg-2 and Seg-6 of TOV [65] were also included in these

analyses, showing levels of variation that are consistent with its

inclusion as BTV-25, as a representative of a distinct eleventh

nucleotype of Seg-2 (nucleotype K - Figure 4) and an eighth

nucleotype of Seg-6 (nucleotype H–Figure 5). Comparisons of VP3

from the Toggenburg orbivirus isolate [65] showed 88.0 to 89.5%

aa identity with other BTV strains. This is significantly higher than

the 77.3 to 77.9% identity which is shares with isolates of epizootic

haemorrhagic disease virus (EHDV) [88], the most closely related

of the other Orbivirus species to BTV [1]. BTV and EHDV

themselves also show only 78.5 to 81.1% aa identity in VP3. These

values compare with 91%, the lowest level of identity previously

detected in VP3 within a single Orbivirus species [89]. If TOV is to

be considered as a new strain/serotype of BTV, this pushes down

the level of identity for VP3 within a single species, although this is

perhaps inevitable as more distinct and diverse isolates are

analysed and compared. Further confirmation that TOV is a

member of the species Bluetongue virus could be generated by a

demonstration that it can exchange/reassort genome segments

with other strains of BTV [1]. However, attempts to adapt the

virus to cell culture have so far been unsuccessful [65], making

these experiments more difficult.

Phylogenetic analyses of the other genome segments from

NET2008/05 showed that most were very similar or identical to

the South African live-vaccine strain of BTV-6 (99.7–100% nt/aa

identity). They also contained significantly higher numbers of

nucleotide changes when compared to sequences from field strains

of other serotypes already circulating in Europe, or the other live-

vaccine strains that had been used in the Mediterranean region.

Subsequent data for BTV-6 isolated in Germany during 2008

(GER2008/05) showed small numbers of nucleotide changes in

several of genome segments, when compared to NET2008/05, but

confirmed that the different isolates were all very closely related

representing a single virus lineage. All of the genome segments of

NET2008/05 group with those of other ‘western’ viruses,

belonging to sub-Saharan African lineages. However, Seg-10 of

NET2008/05 was less closely related than the other segments to

that of the BTV-6 vaccine strain (93.6/99.6% nt/aa identity) and

was clearly distinct from previously published data for other field

strains from Europe or elsewhere. Seg-10 of NET2008/05 was

most closely related to that of the South African vaccine and

reference strains of BTV-2, showing 98.4/99.6% nt/aa sequence

identity. This indicates that they share a recent common ancestry

and suggests that the Netherlands virus acquired Seg-10 by

reassortment, possibly with another BTV vaccine strain. Although

it is possible that this segment was acquired during co-infection by

BTV-2 and BTV-6 vaccines, the level of variation observed (1.6%)

suggests that this would have happened several cycles of

replication before the virus arrived in northern Europe.

When BTV-6 was detected in the Netherlands during October

2008, it represented a further new serotype to Europe. Its African

and vaccine strain origins are indicated by the phylogenetic

analyses reported here. Recent studies also detected Seg-2 of the

South African BTV-11 vaccine strain in the same part of northern

Europe (in Belgium) during early 2009 [90]. Together with the

arrival of BTV-8 in the Maastricht region during August 2006, this

indicates that there is an effective route for the introduction of

these viruses (none of which had previously been detected in

Europe) to this part of northern Europe, although details of the

mechanisms involved remain a matter for speculation.

The BTV-6 vaccine has previously been used are in Israel and

South Africa itself. In each case it was used as part of a multivalent

vaccine. In Israel this involved BTV-2, -4, -6, -10 and -16, while in

South Africa the ‘Bottle-A’ vaccine contains BTV-1, -4, -6, -12

and -14. It has been suggested that the virus could have arrived in

the region as the result of illegal use of these live attenuated BTV

vaccines (‘Bottle-A’ of the south African BTV vaccine contains

BTV-1, a strain of current concern in many regions of Europe).

However, the absence of antibodies to multiple other serotypes in

the antiserum from Heeten indicates that this animal at least had

not received either of the multivalent vaccine preparations

produced by Onderstepoort Biological Products (OBP) in South

Africa.

Like most of the other genome segments (Seg-1 to 9), Seg-7/

VP7 of NET2008/04 (KC isolate) and NET2008/05 (KC1/

BHK1 isolate) showed 99.7-100% nt/aa identity to the South

African BTV-6 live-vaccine strains. Similar results were also

obtained with the virus after isolation in embryonated chicken eggs

and passage in BHK-21 cells (at CVI). However, Seg-7 from the

Heeten blood sample from (NET2008/06) generated a consensus

Seg-7/VP7 sequence that was identical to Seg-7/VP7 of BTV-8

from the Netherlands 2006 (NET2006/04) and 2007 (NET2007/

01), but only showed ,80.5% nt identity to the BTV-6 isolates

from the same sample (Figure 6). This suggests that the original

blood contained two different versions of Seg-7 (consistent with the

circulation of both BTV-6 and BTV-8 in the region), only one of

which (from the tissue-culture adapted BTV-6 vaccine strain) was

selected during isolation of the virus in cell-culture. It is possible

that this reflects some involvement of the selected version of VP7

in the infection mechanism and consequently in adaptation of the

virus to cell culture. However, the predominance of the BTV-8

Seg-7 in the original Heeten blood sample (NET2008/06) suggests

that the virus was in the process of reassorting with the northern

field strain of BTV-8 that was widespread in northern Europe.

We have considered the possibility that Seg-7 from the

Netherlands strain of BTV-8 could have been detected in the

blood sample from Heeten, as a result of laboratory contamina-
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tion. However, our laboratory works to QA standards (ISO9001)

and although the sequencing of Seg-7 was repeated three times,

using freshly extracted RNA on each occasion, consistent results

were obtained. Other samples extracted and tested at the same

time did not contain BTV-8 Seg-7 and no other BTV-8 sequences

(from other segments) were detected in the blood sample,

collectively excluding the possibility of accidental contamination

with BTV-8 Seg-7, or with BTV-8 virus.

In order to exchange genome segments these two ‘parental’

viruses (BTV-6 and BTV-8) must co-infect the same cells within an

individual mammalian host or insect vector, and this appears most

likely to have occurred after BTV-6 was introduced into northern

Europe. Analyses of German 2008 samples by real-time RT-PCR

(supplied by LSI) identified several animals that were infected by

both BTV-6 and 8 (GER2008/01 and GER2008/02). These

samples were also shown to contain a mix of the two different

versions of Seg-7 detected from the Heeten blood and virus isolate.

It may be significant that evidence for reassortment was only

detected in Seg7/VP7 and Seg-10/NS3/3a of the BTV-6 strain

from northern Europe. VP7 is known to be involved in binding of

BTV core particles to the cell surface membrane proteins of vector

Culicoides sp and may play an important role in BTV infection of

the insect vector [66,91]. In contrast NS3/3a are involved in the

release of virus particles from infected insect cells [67,68,92] and

together with VP7 (and possibly the other outer coat protein VP2

and VP5 involved in cell attachment) may influence the

dissemination of the virus within the individual insect. It has been

suggested that variations in these two genome segments and

proteins (Seg-7/VP7 and Seg10/NS3/3a) may reflect transmission

of BTV by different vector species or populations in different

geographic locations [35]. The acquisition of different versions of

Seg-7 and Seg-10 by the vaccine strain of BTV-6 could therefore

reflect adaptation to transmission by the vector population within

the ecosystem that exists in northern Europe. However, further

study will be needed to show if there are differences in the

infection rate in north European Culicoides sp, or the transmission

efficiency for these viruses containing the different versions of Seg-

7/VP7.

The provision of a full genome sequence for the northern

European field strain of BTV-6 will make it possible to track any

further changes or reassortment events that occur if the virus

continues to persist in the region.

Supporting Information
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