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Abstract
Group V (GV) phospholipase A2 (PLA2) is a member of the family of secreted PLA2 (sPLA2)

enzymes. This enzyme has been identified in several organs, including the kidney. How-

ever, the physiologic role of GV sPLA2 in the maintenance of renal function remains unclear.

We used mice lacking the gene encoding GV sPLA2 (Pla2g5
−/−) and wild-type breeding

pairs in the experiments. Mice were individually housed in metabolic cages and 48-h urine

was collected for biochemical assays. Kidney samples were evaluated for glomerular mor-

phology, renal fibrosis, and expression/activity of the (Na+ + K+)-ATPase α1 subunit. We

observed that plasma creatinine levels were increased in Pla2g5−/−mice following by a

decrease in creatinine clearance. The levels of urinary protein were higher in Pla2g5−/−

mice than in the control group. Markers of tubular integrity and function such as γ-glutamyl

transpeptidase, lactate dehydrogenase, and sodium excretion fraction (FENa
+) were also

increased in Pla2g5−/− mice. The increased FENa
+ observed in Pla2g5−/−mice was corre-

lated to alterations in cortical (Na+ + K+) ATPase activity/ expression. In addition, the kidney

from Pla2g5−/− mice showed accumulation of matrix in corticomedullary glomeruli and tubu-

lointerstitial fibrosis. These data suggest GV sPLA2 is involved in the maintenance of tubular

cell function and integrity, promoting sodium retention through increased cortical (Na+ +

K+)-ATPase expression and activity.
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Introduction
Phospholipase A2 (PLA2) is a superfamily of enzymes that provides free fatty acids and lyso-
phospholipids from the hydrolysis of the ester bond at the sn-2 position of glycerophospholi-
pids [1]. Currently, PLA2 enzymes have been classified into 6 types with 16 distinct groups
according to their structure, function, and cellular location [1].

Secretory phospholipase A2 (sPLA2) was the first type of PLA2 discovered [2]. In mammals,
this family contains 10 catalytically active isoforms, including the group V sPLA2 (GV sPLA2)
[2]. GV sPLA2 plays an important role in diverse biological and pathological cellular process
due to its capacity to metabolize phospholipids and produce a free fatty acid and a lysopho-
spholipid. Although it has been reported that GV sPLA2 promotes the release of arachidonic
acid and subsequent generation of eicosanoids, such as prostaglandins and leukotrienes [1,2],
this may not be relevant to its physiologic functions [3,4]. However, GV sPLA2 may still partic-
ipate in the synthesis of eicosanoid through activation of GIVA PLA2 [5–7] or induction of
cyclooxygenase (COX)-2 activity [8,9].

Several animal studies have revealed that GV sPLA2 contributes to eosinophilic pulmonary
inflammation [10–12], abdominal aortic aneurysms [13], ischemic injury [14], and autoim-
mune diseases [15]. In addition, GV sPLA2 has also shown potent antibacterial and antiviral
properties [16]. In this regard, several studies have elucidated the role of GV sPLA2 in different
systems, particularly in pathological processes, but the function of this enzyme in the kidney,
regulation of renal hemodynamics or involvement in kidney disease, remains unclear.

Expression of GV sPLA2 has been demonstrated in the kidney of rats [17] and mice [18]. It has
also been shown that GV sPLA2 is constitutively expressed in the tubular epithelium of normal
human kidneys and its expression is markedly upregulated in the tubules and glomeruli during kid-
ney damage [14]. Studies on human embryonic kidney 293 cells (HEK293) and in primary cultures
of mouse mesangial cells have also shown that GV sPLA2 amplifies the release and conversion of
arachidonic acid into prostaglandins by increasing GIVA PLA2 and COX-2 activity [19,20]. How-
ever, the in vivo significance of the activity of GV sPLA2 on renal function has not been described.

In the present work, we used mice with a homozygous disruption in the gene encoding GV
sPLA2 (Pla2g5

−/−) to clarify the role of this PLA2 group on renal function. Our data revealed
that GV sPLA2 plays a physiologic role in the maintenance of renal function and sodium han-
dling, with a major influence on the tubular compartment rather than in the glomerulus.

Materials and Methods

Animals
Mice with targeted disruption of the gene encoding GV sPLA2 (Pla2g-5

−/−) were generated by
Satake et al. [21]. We used 12-week-old male Pla2g5-null and wild-type (WT) mice in a C57BL/6
genetic background in all experiments. Mice were caged with free access to food and fresh water
in a temperature-controlled room (22–24°C) with a 12-h light/dark cycle until used. This study
was carried out in strict accordance with the recommendations in the Guide for the Care and Use
of Laboratory Animals of the National Institutes of Health. The protocol was approved by the
Institutional Ethics Committee of Federal University of Rio de Janeiro (permit number
IBCCF004). For the euthanasia procedure, animals were anesthetized with ketamine (80 mg/kg
body weight) and xylazine (5 mg/kg body weight) before blood collection via cardiac puncture.

Reverse transcription-polymerase chain reaction
Kidneys of WT and Pla2g5−/−mice were dissected and total RNA from the renal cortex
and medulla was extracted using TRIZOL reagent (Invitrogen, Karlsruhe, Germany).
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Contaminating genomic DNA was removed by DNase I (Fermentas, St. Leon-Rot, Germany)
before reverse transcription (RT) of 1 μg of total RNA using a Superscript III kit (Invitrogen,
Karlsruhe, Germany). To determine the expression of GV sPLA2 in mice kidneys, cDNA was
submitted to conventional polymerase chain reaction (PCR) using the following primers: for-
ward AAC AGG CGC TGA GAC CAG, and reverse GAC ATT AGC AGA GGA AGT TGG G
and settings: denaturation—95°C, annealing—53°C and extension – 72°C in a 35 cycles PCR
reaction. The amplicons generated were resolved on agarose gel electrophoresis and analyzed
under UV light. A band of the expected size (~455 bp) for GV sPLA2 mRNA was observed in
the cortex and medulla of kidneys obtained fromWTmice [22]. On the other hand, RT-PCR
analysis of Pla2g5−/− mice confirmed the lack of GV sPLA2 mRNA in these animals (data not
shown).

Measurement of renal function
Mice were kept individually in metabolic cages to analyze renal function. The cages were main-
tained in a temperature-controlled room (22–24°C) with a 12-h light/dark cycle, with free
access to tap water and standard rodent diet. After 2 days of acclimatization, 48-h urine was
collected to determine urine volume, total protein, creatinine, sodium, γ-glutamyl transpepti-
dase (γGT), and lactate dehydrogenase (LDH) concentrations. Before analysis, urine samples
were centrifuged at 3000×g for 10 min to clear sediments. Blood samples were collected and
centrifuged at 1200×g for 10 min at 4°C to obtain plasma to measure sodium and creatinine
concentrations.

The levels of urinary protein were determined by the pyragallol red method (Gold Analisa
kit #498M, Belo Horizonte, MG, Brazil) and creatinine by the alkaline picrate method (Gold
Analisa kit #335, Belo Horizonte, MG, Brazil). Kits for γGT (Bioclin kit #K080, Belo Horizonte,
MG, Brazil) and LDH (Gold Analisa kit #457, Belo Horizonte, MG, Brazil) were used for quan-
titative determination of the enzyme activity. Sodium levels were analyzed by the photometric
colorimetric test (Human Diagnostics Worldwide kit #573351, Wiesbaden, Germany). Plasma
and urine osmolality were measured on an Advanced Micro Sample Osmometer 3320
(Advanced Instruments, Norwood, MA).

Histologic and histomorphometric studies
Kidneys were fixed in a 4% buffered formalin solution and embedded in paraffin. Histologic
sections (3-μm thick) of kidney were obtained and stained with periodic acid-Schiff reagent
(PAS; Sigma-Aldrich, St Louis, MA) for analysis of the mesangial surface of subcapsular and
corticomedullary glomeruli. In addition, 7-μm-thick sections were cut to assess the deposition
of collagen fibers with Picrosirius Red staining (Sigma-Aldrich, St. Louis, MA). Only interstitial
collagen was counted, and vessels and glomeruli were excluded. Data were expressed as a per-
centage of the interstitial area with positive staining. Quantification analysis of PAS and Picro-
sirius Red-stained sections were performed using Image-Pro Plus analysis software on 25
photomicrographs in a light microscope equipped with a camera (Eclipse E800, Nikon).

Preparation of the homogenate fraction
The homogenate fraction of the renal cortex and medulla was obtained as described previously
[23]. Briefly, kidneys were removed and homogenized in a cold solution containing 250 mmol/
l sucrose, 10 mmol/l HEPES–Tris (pH 7.6), 2 mmol/l EDTA, and 1 mmol/l phenylmethylsulfo-
nyl fluoride. Homogenates were centrifuged at 7000×g at 4°C for 10 min and the final superna-
tant was stored at –80°C. Protein concentrations were determined by the Folin phenol method
[24] using bovine serum albumin as standard.
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Immunoblotting
Proteins were resolved on sodium dodecyl sulfate-polyacrylamide gels and transferred to nitro-
cellulose membrane (Millipore Corporation, Bellerica, MA), according to the manufacturer's
instructions. The (Na+ + K+)-ATPase α1 subunit was immunodetected in the homogenate
fraction of the renal cortex and medulla with specific primary antibody (1:10 000; #05–369,
Millipore Corporation, Bellerica, MA). After antibody labeling, detection was performed with
ECL-plus (Amersham Biosciences, Piscataway, NJ).

Measurement of (Na+ + K+)-ATPase activity
ATPase activity was evaluated by spectrophotometric measurement of inorganic phosphate
released from ATP with the use of ammonium molybdate as described by Maritno et al. [25].
The composition of the standard assay medium was 15 mMMgCl2, 5 mM ATP�Na+-Tris (pH
7.0), 150 mM NaCl, and 15 mM KCl. The reaction was started by the addition of 3 mg/ml pro-
tein from the renal cortex or medulla homogenate (final concentration, 0.3 mg/ml). After 10
min of incubation at 37°C, the reaction was stopped by the addition of trichloroacetic acid.
Phosphate solutions (0–40 μM) were used as standards. The phosphate content was deter-
mined by measurement of absorbance at 660 nm. The (Na+ + K+)-ATPase activity was calcu-
lated as the difference in ATPase activity between renal cortex or medulla homogenate exposed
to ouabain and those not exposed.

Statistical analysis
Each experiment was carried out using 4 animals per group. Data are reported as the
mean ± standard error of at least 2 representative experiments. Statistical analysis was per-
formed using Prism software (GraphPad Software, version 5), and, unless otherwise stated,
means were compared by the two-tailed Student t test. The significance level was set at α =
0.05.

Results

GV sPLA2 is important to renal function homeostasis
To elucidate the physiologic role of GV sPLA2 on renal function, we measured related parame-
ters in WT and Pla2g5−/−mice (Table 1). The results show that urinary flow and creatinine
clearance (CCr, a marker of glomerular flow rate) were decreased in Pla2g5−/−mice compared
with the WT group (Table 1). The decrease in CCr was followed by an increase in plasma creat-
inine in Pla2g5−/− mice. Urinary osmolality (Uosm) was increased in Pla2g5−/− mice without
changes in plasma osmolality (Posm). Body weight was not changed in both WT and Pla2g5−/−

mice. The ratio of urinary protein to creatinine (UPCr), a marker of renal injury [26], was
slightly higher in Pla2g5−/− mice compared with WT animals. These results indicate that GV
sPLA2 is important for the maintenance of renal function.

Mild glomerular morphologic changes in Pla2g5−/− mice
Several studies have shown that a decline in the glomerular filtration rate can be correlated
with glomerular morphologic changes [27]. Thus, we wondered whether the decreased CCr in
Pla2g5−/− mice is correlated to morphologic changes in the glomerulus. We analyzed the glo-
merular structure of WT and Pla2g5−/− mice. The subcapsular and corticomedullary glomeruli
of WT and Pla2g5−/− groups were assessed by light microscopy (Fig 1). The mesangial surface
was revealed by accumulation of PAS-positive material in mesangial area.
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As shown in Fig 1, although the number of cells per glomerulus was not different, the
mesangial surface of the corticomedullary glomeruli was increased in Pla2g5−/−mice compared
with controls (Fig 1A–1C). Conversely, the mesangial surface of the subcapsular glomeruli and
cellularity were not significantly different between the WT and Pla2g5−/− groups (Fig 1D–1F).
Thus, these results indicate that changes in the CCr, observed in Pla2g5−/−mice, are not corre-
lated to major glomerular morphologic alterations in these mice and may be only caused by
changes in glomerular function.

GV sPLA2 is critical for the maintenance of tubular integrity
It is well known that glomerular injury and tubular impairment are involved in early events
that lead to proteinuria [26]. Because no major changes in glomerulus structure seem to occur
in Pla2g5−/− mice, we investigated if the higher UPCr observed in these knock-outmice could
be associated with changes in renal tubular integrity and function.

LDH activity and γGT activity, markers of altered tubular integrity, were determined in
urine (Fig 2A and 2B), and fibrosis was visualized by Picrosirius Red staining for collagen fibers
(Fig 2C–2F). Fig 2A and 2B shows that urinary LDH and γGT activities were significantly
increased in Pla2g5−/−mice in relation to control mice. A similar profile was observed in corti-
cal interstitial fibrosis. Collagen deposition was enhanced in Pla2g5−/− mice compared with the
WT group (Fig 2C and 2D). On the other hand, tubular interstitial space was not changed in
the different mice groups (Fig 2E and 2F). These results suggest that GV sPLA2 is critical to
conserve tubular integrity and the higher proteinuria observed in Pla2g5−/− mice may be asso-
ciated with deficiency of this function.

GV sPLA2 promotes sodium retention
Previous studies have shown a positive correlation between tubular cell damage and the
sodium excretion fraction (FENa

+) [28], indicating impairment of tubular function. Thus,
based on the aforementioned results suggesting a critical role of GV sPLA2 in the preservation
of tubular integrity, we wondered whether this enzyme also affects tubular function. Because
sodium handling is a hallmark of the tubular function, we verified some functional parameters
related to renal sodium excretion in Pla2g5−/− andWT mice (Fig 3). Fig 3A and 3B shows that
urinary sodium excretion (UNa

+V) and clearance of sodium (CNa
+) were decreased in the

Pla2g5−/− group compared with the control group. In accordance, decreased osmolar clearance
(Cosm) was also observed in Pla2g5−/−mice (Fig 3C). On the other hand, FENa

+ was increased
in Pla2g-5/−mice in relation to the WT group (Fig 3D). Thus, besides impairment of tubular

Table 1. Renal Function Parameters.

Wild-type (n = 18) Pla2g5-/- (n = 36)

Body Weight (g) 22.95 ± 0.54 23.4 ± 0.37

48h Urinary Flow (x10-3 mL/min) 0.89 ± 0.05 0.57 ± 0.03*

Urinary Creatinine (mg/dL) 48.36 ± 3.79 52.4 ± 2.88

Plasma Creatinine (x10-1 mg/dL) 0.68 ± 0.06 1.29 ± 0.11*

Creatinine Clearance (mL/min) 0.65 ± 0.05 0.28 ± 0.03*

Urinary Osmolality (mOsm/KgH2O) 2784.3 ± 193.35 3815.0 ± 391.15*

Plasma Osmolality (mOsm/KgH2O) 338.67 ± 7.75 339.00 ± 6.24

UPCr 0.74 ± 0.12 1.20 ± 0.12*

*Statistically significant in relation to *WT mice (p<0.05); UPCr: ratio between urinary protein and creatinine

doi:10.1371/journal.pone.0147785.t001
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integrity, Pla2g5−/−mice show changes in tubular function, with a consequent higher FENa
+.

These results suggest that besides maintaining tubular integrity, GV sPLA2 affects tubular func-
tion, such as sodium handling.

GV sPLA2 upregulates activity and expression of cortical (Na+ + K+)-
ATPase
The sodium pump (Na+ + K+)-ATPase is one of the principal determinants of tubular sodium
transport [29]. Therefore, in this experimental group, we investigated whether the increase in
FENa

+ observed in Pla2g5−/− mice could be correlated with alterations in (Na+ + K+)-ATPase.
Activity and α1 subunit expression of (Na+ + K+)-ATPase were evaluated in the renal cortex
and medullar preparations of both WT and Pla2g5−/−mice. Cortical (Na+ + K+)-ATPase

Fig 1. Mild glomerular morphologic changes are observed in Pla2g5−/− mice. PAS reagent was used for analysis of the mesangial surface of
corticomedullary (A, B) and subcapsular glomeruli (C, D), as described in the Materials and Methods. Representative photomicrographs (magnification 40×)
of (A) the corticomedullary glomerulus and (C) the subcapsular glomerulus. (B) Quantitative analysis of the corticomedullary and (D) subcapsular glomeruli
(n = 6 per group). The results are expressed as means ± SE. *Statistically significant in relation to WTmice (P < 0.05).

doi:10.1371/journal.pone.0147785.g001
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activity was decreased in the Pla2g5−/− group compared with the control group (Fig 4A). In
agreement, cortical expression of the α1 subunit of (Na+ + K+)-ATPase was decreased
in Pla2g5−/− mice (Fig 4B). However, no significant differences were observed in medullar
(Na+ + K+)-ATPase activity and α1 expression between the Pla2g5−/− and WT groups (Fig 4C
and 4D). These observations of decreased activity and expression of cortical (Na+ + K+)-
ATPase could explain the increased FENa

+ in Pla2g5−/−mice. Therefore, GV sPLA2 is impor-
tant for tubular function, inducing sodium retention by increasing the activity and expression
of cortical (Na+ + K+)-ATPase.

Discussion
GV sPLA2 is a highly expressed enzyme in mouse and human heart and placenta [14,18], but
GV sPLA2 mRNA was also detected to a lesser extent in mouse kidney [18]. GV sPLA2 belongs

Fig 2. Urinary tubular enzymes and collagen deposition, markers of tubular injury, are increased in Pla2g-5−/− mice. (A) LDH (B) and γGT activities
were measured in urine samples as markers of tubular injury (n = 8 per group). Collagen deposition in the renal cortex was visualized by Picrosirius Red
staining. (C) Representative photomicrographs (magnification 40×) of collagen deposition in the renal cortex of WT and Pla2g-5−/− mice. (D) Quantitative
analysis of the collagen deposition (n = 6 per group). The results are expressed as means ± SE. *Statistically significant in relation to WTmice (P < 0.05).

doi:10.1371/journal.pone.0147785.g002
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to the sPLA2 family and it is important in phospholipid metabolism and eicosanoid production
[4,11]. This enzyme regulates inflammatory processes [10–12,30,31] and is involved in differ-
ent pathologies [13–16]. However, the role of GV sPLA2 in renal tissue integrity and function
has not been described.

Here, we showed renal expression of GV sPLA2 and involvement in the maintenance of
renal function and sodium handling, revealing new functions for this particular sPLA2 group.
We used mice with targeted disruption of the Pla2g5 gene, and confirmed the absence of
Pla2g5mRNA in Pla2g5−/− mice by RT-PCR. Mice lacking GV sPLA2 expression can be used
to address the physiologic role of this enzyme in different tissues [32], because the similar
structural and functional features among different sPLA2 isoenzymes make the development
of compounds that selectively inhibit GV sPLA2 enzymes difficult [1,11,32].

GV sPLA2 controls, at least in part, the biosynthesis of leukotrienes (LTs) and prostaglan-
dins (PG) derived from membrane phospholipids, but the molecular mechanisms involved and
the location of action of sPLA2 are not totally clear yet [3–7,11,21, 33]. Nevertheless, it has
been shown that after being secreted to the extracellular medium, sPLA2 enzymes hydrolyze
phospholipids at the outer cellular surface [33]. In parallel, sPLA2 enzymes are reinternalized
and localized with COX-2 in the perinuclear membrane, ready to promote the conversion of
arachidonic acid into eicosanoids [33–39]. LTs and PGs are implicated in many physiologic
functions as well as pathologic conditions in different organs, including the kidney [40,41].
Recently, Kvirkvelia et al. [42] showed that PGE2 promotes cellular recovery of established
nephritis in mice, modulating podocyte ultrastructure and foot processes and decreasing pro-
teinuria. In our study, mild glomerular morphologic changes and increased urinary protein
excretion were observed in Pla2g5−/− mice. These processes are likely linked to a decrease in
PGE2 generation in Pla2g5−/−mice. A 50% lower production of PGE2 and LTC4 in macro-
phages as well as reduced COX-2 expression in bone marrow-derived mast cells from Pla2g5-
nullmice compared with control mice has already been demonstrated [8,21]. In addition, GV

Fig 3. GV sPLA2 promotes sodium retention. (A) Urinary sodium excretion (UNa
+V), (B) clearance of

sodium (CNa
+), (C) osmolar clearance, and (D) FENa

+ in WT and Pla2g-5−/−mice. The number of mice
analyzed is given in Table 1. The results are expressed as means ± SE. *Statistically significant in relation to
WTmice (P < 0.05).

doi:10.1371/journal.pone.0147785.g003
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sPLA2 transfection into HEK293 cells induces expression of COX-2, which is the major
enzyme involved in the initial conversion of arachidonic acid to prostanoids, such as PGE2, in
the kidney [43,44].

Although Pla2g5−/−mice showed decreased CCr along with increased urinary protein excre-
tion, there were no profound changes in glomerular structure. However, more prominent tubu-
lar changes were observed, suggesting that GV sPLA2 plays a more pronounced role in the
function and integrity of the tubular compartment. Previous studies reported that urinary lev-
els of LDH and γGT are linked to apoptosis of tubular renal cells and, consequently, early diag-
nosis of kidney disease [45]. Here, we verified intense leakage of LDH and γGT in the urine of
Pla2g5−/− mice, which suggests a potential role for GV sPLA2 in the integrity of tubular cells. In
agreement, Murakami et al. [43] showed that GV sPLA2 is important to cell membrane integ-
rity in HEK293 cells.

Changes in the integrity of tubular cells can induce cell dysfunction, which impairs tubular
transport and reabsorption mechanisms, leading to decreased protein reabsorption and pro-
teinuria [26,27,46]. In addition, injury to tubular cells can cause cell dedifferentiation and local
inflammation leading to increased renal fibrosis [26,27,40]. Thus, alterations in tubular integ-
rity due to the lack of GV sPLA2 expression could explain the increased proteinuria and corti-
cal interstitial fibrosis verified in Pla2g5−/−mice. On the other hand, the higher levels of
protein in the tubular lumen act in a positive-feedback manner, further promoting apoptosis of
tubular cells and interstitial fibrosis [26,47,48].

Fig 4. GV sPLA2 upregulates activity and expression of cortical (Na+ + K+)-ATPase. Expression and
activity of (Na+ + K+)-ATPase in WT and Pla2g-5−/− mice. ATPase activity from the renal cortex (A) and
medulla homogenate (C) was determinate by the colorimetric method. Immunoblotting was performed for the
(Na+ + K+)-ATPase α1 subunit in (B) the renal cortex and (D) the medullar preparation of both WT and
Pla2g5−/− mice, as described in the Materials and Methods (n = 8 per group). The results are expressed as
means ± SE. *Statistically significant in relation to WTmice (P < 0.05).

doi:10.1371/journal.pone.0147785.g004
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Another indication of the status of tubular integrity and function is the FENa
+, which repre-

sents the percentage of sodium filtered by the kidney that is excreted in the urine after tubular
handling. Therefore, changes in this parameter represent changes in tubular function and dam-
age [28]. The FENa

+ was increased in Pla2g5−/−mice and this phenomenon was correlated to
reduced expression and activity of cortical (Na+ + K+)-ATPase in these animals. These observa-
tions further support the importance of GV sPLA2 in tubular integrity and function.

With regard to tubular sodium handling by (Na+ + K+)-ATPase activity/expression, Her-
man et al. [49] observed stimulatory effects of PGE1 and PGE2 on (Na+ + K+)-ATPase expres-
sion/activity in primary cultures of rabbit renal proximal tubule cells. Furthermore, Pöscke
et al. [50] showed that PGE2 stimulates the renin-angiotensin-aldosterone system, which stim-
ulates (Na+ + K+)-ATPase activity, leading to sodium and water retention. Because GV sPLA2

is involved in the generation of PGE2 [11], it is possible that reduced expression/activity of
(Na+ + K+)-ATPase found in Pla2g5−/−mice could also be due to reduced PGE2 levels. More-
over, a previous study from our group showed that high concentrations of albumin decreased
the expression and activity of (Na+ + K+)-ATPase in proximal tubule cells [51]. This observa-
tion supports the hypothesis that specific tubular alterations in Pla2g5−/−mice, including the
reduced expression/activity of (Na+ + K+)-ATPase, are probably due to the increased tubular
protein concentration observed in Pla2g5−/−mice.

Another protective effect of GVsPLA2 in the kidney could result from its action, through
PGE2 production, in promoting resident immune cells with a suppressive phenotype, such as
immune inhibitory dendritic cells (DCs) and regulatory Foxp3+ T cells (Tregs). In this regard,
Tregs exert protective effects in the kidney, as well as in other organs, against exacerbated and
harmful pro-inflammatory responses and acute injury [52–56]. Evidence shows that PGE2 is
capable of inducing differentiation of naive T cells into regulatory T cells, and suppressive DCs
express high levels of COX-2 along with production of IL-10 and TGF-β, cytokines that are
important for differentiation into regulatory Foxp3+ T cells (Tregs) [57–59]. The molecular
mechanism involves PLA2 binding, with high affinity, to a mannose receptor (CD206)
expressed in DCs and macrophages [60]. Mannose receptor activation upregulates COX-2
expression and increases PGE2 secretion by these cells [58, 59]. In turn, PGE2, via the EP2
receptor in T cells, increases Foxp3 mRNA and protein levels as well as its promoter activity,
inducing differentiation of naive T cells into suppressive Foxp3+ T cells (Tregs) [57, 58, 61].
This purported protective effect of PLA2 was confirmed in different models of disease in mice,
for instance Parkinson disease and cisplatin-induced nephrotoxicity [58, 59]. In a cisplatin-
induced acute kidney injury model, treatment with PLA2 attenuated tissue damage by reducing
serum creatinine, blood urea nitrogen, production of pro-inflammatory cytokines, such as IL-6
and TNF-α, and macrophage infiltration [59]. The effects of PLA2 were mediated by the bind-
ing and activation of the mannose receptor (CD206) in DCs, followed by an increase in PGE2
secretion. PGE2 induced Treg differentiation and IL-10 production by Tregs and DCs [59].
These IL-10-producing Tregs and DCs exert protective effects in the kidney by reducing mono-
cyte/macrophage infiltration and production of pro-inflammatory cytokines [52–56, 59]. Thus,
it is possible that the lack of GVsPLA2 expression, with consequent reduction in local PGE2
production, could decrease the suppressive phenotype of resident immune cells in the kidney,
facilitating a prone inflammatory environment and changes in renal tissue homeostasis, such
as tubular impairment and fibrosis.

Therefore, despite reports showing renal expression of GV sPLA2 and the physiologic effects
of eicosanoids, its enzymatic products, the function of this particular enzyme on the kidney is
not well known. Our results highlight a key role of GV sPLA2 in renal homeostasis in the main-
tenance of tubular cell function and integrity, participating in sodium handling through regula-
tion of cortical (Na+ + K+)-ATPase expression and activity. Future experiments will further
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elucidate the division of labor between GV sPLA2 and other PLA2 enzymes as well as the
molecular mechanisms involved in the renal effects.
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