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Abstract: Phosphoenolpyruvate carboxylase (PEPC) is an enzyme with key roles in carbon and
nitrogen metabolisms. The mechanisms that control enzyme stability and turnover are not well
known. This paper investigates the degradation of PEPC via selective autophagy, including the role
of the monoubiquitination of the enzyme in this process. In Arabidopsis, the genetic inhibition of
autophagy increases the amount of monoubiquitinated PEPC in the atg2, atg5, and atg18a lines. The
same is observed in nbr1, which is deficient in a protein that recruits monoubiquitinated substrates
for selective autophagy. In cultured tobacco cells, the chemical inhibition of the degradation of
autophagic substrates increases the quantity of PEPC proteins. When the formation of the autophago-
some is blocked with 3-methyladenine (3-MA), monoubiquitinated PEPC accumulates as a result.
Finally, pull-down experiments with a truncated version of NBR1 demonstrate the recovery of intact
and/or fragmented PEPC in Arabidopsis leaves and roots, as well as cultured tobacco cells. Taken
together, the results show that a fraction of PEPC is cleaved via selective autophagy and that the
monoubiquitination of the enzyme has a role in its recruitment towards this pathway. Although
autophagy seems to be a minor pathway, the results presented here increase the knowledge about
the role of monoubiquitination and the regulation of PEPC degradation.

Keywords: autophagy; Arabidopsis thaliana; Nicotiana benthamiana; phosphoenolpyruvate carboxy-
lase; ubiquitin

1. Introduction

Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is a key enzyme in the metabolism
of carbon (C) and nitrogen (N), with central roles in photosynthesis, respiration, amino
acid synthesis, and the development and germination of seeds [1,2]. This enzyme catalyzes
the addition of bicarbonate to PEP to form the four-carbon compound oxaloacetate, which
is reduced to malate by malate dehydrogenase (MDH). PEPC is mostly acknowledged by
its role in C4 and Crassulacean Acid Metabolism (CAM) photosynthesis [1,3], though it
also has key functions in C3 plants and C3 tissues, such as in seeds, fruits, roots, stomata,
legume nodules, and others [2].

The PEPC gene family (PPC genes) includes plant-type PEPC (PTPC) and bacterial-
type PEPC (BTPC) genes [4]. All PTPCs have a conserved N-terminal seryl residue that
is phosphorylated by PEPC kinases (PEPCks). This residue is absent in BTPC [5]. In the
model plant Arabidopsis thaliana, the PPC gene family consists of three PTPCs (PPC1-3)
and one BTPC (PPC4) [6]. PPC2 transcripts are found in all organs, suggesting that it
is a housekeeping gene. The PPC3 gene is expressed in roots and PPC1 is expressed in
both roots and flowers, as with PPC4 [7]. The predicted PEPC proteins from a Nicotiana
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benthamiana draft genome [8] have been named on the basis of their homology to A. thaliana
PEPCs (see the results section for more information).

PEPC is subjected to different post-translational modifications (PTMs), such as phos-
phorylation, monoubiquitination, NO-related PTMs (S-nitrosylation, Tyr-nitration), and
oxidative stress-associated PTMs (carbonylation) [9–13]. In addition, the acetylation of
Arabidopsis PEPCs has recently been reported [14]. These PTMs regulate PEPC activity
and the turnover of the protein [13], although the biological functions of some of them are
not yet fully understood.

Protein phosphorylation is the most studied PTM of PEPC. This enzyme is phospho-
rylated at a conserved N-terminal serine residue by PEPC kinase (PEPCk). This PTM
results in a positive effect for the functional and regulatory properties of PEPC, decreas-
ing its sensitivity to feedback inhibition by L-malate and increasing its affinity for the
allosteric activator glucose-6-phosphate and Vmax [9]. The phosphorylation of photosyn-
thetic isoenzymes occurs during the light period in C4 plants [15] and the dark period
in CAM plants [3]. The relevance of this PTM is shown in a PEPCk-deficient Kalanchoë
fedtschenkoi iRNA line that shows perturbations for the CAM photosynthesis, carbohydrate
metabolism, and circadian rhythms [16].

Ubiquitination is a fundamental biochemical process which controls numerous as-
pects of protein functions such as degradation, protein–protein interaction, and subcellular
localization [17]. In different plants and tissues, two immunoreactive PEPC bands are
usually detected, and the upper is thought to be a monoubiquitinated form of the lower. In
fact, treatment with deubiquitinating enzyme 2 (USP2 core) causes the disappearance of
the upper band. The monoubiquitination of PEPC occurs at a conserved lysine residue in
castor oil seeds [18], Hakea prostata seeds [19], and sorghum seeds [10,11]. In germinating
castor oil seeds, the monoubiquitination of PEPC changes the kinetic properties of the
enzyme, interfering with its ability to bind PEP and enhancing sensitivity for the major-
ity of its metabolite effectors [18]. In most of the physiological contexts that have been
investigated, phosphorylation and monoubiquitination have modulated PEPC activity in
opposite ways [18–20], and these two PTMs seem to be mutually restrictive. Neverthe-
less, the sorghum seed PEPC can be phosphorylated and monoubiquitinated at the same
time [10,11]. This suggests that monoubiquitination could play other unknown physiologi-
cal roles. In addition, ammonium stress increases the monoubiquitination of the sorghum
root PEPC [12], and the meaning of this finding is still undetermined.

Autophagy is a highly conserved process used for the bulk and selective cleavage of
cellular components. The element that is going to be cleaved is encapsulated in double-
membrane vesicles, termed autophagosomes, and later degraded inside the plant vac-
uole [21]. The process is regulated and executed by a conserved set of proteins called
autophagy-related (ATG) proteins [22]. Autophagy displays a central role maintaining
cellular homeostasis by removing damaged elements and thus preventing the effects of
their accumulation. In addition, autophagy ensures a good management of resources by
recycling the components of the cleaved elements. This is especially important under stress;
in this situation, autophagy allows the preservation of key metabolic elements, meanwhile
non-essential or altered elements are processed and the constituents of the latter are used
for maintaining the former [23,24].

Autophagy plays an important role in the remobilization of nutrients, especially in
suboptimal nutrient conditions [25]. The yield and quality of grain largely depends on the
mobilization of N from the senescent leaves to the seeds [26] and autophagy is integral to
this process. An increasing body of experimental data shows that impairing autophagy
has a great negative impact on nitrogen use efficiency and crop yield [27]. In Arabidopsis
atg mutants, nitrogen use efficiency (NUE) is significantly decreased [28]. Similarly, maize
autophagy mutants cannot efficiently remobilize N from old leaves to seeds [29]. On the
contrary, the overexpression of ATG genes enhances the level of autophagy and increases
NUE, both in Arabidopsis [30] and rice [31].



Plants 2021, 10, 12 3 of 17

While bulk autophagy randomly sequesters cytosolic content, selective autophagy
constitutes a specific and highly controlled degradation pathway [32]. Selective autophagy
requires cargo receptors which mediate selective cargo recruitment in response to diverse
intra- and extra-cellular signals. Cargo receptor molecules link the cargo to the phagophore
membrane via their simultaneous interaction with the cargo and ATG8 proteins on the
membrane.

In contrast to the single ATG8 gene present in the genome of yeast, ATG8 generally
exists as a multiprotein family in eukaryotes. Arabidopsis has nine ATG8 isoforms, an-
notated as ATG8a to ATG8i [33], meanwhile six isoforms have been reported in rice [34].
ATG8 provides a docking site for cargo receptors that contain short peptide motifs called
ATG8-interacting motifs/LC3-interacting regions (AIMs/LIRs) [35]. Cargo receptors bind
simultaneously to cargo and lipidated ATG8 or ATG8 family members. AIMs are consen-
sus F/W/Y-X-X-L/I/V sequences that can be predicted and identified by bioinformatics
approaches [36,37]. Recently, a new binding motif (UIM, ubiquitin interacting motif) has
been discovered on ATG8 that binds receptors containing the UIM [38].

The protein NBR1 (neighbor of the BRCA1 gene) is a cargo receptor that contributes to
the autophagic clearance of ubiquitinated substrates. Plant NBR1 binds ubiquitin through
a C-terminal ubiquitin-associated (UBA) domain and interacts with homologs of ATG8 via
an evolutionary conserved AIM motif [39]. Arabidopsis NBR1 interacts with six of the nine
Arabidopsis ATG8 proteins, and it is degraded in the vacuole in an autophagy-dependent
manner. A similar protein (Joka2) has been identified in tobacco [40].

This work investigates the degradation of PEPC via autophagy and the role of NBR1
and the monoubiquitination of PEPC on its recruitment for selective autophagy. Different
experimental approximations are used, including genetic and pharmacological inhibitions
of autophagy, as well as pull-down experiments. The results show that a fraction of PEPC
is cleaved by selective autophagy, and that monoubiquitination contributes to direct a
fraction of C3 PEPC in this pathway.

2. Results
2.1. Increased Monoubiquitinated PEPC in Arabidopsis Mutants and Defective Autophagy

Several experimental results obtained by other researchers have suggested a rela-
tionship between the monoubiquitination of PEPC and autophagy. First, in Arabidopsis
plants expressing trehalose-6-P-synthase, higher levels of trehalose-6-P are accompanied
by decreased amounts of monoubiquitinated PEPC [20]. Trehalose is the product of the
dephosphorylation of trehalose-6-P. Trehalose has been shown to trigger autophagy in
human and animal models [41,42] and exists in the desiccation-tolerant grass Tripogon
loliiformis [43].

Monoubiquitinated PEPC (p110) shows lower mobility in acrylamide gels than non-
monoubiquitinated PEPC (p107). This allows the identification of monoubiquitinated
PEPC in gels and immunoblots as the upper band of immunoreactive PEPC protein. When
trehalose was supplied to Arabidopsis plants, this decreased the monoubiquitination of
PEPC in the leaves and roots (Figure 1). Although trehalose has not been demonstrated to
trigger autophagy in Arabidopsis, this result prompted us to investigate the link between
autophagy and monoubiquitination of PEPC.

The processing of PEPC via autophagy was explored in Arabidopsis SALK lines
knockout for autophagy-related genes (ATG). The atg18a line was defective in ATG18a,
which is a phosphatidylinositol 3-phosphate (PI3P) effector that interacts with ATG2 and is
required for the formation of autophagosomes during nutrient stress and senescence [44].
Likewise, ATG2 and ATG5 are parts of the core machinery of autophagy [22]. NBR1, on the
contrary, functions in the recruitment of selected proteins towards the specific autophagy
pathway [45].

The amounts of PEPC proteins were measured in the leaves of atg2 and atg5 Ara-
bidopsis SALK lines (Figure 2). These lines had more immunoreactive PEPC protein than
the wild-type line (Col-0). As the increase was also more noticeable when the gels were
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charged by units of enzymatic activity (Figure 2a) than by µg of protein (Figure 2b), the
results suggest that inactive PEPC is accumulated as a consequence of impaired autophagy.
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Figure 2. Arabidopsis atg2 and atg5 autophagy-defective SALK lines accumulate PEPC. Leaves
from six-week-old Arabidopsis Col-0, atg2, and atg5 SALK lines were pooled (30 plants for sample).
Protein aliquots from crude extracts were analyzed by SDS-PAGE and immunoblotted with anti-
PEPC antibodies. (a) Results for 5 mU of PEPC from leaf extracts. (b) Results for 50 µg of proteins
from leaf extracts.

Similar results were obtained with the leaves and roots of nbr1 (Figure 3a) and atg18a
lines (Figure 3b). In nbr1 leaves, the accumulation of monoubiquitinated PEPC was es-
pecially evident (Figure 3a, left), represented by the upper band, which was revealed by
anti-ubiquitin antibodies (Figure 3a, right). Increased p110/p107 ratios were detected to
different extents in all the defective autophagy lines (Table 1).

Table 1. The amounts of monoubiquitinated PEPC increased in autophagy-defective Arabidopsis
lines.

Ratio of p110/p107

Leaves Roots

Col-0 0.34 ± 0.04 0.11 ± 0.02
atg2 0.53 ± 0.04 0.18 ± 0.02
atg5 0.48 ± 0.03 0.16 ± 0.02
nbr1 0.58 ± 0.16 0.38 ± 0.19

atg18a 0.50 ± 0.07 0.19 ± 0.03
Leaves or roots from six-week-old Arabidopsis Col-0, atg2, atg5, nbr1, and atg18a SALK lines were pooled
(30 plants for sample). Proteins aliquots from crude extracts from leaf or roots were analyzed by SDS-PAGE and
immunoblotted with anti-PEPC antibodies. The ratios (Ub-PEPC/PEPC) of the signals were calculated. The table
shows quantitative data (mean ± SE, n = 5) for the ubiquitination.

The accumulation of monoubiquitinated PEPC was observed mainly in standard
conditions. In plants subjected to stress, the upper band (Ub-PEPC) typically decreased,
both in Col-0 and autophagy-deficient SALK lines. As an example, this could be seen for
Col-0 and for atg18a under N starvation (Figure 3b). The results in atg18a, whose bulk
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autophagy was expected to be severely compromised, indicated that Ub-PEPC could be
also processed by autophagy-independent mechanisms.
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Taken together, the results for Arabidopsis indicate that at least a fraction of C3-type
PEPC was degraded via selective autophagy. The monoubiquitination of the protein could
be marking a fraction of the PEPC protein towards this pathway. Nevertheless, autophagy
is not the only main pathway by which PEPC is degraded.

2.2. Chemical Inhibition of Autophagy in Cultured N. benthamiana Cells Increased the Amount of
Monoubiquitinated PEPC

The results obtained via the genetic inhibition of autophagy (Arabidopsis mutants)
were further studied in terms of the chemical inhibition of the degradation of autophagic
substrates. The following experiments were performed with cultured N. benthamiana cells.
Tobacco cells were cultured in the dark and organic C was supplied in the form of sucrose.
When sucrose was absent, PEPC activity decreased and was nearly undetectable by 10 d.
After 5 d without sucrose, PEPC represented about 30% of the activity with sucrose and it
was fully recovered by the addition of sucrose, showing that the decreased PEPC activity
was not due to death of the cells (Figure 4a).

If sucrose starvation triggers the autophagic degradation of PEPC, the addition of
inhibitors in this process should preserve the protein. Three different inhibitors were used to
test this hypothesis. First, 3-methyladenine (3-MA) was used, which impedes the formation
of autophagosomes by inhibiting phosphatidylinositol-3-kinase (PI3K) [46]. Concanamycin
A (ConcA) inhibits vacuolar-type ATPase, preventing vacuolar acidification and blocking
the degradation of autophagic bodies inside vacuoles [47]. E64 inhibits Cys-proteases and
stabilizes autophagic bodies inside vacuoles [48]. The presence of either of the inhibitors
increased the amount of immunoreactive PEPC protein in sucrose-starved cells (Figure 4b).
Interestingly, 3-MA noticeably increased the amount of mono-ubiquitinated PEPC, both in
the absence or in the presence of sucrose (Figure 4b,c). These results indicate that PEPC
is processed via autophagy, both in control conditions and under sucrose starvation, and
that monoubiquitination could be a mark for recruitment to selective autophagy. The
differences between 3-MA and the other two inhibitors suggest that ubiquitin is removed
from PEPC inside the autophagosome before its inclusion in the vacuole. It has been
reported that ubiquitin and other ubiquitin-like modifiers are recycled along degradation



Plants 2021, 10, 12 6 of 17

processes [49]. In the same line, the ubiquitin-like modifier PE-ATG8 is deconjugated by
ATG4 and then recycled [50].
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suppressed for 5 d and then resupplied for 2 d (C-suc+suc). The numbers under the immunoblots show the PEPC activities
of extracts. (b) Cells were cultured with a control medium for 5 days. When indicated, sucrose was suppressed (5 d) or
suppressed for 5 d and then resupplied for 2 d (−/+). 3-MA was added at 2.5 mM (5 d), along with ConcA at 1 µM (16 h)
and E64 at 10 µM (16 h). (c) The ratio of p110/p107 (Ub-PEPC/PEPC) of the signal with or without 3-MA was calculated.
* p < 0.05 versus Col-0 (t-test, n = 3).

Phylogenetic and sequence analysis of predicted N. benthamiana PEPCs was performed
with data from the new draft sequence of the N. benthamiana genome [8]. Six complete
PEPC sequences were found in the database. In order to evaluate the homology and their
phylogenetic relationships, the entire predicted amino acid sequences of the six PEPCs
were compared with the protein sequences of PEPCs from A. thaliana. From this alignment,
a phylogenetic tree and a phylogenetic distance matrix were constructed (Figure 5).

The BTPCs (AtPPC4 and NbPPC4) constituted a group separated from PTPCs (Figure 5a).
The PTPC proteins were named on the basis of their homology and phylogenetic distance
as compared to the A. thaliana PEPCs. The five putative protein-encoded PTPCs in N.
benthamiana had a high level of homology between them as the amino acid sequences
were highly conserved. One of the proteins presented more homology to AtPPC2 and
comprised an independent cluster with AtPPC2 (Figure 5a). Relationships among the other
four PTPCs were unresolved and, if so, they were weakly supported in both the BI and ML
analyses. Three of them (NbPPC3.1-3) are very similar and showed more homology and
less evolutionary distances with respect to AtPPC3, while one (NbPPC1) was more similar
to AtPPC1 (Figure 5b).

The identities of the two bands were revealed by the anti-PEPC antibodies that exist
in extracts of cultured tobacco cells and were confirmed by MALDI-TOF MS/MS. Peptide
mass fingerprinting revealed that both the upper (p110) (Figure S1) and the lower (p100)
fingerprints matched with PPC3 (Figure S2). Although the score for the p100 band was
under the desired value, the identification was supported by the likeness of the MALDI
fingerprints for the two bands (Figure S3).
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Figure 5. Phylogenetic analysis of N. benthamiana PEPCs. (a) Phylogeny of phosphoenolpyruvate
carboxylase (PPC) proteins and their isoforms in N. benthamiana and A. thaliana. For protein identifi-
cation, “Nb” indicates N. benthamiana proteins and “At” indicates A. thaliana proteins. As outgroup
was used a PEPC from Halobacterium salinarum (HsPPC). Bootstrap analysis was carried out with
100 replicates. Number at the branches correspond to the bootstrap frequencies for each branch. (b)
Evolutionary divergence matrix estimated from PEPCs proteins sequences. The rate variation among
sites was modeled with a gamma distribution (shape parameter = 1). **** means “not applicable”.

The next step was to confirm that the p110 band corresponded to the monoubiquitina-
tion of p100. PEPC present in crude extracts from different sources was immunoprecipi-
tated by incubation with anti-PEPC antibodies [51]. Anti-ubiquitin antibodies exclusively
revealed the p110 band in the precipitate from N. benthamiana leaves and roots, as well
as A. thaliana leaves (Figure 6a). Similar results were obtained with N. benthamiana cells
(Figure 6b) when 3-MA was added to the growing medium (lane 3). In the absence of
3-MA, the amount of monoubiquitinated PEPC was barely noticeable (lane 2). This result
demonstrates that the upper band effectively corresponds to an ubiquitinated form of
PEPC, and that the amount of monoubiquitinated PEPC was increased when the formation
of autophagosomes was blocked.
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Figure 6. Monoubiquitinated PEPC is revealed by anti-Ubiquitin antibodies in immunoprecipitates.
Crude extracts (CE) were obtained from different plant tissues (0.5 g/mL extraction buffer for leaves,
and 1 g/mL extraction buffer for roots and cells) and PEPC contained in 3 mL of crude extracts
was immunoprecipitated with anti-PEPC antibodies. Finally, immunoprecipitates were analyzed by
immunoblotting and detected with anti-Ubiquitin antibodies. (a) PEPC immunoprecipitation from
Nicothiana benthamiana leaves and roots and A. thaliana leaves. CE, 30 µg protein from crude extract;
IP, immunoprecipitate; S, supernatant. (b) PEPC immunoprecipitated from extracts of A. thaliana
leaves (lane 1), N. benthamiana cells (lane 2), and 3-MA-treated N. benthamiana cells (lane 3).

2.3. Pull-Down with GST-NBR1 and GFP-ATG8a

Several experimental approaches were used to investigate a possible degradation of
PEPC via recruitment by NBR1, which interacts with ubiquitinated proteins towards selec-
tive autophagy. First, experiments were carried out using truncated SbNBR1 containing
UBA1, UBA2, and AIM, which was purified and subsequently used alongside glutathione
agarose resin. This resin binds to glutathione S-transferase (GST) fusion proteins. Exper-
iments were performed with Arabidopsis leaves and roots and N. benthamiana cultured
cells.

Pull-down experiments were performed with leaves (Figure 7a) and roots (Figure 7b)
of Arabidopsis lines Col-0, atg2-2, and atg5-1. Anti-PEPC antibodies revealed a 65 kDa
peptide that interacted with GST-NBR1 in leaves and roots extracts from all the lines. In
addition, a 100 kDa anti-PEPC immunoreactive peptide was observed in the leaves of the
atg5-1 line. The amounts of co-immunoprecipitated PEPCs were slightly higher in the
autophagy-deficient lines.

The pull-down experiments with truncated GST-NBR1 in N. benthamiana cells extracts
obtained different results in different conditions. Experiments were conducted with the
control, without sucrose and/or in presence of the inhibitors 3-MA, E64, and ConcA
(Figure 8). Anti-PEPC antibodies revealed a 65 kDa peptide in the pull-down in all the
experiments. In addition, in the presence of 3-MA, an intact 100 kDa peptide was also
detected.

Finally, the interaction between ATG8 and PEPC was evaluated using immunoprecipi-
tation following transient expression in N. benthamiana (Figure 9). Leaves of N. benthamiana
were infiltrated with recombinant GFP-ATG8CL. Immunoprecipitation was performed by
affinity chromatography with GFP-Trap® A beads (Chromotek), and elution of the proteins
from the beads was performed by heating for 5 min at 95 ◦C. The typical double band, cor-
responding to monoubiquitinated and no-ubiquitinated PEPC, was revealed by anti-PEPC
antibodies in leaf extracts. A 63-kDa anti-PEPC immunoreactive peptide was recovered in
the pull-down. Peptide mass fingerprinting and MALDI-MS/MS showed that the peptide
was identified as Niben101Scf03628g14021 (NbPPC2) (Figure S4). The higher score was
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with Niben101Scf03487g00014, which is a fragmented PEPC lacking a N-terminal end. This
result suggests an interaction between ATG8 and PEPC, either directly or indirectly via
endogenous NBR1.
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(-suc), or 5 d without sucrose and then 2 d with sucrose (−suc/+suc). 3-MA was added at 2.5 mM (5 
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Figure 7. Co-immunoprecipitation of PEPC with GST-NBR1 in Arabidopsis lines. Crude extracts
from leaf (a) and root (b) tissues of Col-0, atg2, and atg5 Arabidopsis (six weeks) were incubated
overnight at 4 ◦C with purified GST-NBR1 pre-bound to Gluthatione Sepharose® 4B (GE Healthcare).
Then, extracts were centrifuged at 1000× g for 2 min at 4 ◦C, washed five times, and co-precipitated
proteins were eluted by heating at 95 ◦C for 5 min with a dissociation buffer. Afterwards, 50 µg of
proteins from crude extracts (CE) and corresponding amounts of co-precipitated proteins (Co-IP)
were analyzed by SDS-PAGE and immunoblotted with anti-PEPC and anti-GST antibodies.
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Figure 8. Co-immunoprecipitation of PEPC with GST-NBR1 in N. benthamiana cells. Crude extracts
were prepared from five-day-old N. benthamiana cell cultures and aliquots containing 50 µg of protein
were used in the pull-down experiments. When indicated, cells were kept without sucrose (-suc), or
5 d without sucrose and then 2 d with sucrose (−suc/+suc). 3-MA was added at 2.5 mM (5 d), along
with ConcA at 1 µM (16 h), and E64 at 10 µM (16 h). The other conditions are the same as in Figure 6.
CE, crude extracts; Co-IP, co-precipitated proteins.
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with a threshold of 13 for the results to be taken into account as possible AIM domains [37]. 
Interestingly, only the BTPC isoform in Arabidopsis AtPPC4 followed this criterion, with a 
PSSM value of 23, suggesting that only this PEPC protein is bound by ATG8; however, the 
AtPPC4 protein was almost absent in all tissues analyzed in this work [52] and more suitable 
tissues (i.e., pollen) should be used to certify ATG8 binding. In light of these results, we can 
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Figure 9. Co-immunoprecipitation of PEPC with GFP-ATG8CL in N. benthamiana. A transformed
Agrobacterium tumefaciens strain GV3101 line carrying potato ATG8CL fused to green fluorescent
protein (GFP) has infiltrated N. benthamiana. At 60 h after agroinfiltration, proteins were extracted
from infiltrated leaves using a 2 mL GTEN buffer per g of tissue. Crude extracts were incubated with
GFP-Trap®_A (Chromotek) for 2 h at 4 ◦C. Then, extracts were centrifuged at 1000 g for 2 min at 4 ◦C,
washed five times, and co-precipitated proteins were eluted by heating at 95 ◦C for 5 min with a
dissociation buffer. Afterwards, 15 µL of the crude extracts (CE) and co-precipitated proteins (Co-IP)
were immunoblotted with the anti-PEPC (left) and anti-GFP (right) antibodies.

By using two different bioinformatics tools (iLIR and hfAIM), we found several
putative AIM domains in all PEPCs from Arabidopsis and N. benthamiana [36,37]; however,
with only AtPPC2 and AtPPC4, both methods identified the same motif in the protein
(Table S1). To add another criterion of significance to the results, we used the position-
specific scoring matrix (PSSM) index calculated with the iLIR method. This index improves
the accuracy of the results with a threshold of 13 for the results to be taken into account as
possible AIM domains [37]. Interestingly, only the BTPC isoform in Arabidopsis AtPPC4
followed this criterion, with a PSSM value of 23, suggesting that only this PEPC protein is
bound by ATG8; however, the AtPPC4 protein was almost absent in all tissues analyzed
in this work [52] and more suitable tissues (i.e., pollen) should be used to certify ATG8
binding. In light of these results, we can conclude that, although it is possible, PTPCs from
Arabidopsis and N. benthamiana are unlikely to bind ATG8 directly by AIM domains.

3. Discussion

Among the most stress-resistant plants, there are many C4 and CAM species, par-
ticularly for drought and salt stress [53]. In addition, C3-type PEPCs have extensively
documented roles in response to environmental stresses, such as Al and Cd toxicity [54,55],
P starvation [52], and ammonium stress [12]. Work at our laboratory has shown notable
results with Sorghum bicolor, which has both C4 and C3 type PEPCs, where the salt and
ammonium stresses have increased the amount of PEPC proteins in roots while enhancing
the degree of phosphorylation in leaves [12,56]. The mechanisms responsible for these
effects are complex, and they include both changes of PPC and PPCK gene expression
and increased stability of PEPC and PEPCk proteins. The mechanisms controlling the
degradation of PEPC and the role of PTMs on the stability of the protein are not yet fully
understood. This paper has investigated the autophagic degradation of PEPC and the
role of monoubiquitination in regulating the stability of PEC proteins in terms of marking
towards selective autophagy.

Although there is experimental evidence that shows that both photosynthetic PEPCs
and PEPCks can be polyubiquitinated and degraded kDa by the 26S proteasome [57,58], the
monoubiquitination of photosynthetic PEPCs has not been reported. This work has focused
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on C3-type PEPCs, investigating whether monoubiquitination has a role in recruiting
proteins towards selective autophagy.

Mutations in core ATG genes in Arabidopsis cause defective autophagy and hypersen-
sitivity to various types of nutrient, and also to abiotic and biotic stress factors [59]. These
mutants accumulate proteins that are otherwise degraded by autophagy. An increase of
the amount of PEPC, and, specifically monoubiquitinated PEPC, was found in the atg2,
atg5, and atg18a Arabidopsis lines, which are defective in terms of core ATG proteins.
Remarkably, monoubiquitinated PEPC accumulated in the nbr1 line, which is specifically
deficient in selective autophagy. These results suggest that specific autophagy is involved
in basal maintenance of PEPC. This is supported by the results of Dr Vierstra’s group. In
a maize mutant lacking the core autophagy protein ATG12 (atg12-1) [60], C3-type PEPC
accumulated in old but not in young leaves (Fionn McLoughlin personal communication).
Similar results were obtained with the chemical inhibition of autophagic degradation of
cargo in cultured tobacco cells. Finally, pull-down experiments demonstrated the interac-
tion between NBR1 and PEPC in Arabidopsis leaves and roots and cultured tobacco cells,
as well as between ATG8 and PEPC in N. benthamiana leaves.

Monoubiquitinated PEPC was not recovered in the pull-down experiments, as it
should have been expected. In addition, intact 100 kDa peptides were rarely found. In
most cases, fragmented PEPC peptides were revealed by anti-PEPC antibodies after pull-
down. It is possible that monoubiquitinated PEPC is cleaved before its recruitment to
the autophagosome. Alternatively, it is also feasible that PEPC is cleaved (for example,
by cathepsin proteases) and then monoubiquitinated. Experimental data do not allow
distinguishing between these two alternatives. It could be hypothesized that PEPC pro-
teins directed towards selective autophagy are altered forms with a higher sensitivity to
proteolytic cleavage. We have recently shown that the interaction of sorghum PEPC with
anionic phospholipids changes its conformation and this increases its sensibility to cysteine
proteases [61].

Autophagy allows the degradation of damaged elements and the recycling of their
components, ensuring good management of resources and preventing the effects of the
buildup of dysfunctional elements. This work shows that a fraction of C3-type PEPC is
cleaved via selective autophagy. In addition, a new function has been attributed to the
monoubiquitination of PEPC, marking the protein towards selective autophagy, increasing
the knowledge about the mechanisms that control the stability and turnover of the PEPC
protein.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

All A. thaliana plants used in this study were from the Columbia (Col-0) background.
Seeds of SALK lines atg18a and nbr1 were obtained from the Nottingham Arabidopsis
Stock Centre (NASC, London, UK; http://arabidopsis.info). Mutant lines were analyzed,
and homozygosity was confirmed by PCR analysis. The atg2 and atg5 lines were kindly
provided by Dr. Yasin Dagdas (Gregor Mendel Institute of Molecular Plant Biology, Vienna,
Austria). Arabidopsis seed surfaces were sterilized with 70% ethanol for 10 min and a
50% HClO solution for 10 min. Finally, the seeds were rinsed 8 to 10 times with sterile
water. Seeds were then stratified for 3 d at 4 ◦C in the dark in a 0.1% agar solution in
water to synchronize germination. Seeds were placed in an Araponics® systems on a 0.65%
agar and were supplied with half strength Murashige and Skoog (MS) media. Plants were
grown with a short day regime, with 8 h in the light (22 ◦C, 60% relative humidity) and
16 h of dark (18 ◦C, 70% relative humidity). The light intensity was 140 µmol photons m−2

s−1 PAR.
N. benthamiana seeds were sterilized by washing with 20% bleach (20 min) and several

times with distilled water. Plants were grown on a solid substrate in a growth chamber
with a day/night cycle of 12 h in the light (25 ◦C, 60% relative humidity) and 12 h in
the dark (20 ◦C, 70% relative humidity). The light intensity was 350 µmol photons m−2

http://arabidopsis.info
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s−1 PAR. Plants were grown for 4-5 weeks and then used in experiments for transitory
expression after infiltration with Agrobacterium tumefaciens.

4.2. N. benthamiana Cell Cultures

Surfaced-sterilized seeds were sown on petri dishes containing germination media
(50% MS medium, 2% sucrose, 1% agar). After three weeks, roots were excised (0.5 cm) and
roots sections were transferred to Petri dishes containing callus induction media (4.4 g L−1

MS, 2% glucose, 0.8% agar, 0.5 mg L−1 2,4-dichlorophenoxyacetic acid, 0.05 mg L−1 kinetin,
0.5 g L−1 MES, pH 5.7). Dishes were sealed with Leukopor tape and kept in continuous
white light (20 µmol photons m−2 s−1 PAR) for 2-3 weeks until calluses were obtained.

Pieces of friable callus (0.3 g) were transferred to a 100 mL flask containing a 20 mL
sterile culture medium (4.4 g L−1 MS supplemented with Gamborg B5 salts, pH 5.8, 3%
sacarose, 0.5 mg L−1 α-naphtaleneacetic acid, 0.05 mg L−1 kinetin). Cells were kept in
an orbital shaker for 10 days under continuous light (100 µmol photons m−2 s−1 PAR)
and then cells were transferred to 80 mL of a fresh culture medium. The cultures were
subsequently kept in the dark and subcultured once a week by transferring 25% of the
culture to a flask containing 70 mL of a fresh culture medium.

4.3. Determination of Enzyme Activity and Protein Quantification

Protein extracts were obtained by grinding 0.2 g fresh weight of leaf or root tissue
in a 1 mL extraction buffer containing 0.1 M Tris-HCl, pH 7.5, 20% (v/v) glycerol, 1 mM
EDTA, 10 mM MgCl2, a protease inhibitor cocktail (Sigma), 10 mM potassium fluoride,
and 14 mM β-mercaptoethanol. The homogenate was centrifuged at 15,000× g for 2 min
and PEPC activity was quantified in the supernatant.

PEPC activity was measured spectrophotometrically at optimal pH of 8.0 using a
NAD-MDH-coupled assay at 2.5 mM PEP [62]. A single enzyme unit (U) is defined as the
amount of PEPC that catalyzes the carboxylation of 1 µmol of phosphoenolpyruvate per
minute at a pH of 8 and temperature of 30 ◦C.

4.4. Antibodies

Polyclonal antibodies against C4-type PEPC from sorghum leaves (rabbit anti-C4
PEPC) were prepared as described in [63] and were used at a ratio of 1:3000. The rabbit
anti-ubiquitin antibodies (anti-Ubiquitin) were purchased from Millipore (catalog number
05-944) and used at a ratio of 1:2000. Anti-GST monoclonal antibodies were produced
by mice against a recombinant GST protein and obtained from Santa Cruz Biotechnology
(product code sc-138). The rat anti-GFP monoclonal antibodies were raised against a
recombinant green fluorescent protein and were obtained from Chromotek (product code
3h9-100). Secondary antibodies conjugated to horseradish peroxidase were obtained from:
(i) Invitrogen (anti-rabbit, product code 31460); (ii) Novus (anti-mouse, product code
NB7539); (iii) CST (anti-rat, product code 7077S). For the chemoluminescent reaction,
Supersignal West Pico Chemiluminescent Substrate (Thermo Scientific) and WesternBright
Quantum (Advansta) were used, and the Amersham Imagier 600 was used for imaging.

4.5. Electrophoresis and Protein Gel Blot Analysis

Samples containing proteins were denatured by boiling (3 min, 90 ◦C) in the presence
of a dissociation buffer (100 mM Tris-HCl, pH 8, 25% [v/v] glycerol, 1% [w/v] SDS, 10%
[v/v] β-mercaptoethanol, and 0.05% [w/v] bromophenol blue). The denatured proteins
were separated by SDS-PAGE in a Miniprotean electrophoresis cell (Bio-Rad) and stained
with Coomassie Brilliant Blue R-250 or electroblotted onto a nitrocellulose membrane
(N-8017 from Sigma) at 10 V (3 mA cm−2) for 2 h in a semi-dry blot transfer apparatus
(Bio-Rad). Membranes were blocked in Tris-buffered saline (0.02 M Tris-HCl and 0.15 M
NaCl, pH 7.5) containing 5% (w/v) powdered milk, and bands were immunochemically
labeled via overnight incubation of the membrane at 4 ◦C in 20 mL of Tris-buffered saline
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containing antisera. The Multi Gauge (Fujifilm) software package was used for graphical
analysis and the quantification of the immunoblot images.

4.6. Recombinant Protein Expression and Purification

Using a Gateway® cloning system, a truncated SbNBR1 containing two ubiquitin-
associated domains (UBA) and one ATG8 interacting motif (AIM) was cloned into a pGEX-
KG vector (kindly provided by Dr. Galván-Ampudia from the University of Amsterdam),
then fused to glutathione S-transferase (GST). The Escherichia coli BL21 strain was used for
expression of the GST-NBR1 protein from the previous vector, induced by 1 mM isopropyl
β-D-1-thiogalactopyranoside (IPTG) for 6 h. The soluble fraction from the bacterial lysate
was incubated with Glutathione Sepharose® 4B (GE Healthcare) to bind GST-NBR1, and
the agarose was used for further pull-down experiments.

4.7. Pull-Down Experiments

For the pull-down experiments, GFP-Trap®_A (Chromotek) and a GST-NBR1 pre-
bound agarose (described in Section 4.6) were incubated with protein crude extracts for
2 h (GFP-Trap) or overnight (GST-NBR1) at 4 ◦C in the presence of a GTEN buffer (25 mM
Tris-HCl, pH 7.5, 10% (v/v) glycerol, 1 mM EDTA, 150 mM NaCl) supplemented with a
protease inhibitor cocktail (Sigma), 0.1% (v/v) IGEPAL® CA-630 (Sigma), and 10 mM DTT.
Then, the agarose was washed 5 times with GTEN supplemented with 0.1% (v/v) IGEPAL®

CA-630 and the proteins were eluted by denaturation and heating.

4.8. Protein Databases Searches, Alignment, and Phylogenetic Analysis

Searches for A. thaliana PEPCs (AtPEPC1-4) were carried out with the NCBI database.
The homolog sequences for N. benthamiana and homology index values were obtained
using the BlastP server available for the draft sequence N. benthamiana genome database via
the SOL Genomics Network from the Boyce Thompson Institute for Plant Research (https:
//solgenomics.net/organism/Nicotiana_benthamiana/genome) [8]. Partial sequences
were discarded. The selected PEPC protein sequences for N. benthamiana were named in
terms of reference to their homology as follows: NbPPC1 (Niben101Scf25430g00015),
NbPPC2 (Niben101Scf03628g14021), NbPPC3.1 (Niben101Scf00031g00003), NbPPC3.2
(Niben101Scf04036g04008), NbPPC3.3 (Niben101Scf03439g03004), and NbPPC4 (Niben101-
Scf00312g03005).

Alignments of the amino acid PEPCs sequences from N. benthamiana and A. thaliana
were performed automatically using MUSCLE [64], implemented in MEGA version 10.0.5 [65].
Bayesian inference (BI) and maximum likelihood (ML) analyses were performed using
MrBayes 3.2 [66] through the CIPRES science gateway [67] and RAxML 7.2.6 [68] through
the T-Rex web server [69], respectively. Bayesian inference analysis was carried out as
in [70], using the amino acid substitution model that best fit our data as predicted by
ProtTest 3 [71], based on the highest Akaike’s Information Criterion weights (AICw) [72]. In
the case of the ML analysis, a PROTCAT model and Dayhoff matrix substitution model [73]
were used. Bootstrap support (BS) values were calculated using a rapid bootstrapping
algorithm with 10,000 rapid bootstrapping searches and 2000 ML searches to estimate the
best tree. Bootstrap values under 70% were considered non-significant. Trees were finally
edited using FigTree version 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/). Moreover,
a pairwise evolutionary distance matrix was calculated with a gamma distribution of
among-site rate variation as implemented in MEGA version 10.0.5 [64].

4.9. Protein Digestion and Mass Spectrometry Identification

Protein identification was accomplished by matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF-MS). Protein samples were analyzed by
SDS-PAGE and stained with Coomassie Brilliant Blue R-250. Bands were excised with a
cutting edge and de-stained afterwards using 25 mM ammonium bicarbonate (AB) and
acetonitrile. Disulfide bonds were reduced by embedding bands in 200 µL of 10 mM DTT

https://solgenomics.net/organism/Nicotiana_benthamiana/genome
https://solgenomics.net/organism/Nicotiana_benthamiana/genome
http://tree.bio.ed.ac.uk/software/figtree/
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and 50 mM AB, which was maintained for 60 min at 56 ◦C. After reduction, the samples
were incubated in 200 µL of 30 mM IAA and 50 mM AB for 30 min at room temperature in
a dark environment in order to block Cys-SH groups.

Proteins were digested overnight at 37 ◦C using trypsin bovine (Sequencing Grade
Modified Trypsin, Promega) at a ratio of 1:10 for the enzyme and substrate, respectively.
After digestion, acetonitrile and a trifluoroacetic acid 0.2% solution were added to the
bands for peptide extraction. OMIX C18 tips (Agilent Technologies) were used for con-
centrating and desalting peptide extracts. Next, 0.5 µL of each sample was spotted onto
a MALDI sample plate. After solvent evaporation, 0.5 µL alpha-cyano-hydroxycinnamic
acid saturated solutions were spotted over the sample spots and air-dried.

MALDI fingerprint spectra were obtained using a MALDI-TOF Ultraflextreme (Bruker)
system in the positive ion reflectron mode, summing 5000 shots for every spectrum. The
FlexAnalysis software package was used to calibrate, select, and filter mass peaks. MS
data were analyzed using the MASCOT search engine with the Biotools™ proteomic
software package (Bruker) using static carbamidomethylation (C) and dynamic oxidation
(M) modifications. Data were searched against the Uniprot A. thaliana and N. benthamiana
protein database and against PEPC amino acid sequences. Peptides of interest were further
analyzed by tandem mass spectrometry (MALDI TOF-MS/MS) in order to assess their
sequences.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
7/10/1/12/s1, Figure S1: Mascot peptide mass fingerprint analysis of the p110 band from tobacco
cultured cells extract, Figure S2: Mascot peptide mass fingerprint analysis of the p100 band from
tobacco cultured cells extract, Figure S3: Comparison of MALDI fingerprints of the p110 and p100
bands from tobacco cultured cells extract, Figure S4: Mascot peptide mass fingerprint analysis of the
63 kDa band from the pull-down following transient expression of GFP-ATG8CL in N. benthamiana
leaves, Table S1: Putative ATG8 interacting motifs (AIMs) in PEPC proteins identified with hfAIM.
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