
P. Oikonomou, K. Kolomvatsos, C. Anagnostopoulos, N. Tziritas and G.
Theodoropoulos, "A Probabilistic Batch Oriented Proactive Workflow
Management," 2021 IEEE 33rd International Conference on Tools with Artificial
Intelligence (ICTAI), 2021, pp. 1242-1246.

doi:10.1109/ICTAI52525.2021.00197.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

© The Authors 2021. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution.

https://eprints.gla.ac.uk/252053/

Deposited on: 14 Sept 2021

Enlighten – Research publications by members of the University of Glasgow

https://eprints.gla.ac.uk

https://doi.org/10.1145/3490100.3516472
https://eprints.gla.ac.uk/267395/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

A Probabilistic Batch Oriented Proactive Workflow
Management

Panagiotis Oikonomou
Comp. Science and Telecommunications

University of Thessaly
Lamia, Greece

paikonom@uth.gr

Kostas Kolomvatsos
Comp. Science and Telecommunications

University of Thessaly
Lamia, Greece

kostasks@uth.gr

Christos Anagnostopoulos
School of Computing Science

University of Glasgow
Glasgow, UK

christos.anagnostopoulos@glasgow.ac.uk

Nikos Tziritas
Comp. Science and Telecommunications

University of Thessaly
Lamia, Greece
nitzirit@uth.gr

Georgios Theodoropoulos
Computer Science and Engineering

Southern University of Science and Technology
Shenzhen, China

georgios@sustech.edu.cn

Abstract—Workflow management is a widely studied research
subject due to its criticality for the efficient execution of various
processing activities towards concluding innovative applications.
A set of models has been already proposed dealing with finding
the most appropriate node to conclude the placement of each
task present in a workflow. The ultimate goal is to eliminate
the required time for delivering the final outcome taking into
consideration the dependencies between tasks. In this paper, we
go a step forward and enhance the decision making of a scheduler
with a batch oriented approach to deal with a high number of
workflows. We also focus on a gap of the respective literature,
i.e., apart from the time and cost requirements, we focus on the
statistics of the underlying data where tasks should be executed.
We provide a probabilistic ‘data’ oriented approach combined
with a ‘infrastructure’ oriented scheme to pay attention on dy-
namic environments where the underlying data are continuously
updated trying to minimize the network overhead for migrating
data. We propose the sequential management of workflows, i.e.,
we map the workflows requirements for data with the available
datasets, then, combine the outcome with an optimization model
upon the time requirements and the cost of every placement.
The performance of our sequential management is revealed by
a high number of experiments depicting the advantages in the
network overhead. Our evaluation deals with a high number of
real workflow applications and a comparative assessment with
other baseline schemes.

Index Terms—workflows management, tasks scheduling, deci-
sion making, probabilistic model, distributed processing

I. INTRODUCTION

The mapping of a number of connected tasks upon a set
of heterogeneous resources/nodes is the subject of workflow
scheduling. The problem is widely studied in the research
community being active in the domains of Grid and Cluster
Computing [1]. Recently, one can observe an increased interest
in workflow scheduling in Cloud [2]. There, we can detect a
substantial amount of resources, a variety of virtual platforms
and enjoy zero cost for management/maintenance. Various
challenges should be met before we are in a position to
adopt fully automated services for workflow management. For

instance, the pay-as-you go model and data-transfer costs can
be a obstacle to Cloud’s potentials [1].

Utilizing processing nodes at the Cloud involves a mon-
etary cost that depends on the time devoted to reserve the
resources. Additionally, the performance of resources varies
due to the resource sharing of Virtual Machines (VMs). For
instance, Amazon Web Services (AWS) offers the following
categories: (i) on-demand with fixed price per time unit; (ii)
reserved resources with a lower price than the on-demand
service and a long lease; (iii) spot instances dealing with
the reservation of unused capacity and a significant discount.
Similar strategies are adopted by other providers like Google,
Alibaba, Microsoft, etc. We can easily detect the trade off
between acquiring a reserved resource and pay more compared
to the acquisition of spot instances with a significantly reduced
cost but with no guarantee for the success of the reservation.
Obviously, the target of users is to execute their workflow
applications in the minimum time and cost. The minimization
of the execution time, i.e., makespan, is a research subject that
has been extensively studied by the research community and
a set of algorithms are proposed like HEFT, CPOP [3] and
DCP [4]. However, such algorithms neglect the increased cost
incurred by placing tasks without taking into consideration
the cost incurred by the transfer of data by external nodes
or resources. This cost is realized by the network overhead
imposed by selecting processing nodes owing datasets with
limited similarity with the data demanded by workflows. To
the best of our knowledge, the majority of the relevant efforts
in the domain, they target to ‘infrastructure’ oriented deci-
sions paying limited attention on the data upon which every
workflow should be executed. Evidently, workflow tasks may
demand for specific data to perform the envisioned processing.
The assumption behind other models is that the requested data
can be present at any processing node or they can be migrated
to the node where the execution will be realized. However, data
migration incurs an increased network overhead.

In this paper, we argue upon a holistic model that takes into
consideration not only the ‘infrastructure oriented’ parameters
but also the ‘data oriented’ aspects. We investigate a dynamic
scheduling approach and resource provisioning management
like in our past efforts [5], [6], however, we focus on the data
required by tasks and match them against the data present
at the processing nodes before we conclude any placement.
We propose the use of two orchestrators, i.e., the Global
Orchestrator (GO) and the Local Orchestrator (LO). The GO
is responsible to reveal the distance between the data requested
by a workflow and the available datasets. The GO relies
on a probabilistic model and performs the ‘data’ oriented
scheduling and it realizes the first step of our workflow
sequential management. The GO delivers an initial placement,
then, as multiple workflows may be assigned in the same
node, the LO proceeds to refinements and concludes the
prioritization of the tasks. The LO separates the incoming
tasks in two categories based on their criticality and proceeds
by placing them for execution using the Shortest Job First
(SJF) policy subject to the decisions made by the GO. The
intuition behind our approach is two-fold: At first, we seek
to maximize the data mappings and, secondly, to minimize
the infrastructure oriented parameters and limit the execution
time and cost. To the best of our knowledge, this is one of the
first attempts that deal with the combination of infrastructure
and data oriented parameters in the scheduling of scientific
workflows. The following list reports on the contribution of
our work:
• We propose two orchestrators, i.e., the GO and the LO

to perform the scheduling at two levels;
• For supporting the GO, we provide a probabilistic model

for exposing the distance between workflows require-
ments and data present at every processing node;

• For supporting the LO, we provide a fast approach that
improves tasks throughput making sure that shorter jobs
are executed first chasing a short turnaround time;

• We perform an extensive experimental evaluation of the
proposed model and simulate the execution of a high
number of real-world scientific workflows;

The rest of the paper is organized as follows. Section II
discuss the prior work in the specific domain. System model
and problem formulation are illustrated in Section III. The
proposed approach is presented in Section IV. The evaluation
of the model is discussed in Section V. Our conclusions and
plans for future research are presented in Section VI.

II. RELATED WORK

A decentralized approach for workflow scheduling is pre-
sented in [7] where the Dynamic Hierarchical Scheduling
(DHS) algorithm is proposed. DHS is a two-stage algorithm
where in the first stage it operates using the Dynamic Level
Scheduling (DLS) [8] algorithm and in the second stage deter-
mines the resource within the group that results in the earliest
finish time. A planner-guided dynamic scheduling strategy for
multiple workflows is featured in [9]. The proposed system
consists of three components namely DAG Planner, Job Pool

and Executor. The DAG Planner prioritize each task of the
workflow locally using the HEFT algorithm [3]. The Executor
globally re-prioritizes the jobs in the Job Pool. The task with
the highest priority is scheduled to the resource that result
in the earliest finish time. The effect of different scheduling
policies in heterogeneous distributed real-time systems has
been extensively studied in [10]. The proposed policies work
in the context of every list scheduling algorithms i.e., a task
prioritization phase and a resource selection phase. For the
first phase different algorithm can be applied e.g., Earliest
Deadline First (EDF). In [11], the Highest Level First (HLF)
[12] or the Least Space–Time First (LSTF) [13]. In the second
phase the exploitation of schedule holes is initiated using
classic bin packing algorithm are applied like first Fit (FF),
Best Fit (BF) and Worst Fit (WF). An extension of [10] is
presented in [14] where multiple workflows arrive in a multi-
tenant environment. Tsai et al. [15] advances the idea of a
clustering technique [16] to reduce the communication cost
among tasks. Commonly tasks within the same resource bear
no communication overhead. In the same fashion as in [10],
the exploitation of schedule holes was carried out using the
BF algorithm.

Another algorithm elastically adjusts the number of re-
sources for time constrained workflows [17] or an auto-scaling
mechanism where budget and deadline are either distributed
in each task [18] (sub-deadline, sub-budget) or are assigned to
the entire workflow [19]. ToF [20], is a general transformation-
based optimization framework compromised by a transforma-
tion and a planner component. The first component consists
of six transformation operation e.g., merge and split while
the second one performs the transformation on the workflow
according to the cost optimization function. Dyna [21] is
another Workflow as a Service (WaaS) framework. It considers
both spot and on-demand instances and offers a probabilistic
deadline guarantee. For each task, a configuration plan is
generated while, at the runtime, auto-scaling of resources is
reinforced. In [22], the authors integrate an Edge Orchestrator
(EO) in an Edge-Cloud environment to assign tasks on edge
nodes or offloading them to Cloud, as well as to aggregate
data produced at the edge. In [23], multiple factors are
considered such deadline, location, budget constraint, energy
and computation capacity before assigning a task at the edge
of the network or the Cloud. That scheduling problem is
tackled by the development of a greedy heuristic algorithm.
The authors of [24] propose a dynamic multi-level scheduling
scheme that decouples data placement from task scheduling.
The first level is initiated prior to tasks execution and, in the
second level, tasks are assigned to resources depending on the
particular strategy and their dependencies. In the third level, a
monitoring mechanism is triggered whenever there is a need
to move or replicate data. The authors of [25] hold the view
that a high latency is caused by transferring large amount of
data across multiple nodes. They proposed GASPO, a data
placement method that combines Genetic Algorithms (GAs)
and Particle Swarm Optimization (PSO).

III. PRELIMINARIES & PROBLEM FORMULATION

We consider a set of workflows W =
{
w1, w2, . . . , w|W|

}
that has to be scheduled in a set of processing nodes (present
at the Cloud or in a Fog/Edge computing environment)
N =

{
n1, n2, . . . , n|N |

}
. Workflows arrive in the system

at different time units and may request for a specific range
of data to perform their actions. wi (the ith workflow) is
modeled as a Directed Acyclic Graph (DAG) (Ti,Ei) where
Ti denotes its set of heterogeneous tasks and Ei the set of
edges. tij denotes the jth task of wi assuming a total ordering
(1 ≤ j ≤ |Ti|). Also, eijz denotes a weighted directed
edge connecting tij and tiz (predecessor) and dwijz is the
corresponding weight. A task may be bounded to data that
are located in one or more nodes. This makes the problem
more complex while it differentiates it from the majority
of works that tackle the single or the multiple workflow
scheduling problem. Past efforts assume data dependencies
only between tasks. Let aijz denote a precedence constraint
between tij and data DSij denoting the jth dataset at ni.
tij must receive DSij to start its execution. Communication
among nodes nx and ny occurs at a certain transfer rate
(TRxy). Let Bxy be a boolean variable with Bxy = 0 iff
x = y otherwise Bxy = 1. Also, Aiz is a binary variable
depicting whether tiz requests data from a predecessor tij
(Aiz = 1) or requests the kth data from nj (Aiz = 0).
Assuming that tiz is assigned in ny and tij in nx, the
temporal cost for transferring data towards tiz is expressed by
Riz = Aiz× Bxy×dwijz

TRxy
+(1−Aiz)× Byj×Djk

TRyj
. In case where

tiz and tij are assigned in the same node, then, Riz = 0. The
same holds true when tiz and Djk are assigned in the same
node. Assuming that tij is assigned for execution to nz , the
Estimated Start Time (EST) of tij is expressed by ESTnztij =
max{availablez,maxtik∈pred(tij){AFTtik +Rij}} while the
Estimated Finish Time (EFT) by EFTnztij = ETijz +ESTnztij
(ET is the execution time of tij on nz). availablez denotes
the time that nj is available (idle state). For entry tasks having
no predecessors the second argument of the EST is always
the arrival time. When tij is scheduled in nz , the ESTnztij and
EFTnztij are equal to the actual start time (ASTnztij) and the
actual finish time (EFTnztij), respectively.

Research Challenge: Find a feasible mapping between
tasks of wi and nodes N , such that the overall network
overhead is minimized w.r.t. the following constraints: (i) a
node cannot execute concurrently more than one tasks, and
(ii) a task cannot be assigned to more than one nodes.

IV. PROBABILISTIC WORKFLOW MANAGEMENT

Multiple workflows formulation. We consider a two level
orchestration scheme as depicted by Fig. 1. In the first level,
the GO, iteratively, receives the ready tasks of the envisioned
workflows and assigns them to the available nodes. The GO is
triggered at predefined intervals while other strategies could be
also adopted (e.g., when significant updates on the present data
are realized). We assume the existence of a global queue that
contains the ready tasks of each workflow, i.e., tasks for which
all predecessors have finished their execution. The GO assigns

tasks according to a specific strategy (see section IV-1) that
tries to eliminate the network overhead. In the second level,
the LO is responsible to prioritize tasks within the node. Each
node ni is equipped with a local queue where ready tasks sent
by the GO are placed. Tasks are considered for scheduling one
by one according to a priority value (see section IV-2). The
first task of the local queue is placed for execution when ni
becomes idle.

Fig. 1: System’s architecture

1) Global orchestration: Our problem is to detect the ap-
propriate node for each set of ready tasks to eliminate the need
for data migration. We envision assignments that ‘match’ every
workflow with the node that corresponds to its ‘requirements’:
the appropriate data and the appropriate processing speed
We propose the use of a model to detect the probability of
assignment for each potential pair wi, nj , i.e., P (wi, nj).
From every wi, we consider the T ready tasks ti1, t

i
2, . . . , t

i
T

(we slightly update the above given notation to facilitate our
calculations). A (sub)set of tasks demand for a specific range
of data while the remaining are dependent tasks, i.e., they
wait for the outcomes of their peer-tasks. Focusing on the
generalized data demand of wi which represents the demand
dictated by all tasks in wi, we get Dwi = ∪Tk=1t

i
k. We consider

a multivariate scenario where M dimensions are adopted for
every data vector. This means that wi demands data for each
dimension m,m = 1, 2, . . . ,M based on a ‘range’ model, i.e.,
Dwi =

〈
[mini1,max

i
1], [mini2,max

i
2], . . . , [miniM ,max

i
M]
〉
.

For simplicity in our calculations, we consider the middle of
each interval, i.e., Dwi =

〈
dim
〉

with dim =
minim+maxim

2 &
m,m = 1, 2, . . . ,M .

On the other side, every node nj is the owner of a dataset,
i.e., a set of multivariate vectors, i.e., x = 〈x1, x2, . . . , xM 〉.
Without loss of generality, we consider that every dimension
follows a Normal distribution with mean µm and standard de-
viation σm. µm and σm can be updated through an incremental
approach in order to save time. We discern that the assignment
of a workflow in a processing node should be dictated by

the matching between Dwi and Dnj =
〈
µj1, µ

j
2, . . . , µ

j
M

〉
(Dnj represents the vector of means for each dimension). For
simplicity in our notations, we eliminate the indexes i and j
from the representation of Dwi and Dnj .

The aforementioned matching can be depicted by the dis-
tance between the required data and the means of local
datasets. This can be estimated by the absolute value of
the difference Ωij = |Dwi − Dnj | =

∑M
m=1 |dm − µm|.

We rely on the random variables Xm and Ym depicting the
data requirements and the data present at the local datasets
for the mth dimension. As both variables follow a Normal
distribution, the random variable Q = X − Y (we omit
the index m for simplicity) follows a Normal difference
distribution, i.e., Q ∼ N

(
µX − µY , σ2

X + σ2
Y

)
[26].

Lemma 1. The cumulative distribution function (cdf) and the
mean of the absolute difference of X & Y are given by:

FZ(z) = 1
2

[
erf

(
z+(µX−µY)√

2(σ2
X+σ2

Y)

)
+ erf

(
z−(µX−µY)√

2(σ2
X+σ2

Y)

)]
and

µZ =
√

2
π (σ2

X + σ2
Y)e
− (µX−µY)2

2(σ2X+σ2
Y) +

(µX − µY)

(
1− 2Φ

(
− µX−µY√

σ2
X+σ2

Y

))
with Z being the

random variable of the absolute value of Q.

Proof. Upon Q, we can define the random variable Z which
depicts the absolute difference between the required data and
the available data for a specific dimension, i.e., Zm = |Qm|.
Z follows a folded Normal distribution with the following
probability density function (pdf) (for z > 0):

fZ(z) =
1√

2π (σ2
X + σ2

Y)
×e− (z−(µX−µY))2

2(σ2X+σ2
Y) + e

− (z+(µX−µY))2

2(σ2X+σ2
Y)

 (1)

[27] By adopting simple calculations, the cdf of Z is given
by:

FZ(z) =
1

2

[
erf

(
z + (µX − µY)√

2(σ2
X + σ2

Y)

)

+erf

(
z − (µX − µY)√

2(σ2
X + σ2

Y)

) (2)

Finally, the mean of Z is given by:

µZ =

√
2

π
(σ2
X + σ2

Y)e
− (µX−µY)2

2(σ2X+σ2
Y) +

(µX − µY)

(
1− 2Φ

(
− µX − µY√

σ2
X + σ2

Y

))
(3)

where Φ() is the cdf of the univariate standard normal distri-
bution.

Adopting the equations provided by Lemma 1, we can
identify that Ωij is the summation of M folded Normal

distributions, i.e., Ωij =
∑
∀m Zm. In general, we want to

have Ω ≤ θ where θ is a pre-defined threshold depicting the
magnitude of matching between Dwi & Dnj Focusing on an
individual dimension, we want β = P (Zm ≤ θm) with θm
being the threshold for the specific dimension. The use of
different thresholds θm opens up the path to adopt a strategy
for handling a trade off and paying more attention on a (sub)set
of dimensions demanding for a low difference.

Lemma 2. The probability of the assignment of wi to
nj as depicted by their data distance is given by Ωij =∏M
m=1 F

m
Z (θm)

Proof. β depicts the cdf of Zm. In our analysis, we con-
sider independent dimensions, thus, the probability of assign-
ment (matching) between wi and nj is defined by: Ωij =∏M
m=1 F

m
Z (θm)

For each wi, we select the node nj that makes the following
equation true: nj = argmaxnj∈N Ωij .

2) Local orchestration: The LO is invoked when one or
more tasks arrive in a node. The LO is responsible to find
the execution start time of each task and subsequently assign
them to the local queue. An interesting observation is the
heterogeneity of tasks, i.e., tasks have different processing
demands, are bounded to different data and belong to different
workflows. We depart from this non-trivial issue and split
incoming tasks into two categories. The first category contains
tasks that belong in the critical path of a workflow while the
second category contains the rest. Tasks of the first category
are prioritized for execution as their delayed execution will
affect the final makespan. We should mention that when tasks
arrive in a node they start requesting the appropriate data
to initiate their execution. Tasks enter the local queue when
they are ready for execution i.e., their EST value is equal
to the current time. Tasks in both categories are scheduled
based on the Shortest Job First (SJF) policy to minimize
the average waiting time among them. In case new tasks
arrive in the system and the local waiting queue is not empty
the aforementioned policy is applied again and tasks are re-
prioritized. We have to notice that if tasks are placed at a
node not having similar data, tasks will demand those data
from other nodes increasing the network overhead and the
execution time.

V. EXPERIMENTAL EVALUATION & PERFORMANCE
ASSESSMENT

Workflows, Resources & Performance Metrics. We report
on the experimental evaluation of the proposed model focusing
on the minimization of the need for transferring data in the
network and using six (6) different workflow applications
as depicted by [28], and [29]. The number of tasks, the
execution time of each task as well the amount of data
transferred between them is reported in a ‘Directed Acyclic
Graph in XML’ (DAX) format. Workflows include Montage,
CyberShake, LIGO, SIPHT, Genome and Epigenomics which
are extensively adopted in the relevant literature. The discussed

(a) θ ∈ [0, 1] (b) θ ∈ [0, 0.3]

(c) θ ∈ [0.3, 0.6] (d) Random Workflows, θ ∈ [0, 1]

Fig. 2: Average network overhead improvement of PMW ε

workflows ‘cover’ all the basic execution patterns such as
pipelining, process, data aggregation, data distribution and
redistribution. Each workflow is provided in different sizes
with a total of 54 workflow applications being adopted in our
experimentation with their characteristics given in Table I.

TABLE I: Workflow characteristics

Name
(Number of worflows)

Number of Tasks
(min-max)

CCR
(min-max)

Montage (10) 25 - 800 23.9 - 36.9
CyberShake (10) 30 - 800 206.6 - 257.8

LIGO (10) 30 - 800 0.05 - 0.26
SIPHT (10 30 - 700 0.21 - 0.24

Genome (10) 50 - 900 0.01 - 1.66
Epigenomics (4) 24 - 997 0.05 - 2.42

CCR depicts the Communication to computation value i.e.,
the ratio between the average communication cost and the
average computation cost. CCR reveals whether a workflow is
communication intensive (high value) or computation intensive
(low value). For each experiment nodes processing capacity is
randomly set between 1 and 16 task computational demand
units considering an equal transfer rate among them. Without
loss of generality, we consider that task requests for a specific
range of data is realized in the unity interval for every

dimension while data collected by nodes are randomly set in
the unity interval too. The performance of the proposed model
is evaluated by: (i) the total volume of data transferred through
the network (V), (ii) the average Ω and (iii) the overall time
(ms) required by the GO to deliver the final decisions (DT).
To measure the total volume of migrated data (in case a task
demands data not present in the node where the placement
is realized), we assume the reward function r(ti, nj) that
returns the temporal cost of sending data demanded by ti to
nj as follows: r(ti, nj) =

∑M
k=1(1−Fz(θi))/Commwi) with

Commwi being the average communication cost of wi.
Performance Evaluation. We compare the proposed

methodology, i.e., the Probabilistic Management of Workflows
(PMW) against two well-known algorithms: the Round Robin
(RR) and the HEFT algorithm [3]. For each task, the RR
assigns tasks by selecting the processing nodes in a circular
order while HEFT selects the node that results in the minimum
EFT. Initially, we evaluate our model in terms of V and Ω.
We consider three different realizations of θ (we consider the
same threshold for all dimensions) randomly selecting it in
the following intervals: (a) [0, 1], (b) [0, 0.3] (c) [0.3, 0.6].
We evaluate our scheme through an extensive set of simula-
tions involving different number and types of workflows. The
number of nodes and dimensions are set equal to 10. In Figs.

(a) θ ∈ [0, 1] (b) θ ∈ [0, 0.3]

(c) θ ∈ [0.3, 0.6] (d) Random Workflows, θ ∈ [0, 1]

Fig. 3: Average Ω.

2a-2c and Figs. 3a-3c, we assume that 10 workflows of the
same type arrive in the system at random time units. In Figs.
2d and 3d, we increase the number of workflows and get it
equal to 10, 20, 40 or 60. In each experiment, we mix the
number and the types of the considered workflows.

In Fig. 2, we plot the percentage of the improvement
that the PMW offers in terms of V against RR and HEFT.
Actually, the plot depicts the difference between our model
and the aforementioned algorithms, i.e., ε =

Vref−VPMW
Vref

%
(Vref is the realization of V for the discussed models RR
and HEFT). We can observe a significant reduction of the
data migration actions due to the appropriate placement of
the desired tasks into the available nodes as concluded by the
PMW. This holds true for all the experimental scenarios. When
θ ∈ [0.3, 0.6], we can observe the maximum performance
as the proposed model is more relaxed in the delivery of
the matching outcome. With the term relaxed, we annotate
a behaviour that leaves room for the matching process that
may result a ‘better’ dataset compared to a ‘strict’ threshold
that tries to seek a perfect match. In real cases, the use of
a very low θ may jeopardize the quality of the matching
process with the danger of not returning any outcome forcing

the proposed model to rely on a completely random selection
afterwards. In case where θ is realized in the unity interval
(heavy fluctuations in its value are concluded in consequent
iterations), we observe that the reduction of the data migration
actions is less than the aforementioned scenario (θ ∈ [0.3, 0.6])
proving our allegations.

In Fig. 3, we plot our results for Ω. Here, we can observe
that the PMW achieves a higher probability of assignment
that the remaining models that participate in our comparative
assessment. Recall that a high Ω depicts a high matching
between the data demanded by workflows and the available
datasets. The interesting is that the proposed model is not
affected by the type of the workflow as presented by Figs
3a, 3b, 3c. or the number of workflows as presented by Fig.
3d. We can easily discern the stability of the PMW and its
attitude to select similar datasets for every workflow always
targeting to minimize the network overhead.

We perform another set of experiments and evaluate the
proposed model concerning the time required by the GO DT
to deliver the final decision of the envisioned assignments.
We adopt M ∈ [10, 100] and |N | ∈ [10, 100]. After the
experimentation, we retrieve DT ∈ [59.7, 500.66] which

leads to a throughput of 1.99 to 16.75 sets of workflows
per second. We have to notice that, in this experimentation
activity, we consider ten workflows per set belonging on the
Genome type. Evidently, the proposed model can be efficiently
incorporated into a real time decision making mechanism to
support applications at the Cloud or Fog/Edge environments.

VI. CONCLUSIONS & FUTURE WORK

We propose a model that targets to assist in the schedul-
ing of scientific workflows over distributed heterogeneous
resources. We aim at combining the requirements of workflows
in terms of data upon which the envisioned processing will
be realized and ‘legacy’ approaches that target to minimize
the execution time and the monetary cost. We elaborate on
the use of two orchestrators, i.e., a global one that adopts a
probabilistic approach to expose the distance between work-
flows requirements and the available datasets and a local
orchestrator that performs the prioritization of tasks internally
in the processing nodes. The probabilistic model assists in the
assignment process while the prioritization scheme assists in
the efficient execution of the assigned tasks. Our results reveal
a good performance of the proposed scheme as compared with
other similar efforts and baseline models. We show that the
network overhead is minimized as we avoid the unnecessary
data migrations due to inefficient placements. In the first
places of our future research plans, one can find an intelligent
technique for the management of tasks in the local orchestrator
to cover the heterogeneity of tasks characteristics and their
significance to the efficient conclusion of the entire workflow.

REFERENCES

[1] F. Wu and et. al., “Workflow scheduling in cloud: a survey,” The Journal
of Supercomputing, vol. 71, pp. 3373–3418, 2015.

[2] M. A. Rodriguez and R. Buyya, “A taxonomy and survey on scheduling
algorithms for scientific workflows in iaas cloud computing envi-
ronments,” Concurrency and Computation: Practice and Experience,
vol. 29, no. 8, p. e4041, 2017.

[3] H. Topcuoglu and et. al., “Performance-effective and low-complexity
task scheduling for heterogeneous computing,” IEEE TPDS, vol. 13,
pp. 260–274, 2002.

[4] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors,” IEEE
TPDS, vol. 7, pp. 506–521, 1996.

[5] P. Oikonomou, K. Kolomvatsos, N. Tziritas, G. Theodoropoulos,
T. Loukopoulos, and G. Stamoulis, “Uncertainty driven workflow
scheduling using unreliable cloud resources,” in 19th IEEE NCA, pp. 1–
8, 2020.

[6] P. Oikonomou, K. Kolomvatsos, and T. Loukopoulos, “Resource pro-
visioning schemes for multiple workflowscheduling with seclusion re-
quirements,” in Panhellenic Conference of Information, 2020.

[7] M. A. Iverson and F. Özgüner, “Hierarchical, competitive scheduling
of multiple dags in a dynamic heterogeneous environment,” Distributed
Systems Engineering, vol. 6, p. 112, 1999.

[8] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures,”
IEEE TPDS, vol. 4, pp. 175–187, 1993.

[9] Z. Yu and W. Shi, “A planner-guided scheduling strategy for multiple
workflow applications,” in 2008 IEEE ICPP, pp. 1–8, 2008.

[10] G. L. Stavrinides and H. D. Karatza, “Scheduling multiple task graphs
in heterogeneous distributed real-time systems by exploiting schedule
holes with bin packing techniques,” Simulation Modelling Practice and
Theory, vol. 19, pp. 540–552, 2011.

[11] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[12] T. Adam and et. al., “A comparison of list schedules for parallel
processing systems,” Communications of the ACM, vol. 17, pp. 685–
690, 1974.

[13] B.-C. Cheng and et. al., “Lstf: a new scheduling policy for complex real-
time tasks in multiple processor systems,” Automatica, vol. 33, pp. 921–
926, 1997.

[14] G. Stavrinides and H. Karatza, “A cost-effective and qos-aware approach
to scheduling real-time workflow applications in paas and saas clouds,”
in 3rd IEEE ICFITC, pp. 231–239, 2015.

[15] Y.-L. Tsai and et. al., “Scheduling multiple scientific and engineering
workflows through task clustering and best-fit allocation,” in IEEE
Eighth World Congress on Services, pp. 1–8, 2012.

[16] L. F. Bittencourt and E. R. Madeira, “A performance-oriented adaptive
scheduler for dependent tasks on grids,” Concurrency and Computation:
Practice and Experience, vol. 20, pp. 1029–1049, 2008.

[17] E.-K. Byun and et. al., “Cost optimized provisioning of elastic resources
for application workflows,” FGCS, vol. 27, pp. 1011–1026, 2011.

[18] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in IEEE International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–12, 2011.

[19] M. Mao and M. Humphrey, “Scaling and scheduling to maximize
application performance within budget constraints in cloud workflows,”
in 27th IEEE International Symposium on Parallel and Distributed
Processing, pp. 67–78, 2013.

[20] A. C. Zhou and B. He, “Transformation-based monetary costopti-
mizations for workflows in the cloud,” IEEE Transactions on Cloud
Computing, vol. 2, pp. 85–98, 2014.

[21] A. C. Zhou and et. al., “Monetary cost optimizations for hosting
workflow-as-a-service in iaas clouds,” IEEE Transactions on Cloud
Computing, vol. 4, pp. 34–48, 2015.

[22] I. Petri and et. al., “Edge-cloud orchestration: Strategies for service
placement and enactment,” in IEEE International Conference on Cloud
Engineering, pp. 67–75, 2019.

[23] A. Alqahtani and et. al., “Sla-aware approach for iot workflow activities
placement based on collaboration between cloud and edge,” in 1st
Workshop on Cyber-Physical Social Systems, 2019.

[24] M. Breitbach and et. al., “Context-aware data and task placement in
edge computing environments,” in IEEE International Conference on
Pervasive Computing and Communications, pp. 1–10, 2019.

[25] Z. Chen and et. al., “Effective data placement for scientific workflows
in mobile edge computing using genetic particle swarm optimization,”
Concurrency and Computation: Practice and Experience, p. e5413,
2019.

[26] E. W. Weisstein, “Normal distribution,” https://mathworld. wolfram.
com/, 2002.

[27] M. Tsagris and et. al., “On the folded normal distribution,” Mathematics,
vol. 2, pp. 12–28, 2014.

[28] G. Juve and et. al., “Characterizing and profiling scientific workflows,”
FGCS, vol. 29, no. 3, pp. 682–692, 2013.

[29] S. Bharathi and et. al., “Characterization of scientific workflows,” in
3rd workshop on workflows in support of large-scale science, pp. 1–10,
2008.

	conf_coversheet
	Enlighten Accepted coversheet (ACM Statement)
	267395
	Abstract
	1 Introduction
	2 Related Work
	3 Preventing Thermal Attacks - Concept and Implementation
	4 Conclusion and Outlook
	Acknowledgments
	References

	252053

