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Relative acceleration noise mitigation for nanocrystal matter-wave interferometry: Applications to
entangling masses via quantum gravity
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Matter-wave interferometers with large momentum transfers, irrespective of specific implementations, will
face a universal dephasing due to relative accelerations between the interferometric mass and the associated
apparatus. Here we propose a solution that works even without actively tracking the relative accelerations: putting
both the interfering mass and its associated apparatus in a freely falling capsule, so that the strongest inertial noise
components vanish due to the equivalence principle. In this setting, we investigate two of the most important
remaining noise sources: (a) the noninertial jitter of the experimental setup and (b) the gravity-gradient noise.
We show that the former can be reduced below desired values by appropriate pressures and temperatures, while
the latter can be fully mitigated in a controlled environment. We finally apply the analysis to a recent proposal
for testing the quantum nature of gravity [S. Bose et al., Phys. Rev. Lett. 119, 240401 (2017)] through the
entanglement of two masses undergoing interferometry. We show that the relevant entanglement witnessing is
feasible with achievable levels of relative acceleration noise.
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I. INTRODUCTION

The two pillars of modern physics, quantum mechanics and
general relativity, are expected to be eventually combined into
the elusive theory of quantum gravity (QG) [1–3]. However,
while separately the two theories are well tested, the former
in the regime of large masses and distances and the latter in
the microscopic regime, no experiment has been able to probe
them simultaneously [4]. To facilitate this formidable task
one promising approach is the development of low-energy
(infrared) QG phenomenology which could eventually, upon
experimental realization, lead to critical experimental hints.
Of course, gravity has been extensively probed in the domain
of quantum field theory in “classical” curved spacetime [5,6].
There the source of the gravitational field is classical and the
probe is quantum mechanical. The most notable result is given
by the Colella-Overhauser-Werner experiment [7], which has
over the years lead to several important matter-wave inter-
ferometers [8–10] as well as to more recent developments in
photon interferometry [11–13].

To reveal quantum features of the gravitational field one
promising approach is to prepare a nonclassical state of a
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massive system, resulting in a quantum source of the gravita-
tional field. Specific proposals have been devised to witness
the entanglement between two masses mediated through a
gravitational field [14,15]. As a classical mediator cannot
entangle two masses [16], gravity, the mediator of the above
entanglement, must be quantum [14,17,18]. This seems to
be currently the only conclusive way to witness the funda-
mentally quantum nature of gravity in the laboratory. Each
mass is placed in a superposition of two positions, which
can be rephrased in a suggestive way by employing a gen-
eral relativistic viewpoint: it is a superposition of spacetime
geometries [19].

An important question is the level of ambient noise un-
der which interference or entanglement can be detected.
This has been estimated under generic amounts of deco-
herence [20,21] and mitigating pressures and temperatures
have been estimated for gas collisions and blackbody sources
[14,22]. However, any large-mass matter-wave experiment,
which requires large momentum transfer to achieve sufficient
wave function splitting, is acutely susceptible to accelera-
tion noise [23,24]. Recently, it has been claimed that this type
of noise acutely affects the witnessing of entanglement [25] in
the quantum nature of gravity experiment [14].

Here we propose how the two universal dephasing
channels—noninertial jitter (i.e., residual acceleration noise)
and gravity-gradient noise (GGN)—that will limit any large
momentum transfer matter-wave interferometry experiment
can be mitigated. Large momentum transfer will always be re-
quired for scaling matter-wave interferometry to large masses,
for which there is wide motivation: not only the quantum
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nature of gravity as mentioned above, but also quantum
sensing [26–28] and testing the ultimate limits of quantum
mechanics [29]. Both effects induce random relative accel-
erations between the interfering paths as well as with the
experimental apparatus (the control fields and beam splitters
that create the superposition as well as the measuring devices),
resulting in a loss of visibility.

We obtain simple formulas to describe the loss of coher-
ence due to noninertial jitter, induced by gas collisions and
photon scattering on the experimental container, and gravity
gradients, induced by external masses and the intrinsic finite
size of matter-wave systems. In particular, the derived expres-
sions depend only on generic properties of any matter-wave
experiment and are independent of the specific mechanism
or protocols to prepare and recombine the superpositions. In
addition, we estimate the effects for the interferometric setup
from [14] and show that this experiment can be made insensi-
tive to the above two universal noise effects by controlling the
environment (see Figs. 3 and 5). The noninertial jitter of the
experimental apparatus (in particular, uncontrollable motion
of the magnets) gives rise to an acceleration noise which has to
be kept below ∼fm s−2/

√
Hz [25]; we find such a value can be

achieved by placing the experiment in a vacuum chamber with
pressure ∼10−6 Pa or lower (one can have further technical
noises, e.g., vibrations, rotational noise, charge noise, which
have to be controlled to the same degree, but similarly do not
pose a fundamental limitation). Gravity-gradient noise can be
on the other hand mitigated by limiting access to the immedi-
ate vicinity of the experiment to massive moving bodies (e.g.,
to ∼5 m for humans, ∼10 m for cars, and ∼60 m for planes).

This work is organized in the following way. We discuss
how to derive the Lagrangian appropriate for interferometric
protocols starting from Fermi-normal coordinates (Sec. II).
We then discuss phase accumulation in single-particle in-
terferometry experiments [26], in particular, focusing on
noninertial jitter and the resulting loss of visibility. We then
discuss the gravity-gradient noise (GGN) due to finite-size
effect of the capsule and outline its mitigation (Sec. III). We
finally apply the results to the experimental setup to detect
the quantum nature of gravity [14] where we consider an
improved scheme to reduce the Casimir-Polder interaction
[22]. Here we give quantitative estimates for the entanglement
witness under feasible mitigations of the above noise sources
using a recently proposed improved entanglement witness
[21] (Sec. IV).

II. REFERENCE FRAMES AND MATTER WAVES

A convenient coordinate system to describe matter-wave
experiments is the one where the experimental equipment re-
mains stationary (see Fig. 1). Assuming that the experimental
apparatus is attached to a container—forming an experimental
box—one can consider the motion of its center of mass and
construct the associated timelike curve in spacetime. Here we
are assuming that the mass of the system, m, is much smaller
then the total mass of the experimental box, M, such that
the effect of the former on the latter can be neglected. To
describe such nearly local interferometric experiments we first
construct Fermi-normal coordinates (FNCs). In particular, the
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M
experimental
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FIG. 1. Conceptual scheme of the experiment as seen by a distant
observer. Here we focus on the horizontal x motion where the objects
of mass m are placed in a spatial superposition. Both the system
(here depicted as two adjacent interferometers) and the experimental
apparatus (here illustrated as a box of mass M) follow approximately
geodetic motion. The deviation from ideal geodetic motion is due
to gas collisions and photon scattering (here we have illustrated only
dust particles outside the experimental container). To describe the ex-
periment we consider an ideal free-falling observer and an observer
attached to the experimental container. For the ideal free-falling
observer also the experimental box becomes a dynamical degree of
freedom (to account for its motion about the geodesic), while the
observer attached to the experimental container will describe it using
an accelerated reference frame with a time-dependent acceleration
a. In addition, any external mass mext will generate a small gravity
gradient over the finite extension of the experiment. On the other
hand, the uniform potential generated by the same mass mext vanishes
due to the equivalence principle: for the experimental observer both
the system and the apparatus fall at the same rate toward any external
mass.

FNC metric is given by [30,31]

ds2 = gtt c
2dt2 + 2gtbcdtdxb + gbcdxbdxc, (1)

gtt = −[(1 + abxb)2 + R0c0d xcxd ], (2)

gtb = − 2
3 R0cbd xcxd , (3)

gbc = δbc − 1
3 Rbcdexd xe, (4)

where we have omitted cubic displacements O(x3) from the
reference timelike curve, and a = (a1, a2, a3) is the accel-
eration of the observer. The curvature effects are encoded
in the Riemann tensor R which can be estimated from the
background stress-energy tensor. Here we are also implicitly
assuming that the reference frame is not rotating as we have
restricted the discussion only to linear accelerations. The FNC
construction is typically applied to investigate classical Earth-
bound experiments as well experiments in free fall [32].

For nonrelativistic matter-wave experiments we can make
further approximations. In particular, for slowly moving mat-
ter only the gtt term will be important, i.e., when expanding
the dynamics to order O(c−1). We thus approximate the metric
in Eq. (1) to

ds2 = −[(1 + abxb)2 + R0c0d xcxd ]2c2dt2 + δbcdxbdxc. (5)

023178-2



RELATIVE ACCELERATION NOISE MITIGATION FOR … PHYSICAL REVIEW RESEARCH 3, 023178 (2021)

In many cases the curvature effects are negligible; i.e., we can
further neglect the Riemann tensor term ∼R0c0d in Eq. (5),
resulting in the Rindler metric. We however keep the term
R0c0d xcxd , which corresponds to Newtonian spacetime curva-
ture, i.e., the gravity-gradient term, which can result in relative
accelerations between the mass and the measuring apparatus if
they are finitely spatially separated in the laboratory. We keep
this in order to examine the influence of GGN, but as we will
show, it can be mitigated for all reasonable unknown masses
that cannot be tracked during the experiment.

In any case, we can readily write down the Lagrangian of
a point particle:

L = −mc2

√
−gμν

dxμ

cdt

dxν

cdt
, (6)

where xμ = (ct, x) are the FNC coordinates. Since we are
primarily interested in the motion along the horizontal direc-
tion, i.e., the axis of the spatial superposition, we will in the
following omit the coordinates x2, x3 and relabel x1 (a1) as x
(a). Using the metric in Eq. (5) and the Lagrangian in Eq. (6)
we then readily obtain

L = 1
2 mv2 − max − 1

2 mω2
ggx2, (7)

where we have omitted the constant term mc2, and we have
introduced ω2

gg = R0101c2. The harmonic frequency ωgg is as-
sociated with the Newtonian gravity-gradient potential due
to finite size of the experiment: for an attractive one it is
real-valued, but for a repulsive one it becomes imaginary.
Physically this corresponds to tidal forces that are compress-
ing or stretching a body, respectively.

We now concentrate on the setting of Fig. 1. The whole
experiment is enclosed in a free-fall laboratory (which we
also interchangeably call the capsule or box). The Lagrangian
we have obtained in Eq. (7) describes the motion of the sys-
tem from the viewpoint of the noninertial laboratory observer
(i.e., comoving with the experimental box). It is important
to note that the acceleration a can only result from electro-
magnetic interactions but not through the gravitational one,
e.g., dust particles or photons hitting the experimental box.
Importantly, a laboratory interacting only gravitationally with
external masses would still result in free fall with vanishing
acceleration, i.e., a = 0. Indeed, from the viewpoint of a dis-
tant inertial observer both the experimental box as well as the
system would be accelerating toward the external mass with
the same acceleration, Gmext/R2, where mext is the mass of
the external object, and R is the distance between the external
object and the center of the experimental box. On the other
hand, gravity-gradient potentials here parametrized by ωgg,
cannot be eliminated by simple change of coordinates, as
quantum-mechanical systems are always of finite extension
due to their wave nature.

In summary, one can repeat the FNC construction for dif-
ferent observers, following different timelike curves. In this
section we have already discussed three different observers,
each of which has a different coordinate system: an ideal
free-falling observer following a geodesic, the approximately
free-falling observer following the timelike curve of the ex-
perimental box, and the distant inertial observer fixed with
respect to the stars. While the above construction was based

on the general relativistic formalism, the same nonrelativistic
results can be obtained directly using extended Galilean trans-
formations. Importantly, noninertial effects can be seen as
relative motion between the experimental box and the system,
the former following a nongeodesic timelike curve while the
latter on a geodesic (when in perfect isolation). On top of this,
each interaction of a gas particle or a photon with the system
will induce nongeodesic motion of the latter: this gives rise to
the decoherence already considered in [14,22]. On the other
hand, gas and photon collisions with the experimental box
provide a second mechanism for the loss of visibility: we will
refer to it as noninertial jitter (sometimes labeled as residual
acceleration noise). However, there is an important difference
between the two: unlike decoherence, the loss of visibility
stemming from noninertial jitter can, at least in principle, be
completely canceled by a control experiment. Indeed noniner-
tial jitter, as well as any other classical deterministic noise, can
be measured using a second system, and addressed either by
actively recalibrating the experimental apparatus in real time
or passively in postanalysis. As we will see in the next section
noninertial jitter is a technical challenge, but does not present
a fundamental limitation for interferometry with large masses.

III. NONINERTIAL JITTER AND GRAVITY-
GRADIENT NOISE

In this section we consider a single interferometer for a
mass m with two internal states s j ( j = L, R); we create
and control the superposition size by using state-dependent
forces [14]. In particular, we first create a spatial superpo-
sition, maintain it in a fixed size �x for a fixed interval of
time, and then recombine it, as shown in Fig. 2; at the end
we measure the resulting accumulated phase difference. We
describe the two paths of the superposition using the semi-
classical approach [33]. We consider the Lagrangian obtained
in Eq. (7) and add the interaction for controlling the superposi-
tion size. Specifically, for the two paths we have the following
Lagrangian:

Lj = 1
2 mv2

j − ma(t )x j − mλ j (t )x j − 1
2 mω2

gg(t )x2
j , (8)

where j = L, R denotes the left or right path, x j the particle
position, λ j (t ) = fm

m s j is a state-dependent acceleration gen-
erated from a force of amplitude fm (the internal-state labels
can acquire values s j = ±1 during the creation of the super-
position and its recombination, while during the period the
superposition is held constant, it is set to s j = 0; see Fig. 2),
and a(t ) is the time-dependent acceleration as described by the
noninertial observer attached to the experimental box (here
we are using the term noninertial as the box is subject to
noninertial jitter). In Ref. [14], a specific realization of the
state-dependent force was suggested, where s j corresponded
to NV center spin states in a diamond nanocrystal, and the
state-dependent force was generated by a magnetic field gra-
dient ∂B

∂x through

fm = gNV μB
∂B

∂x
, (9)

where gNV is the electronic g factor, μB is the Bohr magne-
ton, and B is the component of the magnetic field along x.
However, here we are going to refrain from the details of
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FIG. 2. Paths for a single-particle interferometry experiment as
described from the viewpoint of an observer stationary with the
experimental box; we have indicated by a the residual acceleration
which arises due to the collisions of the experimental box with gas
particles (see Fig. 1). The paths are predominantly determined by the
magnetic field gradient forces (and hence still symmetric), while the
phases can have also unknown random contributions from noninertial
and gravity-gradient terms. Such phases can induce a dephasing
channel when there is momentum transfer between the system and
experimental apparatus (i.e., when there is relative motion between
the system and experimental apparatus and the two are coupled). The
interferometric loop has three parts: (i) creation of superposition,
(i) central part when the system is completely decoupled from the
experimental apparatus, and (iii) recombination of the superposition.
Interference and dephasing can be discussed only when the full
interferometric loop is taken into account (see text).

the properties of the crystal and the source of the magnetic
field gradient [34]. Instead, we are going to focus on those
relative acceleration noise sources which would be present in
any realization of matter-wave interferometry through generic
internal-state-dependent forces as modeled in Eq. (8). How-
ever, for simplicity of presentation we are going to refer to the
internal states as spins.

The trajectories for the two states associated with the dif-
ferent initial position and spin are determined by the simple
equation

ẍ j (t ) = λ j (t ). (10)

Here we have omitted the contribution from gravity gradi-
ents of unknown external masses, i.e., ω2

gg = 0, as we are
primarily interested in the trajectories (while the effect of
gravity-gradient terms from known sources on the trajectory
can be readily taken into account in the analysis and are thus
also omitted here). Similarly, unknown sources of a(t ) in a
controlled environment will be small and can be neglected,
while known sources, such as due to the motion of the ex-
perimental apparatus, can be fully taken into the analysis.
However, the same argument we have applied for trajectories
does not apply to the accumulated phase difference where al-
ready tiny noninertial and gravity-gradient contributions could
rotate it by a substantial fraction of 2π . This will be discussed

in detail below. The trajectories are thus determined by

x j =
∫ t

0

[∫ u′

0
λ j (u)du

]
du′, (11)

where we have assumed x j (0) = 0 and ẋ j (0) = 0.
For a single particle we can generate two distinct paths,

i.e., j = L and j = R (left and right paths, respectively), by
considering opposite spins, i.e., sL = −sR, such that the mag-
netic forces are opposite: λL = −λR. The condition to close
the loop at time t = t f is given by requiring

xL(t f ) = xR(t f ). (12)

As the state-dependent force depends linearly on the spin
of the particle, i.e., ∝ s j , this give a condition on the time
dependence of the spin values,∫ t

0

[∫ u′

0
s j (u)du

]
du′ = 0, (13)

i.e., the condition to close the interferometric loop. For ex-
ample, Eq. (13) can be fulfilled by controlling the spins as
follows:

sL(t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1, 0 < t < ta,
+1, ta < t < 2ta,
0, 2ta < t < 2ta + te,
+1, 2ta + te < t < 3ta + te,
−1, 3ta + te < t < 4ta + te,

(14)

with the opposite values for sR(t ). The total experimental time
is given by t f = 4ta + te, where we will refer to ta (te) as the
acceleration (free-fall) time interval. Even if this condition is
not exactly met experimentally, as long as the final states are
approximately equal, i.e., with nearly overlapping wave pack-
ets, one will not have substantial loss of visibility: if the spread
of the wave packets is σ , one requires |xL(t f ) − xR(t f )| � σ .
Note that a random acceleration a(t ) does not affect at all the
condition xL(t f ) = xR(t f ): both paths are subject to exactly
the same random acceleration a(t ) and the loop thus remains
perfectly closed. Only the random fluctuating gravity-gradient
term can affect the closed-loop condition when sufficient
asymmetry is present in the problem. Indeed, this is Stern-
Gerlach interferometry, which has recently been implemented
with atoms [35–37] and suggested for large masses [38,39].
We should note, however, this criterion can be difficult to
meet, and it is eased by cooling the masses to the ground state
initially in a trap, which has already been achieved [40].

In the next two sections we will estimate two dephasing
channels using the method which we now sketch. The ac-
cumulated phase difference for the interferometric loop is
given by

�φ = φR − φL, (15)

where the accumulated phase over each path j = L, R is given
by

φ j = 1

h̄

∫ t f

0
dtL j (t ), (16)

and t f is the time of interferometric experiment. The measured
phase can be written as �φ = �eff + δφ, where �eff would be
the phase in absence of dephasing or decoherence channels,
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and δφ is the fluctuating contribution due to noise sources. We
will investigate the decay of coherences, � ∼ E[δφ2], arising
from noninertial jitter and GGN, a(t ) and ω2

gg(t ), respectively,
where E[ · ] denotes the average over different noise realiza-
tions. In particular, the condition to witness interference (as
well as entanglement) can be cast in the form

�eff > �jitter + �gg, (17)

where �jitter and �gg denote the decay of coherences due to
noninertial jitter and GGN, respectively (any other channel
for the loss of visibility will appear on the right-hand side as
an additional contribution).

A. Noninertial noise and residual acceleration noise

We want to calculate the accumulated phase difference
arising from the noninertial jitter of the experimental box
(sometimes labeled as residual acceleration noise in the liter-
ature) and estimate its effect on the interferometric visibility.1

Exploiting the Lagrangian in Eq. (8) and the trajectories
given by

x j =
∫ t

0

[∫ u′

0
[λ j (u) + a(u)]du

]
du′, (18)

we eventually find a simple expression

�φ = 2m

h̄

∫ t f

0
dtλ(t )X (t ), (19)

where we have defined

X (t ) =
∫ t

0

[∫ u′

0
a(u)du

]
du′. (20)

We note that from the perspective of the inertial observer
X (t ) corresponds to the displacement of the experimental
box about the geodesic trajectory generated by gas collision
(the analogous effect generated by photons follows the same
analysis).

We can thus readily model the motion of the center of mass
of the experimental box as a classical degree of freedom: X
(P) will be a classical position (conjugate momentum) ob-
servable of the experimental box. Specifically, we have the
following stochastic differential equations [41]:

Ẋ = P

M
, (21)

Ṗ = −2X − γ P +
√

2γ MkBT Pin. (22)

The gas-damping coefficient is given by [42]

γ = pl2

M

(
1 + π

8

)(
32mg

πkbT

)1/2

, (23)

where p (T ) is the gas pressure (temperature), mg is the mass
of a gas molecule, and l is the linear size of a cubic experi-
mental box. Here we have also included for completeness the
harmonic frequency, , which has to be taken into account,
for example, when the experimental setup is suspended. In

1The gravity-gradient terms, which will be discussed in the next
subsection, are here set to zero, i.e., ωgg = 0.

the following we however set it to zero, i.e.,  = 0, as is the
case for a free-falling setup. Even if  is nonzero, as long as
 < ωmin = 2πt−1

exp, where texp is the experimental time, we
can safely neglect it. Pin is the classical input noise quantified
by

E[Pin(t )] = 0, E[Pin(t )Pin(t ′)] = δ(t − t ′), (24)

where E[ · ] denotes the average over different noise realiza-
tions. To describe the noninertial jitter of the experimental box
induced by photons one has to a use a modified Eq. (23)—
but will produce only a subleading effect in a controlled
environment—which we leave for future work [43].

From Eqs. (21) and (22) we can readily find the power
spectral density (PSD):

SXX (ω) = 4kBT

M

γ

(2 − ω2)2 + ω2γ 2
. (25)

We note that the noise decreases as 1/ω4 thus strongly sup-
pressing high-frequency noise. From Eqs. (19) and (25) we
can now find the fluctuations of the accumulated phase:

�jitter ≡ E[�φ2] = 2m2

π h̄2

∫ ∞

−∞
dωFjitter(ω)SXX (ω), (26)

where we have defined

Fjitter(ω) =
[∫ t f

0
dt

∫ t f

0
dt ′λtλt ′eiω(t−t ′ )

]
. (27)

Using Eq. (14) the function F is given by

Fjitter(ω) =
(

fm

m

)2 64 sin4
(

ω
2 ta

)
sin2

[
ω
2 (2ta + te)

]
ω2

, (28)

which we note is symmetric in ω.
It is instructive to further explore the regime of low damp-

ing as the experiment is expected to be in a controlled
environment. In particular, we consider the case when the
damping γ is small on the timescale of the experiment, i.e.,
ω > γ . We can thus simplify Eq. (25) as

SXX (ω) ≈ 4kBT

M

γ

ω4
. (29)

We can now use Eqs. (26)–(29), to obtain a simple formula for
the phase fluctuations:

�jitter = 16γ kBT f 2
m

h̄2M

[
23

15
t5
a + t4

a te

]
. (30)

Let us briefly discuss how to mitigate the phase fluctuations
in Eq. (30). Using Eq. (23) we first note that Eq. (30) has
the desired behavior with the pressure, p, and temperature,
T , of the environment, and can thus be controlled using cryo-
genics and vacuum chambers. We can furthermore strongly
mitigate the phase fluctuations by lowering the experimental
time texp = 4ta + te, for example, by running simultaneously
a large number of equal experiments. In addition, we note
that increasing the mass M of the experimental container also
suppress the phase fluctuation; i.e., the jitter of a heavier
experimental box will be smaller with respect to a lighter one.
Specifically, from Eq. (23) we find that γ scales with the area
l2, and is inversely proportional to the mass, i.e., ∼l2/M, and
thus the overall scaling is ∼l2/M2 ∼ 1/(ρ2l4), where l (ρ)
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denotes the linear size (average density) of the experimental
box.

On the other hand, it is interesting to note that the phase
fluctuations in Eq. (30) are completely independent of the
particle mass m. The only dependence of the matter-wave
state is through the superposition size �x, which can be seen
from the dependency on the state-dependent force ∼ fm and
the acceleration or deceleration time interval ∼ta; i.e., larger
values will make �x larger. Of course if one wants to generate
the same superposition size for a heavier particle as the one
achieved by a lighter one, fm would need to be increased
by the ratio of their masses. However, for a fixed fm the
loss of visibility is completely independent of the mass of
the matter-wave system m: this shows that nanoscale and mi-
croscale interferometry presents, as far as noninertial jitter is
concerned, the same level of experimental challenge as atomic
interferometry.

It is instructive to recast the analysis in terms of an accel-
eration noise. Specifically, we consider a simplified model for
the center-of-mass motion of the experimental box:

Ẋ = P

M
, (31)

Ṗ = MAin, (32)

where the input noise is defined by

E[Ain(t )] = 0, E[Ain(t )Ain(t ′)] = SAAδ(t − t ′), (33)

SAA is a constant acceleration noise power spectral density,
and E[ · ] denotes the average over different noise realizations.
The more complete model for the center-of-mass motion of
the experimental box discussed above [given in Eqs. (21) and
(22)] can be formally reduced to the simplified model [given
by Eqs. (31) and (32)] by making assumptions similar to
those used above [see steps from Eq. (25) to Eq. (29)]. First,
one assumes the mechanical frequency of the experimental
box, , is vanishingly small (such as in free fall). Second,
one assumes that the damping rate, γ , is small enough such
that the damping term, −γ P, can be omitted. Third, the tem-
perature of the environment, T , is very large such that the
term

√
2γ MkBT Pin converges to the finite-force noise term

MAin; formally, one is considering an environment in the
infinite-temperature limit, T → ∞, with vanishing damping,
γ → 0, such that the product γ T remains finite. Anyhow,
the simplified model gives in place of Eq. (25) the following
displacement spectra:

SXX (ω) = SAA

ω4
. (34)

By then comparing Eqs. (29) and (34) one can thus extract the
following relation:

SAA(ω) ∼ 4kBγ T

M
. (35)

Specifically, Eq. (35) can be used to estimate the acceleration
noise power spectral density from the physical parameters of
the problem (such as the ones discussed in Fig. 3). In addition,
we use the relation �x/2 ∼ fm

m t2
a [see Fig. 2 and Eqs. (11)–

FIG. 3. Plot of the condition to witness entanglement given by
�eff > �jitter(p, T, l, M ) where �eff is the effective entanglement
phase, and �jitter is the damping of coherences due to noninertial
jitter; the horizontal (vertical) axis denotes the box mass M (box size
l , i.e., edge length). Using the experimental values (see Sec. IV) we
find the effective entanglement phase �eff ∼ 0.01 which gives the
constraint �gg � 0.01. We consider the outside of the experimental
box to be at room temperature, T = 300 K, and set the pressure, p,
to the following values, 10−3 Pa, 10−6 Pa, 10−9 Pa, and 10−12 Pa;
the corresponding excluded parameter space is depicted in shades
of gray. The pressure inside the box is set to ∼10−16 Pa and hence
its effect on center-of-mass motion of the experimental box can be
neglected. In addition, we have colored in light blue the region which
would require capsule densities larger than of lead (Pb); the allowed
parameter regime is thus restricted to the upper part of the plot. We
find that noninertial jitter is successfully suppressed as long as the
pressure, p, is low enough for a given box mass and size. Ideally we
would like to have the lightest capsule mass, M, which would allow
for simple experimental manipulation; we have indicated ideal small
and heavy capsules by green points. The limiting cases are given
by a ∼1.5 mm (∼25 cm) size capsule which would require 10−12 Pa
(10−3 Pa) depicted by the green dot in lower left (upper right) corner.
We have also indicated in the plot a reference point corresponding
to the ZARM short capsule, i.e., l ∼ 0.9 m and M ∼ 200 kg [44],
well inside the allowed parameter space at p ∼ 10−6 Pa. Lowering
the outside pressure and temperature would even further relax the
constraints on the mass and size of the experimental box.

(14)] to finally rewrite Eq. (30) as

�jitter ∼ SAAm2�x2
(
te + 23

15 ta
)

h̄2 . (36)

Noninertial jitter (i.e., residual acceleration noise) has been re-
cently discussed in [25]; there they have derived an expression
for the loss of coherences formally matching Eq. (36) in case
te � 23

15 ta (see Eq. (7) in [25]). The derivation of �jitter in [25]
was based solely on the central part of the interferometric loop
without considering the preparation and recombination of the
superposition (see Fig. 2) which resulted in the need to apply
a somewhat arbitrary frequency filter τ 2/(1 + ω2τ 2), with a
free parameter, 1/τ , which has been later set to match the in-
verse of the evolution time in the central part, i.e., τ ∼ te; this
procedure has yielded an additional factor 1/4 with respect to
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the full calculation we have used above (which considered the
full interferometric loop).

One can take two approaches regarding the value of SAA.
The approach taken in [25] is to extract its value from ex-
isting or proposed experiments [45,46]. However, to devise
tailor-made nanocrystal matter-wave experiments a preferred
choice is to develop an underlying theoretical model which
captures the physics of the residual acceleration noise; this
is the approach taken in this work. We have shown explic-
itly that the noninertial jitter cannot be induced by unknown
external masses2—in full accordance with the equivalence
principle—but rather is of electromagnetic origin (dust par-
ticles or photons hitting the experimental apparatus) and
can thus be successfully reduced in a controlled environ-
ment. Importantly, using Eqs. (35) and (36) one can design
matter-wave interferometry experiments with nano- and mi-
crosize particles; specifically, one can find the requirements
on the experimental box (size and mass) and on the environ-
ment (pressure and temperature) to successfully perform the
experiment.3

B. Gravity-gradient noise due to finite-size effects

Gravity-gradient noise (GGN), as described by Eq. (5),
will arise from stochastic variations in the curvature which
remain as an external gravitational signal even in a nearly local
experiment due to its finite size. In place of the Lagrangian in
Eq. (8) we now consider

Lj = 1
2 mv2

j − mλ j (t )x j − 1
2 mω2

gg(t )x2
j , (37)

where we assume ω2
gg(t ) is a multiplicative noise. Here we

are considering only the GGN from movements of untracked
external masses, while any contributions from known masses
can be measured and taken into account in the analysis with-
out any loss of visibility. Here we omit the linear acceleration
term ∼a(t ), which models the noninertial jitter, and has been
already discussed in Sec. III A.

GGN on free test masses has primarily been estimated
in the gravitational wave detection literature [47–50], from
which, instead of ω2

gg(t ), which is the key quantity relevant
for us, it is the random accelerations arand of test masses,
which is readily available. The calculations of arand are based
on the cumulative Newtonian effect of environmental mass
movement noises on a free test mass, but quite independent
of the specifics of gravitational wave detectors, so that it is
readily usable in our case. While this acceleration noise arand

itself will be completely eliminated in our proposed free-
fall laboratory, it can be used to estimate the noise in ω2

gg,

2There is gravitational noise due to external masses, but this is a
higher-order effect which arises from gravity gradients and the finite
size of the experiments (see Sec. III B for more details).

3We have shown that noninertial jitter (i.e., residual acceleration
noise) is not a fundamental limitation of the proposed quantum-
gravity-entangling-of-masses scheme [14]—or for this matter for
any nano- and microscaled interferometric scheme—but rather can
be mitigated by considering a heavy experimental box (sometimes
referred to as a capsule) in a low-pressure environment (see Fig. 3).

following Ref. [51], to give

Sω2
ggω

2
gg

(ω) ≡ 1

r̄2
Sarandarand (ω) = ā2

r̄2

1(
ω
C

)α , (38)

where we have introduced the strength of the local accelera-
tion fluctuations, ā, a length-scale parameter r̄ characterizing
the distance to the GGN sources, and a decay integer α > 1
which depends on the type of source. C = 2π × 1 Hz is a
constant that fixes the correct dimensions. In a more refined
analysis one would need to consider all external masses, and
their associated stochastic motions, which would determine
the value of ā2

r̄2 as well as of α in Eq. (38); for a fixed value
ā one can interpret r̄ as a characteristic length scale of all the
GGN sources combined [47].

It is instructive to obtain an upper bound on the noise spec-
trum Sω2

ggω
2
gg

(ω) by considering the smallest possible distance
from the experiment rmin which could contain the bulk of the
GGN sources. The environment around the experiment, i.e.,
located at r < rmin, can be well controlled by the experimen-
talists (for example, it could correspond to the inside of the
building in a drop-tower experiment), and as such will not
contribute to GGN. On the other hand, any external mass at
distances larger than rmin will give a smaller contribution to
the GGN than it would if its motion reached rmin. In other
words, here we will assume that all of the GGN sources reach
the outer perimeter of the controlled laboratory environment;
i.e., we will set r̄ = rmin in Eq. (38), which will give an upper
bound on the noise. In practice, the noise will be significantly
smaller, with r̄ � rmin.

We can find the phase fluctuations induced by GGN fol-
lowing a similar analysis to that in Sec. (III A). In the first
instance we can assume that the trajectory for x j (t ) is given by
Eq. (11), solely determined by the magnetic gradients. From
Eqs. (15), (16), and (37) we then readily find the accumulated
phase difference:

�φ = m

2h̄

∫ t f

0
dt ω2

gg(t )[xR(t )2 − xL(t )2]. (39)

Interestingly, for symmetric paths with respect to the origin
of the coordinate system, i.e., xL(t ) = −xR(t ), we do not have
any accumulated phase difference, i.e., �φ = 0, even for a
randomly fluctuating ω2

gg(t ); this is a direct consequence of
the harmonic form of the gravity gradient potential. On the
other hand, if we consider asymmetric paths with respect to
the origin of the coordinate system we will have a nonzero
value �φ.

For example, when one considers the dynamics in Eq. (10)
with the initial condition x̃ j (0) = d

2 and ˙̃x j (0) = 0 one finds
the trajectories given by

x̃ j (t ) = x j (t ) + d

2
, (40)

where x j (t ) is the trajectory given by Eq. (11), i.e., the tra-
jectory with initial condition x j (0) = 0 and ẋ j (0) = 0. Using
x̃ j (t ) in place of x j (t ) in Eq. (39), as well as the property
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xL(t ) = −xR(t ), we then find

�φ = md

h̄

∫ t f

0
dtω2

gg(t )xR(t ). (41)

The gravity-gradient fluctuations can be then obtained
from E[�φ2] following analogous steps to those in Sec. III A
where we discussed noninertial jitter, and E[ · ] denotes the
average over different noise realizations. Specifically, we
eventually find the following gravity-gradient fluctuations:

�gg ≡ m2d2

π h̄2

∫ ∞

ωmin

Sω2
ggω

2
gg

(ω)Fgg(ω), (42)

where

Fgg(ω) =
∫ t f

0
dt

∫ t f

0
dt ′eiω(t−t ′ )xR(t )xR(t ′), (43)

we have introduced a low frequency cutoff ωmin = 2πt−1
exp, and

texp is the experimental time.
Using the trajectories in Eq. (10) we can explicitly evaluate

Eq. (43):

Fgg(ω) = f 2
m

m2

e−iω(2ta+te )

ω6

[
t2
a ω2 + (−1 + eitaω )2eiteω

]
× [

t2
a ω2eiω(2ta+te ) + (−1 + eitaω )2

]
, (44)

which we can further approximate as

Fgg(ω) = f 2
m

m2

[
t4
a (ta + te)2θ (1 − taω) + t4

a

ω2
θ (taω − 1)

]
,

(45)

where we have smoothed over the fast-oscillating terms [θ
is the Heaviside step function, i.e., θ (x) = 0 for x < 0 and
θ (x) = 1 for x > 0].

Using Eqs. (38), (42), and (45), and keeping only the dom-
inant term ∼tα−1

exp , we then obtain a simple formula for the
gravity-gradient phase fluctuations:

�gg ≈ 2ā2 f 2
mt4

a

h̄2

(
d

r̄

)2[Cα (ta + te)2tα−1
exp

(2π )α (α − 1)

]
. (46)

One first notices that the phase fluctuations in Eq. (46) scale
very favorably with the acceleration time, ta, as ∼t4

a (for the
most interesting case te � ta), much more favorably than with
the amplitude of the magnetic force, fm, which scales only as
f 2
m. However the latter parameters also determine the superpo-

sition size �x ∝ fmt2
a , and for a fixed superposition size there

is no benefit of reducing ta at the cost of increasing fm.
We also note that �gg in Eq. (46) does not depend on the

mass of the system, m, or any other property of the system.
In other words, the phase fluctuations in Eq. (46) are exactly
the same for microscale objects as for, say, atoms. Of course
the superposition size, �x, scales as ∼ fm/m and thus the
superposition size will be smaller for a heavier object than
would be achieved with a lighter one [compare with phase
fluctuations due to noninertial jitter in Eq. (30) which exhibit
a similar behavior].

In this section we have considered the stochastic phase
fluctuations �φ in Eq. (41) which then lead to the average
effect ∼E[�φ2] in Eq. (46); these arise from the trajectories in
Eq. (11), solely determined by magnetic forces. In particular,

one finds that �φ ∝ fmω2
gg(t ); i.e., the GGN, ω2

gg(t ), is ampli-
fied by the coupling to the magnetic force, fm. However, there
are also tiny corrections to the trajectories due to noninertial
jitter and due to the gravity-gradient forces. In particular, in
place of Eq. (10) one has a modified dynamics, i.e., ẍ j (t ) =
λ j (t ) + a(t ) + ω2

gg(t )x j, where the last two terms on the right-
hand side are small. Considering the trajectories perturbed by
the noises a(t ) and ω2

gg(t ) one finds additional contributions
to the phase fluctuation �φ. For example, from Eqs. (15) and
(16) one will find contributions proportional to ∼a(t )ωgg(t ).
However, the overall phase fluctuation from such terms will
be significantly smaller in comparison to the one in Eq. (41),
the latter as discussed amplified by the strong magnetic force,
while the former a product of two weak effects. We leave the
full assessment of such subleading noises for future work.

We finally make a few remarks on the dependency of �gg

on the parameter d . When considering a single interferom-
eter one can trivially achieve d = 0, and hence �gg = 0, by
placing the particle initially at the center of mass X of the
experimental box. Indeed, we recall that d/2 is by construc-
tion the initial displacement of the particle with respect to X .
However, in the next section we will consider two particles
in a double interferometric scheme where we will no longer
have the possibility to eliminate the GGN phase fluctuations
simultaneously on both particles (see Fig. 4). In particular,
the two particles are placed initially at ±d/2 and one can
no longer avoid the gravity-gradient phase fluctuations in
Eq. (46) by displacing the two particle about the center of
mass of the experimental box. One could, for example, place
one particle at the center of mass of the experimental box, but
the other one would be then located, for example, at d , which
would result in zero GGN phase fluctuations for the former,
but nonzero, larger ones, for the latter. In addition, the value
of d will be fixed by other experimental requirements and is
not vanishingly small. In short, the GGN phase fluctuations in
Eq. (46) can be fully eliminated for a path-symmetric single-
particle interferometer, but will have a nonvanishing effect in
the double-interferometric scheme with two particles, which
we will consider in the next section.

IV. TESTING QUANTUM GRAVITY USING A SPIN
ENTANGLEMENT WITNESS

It was shown recently that by imposing a modification to
the quantum-gravity-entangling-of-masses (QGEM) protocol
one can employ a magnetic field gradient two orders of mag-
nitudes lower than suggested in the original proposal, while
retaining the same acceleration or free-fall time intervals [22].
As such the new experimental setup has a significant effect
on noise reduction. In particular, as shown in Secs. III A and
III B the noninertial jitter and GGN are both proportional to
the square of the magnetic field gradient, hence resulting in a
noise reduction by two orders of magnitude.

We will first briefly go over the modified QGEM protocol
and discuss the effect of technical noises and decoherence ef-
fects (Sec. IV A). We will then estimate the phase fluctuations
induced by noninertial jitter and GGN as well as how they
affect the detectability of entanglement (Sec. IV B). In the lat-
ter sections we will be following the modified protocol as the
requirements on the control parameters such as pressure and
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FIG. 4. Modified QGEM protocol. A perfectly conducting plate
is placed at the origin which cancels the Casimir-Polder interaction
between the two masses, allowing for smaller initial separation, d . In
particular, one can generate a higher entanglement phase for a given
particle mass. However, we have to take into account the deviation
of the particle trajectories due to the attractive force with the plate;
we denote the displacement of the inner trajectories toward the plate
by s (states associated with spins | ↓〉1 and | ↑〉2, where the subscript
denotes the particle).

temperature will be less demanding, while the methodology
of analysis will resemble the one from the original proposal
[14]. We finally briefly comment on the generality of the noise
analysis and argue that it can be readily adapted also to other
matter-wave experiments (Sec. IV B).

A. Modified QGEM

The modification of the QGEM protocol recently proposed
in [22] is illustrated in Fig. 4. Specifically, a perfectly con-
ducting plate is inserted between the two masses; the plate
is fully reflective to electromagnetic waves, which makes it
act like a Faraday cage. The two particles can thus no longer
interact electromagnetically, even at small relative distances,
which significantly relaxes the constraints on their separation;
we want the two particles to interact only through the weak
gravitational interaction, which is stronger at smaller dis-
tances. However, the modification of the boundary conditions
for the electromagnetic field produces an attractive Casimir
force between the plate and each of the two masses; each
mass moves toward the plate during the free fall by a small
displacement, s.

Let us consider in the first instance only the unitary part
of the dynamics during the free-fall time, te, while we neglect
all other noises and decoherence channels. One finds that the
state at the final time t f would be given by a simple expression

|�(t f )〉 = 1
2 eiφ[| ↑〉| ↑〉 + | ↓〉| ↓〉
+ ei�φ↑↓ | ↑〉| ↓〉 + ei�φ↓↑ | ↓〉| ↑〉], (47)

where | · 〉| · 〉 is the joint spin state for the two particles, and
we have omitted the spatial parts to ease the notation. The
accumulated phases are given by

φ = Gm2

h̄

∫ te

0

dt

d − s(t )
, (48)

�φ↑↓ = Gm2

h̄(d + �x)
te − φ, (49)

�φ↓↑ = Gm2

h̄

∫ te

0

dt

d − �x − 2s(t )
− φ, (50)

where G is the gravitational constant, and s(t ) can be deter-
mined by the Casimir force induced by the plate [52]. We
remark that the Casimir interaction will not give rise to the
leakage of “which-path” information into the plate, and, thus,
will not be a source of an additional decoherence effect; its
effect is fully contained in the displacement s(t ). There will
of course also be an accumulated phase difference due to the
Casimir potential induced by the plate, as its value differs on
the inner and outer paths of the individual interferometers. The
latter values are however deterministic and can be fully taken
into account, but here we choose to omit them for simplicity
of presentation. In any case, the parameter which captures the
degree of entanglement, namely the effective entanglement
phase, is given by [14,26]

�eff = �φ↑↓ + �φ↓↑, (51)

as can be seen by looking at Eq. (47).
We still require that the two interferometric loops remain

individually closed, as otherwise no coherence phenomena
can be detected. In particular, for a single interferometer we
require |xL(t f ) − xR(t f )| � σ , where σ is spread of the wave
packets and t f = 2ta + 2t̃a + te is the total time of the in-
terferometer. The acceleration time interval to prepare the
superposition is 2ta, but now the time to recombine the super-
position, 2t̃a, is longer due the the effect of the Casimir plate.
Specifically, we have

t̃a =
√

t2
a + smax

am
, (52)

where smax denotes the maximum deviation of the inner tra-
jectories from free fall due to the attractive force toward the
plate, am = fm

m , and fm is given in Eq. (9) [see also Eqs. (13)
and (14)]. This latter condition poses a limit on the minimum
separation between the particles and the plate, d/2, which
limits the size of displacement induced by the Casimir plate
on the inner paths.

Specifically, we consider two particles with mass m ∼
10−15 kg placed at the distance d ∼ 47 μm, a magnetic field
gradient of ∂xB = 104 T m−1, the acceleration time ta ∼ 0.5 s,
and the free-fall time te ∼ 1 s, resulting in a superposition size
�x ∼ 23 μm (μB ∼ 9 × 10−24 JT−1 and gNV ∼ 2). By in-
cluding the full interferometric loop in the analysis (including
the creation and recombination parts) one finds �eff ∼ 0.015
[22].

The full dynamics however contains also nonunitary con-
tributions as well terms that model technical noises. To
describe the final spin state of the two-particle system we
construct a joint density matrix with basis elements | ↑〉| ↑〉,
| ↑〉| ↓〉, | ↓〉| ↑〉, | ↓〉| ↓〉 which for brevity we will simply
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denote by 1,2,3,4, respectively. A straightforward calculation
eventually gives the density matrix ρ at time t f , which is
defined by the following matrix elements:

ρ11 =ρ22 = ρ33 = ρ44 = 1
4 , (53)

ρ21 =ρ∗
42 = 1

4 e−�n/2−�d /2+i�φ↑↓ , (54)

ρ31 =ρ∗
43 = 1

4 e−�n/2−�d /2+i�φ↓↑ , (55)

ρ41 = 1
4 e−2�n−�d , (56)

ρ32 = 1
4 e−�d /2+i(�φ↓↑−�φ↑↓ ). (57)

The coherences are now damped; �n (�d) is the damping
of coherences arising from technical noises (decoherence ef-
fects).

1. Technical noises

The damping from the technical noises is given by

�n = �jitter + �gg, (58)

where �jitter (�gg) is given in Eq. (30) [Eq. (46)]. It is important
to note that this damping acts only individually on the left and
right interferometer; in particular, the degree of entanglement
between the two particles, as quantified by the effective entan-
glement phase �eff in Eq. (51), remains completely unaltered
by γn. Indeed, the gravitationally induced entanglement is due
to the correlation of the states | ↑〉| ↓〉 and | ↓〉| ↑〉, which
gets fully encoded in the matrix elements ρ32 and ρ23. In
other words, technical noises do not change the degree of
entanglement, but can only affect the value of a particular
entanglement witness. Thus by carefully measuring the noises,
for example using a control experiment, one could at least in
principle fully counteract their effects thus improving on the
interferometric visibility; we leave the investigation of such
an active scheme for future research.

Let us briefly describe how to derive the damping aris-
ing from technical noises in Eqs. (54)–(56); as discussed in
the previous paragraph these can be derived by considering
each of the two interferometers individually. In a nutshell,
a technical noise will generate a time-dependent, randomly
fluctuating phase difference �φ between the left and right arm
of the interferometer [see Eq. (15)]; when considering a large
number of runs of the experiment this will reduce the visibility
of the coherences. In particular, in place of Eq. (47) we find

|�(t f )〉 = 1

2
eiφ′

[ei�φ| ↑〉| ↑〉 + ei�φ↑↓ | ↑〉| ↓〉

+ ei�φ↓↑ | ↓〉| ↑〉 + e−i�φ | ↓〉| ↓〉], (59)

where φ′ is a common phase. To find the corresponding
statistical operator, averaged over the different runs of the
experiment, we calculate ρ̂ = E[|�(t f )〉〈�(t f )|], where we
assume E[�φ] = 0, i.e., zero-mean fluctuations, and in-
troduce the variance of the fluctuations � ∼ E[�φ2] as
discussed in Sec. III.

2. Decoherence

The total damping of coherences arising from the decoher-
ence channels is given by [22]

�d ≡ 2
∑

j

� j

(
46

15
a2

m

{
t5
a + t̃5

a

} + 4a2
mt4

a te

+
∫ te

0

[
4amt2

a s(t ) + s(t )2
]
dt

)
+ �airt f . (60)

We have three sources of decoherence, namely, the scatter-
ing of air molecules, photon emission and absorption, and
photon scattering, quantified by γair ≡ γair(pe, Te), �e(a) ≡
�e(a)(Te(i) ), and �sc ≡ �sc(Te), respectively, where Te (pe) is
the temperature (pressure) inside the experimental box, and
Ti is the internal temperature of the particle. The explicit
expressions can be found in [53,54]

γair = 16πnV R2

3

√
2πkBTex

mg
, (61)

�sc = 8!ζ (9)
8cR6

9π

(
kBTex

h̄c

)9

Re

(
ε − 1

ε + 2

)2

, (62)

�(e)a = 16π5cR3

189

(
kBT(i)ex

h̄c

)6

Im

(
ε − 1

ε + 2

)
, (63)

where ε is the dielectric constant, nV the number density of the
gas inside the experimental box, and rs is the sphere radius.

The damping factor �d in Eq. (60) has been obtained
by integrating the effect of the three decoherence sources.
Importantly, unlike in the case of noninertial jitter, which is
due to the gas on the outside and inside the experimental
box, here only the gas environment inside the experi-
mental box decoheres the system. We finally remark that
decoherence channels, unlike the technical noises discussed
above, affect the density matrix elements ρ32 in Eq. (57).
Indeed, decoherence presents a fundamental limitation to the
degree of entanglement between the two particles, which can-
not be removed in a simple way using a control experiment.

B. Detectability of entanglement

We consider the recently proposed optimized entanglement
witness [21]:

W = I ⊗ I − σx ⊗ σx − σy ⊗ σz − σx ⊗ σz, (64)

where σi are the Pauli matrices. In particular, entanglement is
expected to be detected when

〈W〉 = Tr(Wρ) < 0. (65)

Using the density matrix elements in Eqs. (53)–(57) we even-
tually find

〈W〉 = 1 − e−�n/2−�d/2[sin(�φ↑↓) + sin(�φ↓↑)]

+ e−�d

2
[e−2�n + cos(�φ↓↑ − �φ↑↓)], (66)

where ��↓↑ (��↑↓) is given in Eq. (49) [Eq. (50)].
If we consider the experimental values in Sec. IV A we find

that both ��↓↑ and ��↑↓ are small, ∼0.01, and hence the
damping of coherences, �n and �d, have to be even smaller,
i.e., �n, �d � 0.01. Hence we can further simplify Eq. (66)
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to obtain a simple expression 〈W〉 = �n + �d − �eff, where
�eff is the effective entanglement phase given in Eq. (51). The
condition to witness entanglement is thus �eff > �n + �d,
which in our specific case can be written as

�eff > �jitter + �gg + �d; (67)

i.e., the effective entanglement phase must be larger than the
damping of the coherences.

Let us first consider the effect of noninertial jitter while ne-
glecting other channels for the loss of visibility. The condition
in Eq. (67) reduces to �eff > �jitter. We consider the outside of
the experimental box 4 to be at room temperature T = 300 K
and pressures from p = 10−12 Pa to p = 10−3 Pa (note that
while this value of pressure is still lower than the p = 10 Pa
in current drop-tower tubes [55] so that their current micro-
gravity level is not sufficient for us, such pressures, called
ultrahigh vacuum, have already been achieved in very large
volumes such as in gravitational wave detectors and particle
accelerators). In particular, one can observe that for a reason-
able mass and size of the box the condition �eff > �jitter(p, T )
is satisfied (see Fig. 3); lowering the outside pressure and
temperature would even further relax the constraints on the
mass and size of the experimental box. One can rewrite the
constraint on the noninertial jitter of the experimental appara-
tus (in particular of the magnets) as a condition on the relative
acceleration noise S1/2

AA . Specifically, we recall Eq. (36) which
for ta � te reduces to �jitter ∼ SAAm2�x2te/h̄2. We further ap-
proximate the entanglement phase in Eqs. (49), (50), and (51)
as �φeff ∼ Gm2te/(h̄d ). Finally, supposing �x ∼ d we find
that the condition �eff > �jitter reduces to S1/2

AA �
√

Gh̄/d3

[25] which for d ∼ 23 μm gives S1/2
AA ∼ 1 fm s−2/

√
Hz.

We can also readily estimate the effect of GGN on the
detectability of entanglement, while neglecting other channels
for the loss of visibility; specifically, the condition in Eq. (67)
reduces to �eff > �gg. GGN is however highly location de-
pendent and will arise from atmospheric pressure gradients,
seismic activity, and anthropogenic sources, among others;
such noises cannot be measured directly by gravimeters which
record also nongravitational contributions [50], but have to
be estimated from atmospheric and geophysical data as well
as modeling of anthropogenic activities. Here we will again
exploit Eq. (38) which relates the GGN power spectral density
(PSD) to the more readily available acceleration noise PSD
from the literature [47–49]. For the main GGN sources we
will estimate the minimum distance from the experiment, rmin,
which would still allow the detection of entanglement.

Let us first estimate the GGN contribution arising from
the main to nonanthropogenic sources, namely from seismic

4We consider the internal particle temperature Ti = 0.15 K, which
we assume to match the temperature inside the experimental box
Te = 1 K, while the pressure inside the box is pe = 10−16 Pa. As
these values are substantially lower than the corresponding values
outside the experimental box we can safely neglect their effect for
noninertial jitter.

and atmospheric activity. In particular, we have the following
acceleration PSDs [47,48]:

Satmospheric
arandarand

(ω) = 8π3

3
Gv2

s

ρ2
a

p2
a

|�p(ω)|2
ω2

, (68)

Sseismic
arandarand

(ω) = 16π2

3
Gρ2

e |�X (ω)|2, (69)

for seismic and atmospheric sources, respectively. vs is the
speed of sound, ρa (pa) is air density (pressure), �p is
the pressure fluctuation, ρe is the ground density near the
experiment, and �X is fluctuation of the Earth’s surface
from the equilibrium position. By integrating over all seismic
and atmospheric mass movements as gravitational sources of
noise, one can estimate ā ∼ 10−15 m s−2/

√
Hz with α ∼ 4

for ω/2π > 10 Hz, and ā ∼ 10−17 m s−2/
√

Hz with α ∼ 0
for ω/2π < 10 Hz [47,48]. Using Eq. (46) we find that the
condition �eff > �gg is satisfied already if the bulk of the
seismic and atmospheric GGN originates at a characteristic
distance rmin � 10−2 m; this indicates that GGN will likely
not be a limiting factor even for drop-tower experiments at the
surface of the Earth, as these GGN sources will be far more
distant.

Human and anthropogenic movements can also con-
tribute to the GGN—for example, a human walking near the
experiment—and one needs to limit access to the experiment
within a certain exclusion radius, which we will again indicate
with rmin. We will consider two classes types of motion: a
smooth continuous straight-line motion, and discontinuous
acceleration and deceleration jerks. In particular, the acceler-
ation noise PSD generated by an object moving at a constant
velocity is given by [47]

Ssmooth
arandarand

(ω) = 1

ω

(
2Gmext

b2

)2

e−2 b
vext

ω
, (70)

where vext (mext) is the speed (mass), and b is the impact factor
of the external object. Here we are only interested in finding
an upper bound on the GGN fluctuations and will estimate
the exclusion zone using the impact factor, i.e., rmin ∼ b. Al-
though Eqs. (38) and (70) do not lead to the simple formula
in Eq. (46), the GGN phase fluctuations in Eq. (42) can be
nonetheless readily evaluated numerically. For concreteness,
we consider a human of mass ∼100 kg walking at a pace of
∼1 m s−1, and a car of mass ∼1000 kg driving at ∼10 m s−1:
we find the exclusion zones rmin ∼ 2 m and rmin ∼ 10 m, re-
spectively, which can be readily satisfied by restricting access
to the experimental building. GGN sources at larger distances
do not pose a limiting factor due to the favorable scaling of
the GGN fluctuations with the distance from the GGN source,
i.e., �gg ∼ e−2

rmin
v

ω/r6
min. For example, for a plane of mass

∼100 t flying at speed ∼100 m s−1 we find the exclusion
radius rmin ∼ 60 m. Humans and cars can contribute to the
GGN also in the nonadiabatic regime of sudden acceleration
and deceleration; for example, during regular weight transfers
between steps. The latter effect can be characterized by the
following acceleration noise PSD [49]:

Sjerk
arandarand

(ω) = 16G2�F 2
jerk

Pgait�t2
jerkr6

minω
8
, (71)
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FIG. 5. Plot of GGN phase fluctuations, �gg, as a function of the
minimum allowed distance of the respective GGN source from the
experiment, rmin, that would still allow the detection of entanglement.
Using the experimental values (see Sec. IV) we find the effective
entanglement phase �eff ∼ 0.01 which gives the constraint �gg �
0.01; the allowed region is the one colored in white in the lower
part of the figure. We find that seismic and atmospheric activity does
not pose a significant limitation to the experiment (blue dashed line;
rmin ∼ 0.01 m). Similarly, a human is only restricted from walking
in the immediate vicinity of the experiment (light green and dark
green dot-dashed lines for a jerking motion and continuous motion,
respectively; rmin ∼ 2 m). Finally, cars and planes have to be distant
by more than ∼10 m and ∼60 m, respectively (dark orange and light
orange dotted lines, respectively).

where �Fjerk is the change of the horizontal force exerted
by the human on the ground in a time interval �tjerk, and
Pgait is the gait cycle of two steps. Following Ref. [49] we
set �Fjerk ∼ 100 N, �tjerk ∼ 20 ms, and consider a step
time of ∼400 ms which results in the frequency band ω

2π
∼

[2.5 Hz, 25 Hz] and the exclusion radius rmin ∼ 1 m. We can
also estimate the same effect for a car by assuming a stronger
change of force, say �Fjerk ∼ 106 N s−1, which however only
gives the exclusion radius rmin ∼ 5 m. Indeed, the walking
style and pace or the type of car or vehicle will not change
drastically the exclusion radius: as can be seen from Eqs. (38)
and (71), the GGN phase fluctuations scale as �gg ∼ r−8

min
quickly suppressing the effect of distant sources.

By conducting the experiment in an underground tunnel
(still in a free-fall laboratory in the tunnel—the tunnel acting
as a drop tower) the GGN can be further reduced. For exam-
ple, at a depth of 1 km the typical distance rmin from the source
(surface) increases to at least ∼1 km, resulting in significantly
reduced GGN phase fluctuations �gg � 10−13. In summary,
we can conclude that in the QGEM experiment the effect of
GGN can be fully mitigated (see Fig. 5).

V. GENERALITY OF ANALYSIS

The analysis of the fluctuations leading to the dephasing in
Eqs. (30) and (46) assumed that a force, fm, is used to create
and recombine the superstitions. It is however instructive to

rewrite the force in terms of the transferred impulse

�p ≡ fmta, (72)

where ta is the acceleration time interval. This impulse �p is
transferred four times during the creation and recombination
parts of the experiments (see Fig. 2). In particular, Eqs. (30)
and (46) become

�jitter ≈ 16γ kBT �p2

h̄2M

[
23

15
t3
a + t2

a te

]
, (73)

�gg ≈ 2ā2�p2t2
a

h̄2

(
d

r̄

)2[Cα (ta + te)2tα−1
exp

(2π )α (α − 1)

]
, (74)

respectively. Interestingly, Eqs. (73) and (74) are now in-
dependent of the specific coupling between system and
apparatus, but depend only on generic experimental matter-
wave parameters. In particular, Eqs. (73) and (74) depend
on the experimental box (mass M and damping γ ), the en-
vironment outside the box (damping γ , temperature T , the
strength of the local acceleration fluctuations ā, a length-scale
parameter r̄ characterizing the distance to the GGN sources,
a decay integer α > 1 which depends on the type of source,
and the constant C = 2π × 1 Hz), the geometry of the paths
(separation of the two interferometers d), the experimental
times (acceleration time interval ta, evolution time interval
te, and total experimental time texp), and finally on the trans-
ferred impulse, �p. Moreover, as we have already discussed
in Sec. III the noise fluctuations �jitter, �gg do not depend on
the mass of the system, m. The analysis of the technical noises
considered here (noninertial jitter and GGN) is thus quite
generic and could be adapted to any matter-wave experiment.

VI. DISCUSSION

In this paper, we have shown that it is feasible to carry
out an experiment on quantum-gravity-induced entanglement
of masses (QGEM) terrestrially by going to a freely falling
capsule. Of course, carrying out the experiment in space will
naturally form such a freely falling laboratory. Under these
circumstances, we have investigated the effect of noninertial
(i.e., residual acceleration) and gravity-gradient noise on the
system that still remains.5 These types of noise, if untracked,
induce an unknown relative acceleration between the interfer-
ing masses and the control and measuring apparatus, which
may appear as dephasing. We have thus carefully examined
the situations needed to keep the untracked parts below a
threshold.

5There are also other specific systematic noises (i.e., technical
noises) depending on the specific mechanism of wave function
splitting, some of whose mitigations have already been extensively
analyzed [26]. Here we have taken conceptually the simplest route,
namely exploiting the equivalence principle to get rid of the bulk of
the gravitational noise (all the acceleration noise) so that only relative
acceleration noise due to noninertial effects and the finite size of the
experiment remains. The other approach of measuring this purely
classical noise (see, e.g., [26–28]) and counteracting it by adjusting
the detection in real time or in postanalysis will be discussed in a
future paper.
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We have shown that noninertial jitter (i.e., residual acceler-
ation noise) can only arise from nongravitational effects, e.g.,
gas particles and photons interacting with the experimental
box which make it jiggle about the geodesic motion (see
Fig. 1). We have derived the loss of coherence due to noniner-
tial jitter from first principles: the noise originates mainly from
the recoil of the experimental box due to collisions with dust
particles. Thus noninertial jitter can be successfully mitigated
by simply considering a heavy experimental box (sometimes
referred as capsule in the text) in a low pressure and tem-
perature environment. The heavier the experimental box, the
less it will recoil due to collisions with gas particles, and the
lower the pressure, the lower the net recoil of the experimental
box; in both cases the residual Colella-Overhauser-Werner
phase noise can be strongly suppressed. Specifically, we have
shown how different pressure regimes constrain the mass
and size of the experimental box to successfully mitigate the
corresponding loss of coherence (see Fig. 3). For example,
for pressures of ∼10−6 Pa outside the freely falling capsule
and at room temperature ∼300 K, the noninertial component
from random molecular kicks on a ∼1 m capsule are low
enough to enable a witnessing of the entanglement. Under the
above circumstances, for example, we are able to meet the
acceleration noise requirement pointed out in [25].

Furthermore, we have shown that the lowest-order gravi-
tational noise arises due to the finite size of the experiment
and gravity gradients (such a noise can be seen as the phase
counterpart of the tidal forces generated by external masses).
We have considered the main sources of gravitational noise:
our estimates indicate that gravity-gradient noise from atmo-
spheric and seismic sources is negligible, while anthropogenic

contributions can be fully mitigated by limiting access to the
immediate vicinity of the experiment (see Fig. 5)—for exam-
ple, to ∼2 m for humans, to ∼10 m for cars, and to ∼60 m
for planes. In summary, noise from gravitational sources can
be successfully mitigated by restricting access to the ex-
periment by placing it in a dislocated building or possibly
underground.

Finally, we have shown that relative acceleration noise
in matter-wave interferometry is intrinsically linked to mo-
mentum transfer, �p, between the system and experimental
apparatus. We have shown how the momentum transfer
emerges in the full interferometric loop—in particular, dur-
ing the preparation and recombination of the superposition
when the system and experimental apparatus are coupled
(by magnetic fields or otherwise). Thus the dephasing effects
discussed in this work will become detrimental in any matter-
wave interferometry when significant forces and momentum
transfers are used [56]; mitigation methods, such as the ones
developed in this work, will have to be adopted.
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