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A nanoscale object evidenced in a nonclassical state of its center of mass will hugely extend the boundaries
of quantum mechanics. To obtain a practical scheme for the same, we exploit a hitherto unexplored coupled
system: an atom and a nanoparticle coupled by an optical field. We show how to control the center of mass of
a large ∼500-nm nanoparticle using the internal state of the atom so as to create, as well as detect, nonclassical
motional states of the nanoparticle. Specifically, we consider a setup based on a silica nanoparticle coupled to a
cesium atom and discuss a protocol for preparing and verifying a Schrödinger-cat state of the nanoparticle that
does not require cooling to the motional ground state. We show that the existence of the superposition can be
revealed using the Earth’s gravitational field using a method that is insensitive to the most common sources of
decoherence and works for any initial state of the nanoparticle.
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Introduction. Quantum mechanics has been probed exper-
imentally over a vast range of energies and scales. On the
one side, it has been probed down to subatomic distances
using accelerators, while on the other side, spatial super-
positions in the mesoscopic regime are being explored via
quantum optomechanics. The former is ultimately expected
to shed light on the basic building blocks of our universe,
while the latter addresses the quantum-to-classical transition
in the mesoscopic regime, a problem already highlighted by
Schrödinger [1].

The field of optomechanics, and, in particular, levitated
optomechanics [2], where the system is well isolated from
deleterious effects of decoherence from the environment, has
now reached the quantum regime [3,4] and is expected to soon
test ideas from quantum foundations [5] and the nature of
gravity [6–8]. Nonetheless, a challenge still remains as to how
to prepare nonclassical motional states of the nanoparticle,
such as the Schrödinger-cat state [9].

Possible approaches for nonclassical state preparation in
levitated optomechanics are based on nonlinearities in the
potential [10], as well as coupling to quantized fields along
with possible usage of measurements [11–16]. Difficulties of
these approaches include small single-photon nonlinearities
and/or detecting the effect of nonlinearities in the regime
of small oscillations, where the motion is typically well de-
scribed by a linear theory. Another promising strategy is to
embed impurities in the nanoparticle and use that to control
the nanoparticle [17–21]. However, the placement, control,
and coherence of such impurities are experimentally very
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challenging. Hence any alternatives which are not susceptible
to the above limitations are highly desirable.

Here, we propose combining two hitherto disparate fields
in an optimal way for the nonclassical state preparation of
nano-objects: the long acquired ability to control the excep-
tionally coherent internal levels of trapped atoms (ions), and
through them, their motional states [22], and the recently
acquired expertise of controlling, to an exceptional level,
the center of mass of nano-objects [3,4]. We show how the
addition of the highly controllable atom opens up feasible
opportunities for the preparation of Schrödinger-cat states in
the latter field. We consider the situation where the nanoparti-
cle is trapped in a Paul trap and illuminated by a plane-wave
optical field. The reflected light from the nanoparticle inter-
feres with the incoming light and creates a series of dipole
traps where atoms can be trapped. In particular, we consider
one atom placed in a stiff trap such that displacing it also
moves the center of mass of the atom-nanoparticle system.
The induced effective coupling between the motional state of
the nanoparticle and the internal state of the atom allows one
to directly apply the technical abilities from atomic physics
to prepare nonclassical states of the nano-object. Moreover,
the switchability of the coupling (simply by controlling the
intensity of the optical field) enables release and recapture
so as to exploit free-fall nondecoherent evolutions. This lat-
ter ability, for example, is absent in atom-micromechanical
coupled systems [23–26]. We show that one can generate
a small spatial superposition of the nanoparticle so that it
is well protected from environmental decoherence, and yet
such a small superposition can be revealed using the Earth’s
gravitational field [19,27]. Moreover, we find that the protocol
is insensitive to the initial state of the nanoparticle, which will
greatly facilitate the realization.

Atom-nanoparticle coupling. The experimental setup con-
sists of a nanoparticle trapped in a Paul trap which is
illuminated by a plane-wave optical field (see Fig. 1). We
choose the light wavelength λl to be comparable to or smaller
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FIG. 1. Scheme of the experimental setup. A nanoparticle of
mass mn is trapped in the Paul trap. A plane-wave optical field
illuminates the nanoparticle, and the backscatter interferes to create
intensity maxima at distance d below the nanoparticle, where we
trap an atom. For a very stiff atomic trap we obtain an effective
coupling between the internal state of the atom and the nanoparticle.
The initial height of the nanoparticle in the trap can be controlled
by changing the power of the trapping laser, which can be switched
off quickly, together with softening the Paul trap to very low fre-
quencies, approximately obtaining a free-fall regime for a time �t .
We create and control the spatial superposition of the nanoparticle
using additional lasers coupled to hyperfine transitions, labeled as
controlling lasers, with the superposition size denoted by �x. At the
end we perform a readout of the accumulated gravitational phase
φgrav ∼ mng�x�t/h̄ using a cycling transition of the internal state,
where g is the Earth’s gravitational acceleration.

than the nanoparticle radius r, effectively making the nanopar-
ticle a mirrorlike object. The backscattered light from the
nanoparticle interferes with the incoming light to form a
standing wave in the rest frame of the nanoparticle (see Fig. 2),
and the resulting intensity minima and maxima rigidly follow
the motion of the nanoparticle. In one of the maxima we
trap an atom exploiting an internal electronic transition in the
red-detuned regime. Specifically, the potential is given by

Ĥtrap = mnω
2
n

2
x̂2

n + maω
2
a

2
[x̂a − (x̂n + d )]2, (1)

where ωn (ωa) is the frequency of the Paul (atomic) trap, mn

(ma) is the mass of the nanoparticle (atom), x̂n (x̂a) is the
nanoparticle (atom) position, and d is the distance between
the two traps.

The motional frequency of the atom is given by [28]

ωa =
√

6πc2

maw2ω3
e

I
�

�
, (2)

FIG. 2. Simulated intensity using finite-difference time-domain
methods [29,30]. We consider a nanoparticle of radius r = 500 nm
and an optical field with wavelength λl = 1000 nm propagating
in the positive x-axis direction. The incoming field is polarized
along the y axis; other vertical planes shows a similar intensity
profile. The color bar shows the enhancement in the square of
the electric field. The large blue circle denotes the nanoparticle;
the incoming field propagating from the bottom interferes with the
backscattered field from the nanoparticle, which creates dipole traps
below the nanoparticle. The strongest dipole trap is located at d ∼
0.75 μm below the center of the nanoparticle (first yellow patch
below the blue circle).

where I is the intensity of light at the trap center, w ∼ λl/2
is the trap width, ωe is the electronic transition frequency, �

is the decay rate from the excited state, � = ωe − ωl is the
detuning of the light field, ωl = 2πc

λl
, and c is the speed of

light. To obtain high trapping frequencies, we can decrease
the detuning � at the cost of reducing the trapping time τtrap =
mac2

h̄ωl
2

�
�

.
The trapped atom offers a new handle on motion of the

nanoparticle. Particularly interesting is the situation when the
atom is placed in a strong dipole trap, resulting in a rigid atom-
nanoparticle coupling. We then expect that any displacement
of the atom will drag the whole atom-nanoparticle system,
with only negligible excitation of the relative motion between
the two. Mathematically, this translates to requiring that (i)
the atom is placed in the motional ground state and (ii) the
zero-point motion of the atom, δa, is small with respect to
that of the nanoparticle, δn, such that when the nanoparticle
is excited, the atom remains in the ground state, i.e., we can
write x̂a ≈ x̂n − d .

Nanoparticle motion control. In the considered regime
we find the following interaction Hamiltonian between the
motional state of the nanoparticle and the atomic hyperfine
transition (in the interaction picture)

Ĥint

h̄
=
 jk

2
σ+ exp{i[η(âe−iωnt + â†e−iωnt ) − δt + φ]}

+ H.c., (3)

033218-2



CREATING ATOM-NANOPARTICLE QUANTUM … PHYSICAL REVIEW RESEARCH 3, 033218 (2021)

where we have introduced the nanoparticle mode â, i.e., x̂n =
δn(â† + â). 
 jk is the coupling of the stimulated Raman tran-
sition between the hyperfine states | j〉 and |k〉, σ+ = |k〉〈 j|,
η = kδn is the Lamb-Dicke parameter, k = 2π

λ
= ω

c with ω

being the frequency of the laser, δ = ωh − ω is the detuning
that selects one of the sidebands or the carrier resonance,
ωh is the hyperfine transition frequency, and φ is a phase
that includes d

λ
. Here, we limit the discussion to η � 1,

which puts a lower bound on the Paul trap frequency, i.e.,
h̄

2mnλ2 � ωn. The coupling of the stimulated Raman transi-

tion is given by 
 jk ≡ g jk , where g jk = qE
h̄ D jk, q is the

electron charge, E is the amplitude of the electric field, and
Djk is the transition dipole matrix element between the states
j and k.

We are interested in two types of interactions, (a) one that
controls the internal state without affecting the motional state
and (b) one that displaces the motional state without changing
the internal one, both of which can be implemented in a -
type scheme using two lasers. In particular, using two-photon
stimulated Raman transitions of types (a) and (b), we will
consider three types of operations, where the coupling will

be given by 
 jk ≡ g∗
jl glk

�l
, and �l is the detuning from the

intermediate state l [31]. To create a superposition of the
hyperfine states, we consider the carrier frequency, i.e., δ = 0,
with a pulse of duration t = π/(2
↑↓) using scheme (a),
namely, a π/2 pulse. This generates a beam splitter transfor-
mation, i.e., the hyperfine states evolve in the following way:
|↑〉→(|↑〉 − |↓〉)/

√
2 and |↓〉 → (|↑〉 + |↓〉)/

√
2. Similarly,

a π pulse using scheme (a) at the carrier corresponds to

↑↓t = π and δ = 0, which exchanges the hyperfine states,
i.e., |↑〉 → −|↓〉 and |↓〉 → |↑〉. On the other hand, to dis-
place the motional state without modifying the hyperfine state,
we exploit scheme (b) at the first red sideband, i.e., δ = ωn.
This latter operation produces a displacement of the motional
state by 
↓↓ηt , where t is the duration of the pulse.

In summary, the discussed interactions have the same form
as the ones exploited in atomic physics, where in place of
the motional state of the atom we have the motional state of
the nanoparticle. We can thus adopt the experimentally well-
established protocols from atomic physics for the nanoscale
[22,31,32].

Schrödinger’s cat. Suppose the state of the system is
|�〉 = |ψ〉h|ψ〉n, where |ψh〉 is the hyperfine state of the
atom and |ψ〉n is the motional state of the nanoparticle. Ide-
ally, one would like to prepare a state of the form |ψ〉n ∼
|↓〉h|αtop〉n + |↑〉h|αbottom〉n, where |αtop〉n and |αbottom〉n de-
note states located at different heights in the Paul trap, i.e.,
a Schrödinger-cat state. Once such a state has been created,
we then want to ascertain its existence using as the readout
the hyperfine state |ψh〉.

A possible strategy is to cool the system to the ground state,
i.e., |�init〉 = |↓〉h|0〉n, and to apply the procedure described
by Monroe et al. [22], which consists of π/2, π , and dis-
placement pulses. To make such a scheme work, one would,
however, need additional optical fields to control the motional
state of the nanoparticle. In particular, cooling to the motional
ground state can be achieved with a cavity-tweezer setup [3]
and is expected to be soon available also in a tweezer setup
[4,33].

However, a protocol that would not require cooling [26],
but would rather work for a generic trapped state, such as
the experimentally more readily available thermal state, is
still desirable. A second attractive feature would be to have
a reliable method to evidence that the nanoscale superposition
has really been probed, for example, by relating the outcome
of the experiment to one of its intrinsic properties such as the
nanoparticle mass mn. A possible strategy to address both of
these requirements has been outlined in Ref. [19], parts of
which we now adapt to the hybrid atom-nanoparticle system.
For simplicity of presentation we first consider the initial state
|ψinit〉 = |α〉 ⊗ |↓〉, where the nanoparticle is prepared in the
coherent state |α〉 (but we show below that it applies for any
initial state). The protocol consists of the following steps.

(1) Trap a nanoparticle in the Paul trap at frequency ω1.
Trap an atom in an intensity maximum below the nanoparticle
using a plane wave and cool it to the ground state using
resolved sideband cooling [31].

(2) Apply a π/2 pulse to generate the state |ψ〉 ∼ |α〉 ⊗
(|↓〉 + |↑〉).

(3) Soften the Paul trap to frequency ωn = ω2 � ω1.
(4) Apply a displacement beam for a time δt to produce the

state |ψ〉 ∼ (|α + β〉 ⊗ |↓〉 + |α〉 ⊗ |↑〉), where β = 
ggηδt .
(5) Reduce the trapping laser power such that the radiation

pressure force becomes small and the nanoparticle-atom sys-
tem starts falling towards the Earth (matter-wave coherence is
thus shielded from the deleterious effects of the laser photons,
and the system becomes a matter-wave sensor for the local
Earth’s gravitational acceleration ∼g).

(6) Leave the system in free fall for a time �t such the
gravitational field induces the phase φgrav: |ψ〉 ∼ (e−iφgrav |α′ +
β〉 ⊗ |↓〉 + |α′〉 ⊗ |↑〉), where |α′〉 is the time-evolved coher-
ent state of |α〉.

(7) Increase the trapping laser power back to its initial
value. Apply a displacement beam for a time δt to reverse
the effect of step (4) and obtain a factorizable state |ψ〉 ∼
|α′〉 ⊗ (e−iφgrav |↓〉 + |↑〉).

(8) Apply a π/2 pulse to create the final state |ψ〉 ∼
|α′〉 ⊗ |φ〉, where the hyperfine state is |φ〉 = cos ( φgrav

2 )|↓〉 −
sin( φgrav

2 )|↑〉.
(9) Apply a laser field to drive a cycling transition and find

the probability of being in the ground state P↓ = cos2( φgrav

2 ).
(10) After the measurement we recapture the nanoparticle

by modulating the radiation pressure from the trapping laser
and the Paul trap frequency.

The induced gravitational phase difference is given by

φgrav = mng�x�t

h̄
, (4)

where �x = δnβ = h̄k
2mnω2


ggδt is the superposition size of the
nanoparticle and �t is the duration of the transient free-fall
motion. Since the nanoparticle mass mn is large, we can have
φgrav ∼ 1 already for small superposition sizes �x and for
short free-fall times �t—a regime which is interesting on its
own.

Let us now consider a generic initial state ρinit = ρn ⊗
|↓〉〈↓|, where ρn = ∫

d2αPn(α)|α〉〈α|, and P is Glauber’s P
quasiprobability distribution. Here, we only require that the
nanoparticle is initially trapped in the Paul trap, but the mo-
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tional state can be otherwise completely generic. Steps (1)–(7)
now result in the final state ρfinal ∼ ρ ′

n ⊗ |φ〉〈φ|, where ρ ′
n

is the final motional state of the nanoparticle, yet |φ〉 is the
same internal state obtained by considering an initial coherent
motional state. Remarkably, the transient free-fall dynamics
entangles the motional and internal states in a simple way
which can be readily disentangled at any time: This is a
direct consequence of the uniform nature of the universal
gravitational coupling, a feature which is absent already with
a harmonic potential. Creating a superposition of an arbitrary
motional state (such as of a thermal state) still fully retains
its coherent properties, and once the gravitational phase is
transferred to the internal state it can be then read out again
using steps (8) and (9).

Discussion. We can estimate the requirements to achieve
φgrav ∼ 1 for a typical tabletop experiment using a nanoparti-
cle of radius r = 500 nm and mass mn ∼ 10−15 kg in a Paul
trap [34,35]. As discussed, we first trap an atom in a dipole
trap near the nanoparticle, which induces a coupling between
the two, while other interactions between the atom and the
charged nanoparticle are negligible. For concreteness we con-
sider a Cs atom and the D2 transition 62S 1

2
→ 62P3

2
which has

a transition dipole matrix element of ∼4 × 10−29 C m and
decay rate � ∼ 3 × 107 Hz.

We set the detuning of the trapping laser to � ∼ 5 ×
1011 Hz to generate a far-red-detuned dipole trap: We find a
trap lifetime τtrap ∼ 1 s � �t , and using Fig. 2, we estimate
the atomic trap frequency to be ωa ∼ 5 × 106 Hz generated
by an incoming (backscattered) intensity of ∼5 × 1012 W/m2

(∼3 × 107 W/m2). Such an intensity can be obtained using an
unfocused laser beam at moderate power; at this intensity the
radiation pressure force cancels the gravitational one (while
not cotrapping the nanoparticle). We consider a short free-fall
time �t ∼ ω−1

a ∼ 1 μs in order to retain the atom’s motional
state, which corresponds to a displacement of ∼5 pm. The
condition to excite the nanoparticle motion constrains the
Paul trap frequency ωn from above, ωn � 5 × 10−4 Hz, and
the Lamb-Dicke condition from below, ωn � 5 × 10−8 Hz.
Specifically, we set the initial Paul trap frequency to ω1 =
0.1 kHz, which is then softened to ω2 = 5 × 10−6 Hz. After
the Paul trap is softened we create a spatial superposition of
the nanoparticle by illuminating the atom with a short laser
pulse of duration ∼100 ps and detuning �3 ∼ 1011 Hz. The
requirement of unit phase, φgrav ∼ 1, fixes the intensity of
the beam to I ∼ 1 W/m2, resulting in a tiny nanoparticle
superposition of size �x ∼ 10−14 m. The control beam will
illuminate also the nanoparticle (given its close proximity
d ∼ 0.75 μm), but such a tiny intensity will, however, not
lead to any measurable dephasing. Larger as well as smaller
superpositions can be created by varying the parameters of the
setup; for example, by controlling the intensity and duration
of the displacement beam, one is expected to achieve superpo-
sitions of the size of the nanoparticle. Additionally, to further
enlarge the size of the superposition—-without extending the
duration of the experiment—one could also introduce a boost-
ing potential by adaptation of the coherent inflation method to
the Paul trap [36].

The decoherence times for superposition sizes
�x ∼ 10−14 m exceed the duration of the experimental time

�t ∼ 1 μs at readily available pressures and temperatures:
For concreteness we consider the vacuum chamber with
pressure p ∼ 10−2 mbar and temperature T ∼ 300 K. Given
the modest laser intensities, and the relatively high pressure,
we can assume that both the center of mass and internal tem-
perature of the nanoparticle remain below T ∼ 1000 K [37]
(for cooling the internal temperature, see Ref. [38]). At such
pressures and temperatures we find that gas collisions limit the
coherence time to ∼6 μs, while decoherence due to photon
emission or absorption remains negligible: At T ∼ 300 K the
available coherence time is further extended [39–41].

For completeness we also estimate the emitted thermal
radiation from the nanoparticle and its effect on the atom.
Assuming black-body radiation from the nanoparticle with
internal temperature T ∼ 1000 K, we find a radiated inten-
sity of ∼105 W/m2, which is two orders below the intensity
generating the atom’s dipole trap (see above). Furthermore,
the intensity of the thermal radiation in the narrow frequency
range of the internal transition Cs D2(62S 1

2
→ 62P3

2
) is ∼10−6

W/m2, which has to be compared with the intensity of the
controlling lasers, ∼1 W/m2. We have to, however, rescale
the two intensities by the ratio of the duration of the ex-
periment (∼1 μs and of the controlling pulse and ∼100 ps),
which nonetheless still results in the coherent laser radiation
dominating by two orders of magnitude over the thermal one.
If instead one assumes an internal temperature T ∼ 300 K, the
effect of thermal radiation becomes dwarfed by the controlling
beams by ∼20 orders of magnitude and can thus be again
neglected.

Finally, we estimate the effect of voltage noise, SV , which
gives rise to a force noise, S(vol)

f ∼ qSV /D, where q is the net
charge on the nanoparticle and D is a characteristic distance
to the electrodes. Specifically, assuming SV ∼ 10 μV/Hz1/2,
q ∼ 80e (we note that the charge on the nanoparticle can
be controlled to a high degree [34]), and D ∼ 2.3 mm, we
find S(vol)

f ∼ 10−23 N/Hz1/2 [35]. By comparison the force

noise due to gas collisions is S(gas)
f ∼ √

2kbT mnγ , where
γ = 4πmgr2vt p/(3kbT mn)(1 + π/8) is the gas damping rate
[42,43], mg is the molecular mass, and vt = √

8kbT/(πmn)
is the thermal gas velocity: Using T ∼ 300 K and p ∼
10−2 mbar, we find S(gas)

f ∼ 10−16 N/Hz1/2. As discussed
above, the thermal noise does not impede the witnessing
of interference, and hence voltage noise can be also safely
neglected.

The insensitivity of the ten-step protocol to the environ-
ment can be explained by the fact that the characteristic
wavelength of gas particles, as well as the wavelengths associ-
ated with laser and environmental photons, is much larger than
�x, making the associated decoherence times long compared
with the short free-fall time.

In summary, we have shown that it is possible to create
motional superposition of massive objects (a ∼500-nm-radius
nano-object) by introducing a coupled atom-nanoparticle
hybrid system and have discussed how to detect such a su-
perposition. The atom-nanoparticle system will extend the
demonstration of the superposition principle to regimes of
mass 108 times the current record [44]. The method has sev-
eral appealing features. It works for a generic initial state,
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the control and readout of the motional state is through
well-established versatile atomic protocols, and the created
superposition is very well protected from deleterious decoher-
ence effects.
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APPENDIX A: ATOM-NANOPARTICLE MOTION AND
INTERNAL TRANSITIONS

We discuss the center-of-mass variables (Appendix A 1),
which allow us to reduce the problem to the effective in-
teraction between the motional state of the nanoparticle
(Appendix A 2) and the internal hyperfine state of the atom
(Appendix A 3).

1. Center-of-mass motion

We introduce the center-of-mass (c.o.m.) variables

R̂ = mnx̂n + max̂a

mn + ma
, r̂ = x̂n − x̂a, (A1)

where R̂ (r̂) is the c.o.m. (relative) position. The correspond-

ing zero-point motions are given by δn =
√

h̄
2Mωn

and δa =√
h̄

2μωa
, where we have introduced the total mass M = mn +

ma ∼ mn and the reduced mass μ = mamn
M ∼ ma. We define the

mechanical modes as

R̂ = δn(â + â†), r̂ − d = δa(b̂ + b̂†), (A2)

and using Eq. (1), we readily find the nanoparticle-atom
Hamiltonian:

Hnano-atom = h̄ωnâ†â + h̄ωab̂†b̂. (A3)

We will be primarily interested in controlling the c.o.m.
mode â which to good approximation coincides with the
motion of the nanoparticle. We consider the rigid-coupling
regime discussed in the main text; that is, we prepare the
atom in the motional ground state and require δn � δa. More
specifically, we require that the displacement beam will not
excite the atom’s motional state, while sufficiently exciting the
nanoparticle.

Some remarks about the approximations involved are
in order. In Eq. (A3) we have neglected terms of order
∼O(ma/mn), which for typical atomic and nanoscale masses
would correspond to a correction of 1 part in ∼108. The anal-
ysis was also based on a semiclassical approximation, where
the internal motion responsible for the atomic polarizability is
assumed to reach a steady state on a timescale faster than the
motional timescale of the atom in the trap [45]. The full dy-
namics would require simultaneous integration of the optical
Bloch equations together with the atom-nanoparticle motional
dynamics as described by the quantum kinetic equations
[46–48]. In the following we will also consider additional
lasers for controlling the motional state of the atom; we will
suppose that the atom remains stably trapped for the duration
of the experiment [49,50].

2. Nanoparticle potential

The potential of the nanoparticle in the Paul trap is given
by

Ĥnano = mnω
2
n

2
x̂2

n + mngE x̂n − Fx̂n, (A4)

where we have introduced the gravitational force mngE as well
as the radiation pressure force F generated by the trapping
laser for the atom (see Fig. 1).

We first trap the nanoparticle in a relatively stiff Paul trap
ωn = ω1 with the radiation pressure force F constrained by
the requirement of stable trapping in the Paul trap. The latter
is controlled by light intensity I , which also sets the atomic
trap frequency ωa in Eq. (2). Given the large mass of the
nanoparticle in comparison with the atom’s mass, we can have
both a small radiation pressure force F ∼ mngE and a high
trapping frequency ωa for the atom: The latter is required to
introduce a handle on the nanoparticle’s motion.

We then release the nanoparticle by (i) softening the Paul
trap frequency from ωn = ω1 to ωn = ω2 as well as (ii) re-
ducing the radiation pressure such that F � mngE . The net
result is a change in equilibrium position, and for a transient
period the nanoparticle is in free fall evolving according to the
potential

Ĥnano ≈ mngE x̂n. (A5)

In a nutshell, the idea is to suddenly release the nanoparticle
from the trap and use laser fields to create a spatial superposi-
tion exploiting the atom-nanoparticle coupling. We effectively
create a Mach-Zehnder-type interferometer for the nanoparti-
cle: We exploit the Earth’s gravitational acceleration, ∼gE , to
impart a phase difference on the spatial parts of the super-
position, which is then transferred to the internal state and
read out.

3. Two-photon stimulated Raman transitions

We consider two types of interactions, (a) one that controls
the internal state without affecting the motional state and
(b) one that displaces the motional state of the nanoparticle
without changing the internal one [31].

In the former case, case (a), one links the ground and ex-
cited hyperfine states, i.e., the states |↑〉 and |↓〉, respectively,
through a third hyperfine state |3〉 using lasers of frequencies
ω1 and ω2: On resonance we would have |ω1 − ω2 − �3| =
ωh with �3 being a suitably chosen detuning from the state
|3〉. Furthermore, we assume that the corresponding wave
vectors, k1 and k2, are such that their difference δk = k1 −
k2 is parallel to the vertical x axis with the projection de-
noted by δk. Formally, the interaction Hamiltonian is again
given by Eq. (3), where η = δkδn, and the coupling is given

by 
↑↓ ≡ g∗
↑3g3↓
�3

. If we work at the carrier frequency, i.e.,
δt = 0, the dominant term in the Hamiltonian is insensitive to
δk, and the motional state remains unaffected, i.e., we only
change the hyperfine state. In the latter case, case (b), one
instead stimulates the transitions |↓〉 → |3〉 and |3〉 → |↓〉,
resulting in a coupling 
↓↓ ≡ g∗

↓3g3↓
�3

. Here, we want to induce
big displacements of the nanoparticle, for which large values
of δk are preferable, e.g., δk ∼ |k1|, |k2|. The Hamiltonian is
still the one in Eq. (3) with the formal replacement σ+ → I,
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where I is the identity matrix: Now the hyperfine state is un-
affected, and the motional state changes, i.e., a displacement
beam.

APPENDIX B: CLASSICAL EVOLUTION

We consider the motion of a point particle of mass m in a
harmonic trap with frequency ω in the Earth’s gravitational
field. In particular, the total Hamiltonian of the problem is
given by

H1 = p2
1

2m
+ 1

2
mω2x2

1 + mgE x1, (B1)

where x1 (p1) denotes the position (momentum) observable
and gE is the gravitational acceleration. Here, we will denote
the Earth’s gravitational acceleration by gE while reserving
the symbol g for the corresponding coupling which depends
on ωn [see Eq. (B12)]. In Eq. (B1) the subscript 1 labels
the reference frame. We also introduce a shifted reference,
i.e., reference frame 2, where the positions and momenta are
given by

x2 = x1 + gE

ω2
, p2 = p1, (B2)

and the Hamiltonian is

H2 = p2
2

2m
+ 1

2
mω2x2

2 . (B3)

We are ultimately interested in the evolution described in
reference frame 1, i.e., the evolution arising from Eq. (B1).
However, as we will see when discussing the quantum case, it
is instructive to compare it with the description in the shifted
reference (reference frame 2), i.e., the evolution arising from
Eq. (B3). Specifically, in reference frame 2 we find the solu-
tion to be a simple harmonic motion:

x2 = x2(0)cos(ωt ) + p2(0)

mω
sin(ωt ), (B4)

p2 = −mωx2(0)sin(ωt ) + p2(0)cos(ωt ). (B5)

Using Eq. (B2), we then immediately find the solution in
reference frame 1:

x1 = x1(0)cos(ωt ) + p1(0)

mω
sin(ωt )

+ gE

ω2
[cos(ωt ) − 1], (B6)

p1 = − mωx1(0)sin(ωt ) + p1(0)cos(ωt )

− mω
gE

ω2
sin(ωt ). (B7)

We now consider two different limits. We note that by taking
the limit gE → 0 we recover simple harmonic motion: For
example, the whole experiment, including the trap, is in free
fall; that is, we recover Eqs. (B4) and (B5) with the formal
replacement x2 → x1, p2 → p1. On the other hand, in the
limit ω → 0 (i.e., we switch off the trap) we find

x1 = x1(0) + p1(0)

m
t − gEt2

2
, (B8)

p1 = p1(0) − mgEt, (B9)

as expected for free fall.

To relate the results to a quantum analysis, we introduce

the zero-point motions, δx =
√

h̄
2mω

and δp =
√

h̄mω
2 , and the

adimensional position and momentum,

X1 = x1

δx
= a + a∗, P1 = p1

δp
= i(a∗ − a). (B10)

The gravitational potential becomes

U = h̄gX1, (B11)

where the gravitational coupling is

g = gE

√
m

2h̄ω
. (B12)

The transition from harmonic to free-fall motion depends on
the strength of the frequencies ω and g, which we now explore.
We rewrite Eqs. (B6) and (B7) using Eqs. (B10):

X1 = X1(0)cos(ωt ) + P1(0)sin(ωt )

+ 2
g

ω
[cos(ωt ) − 1], (B13)

P1 = − X1(0)sin(ωt ) + P1(0)cos(ωt )

− 2
g

ω
sin(ωt ). (B14)

Taking the limit g → 0 amounts to vanishing third terms on
the right-hand side in Eqs. (B13) and (B14), which is the
expected result as discussed above. On the other hand, naively
taking the limit ω → 0 in Eqs. (B13) and (B14) does not
give the free-fall evolution: The reason is that these have been
derived from Eqs. (B13) and (B14) by dividing or multiplying
by δx and δp, which depend on the harmonic frequency ω. A
similar problem is encountered also by using the modes

a1 = X1 + iP1

2
, a∗

1 = X1 − iP1

2
. (B15)

Specifically, from Eqs. (B13) and (B14) we find

a1 = a1(0)e−iωt + g

ω
(e−iωt − 1), (B16)

where we are again confronted on how to consider the limiting
free-fall case.

The problem of taking the limit ω → 0 can be avoided
by considering small adimensional expansion parameters gt
and ωt : To study the free-fall case, we choose to expand to
quadratic order. Following the latter procedure, we find from
Eq. (B16)

a1 ≈ a1(0)

[
1 − iωt − 1

2
ω2t2

]
+ igt − ω

gt2

2
. (B17)

If we move back to the position-momentum description, we
find

x1 = x1(0) + p1(0)

m
t + x1(0)

ω2t2

2
− gEt2

2
, (B18)

p1 = p1(0) − mω2x1(0)t + p1(0)
ω2t2

2
− mgEt . (B19)

Equations (B18) and (B19) have extra ω-dependent terms
which were absent in the ω → 0 limit [see Eqs. (B8) and
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FIG. 3. We consider the vertical motion of a particle in a Paul
trap in an Earth-bound laboratory. (a) The nanoparticle is initially
confined in a trap with frequency ω1 and kept close to the origin
of the trap; the gravitational force mgE , where m is the mass of the
nanoparticle and gE is the gravitational acceleration, is counterbal-
anced by a radiation pressure force. (b) We change the frequency to

ω2 � ω1 and create a small superposition of size �x =
√

h̄
2mω2

�X.

(c) We decrease the radiation pressure force making it negligible
with respect to the gravitational one; this changes the equilibrium

position to gE/ω2
2 =

√
h̄

2mω2
δh. (d) We let the system evolve for a

short time t such that the motion of the particle is governed by the
uniform gravitational field. This transient free-fall regime can be
understood graphically: We note that the small arc drawn at radius
δh with subtended angle ω2t can be well approximated by the initial
part of a parabolic curve

(B9)]. Unlike the former ω → 0 calculation, the approxima-
tion procedure is not state independent, but depends on the
values of x1(0) and p1(0). In order to recover exactly the free-
fall one, it is implicitly assumed that the initial position and
momentum, x1(0) and p1(0), are small enough when taking
the ω → 0 limit.

However, as we will explicitly see in Appendixes C and
D, we can retain the additional ω-dependent terms as they
do not change the induced gravitational phase—as long as ωt
remains small. Furthermore, higher-order harmonic terms—
beyond the free-fall approximation—are interesting on their
own and could be used to ascertain the spatial superposition
of large nanoparticles without resorting to a dynamical equi-
librium change (see Appendix E).

APPENDIX C: QUANTUM EVOLUTION

In this section we consider the quantum dynamics of a
particle of mass m harmonically trapped and subject to the
Earth’s gravitational potential (Fig. 3). We continue to use
the notation of Appendix B where the observables, e.g., O,
are promoted to operators, e.g., O → Ô. The classical anal-
ysis of the transition from harmonic to free-fall motion—in
particular, the approximations involved—carry over also to
the quantum case. To simplify the notation, we will omit the

subscript 1 for quantities related to reference frame 1 most of
the time.

1. Change in equilibrium

We consider the operator version of the Hamiltonian in
Eq. (B1), which we rewrite as

Ĥ = h̄ωâ†â + h̄g(â† + â), (C1)

and an initial coherent state |α〉 associated with the â mode.
We first recall the definition of the displacement operator

D̂(α) = eαâ†−α∗â (C2)

and the multiplication rule

D̂(α)D̂(β ) = e
1
2 (αβ∗−α∗β )D̂(α + β ). (C3)

To find the time evolution, we restate the problem in a dis-
placed frame:

|α〉 D̂→ |χ〉2 = D̂(δ)|α〉, (C4)

Ĥ
D̂→ Ĥ2 = D̂(δ)ĤD̂(δα)†, (C5)

where δ ≡ g
ω

. In particular, we find Ĥ2 = h̄ωâ†â, and using
Eqs. (C2) and (C3), we find the time-evolved state

|χ〉2 → |χt 〉2 = e
g

2ω
(α∗−α)

∣∣∣∣
(

α + g

ω

)
e−iωt

〉
. (C6)

We now go back to the original frame using the inverse trans-
formation

|χt 〉2
D̂†→ D̂†(δ)|χt 〉2. (C7)

Using again Eqs. (C2) and (C3), we finally find the time
evolution of the state in the original frame:

|α〉 →e
g

2ω
[α∗(1−eiωt )−α(1−e−iωt )]

∣∣∣∣αe−iωt + g

ω
(e−iωt − 1)

〉
, (C8)

We expand to order O(t2) analogously as in the classical case:

|α〉 →e− i
2 (α∗+α)gt e

1
2 (α∗−α)ω gt2

2

×
∣∣∣∣α

(
1 − iωt − 1

2
ω2t2

)
− igt − ωgt2

2

〉
, (C9)

where we recognize in the first and second prefactors on the
right-hand side a boost and a translation, respectively. In par-
ticular, using Eq. (B12), the phase factors expressed become

−i
(α∗ + α)gt

2
= −i

1

2

x

h̄

gEt

2
, (C10)

1

2
(α∗ − α)ω

gt2

2
= −i

1

2

p

h̄

gEt2

2
, (C11)

where x = δx(α∗ + α) and p = iδp(α∗ − α). Similarly, the
state of the system |α〉 has now been been boosted by −gt
as well as displaced by −ωgt2

2 in accordance with the classical
evolution in Eq. (B17).
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2. Change in equilibrium and frequency

We consider the time-dependent Hamiltonian:

Ĥ (t ) = p̂2

2m
+ mω(t )2

2
x̂2 + mω(t )2d (t )x̂, (C12)

where x̂ and p̂ are the operators associated with the reference
frame centered at the Paul trap origin, i.e., reference frame 1.
In particular, we have a sudden change in equilibrium position
d (t ) and in the Paul trap frequency ω(t ), i.e.,

ω(t ) =
{
ω1 t � 0
ω2 t > 0,

(C13)

d (t ) =
{

0 t � 0
gE

ω2
2

t > 0. (C14)

For ω2 = ω1, one finds the problem already discussed in
Appendix C 1.

Here, we consider the full dynamics with the Hamiltonian
defined in Eqs. (C12)–(C14). We consider an initial coher-

ent state |α〉 associated with the mode â =
√

h̄
2mω1

(x̂ + i p̂)

prepared at time t = 0. The time evolution for t > 0 can be
explicitly computed [51] as

|α〉 → Ŝ(z)D̂(ε)R̂(φ)|α〉, (C15)

where the operators are given by

Ŝ(z) = e
1
2 (zâ†2−z∗â2 ), (C16)

D̂(ε) = e
1
2 (εâ†−ε∗â), (C17)

R̂(φ) = e+iφâ†â (C18)

and the time-dependent parameters are defined as follows:

eiθ tanh |z| = (e−2iω2t − 1) tanh r

1 − e−2iω2t tanh2 r
, (C19)

ε = δeiφ (1 − eiω2t )(cosh r + e−iω2t sinh r), (C20)

eiφ = 1 − e2iω2t tanh2 r

|1 − e2iω2t tanh2 r|e−iω2t . (C21)

We have two squeezing parameters: The customary one is
given by r = 1

2 ln( ω2
ω1

), and the dynamical one is given by
z = |z|eiθ . The equilibrium position in adimensional units is
given by δ = g2

ω2
, which is contained in the time-dependent

parameter ε, where g2 = gE

√
m

2h̄ω2
is the coupling induced by

the gravitational acceleration.
We want to expand Eq. (C15) to order O(t2), during which

the system is approximately in free fall as discussed in the
previous sections. However, Eq. (C15) is not yet in a suit-
able form as displacement and rotation operators precede the
squeezing one; Ŝ(z) applied on a displaced coherent state also
changes its displacement. To avoid this problem, we adapt the
analysis from Ref. [51] to commute the operators:

Ŝ(z)D̂(ξ ) = D̂(γ )Ŝ(z), (C22)

where

ξ = ε + αeiφ, (C23)

γ = ξ cosh |z| − ξ ∗ sinh |z|ei(θ+π ). (C24)

We can thus rewrite Eq. (C15) using Eqs. (C3) and (C22) as

|α〉 →e
1
2 (εα∗e−iφ+ε∗αeiφ )D̂(γ )Ŝ(z)|0〉. (C25)

We first note that the dynamical squeezing parameter z in
Eq. (C19) is only of order O(ω1t ):

z = it
(
ω2

1 − ω2
2

)
2ω1

≈ iω1t, (C26)

where we have assumed ω2 � ω1. Hence we can neglect
squeezing and set Ŝ(z) ∼ I by assuming ω1t � 1 (and hence
also ω2t � 1). Performing a series expansion, keeping only
the relevant terms, we obtain from Eq. (C15) the following
evolution:

|α〉 → e
− i

2 (α∗+α)
√

ω2
ω1

g2t
e

1
2 (α∗−α)ω2

√
ω1
ω2

g2t2

2

×
∣∣∣∣αh − i

√
ω2

ω1
g2t − ω2g2t2

2

√
ω1

ω2

〉
, (C27)

where the harmonic contribution to the eigenvalue is given by

αh = α + α

(
− i

ω2
1 + ω2

2

2ω1
t − 1

2
ω2

2t2

)

+ α∗
(

i
ω2

1 − ω2
2

2ω1
t + 1

4

ω2
2 − ω2

1

ω2
1

t2

)
. (C28)

It is instructive to introduce the gravitational coupling g1 =
gE

√
m

2h̄ω1
associated with the modes â1; in particular, we note

that g2 =
√

ω1
ω2

g1. From (C27) we then readily obtain the final

result:

|α〉 → e− i
2 (α∗+α)g1t e

1
2 (α∗−α)ω1

g1t2

2

∣∣∣∣αh − ig1t − ω1g1t2

2

〉
. (C29)

Relabeling ω1 and g1 as ω and g, respectively, we recovered
the result in Eq. (C9). In particular, we note that the phase
evolution depends only on gE and not on the frequencies ω1
or ω2; see Eqs. (C10) and (C11).

APPENDIX D: SUPERPOSITION STATE

We consider the time evolution of the state |α〉 and of the
displaced state |α + β〉, where β ∈ R according to Eq. (C29).
We readily find

|α〉 → eiξ |α′〉, (D1)

|α + β〉 → e−iφgrav eiξ |α′ + βeiφ〉, (D2)

where ξ = 1
2 (α∗ − α)ω gt2

2 , α′ = αh − igt − ωgt2

2 , and the ac-
cumulated phase difference is given by

φgrav ≡ gtβ. (D3)

By making the further approximation βeiφ ≈ β we recover the
analysis from the main text; the validity of this approximation
can be checked by evaluating Eq. (C21). Note, however, that
this latter assumption is not necessary and one could still
apply the protocol by modifying only step (7).

We now express the gravitational phase in terms of the
physical quantities. We first recall that β = �x/δR, where the

zero-point motion is δR =
√

h̄
2mω

. Using Eq. (B12), we then
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readily recover Eq. (4) from the main text, i.e.,

φgrav = mngE�x�t

h̄
, (D4)

where we have set t = �t . For a fixed �x this result is
independent of the Paul trap frequency as expected for the
transient free-fall motion.

On the other hand, the superposition size given by �x
depends on the Paul trap frequency ωn. In particular, applying
the displacement beam before or after we change the Paul
trap frequency from ωn = ω1 to ωn = ω2 can make a big dif-
ference. This can be seen by recalling that �x = δRβ, where

δR =
√

h̄
2mωn

is the zero-point motion, β = 
ggηδt is the dis-

placement generated by the controlling lasers, and η = kδR

is the Lamb-Dicke parameter (see main text). In particular,
combining the formulas, we readily find

�x = h̄k

2mωn

ggδt, (D5)

where we explicitly see the ∼ 1
ωn

dependency of the superpo-
sition size. In other words, applying the same displacement
beam in a weaker Paul trap leads to larger displacements as
both the zero-point motion δR and the Lamb-Dicke parameter
η contribute a factor 1√

ω
.

The O(t3) correction to gravitational phase in Eq. (D3) is
given by

φ(3) = − 1
6 gω2

2t3β.

If we require |φ(3)| � |φgrav|, we find the simple condition
ω2t � 1.

APPENDIX E: PHASE DIFFERENCE

It is instructive to discuss the accumulated phase difference
for spatial superpositions in harmonic traps for long times. We
have already discussed the accumulation during the transient
free-fall motion in case there is a change in equilibrium posi-
tion. We now ask, What is the accumulated phase difference
when the motion can no longer be approximated as free fall,
for example, when the system undergoes a full harmonic oscil-
lation? We perform these calculations using the semiclassical
approximation [52].

Using the notation of Appendix B, we consider the de-
scription from reference frame 2, i.e., the dynamics is purely
harmonic with the Hamiltonian given in Eq. (B3). Here, for
simplicity, we consider the case ω = ω1 = ω2. The accumu-
lated phase is given by the classical action

φ[x2(0), p2(0)] = 1

h̄

∫ t

0

[
p2

2(s)

2m
− mω2

2
x2

2 (s)

]
ds, (E1)

where x2 and p2 are given in Eqs. (B4) and (B5). Evaluating
the integral, we readily find

φ[x2(0), p2(0)] = sin(2ωt f )
{
[p2(0)]2 − [mωx2(0)]2

}
4mωh̄

− p2(0)x2(0)

h̄
sin2(ωt ). (E2)

We now consider the phase difference at different heights

�φ = −{φ[x2(0) + �x, p2(0)] − φ[x2(0), p2(0)]}. (E3)

Using Eq. (E2), we immediately find

�φharmonic = �xmω[�x + 2x2(0)]

4h̄
sin(2ωt )

+ �xp2(0)

h̄
sin2(ωt ). (E4)

Let us expand the expression for small �x compared with
x2(0) and with O(t ); that is, we are interested in the free-fall
regime of tiny superpositions. We readily find

�φgrav ≈�xx2(0)mω2t

h̄
. (E5)

Using ge = x2(0)ω2, we again recover Eq. (D4) obtained from
a more refined analysis. We have plotted in Fig. 4 a compari-
son between �φharmonic and �φgrav.

FIG. 4. (a) Accumulated phase difference �φ for one oscillation
period t f = 2π

ω
. The blue dashed line corresponds to �φharmonic in

Eq. (E4), which oscillates at frequency 2ω completing two full oscil-
lations in the trap oscillation period t f . The red dotted line denotes
the transient free-fall phase �φgrav in Eq. (E5). We have considered
typical values considered in the main text: the nanoparticle mass
m = mn ∼ 10−15 kg, Paul trap frequency ω ∼ 5 × 10−6 Hz, initial
position x2(0) = ge/ω

2 ∼ 4 × 1011 m, initial momentum to p2(0) ∼
0, and superposition size �x = 10−14 m. We find that one period of
oscillation is t f ∼ 106 s. (b) Relative error between the full harmonic
solution and the free-fall approximation. The free-fall transient is
a good approximation for t � t f /10 ∼ 105 s, much longer than the
timescale of the experiment.
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