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In the standard liquid crystal geometry, one generally finds a quasi-parabolic director profile in 

the vertical direction, where the directors are aligned with an applied field in the center of the 

cell.  In contrast, using a numerical energy minimization approach, we find that there are 

multiple metastable solutions where the director profile is oscillatory.  At low voltages, we find 

small oscillations, which evolve into standard soliton-like domain walls as the applied voltage 

is increased.  We predict the thickness of the domain wall with a simple analytic model that 

gives a good comparison to our numerical calculations, in the standard domain wall regime.  

For dual-frequency nematic liquid crystals, the occurrence of this regime can be tuned by a 

change of the biasing frequency.  Moreover, we investigate how domain walls can affect the 

optical properties of liquid crystal-based devices.  For instance, we find that the transmittance 

curve shifts to higher voltages as domain walls are introduced.  This shift can be used to create 

an efficient tunable filter. 
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1. Introduction  

In a common, planar geometry employing nematic liquid crystals (LC), the LC molecules are 

often aligned parallel to the surfaces of the LC cell in the absence of a biasing voltage.  When 

a voltage is applied, the LC molecules (as represented by directors) reorient themselves to 

become aligned with the applied field, similar to an electric dipole in an applied electric field.  

The reorientation begins in the bulk of the LC cell and extends to the surfaces as the applied 

field increases.  The reorientation at the surfaces is smaller because there is a competition 

between the anchoring and the elastic energy with the electrostatic energy associated with the 

applied field.[1–3]  Figure 1(a) illustrates a typical LC director orientation profile.  This transition 

occurs because LCs are birefringent materials as they have different permittivities and refractive 

indices in the parallel (extraordinary) and perpendicular (ordinary) directions with respect to 

the LC director.[4] This tunable difference is used in optical display technology and other 

applications, including optical filters and tunable microwave devices.[5–9]  Dual-frequency 

nematic LCs share the same properties as ordinary nematic LCs, but they are also tunable with 

the frequency of the biasing voltage.  This can improve the transition speed of LC devices and 

permit the additional tuning of the dielectric anisotropy to create a tunable filter.[10–12] 

While early work concentrated on LC display applications, more recently, topological 

defects in LCs have become an active area of research.  For example, the direction and speed 

of swimming bacteria can be dynamically controlled using tunable topological defects (i.e. 

saddle points, sinks, centers, comet orbits and vortices) in various LCs.[13–15]  Structured LC 

elastomers can be designed to behave like piezoelectrics.[16]  In a lyotropic colloidal cholesteric 

LC, nanoparticles can be designed to self-assemble into specific patterns, at the disclinations.[17]  

Within the last decade, extensive reviews of topological defects in LCs have been 

published.[18,19]  New publications continue to cover a wide range of topological defects.  These 

include active motion of topological defects in LC media,[20] decomposition of center and saddle 
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point disclinations,[21,22] ionically charged comet orbit and saddle point disclinations in nematic 

LCs,[23] skyrmions,[24] motile solitons[25] and vortex lattices.[26] 

One example of topological defects, in nematic LCs, is the occurrence of horizontal 

domains.  This was first observed in 1961 by Zvereva and Kapustin then studied in depth by 

Williams in 1963.[2,27]  In 1968, Helfrich explained the Kapustin-Williams domains as 

alignment inversion walls or solitons with magnetic fields.[28,29]  Thereafter, solitons have been 

of great interest in LCs.[30] 

Nearly all of the topological defects and domains studied in LC systems have been 

horizontal, in the sense that the variation in the directions of the LC directors took place parallel 

to the surface of the LC cell.  Very recently, it has been shown, both theoretically and 

experimentally that one could obtain domains in the vertical direction.  All of these works, 

however, required the application of a strong magnetic field.[31–35] 

In this paper, we explore these vertically stacked domains and their consequences in a 

standard nematic LC geometry, as seen in Figure 1(b).  Our theoretical results are obtained from 

an energy minimization approach; however, one obtains the same results by solving the usual 

differential equation for the director profile.  In contrast to earlier work, we find that these 

domains are stable even in the absence of a magnetic field.  Furthermore, we show that the 

number of standard domains that can exist as metastable states depends critically on the applied 

voltage as well as the thickness of the cell.  We also quantify the width and energy cost of the 

domain wall in this configuration and present a physical argument for why oscillations, rather 

than standard domain walls, occur for small, applied fields.  Finally, we show that switching 

between the usual ground state and a metastable state, can create an optical filter.   
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Figure 1.  (color online).  Schematics of the nematic LC director profile for the (a) ground state 

and (b) metastable state with one domain wall.  The nematic LC is sandwiched between two 

substrates, each of which contains glass, indium tin oxide for the conductivity and polyimide 

for the initial LC orientation.  (c) Shows the plot of the director profile for the schematic 

drawing in (a).  (d) Shows the plot of the director profile for the schematic drawing in (b). 

 

 

2. Theoretical Methods – Energy Minimization 

The total free energy for a nematic LC in the planar cell arrangement can be found from the 

sum of the bulk and surface energies, given by  

𝐹 = ∫ 𝑑𝑧
𝑑

0

𝑈(𝜃, 𝜃′) +
1

2
𝑊 sin2(𝜃 − 𝜃0) +

1

2
𝑊 sin2(𝜃 ± 𝜃𝑑)                                                    (1) 

where our surface terms are of the Rapini Papoular form,[4,36] θ0 and θd are the pre-tilt angles at 

the 𝑧 = 0 and 𝑧 = 𝑑 surfaces, respectively and the ± in the 𝑧 = 𝑑 surface term depends on the 
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initial molecule orientations, created by the surface treatments.[4]  Here, the bulk energy density, 

U(θ,θ'), is a sum of the Oseen-Frank (elastic)[37,38] and the electrostatic[39] energy densities, and 

given by: 

𝑈(𝜃, 𝜃′) =
1

2
(𝐾11cos2𝜃 + 𝐾33sin2𝜃) (

𝑑𝜃

𝑑𝑧
)

2

−
1

2
𝜀0𝐸2(𝜀⊥ − Δ𝜀 sin2 𝜃).                                   (2) 

In Equation (1) and (2), θ(z) is the angle of the director with respect to the substrate (as shown 

in Figure 1(a) and (b)), 𝜃′ = 𝑑𝜃/𝑑𝑧, W is the anchoring energy, K11 and K33 are the splay and 

bend elastic constants, respectively, E is the electric field from the applied voltage, ε0 is the 

permittivity of free space, and the dielectric anisotropy is 𝛥𝜀 = 𝜀∥ − 𝜀⊥ where ε∥ and ε⊥ are the 

permittivities parallel and perpendicular to the electrodes, respectively.  The dielectric 

anisotropy is quasistatic, and its measurement is used in the free energy minimization.  The 

birefringence or optical anisotropy (Δn) depends on the frequency of the electromagnetic wave 

passing through the LC cell.  This difference means that we cannot change between the two 

using:  𝜀𝑟 = 𝑛2 as is the typical case in electromagnetism for nonmagnetic materials.[40] 

We have numerically minimized the free energy 𝐹 to solve for the director profile, θ(z).  

We discretize the 𝑧 direction with an equally spaced lattice, i.e.  𝑧𝑛 = 𝑎𝑛, where n ranges from 

1 to N, and N is the number of lattice points and 𝑎 = 𝑑/𝑁.  We calculate the derivative θ' using 

a combination of forward and backward difference derivatives.  Note that we have neglected 

any electrostatic charging in the polyimide layers as is often the case in the literature.[41]  

The energy minimization is accomplished by guessing an initial configuration, θ(z), then 

going to a particular position, z, varying the angle at that position by a small random amount, 

and accepting that variation if the energy of the system is lowered.  To find an oscillatory 

metastable state, numerically, we use an initial configuration to be a profile with a domain wall. 
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3. Results 

Unless otherwise specified, we will be using the parameters appropriate for the commercially 

available MLC-2048 (Merck Ltd), a dual-frequency nematic LC, which is well studied in the 

literature.[42–44]   The Frank elastic constants are K11 = 12.4 pN and K33 = 24.7 pN;[45] we take a 

pre-tilt angle of 0.04 rad and an anchoring strength of W = 2 x 10-4 J m-2.[12]  We found the 

wavelength-dependent refractive indices using the Cauchy coefficients:  Ae = 1.6950, Be = -

0.0015 µm2, Ce = 0.0035 µm4, Ao = 1.5200, Bo = -0.0212 µm2 and Co = 0.0044 µm4 , with a 

biasing voltage frequency of 1 kHz.[46]  We have neglected temperature effects and used SI 

units throughout. 

3.1. Energy Minimization 

Using the energy minimization method, the initial guess determines, in part, the stable or 

metastable state to which the system converges.  For example, any of the configurations shown 

in the initial states plot in Figure 2(a) give the same resulting final state shown in the final 

configuration plot in Figure 2(a), after the energy minimization process is complete.  The plot 

of the ground state is for a 10-micron LC cell at a voltage of 25 V. 

When the initial configuration is oscillatory, as shown in the initial states plot in Figure 

2(b), we find the system converges to a metastable oscillatory final state with a soliton-like 

domain wall as shown in the final configuration plot in Figure 2(b), after the energy 

minimization process is complete.  The plot of the oscillatory state is for a 10-micron LC cell 

at a voltage of 25 V.  We note that an initial state oscillation involving all positive angles is not 

stable and will converge to the typical ground state configuration. 
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Figure 2. (color online) Director angle as a function of vertical position in the LC cell for (a) 

initial states that give the final configuration, of the ground state, at 25 V and (b) initial states 

that give the final configuration, of a one domain wall oscillatory state, at 25 V. 

 

We deduce that an oscillatory initial profile is required to numerically find an oscillatory 

metastable state using energy minimization. All three initial configurations in Figure 2(b) 

collapse into the same oscillatory metastable state.  These oscillatory solutions can also be 

found through the differential equation for the director profile. 

3.2. Domain Wall Width and Energy Cost  

In the metastable state, as seen in Figure 2(b), the LC directors form a domain wall near the 

center of the cell.  In Figure 3, we show how the domain walls and metastable state 

configurations depend on the voltage across the cell for two sample metastable states. 
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Figure 3. (color online) Director angle as a function of vertical position in the LC cell, for 

metastable states at different voltages.  This illustrates that domain walls become smaller as the 

voltage increases for (a) one and (b) two domain-wall configurations.   

 

It is clear that the domain walls become narrower as the voltage is increased. We want 

to create a simple analytic model to predict the width of the domain walls.  This will allow us 

to compare our numerical results with an analytic prediction.  To do this, we assume a 

variational solution for the director angle in the domain wall, of width 𝛿 , and a linear 

dependence of the director angle on position.  For simplicity in the calculation, we define a new 

coordinate axis z', parallel to z but shifted so that, 𝑧′ = 0 is the start of the domain wall. 

𝜃(𝑧′) =
𝜋

2
−

𝜋𝑧′

𝛿
                                                                                                                                      (3) 

δ is viewed as a variational parameter.  We have subtracted πz'/δ from π/2 so that at a position 

of 𝑧′ = 0 and 𝑧′ = 𝛿 (the start and end of the wall, respectively) we will have the proper angles 
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of ±π/2.  For simplicity, we consider the difference in the energy between the metastable state 

and the ground state only for the region where the domain wall exists in the metastable state.  

For the ground state, the director angle, in and around the position of the domain wall, is always 

π/2.  This approximation is reasonably good for moderate voltages (see Figure 4(b) and 5(a)).  

We subtract the free energy of the ground state from the free energy of the oscillatory state, in 

the region of the domain wall, to find the cost in energy to build the domain wall, FDW.  We 

obtain 

𝐹𝐷𝑊 = ∫ [
1

2
(𝐾11 cos2 𝜃 + 𝐾33 sin2 𝜃) (

𝜕𝜃

𝜕𝑧′
)

2

−
1

2
𝜀0𝛥𝜀 (

𝑉

𝑑
)

2

(sin2 𝜃 − 1)] 𝑑𝑧′

𝛿

0

.                (4) 

In deriving this, we have used the assumption of the constant angle of π/2 for the ground state 

makes its elastic term disappear due to the spatial derivative.  Further, this also makes the sin2 

term go to 1 in its electrostatic energy.  Also, the angle independent terms in the electrostatic 

energy subtract away in obtaining Equation (4).  After integrating, we take the partial derivative 

of the energy of the wall with respect to δ.  We set this equal to zero and solve for δ to obtain 

the thickness of the domain wall.  We find the following analytic form 

𝛿 =
𝜋𝑑

𝑉
√

𝐾11 + 𝐾33

𝜀0Δ𝜀
.                                                                                                                              (5) 

We see that the thickness of the domain wall is inversely proportional to the applied electric 

field.  If we use the value of δ found above, in Equation (5), we can integrate Equation (4) to 

find the energy cost to build a domain wall.  One obtains 

𝐸 =
𝜋

2

𝑉

𝑑
√𝜀0Δ𝜀(𝐾11 + 𝐾33).                                                                                                                 (6) 
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We can extend this calculation to a LC with n domain walls, by assuming that all domain walls 

have the same width.  This is a good assumption if the walls are in the bulk of the LC cell.  

Therefore, we multiply the width of one wall by n to learn the total thickness of all of the domain 

walls in the LC cell.  If there are a lot of walls, we would expect the ones closer to the surface 

to have a different width than the ones in the center.   

Obviously, this calculation must break down at some point.  For states with multiple 

domain walls, one certainly cannot have the total thickness of the domain walls be larger than 

the thickness of the LC cell.  This suggests that there is a thickness at which the standard domain 

walls, with 𝜃 varying from +π/2 to -π/2, can no longer exist.  Of course, this critical thickness 

is likely to occur well below the point where the total domain wall width is equal to the thickness 

of the LC cell, as will be confirmed below.  Because the thickness of the domain walls depends 

on the electric field, this also suggests the presence of a critical voltage, at a fixed thickness.  

We explore these ideas below. 

In Figure 4(a), we plot the director profile for the case of four domain walls for different 

values of voltage.  At high voltages one obtains the standard domain wall situation, where θ 

varies from +π/2 to -π/2 in a short distance.  As the voltage is reduced, however, the situation 

changes and instead of the rapid soliton-like behavior found at high voltages, one has a simple 

oscillatory behavior.  This occurs because, at low voltages, the electrostatic energy is small 

compared to the elastic energy, and it is not favorable to have rapid changes in angle as a 

function of position.  

We explored changing the Frank elastic coefficients to determine if there was a limit 

where elastic forces would prevent an oscillatory metastable state.  For realistic Frank elastic 

coefficients, we were always able to find an oscillatory metastable state.  Using an oscillatory 
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configuration as the initial state, we also did not find a limit as to how many domain walls the 

director profile can have.   

 

Figure 4.  (color online) (a) LC director profile as a function of vertical position in the cell for 

a 10 μm MLC-2048 LC cell for different applied voltages.  There are sinusoidal oscillations at 

small voltages and standard domain walls at large voltages. (b) The maximum LC director angle 

as a function of the applied field for a 10 μm MLC-2048 LC cell.  We define a critical angle of 

θ𝑐1
= 0.28

π

2
= 25.2°, because θmax increases substantially as voltage increases, and the domain 

wall width decreases (see Figure 5(a)).  We define a second critical angle of θ𝑐2
= 0.9

π

2
= 81° 

to be where standard domains form and the numerical results approach those of the analytic 

model for standard domains (see Figure 5(a)).  Both critical angles shift to higher voltages as 

the number of domain walls increase and the dielectric anisotropy decreases (see Figure 5(b)). 

To quantify the behavior of the domain walls, we plot the maximum angle seen in the 

configuration, θmax, as a function of voltage for a 10-micron thick cell and for states with 

different numbers of domain walls in Figure 4(b).  It is helpful to define two critical angles.  

The first one, 𝜃𝑐1
, occurs when the maximum angle starts to rapidly increase near 𝜃𝑐1

=

0.28
𝜋

2
= 25.2° .  A second critical angle, 𝜃𝑐2

, is found as the voltage increases and θmax 
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approaches π/2.  We define the second critical angle, 𝜃𝑐2
= 0.9

𝜋

2
= 81°.  Each of these critical 

angles can be connected to a critical voltage as we will see in Figure 5(a).  

The critical voltages have an impact on the domain wall thickness.  We measure the 

domain wall width by finding the maximum angle, and then noting the nearby positions where 

the θ is 90% of θmax and taking the distance between these two positions.  Figure 5(a) shows the 

domain wall width, with the solid lines representing the results of the analytical formulas, and 

the symbols showing the behavior calculated from the full numerical calculation.  This 

calculation is done for four different numbers of domain walls for a 10 μm LC cell.  At high 

voltages (above 𝜃𝑐2
, see Figure 4(b)), the two models give nearly equivalent behaviors.  At 𝜃𝑐2

, 

the numerical result crosses over the analytic calculation.  As the voltage is reduced, the energy 

minimization results deviate from the analytic result.  As discussed earlier, this is because the 

𝜃𝑚𝑎𝑥 = ±
𝜋

2
 approximations, in the analytic model, are no longer reasonable and we get 

oscillations instead of soliton-like domain walls in the LC director profiles.  At low voltages 

(below 𝜃𝑐1
, see Figure 4(b)), the domain wall thickness flattens out and even slightly shrinks.  

At 𝜃𝑐1
, the numerical result reaches its maximum thickness. 

For the dual-frequency nematic LC, we can explore how the domain behavior depends 

on the frequency of the biasing voltage, which effectively adjusts the dielectric anisotropy.   

From Equation (5), one can see that it is possible to alter the thickness of the domain walls by 

changing the dielectric anisotropy.  A smaller dielectric anisotropy reduces the electrostatic 

energy.  This means that a larger voltage is required to win the competition with the elastic 

energy.  Thus, the width of the domain wall increases as the dielectric anisotropy decreases as 

seen in Figure 5(b).  The symbols do not line up exactly with the analytic model, however, their 

separation at a given, higher voltage is consistent with the model.  Again, the deviation between 

the two sets of results occurs near a critical voltage as seen in Figure 4(b) and 5(a).  
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Figure 5.  (color online) (a) Total domain wall/oscillation thickness as a function of the applied 

voltage for a 10 μm, MLC-2048 LC cell for four different number of domain walls.  The 

numerical model results (symbols) are close to those of the analytic model (lines) for higher 

voltages. (b) Total domain wall/oscillation thickness as a function of the applied voltage for a 

10 μm, MLC-2048 LC cell for three different dielectric anisotropies in a one domain-wall 

configuration.  As the dielectric anisotropy decreases (biasing voltage frequency increases), the 

thickness of the wall increases.  The lines are the values obtained from the analytic model and 

the symbols are from the numerical energy minimization model. 

3.3. Energy Cost of a Domain Wall 

It is of interest to identify the energy of the states with different numbers of domain walls. This 

is presented in Figure 6.  As expected, the ground state has the lowest areal energy density, and 

increasing the number of domains slightly raises the energy density.  We can understand the 

spacing between the different cases through Equation (6) which shows that the cost of a domain 

wall is proportional to the voltage. 
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Figure 6.  (color online) Total energy density as a function of the biasing voltage for the ground 

state and four different numbers of domain walls.  All curves are for a 10 μm MLC-2048 LC 

cell. 

3.4. Transmittance  

Electro-optical measurements are the most ubiquitous way to study LC director profiles.  Here 

we study how the change in director profile, from the ground state to a state with domain walls, 

influences the transmittance through the LC cell.  The theoretical methods for this is well 

established, so we do not present any details here.[12,47]  We will use the geometry presented in 

Figure 1(a) and 1(b) with the LC cell sandwiched between a +45° polarizer on top and -45° 

polarizer on bottom, forming a LC retarder.  We place the LC retarder between a laser and a 

detector to create a straight optical pass configuration.[48] 
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Figure 7. (color online) Transmittance as a function of voltage for a single LC cell between 

crossed polarizers with an incident light wavelength of 632 nm.  Both curves are for a 10 μm 

MLC-2048 LC cell.  The solid green line is the transmittance curve for a LC cell in the ground 

state, and the blue dashed curve depicts the transmittance for the case where there is one domain 

wall. 

 

In Figure 7, we plot the transmittance as a function of voltage for the ground state and 

for the state with one domain wall.   For the ground state, there is a final broad peak around 10 

V and the transmittance of this peak’s tail goes to zero as the voltage increases.  In contrast, in 

the oscillatory metastable state, the broad peak of the transmittance curve is shifted to higher 

voltages.  At low voltages, in the metastable state, the director profile is comprised of small 

oscillations.  There is a transition between where the one wall transmittance curve is irregular 

and where it looks shifted from the no walls curve around 5 V.  This transition is near the critical 

voltage, associated with the critical angle, 𝜃𝑐1
 (see Figure 4(b) and 5(a)).  Additional domain 

walls shift the transmittance curve to higher voltages. 
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Figure 8.  (color online) (a) Effective index of refraction as a function of incident light 

wavelength for a single LC cell between crossed polarizers with an applied field of 17 V.  All 

curves are for a 10 μm MLC-2048 LC cell.  The green line is the effective refractive index 

curve for a LC cell in the ground state.  The blue, orange, red and violet lines depict the effective 

index of refraction for the case where there is one, two, three and four domain walls, 

respectively.  (b) Transmittance as a function of incident light wavelength for a single LC 

retarder with an applied field of 17 V.  Both curves are for a 10 μm MLC-2048 LC cell.  The 

solid green line is the transmittance curve for a LC cell in the ground state, and the blue dashed 

curve depicts transmittance for the case where there is one domain wall. 

 

The effective index of refraction, in the LC cell, depends on the number of domain walls.  

As the number of domain walls is increased, the effective refractive index increases, as seen in 

Figure 8(a).  The spacing between the curves becomes larger as the number of walls increase. 

Because the index of refraction depends strongly on the number of domain walls, this 

could, in principle, be used to create a tunable filter.  In Figure 8(b), we plot transmittance as a 

function of the wavelength of the incident light for the ground state and one domain wall state.  
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We see that at 420 nm the transmittance is nearly 1 for the ground state, and nearly zero for the 

one domain wall state, indicating a potential to create an efficient filter for these wavelengths. 

4. Conclusion and Discussions 

In this paper, we have investigated the possibility of domain walls along the vertical axis in a 

typical nematic LC cell.  We find that metastable states do exist at any voltage.  We used a 

simple variational model to calculate the thickness of the domain wall and compared the results 

with a numerical energy minimization approach.   We found that the analytic and numeric 

approaches give comparable values, for the domain wall thickness, above a critical voltage.  

Indeed, for larger voltages, we find that the domain wall is similar to a soliton.  Below that 

critical voltage, the domain wall thickness continues to increase, but no longer follows the 

analytic model.  Furthermore, at low voltages, we find that instead of a large change in the 

director angle (from +π/2 to -π/2) the maximum director angle becomes smaller, and the 

director profile is oscillatory instead of having distinct domain walls.  

 We find that the transmittance depends strongly on the director profile, with significant 

differences occurring with and without domain walls.  This suggests a novel approach to create 

a filter by switching between the ground state and oscillatory metastable state.  This also permits 

transmittance at higher voltages.  This work may be expanded by exploring Bragg reflections 

in the LC cell, particularly for thicker films with multiple domain walls.   

 Finally, it would be fruitful to explore the dynamical process that the LC director 

undergoes as it reorients into the final oscillatory states described in this work.  However, this 

would significantly complicate the present study.  Some notable advantages of this dynamical 

investigation are:  clarification as to how the metastable states are reached, the speed of 

reorientation[35] and insight into the impact of dual-frequency. 
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In the standard liquid crystal geometry, one generally finds that the liquid crystal molecules 

align with the applied field.  In contrast, the authors found that there are multiple metastable 

solutions where the liquid crystal molecules orientation is oscillatory and can converge into 

periodic soliton-like solutions.  The authors predict the thickness of the soliton-like domain wall 

with a simple analytic model. 

 

Reed Jones*, Olha Melnyk, Rair Macêdo, and Robert E. Camley 

 

Vertically Stacked Soliton-Like Domain Walls in Nematic Liquid Crystals 

 

 


	Enlighten Accepted coversheet.pdf
	251095

