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Abstract—In the era of the Internet of Everything, autonomous
driving has put forward a higher ambition for data transmission
capabilities. This paper studies joint scheduling of computation
and communication resources in the collaborative networking
of unmanned aerial vehicles (UAVs) and platooning vehicles
in mobile edge computing (MEC) framework to maximize the
energy efficiency. Considering the movement characteristics of
vehicles, we integrate mobility, communication, computation,
and energy consumption to establish a collective optimization
problem. Since this multivariate coupled model is non-convex,
we further propose a joint optimization method (JOM) algorithm
based on the convex approximation theory, particularly quadratic
programming. Experimental results verify that this algorithm
converges quickly within a dozen iterations and proves to be
superior to several other benchmark schemes.

Index Terms—Mobile edge computing (MEC), unmanned
aerial vehicle (UAV), connected and autonomous vehicle (CAV),
vehicle platooning, convex approximation

I. INTRODUCTION

Nowadays, tremendous applications and envisioned novel
information system architectures, such as connected vehicles,
mobile edge computing (MEC), Internet of Things, etc.,
are heavily dependent on well-established wireless ad hoc
networks. Data has exploded with the rapid development of
technologies like artificial intelligence, big data, beyond fifth-
generation (B5G) and sixth-generation (6G). MEC enables
data to be processed quickly near the source. Its advantages of
ultralow delay, highbandwidth, and direct access to real-time
network information can better satisfy unmanned driving and
other intelligence scenes which demand to perform latency-
critical and computation-intensive tasks [1].

The unmanned aerial vehicle (UAV), as a fleetly moving
and low-cost server carrier, is not restricted by geographical
constraints. Free from expensive construction and complex
deployment, it can be employed as a supplementary resource
under emergencies. Research on the UAV-assisted MEC sys-
tems mainly involves that when ground users need exter-
nal assistance to calculate intensive tasks or their remaining
available computing capacity is insufficient, they offload the
tasks to UAVs. Then UAVs, as an edge computing server, can

collect, calculate, and return the offloaded tasks, especially
when there are absent or destroyed wireless infrastructures.
Currently, scholars have adopted diverse approaches to address
the UAV-aid MEC system optimization problems [2–6].

However, the prevailing research principally focuses on
the fixed position of ground terminals and adjusts the UAV
trajectory to achieve the optimization goal [2, 3, 7]. And
the existing literature concerned with vehicle mobility only
involves one single node [8] and lacks advanced study on the
multi-vehicle situation. When applying the UAV-assisted MEC
system to traffic scenarios, it is necessary to consider the high-
speed movement characteristics of ground vehicles because the
communication links vary with the related distance at different
times. Therefore, the mobility of both UAVs and ground users
is essential to be taken into account.

This paper establishes a platooning vehicles-UAV collabo-
rative networking scenario, where the UAV assists the moving
vehicles with computation capacity. We introduce the intelli-
gent driver model (IDM) and innovatively combine mobility,
communication, computation, and energy consumption into the
system model. To solve the complicated problem, we devise
an algorithm based on the convex approximation theory to
maximize the UAV energy efficiency. The experiment results
prove that the proposed algorithm performs well.

II. SYSTEM MODEL

We consider a general UAV-aid MEC system in Fig. 1,
where a UAV and a platoon of I mobile vehicles are moving
in a two-dimensional plane. The UAV flies along the road at
a fixed altitude of H with a steady velocity of vUAV. The
total time spent on the UAV serving the platooning vehicles
is equally divided into K time slots. A time slot lasts for τ .
We have the set I = {1, ..., I} and the set K = {1, ...,K}.

In this system, the UAV is equipped with a computing pro-
cessor, a MEC server, and an onboard communication circuit.
Each mobile vehicle is set up with a local computing processor
and a communication circuit. On the one hand, to refrain
from the interference among the platooning vehicles, the time
division multiple access (TDMA) protocol is engaged, where
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Fig. 1. A UAV and platooning vehicles moving in a two-dimensional plane
and communicating in a manner of TDMA.

each vehicle interacts with the UAV orderly and independently
in time dimensionality. To be specific, at the kth (k ∈ K) slot,
the ith (i ∈ I) vehicle offloads data to the UAV within the
duration of toi [k], then the UAV calculates the offloaded data
within tci [k] and downloads it back to the ith vehicle. Then
the next vehicle interacts with the UAV at the same slot until
the last vehicle. Like [5], the downloading time of the UAV is
neglected due to the little bits of the computation result. On the
other hand, in space dimensionality, the position coordinate of
the ith vehicle at the kth slot is denoted by si[k] = [xi[k], 0],
where xi[k] signifies the horizontal position and 0 represents
the vertical altitude. Similarly, the position coordinate of the
UAV at the kth slot is denoted by sUAV[k] = [xUAV[k], H].

The IDM is a widely cited classic car-following model to
characterize the movement relationship between the platooning
vehicles in continuous time [9]. According to the IDM, the
acceleration of the ith vehicle ai is determined by its velocity
vi, the relative velocity ∆vi, and the space si from the
preceding vehicle. The motion state of the platooning vehicles
be described by the following equation set for i ∈ I

ai = amax

[
1−

(
vi
vmax

)δ
−
(
s∗(vi,∆vi)

si

)2
]
, (1a)

s∗(vi,∆vi) = smin + t0vi +
vi∆vi

2
√
amaxbmax

, (1b)

∆vi = vi − vi−1, (1c)
si = xi−1 − xi − l0. (1d)

In Eq. (1), xi and vi respectively denote the horizontal position
and the velocity of the ith vehicle. In Eq. (1a), amax signifies
the platooning vehicles’ maximum acceleration, and vmax

shows the desired velocity in a free flow. The acceleration
exponent value δ is usually set from 1 to 5 [9]. The parameters

in Eq. (1b) are the minimum net distance smin, the reaction
time t0, and the maximum deceleration bmax (bmax > 0). And
l0 in Eq. (1d) stands for the body length of a vehicle.

Then, we apply a double integration scheme to discretize
the continuous-time model to adapt to our platooning vehicles
under discrete time slots for i ∈ I and k ∈ Kvi[k + 1] = vi[k] + ai[k]τ,

xi[k + 1] = xi[k] + vi[k]τ +
1

2
ai[k]τ2.

(2)

According to the principle of minimizing the sum of the
distance between the UAV and each vehicle, we determine the
horizontal position of the UAV xUAV[k]. Referring to [2, 10],
we obtain the energy consumption of the UAV mobility based
on its acceleration and velocity. For any k ∈ K, we have

vUAV[k] =
xUAV[k]− xUAV[n− 1]

τ
,

aUAV[k] =
vUAV[k]− vUAV[n− 1]

τ
,

EsUAV[k] = γ1v
3
UAV[k] +

γ2
vUAV[k]

(
1 +

a2UAV[k]

g2

)
,

(3)

where γ1 and γ2 are parameters dependent on the UAV’s
hardware and surrounding environment. And the parameter g
signifies the gravitational acceleration.

Thus, the relative distance between the vehicle i and the
UAV at the kth slot can be signified as di[k] = ||sUAV[k] −
si[k]||. Like [2, 3, 5, 10], the channel power gain between the
UAV and the vehicle is given as

ρi[k] = ρ0di[k]−κ =
ρ0

||sUAV[k]− si[k]||κ
,

i ∈ I, k ∈ K,
(4)

where ρ0 is the channel power gain at a reference distance
d0 = 1 m, and κ is the path loss exponent that depends on the
dominated wireless channel model. Since our system mainly
operates in open areas, we assume that the wireless channel
is dominated by line-of-sight and take the value κ = 2.

We apply the block fading channel model assuming that
the channel keeps static in each slot. Namely, communication
bandwidth B and noise power N0 are stable during the whole
process. Based on Shannon’s theorem, the data-offloading
transmission rate Roi [k] is formulated as follows [5, 6]

Roi [k] = B log2

(
1 +

P oi [k]ρi[k]

N0

)
, i ∈ I, k ∈ K, (5)

where P oi [k] denotes the offloading transmission power of
the ith vehicle to the UAV at the kth slot. Since the energy
consumption on receiving offloaded data is concerned with the
relative distance, we multiply the channel gain gi[k] in Eq. (6)
to calculate the UAV receiving energy consumption [5, 7]

EoUAV[k] =

I∑
i=1

P oi [k]ρi[k]toi [k], k ∈ K. (6)

The UAV calculates tasks with the central processing unit
(CPU) frequency f . Denote the number of CPU cycles for



computing one bit of raw data by C. The UAV local compu-
tation rate is defined as RcUAV = f

C [5, 7]. Since the offloaded
data from the ith vehicle equals the raw data to be computed
at the UAV at this slot, we can have

Roi [k]toi [k] = RcUAVt
c
i [k], i ∈ I, k ∈ K. (7)

Besides, the CPU frequency f also determines the UAV
local execution energy consumption. Similar to [4, 5], the UAV
energy expended on calculating data is described as

EcUAV[k] =

I∑
i=1

λcf
3tci [k], k ∈ K, (8)

where λc is an effective capacitance coefficient related to the
UAV processor chip architecture.

III. CONVEX APPROXIMATION BASED JOM ALGORITHM

A. Problem Formulation

The energy efficiency θ(X) is denoted by the ratio of system
transmission throughput and UAV energy consumption sum in
Eq. (9), where the independent variable is defined as X =
col{P oi [k], toi [k]}, i ∈ I, k ∈ K

θ(X) =

K∑
k=1

∑I
i=1R

o
i [k]toi [k]

EoUAV[k] + EcUAV[k] + EsUAV[k]
. (9)

Integrating mobility, communication, computation, and energy
consumption, we formulate the system optimization problem
in a standard form as P1. Eq. (10b) is the equality constraint
on interaction time, and Eq. (10d) and Eq. (10e) are the
boundary constraints on independent variables.

P1 : min
X

f(X) =
1

θ(X)
(10a)

s.t.
I∑
i=1

(toi [k] + tci [k]) = τ, (10b)

Roi [k]toi [k] = RcUAVt
c
i [k], (10c)

0 6 P oi [k] 6 Pmax, (10d)
0 6 toi [k] 6 τ, (10e)
i ∈ I, k ∈ K. (10f)

B. Convex Quadratic Program Algorithm

The objective function f(X) is a twice continuously dif-
ferentiable function, and its Hesse matrix is not semi-positive
definite. Since the variables are coupled nonlinearly, the prob-
lem P1 is non-convex [11], which is difficult to figure out
the globally optimal solution. In this paper, we employ the
convex quadratic programming to find the optimal solution
of the original non-convex problem by iteratively solving a
series of convex approximation problems. The proposed joint
optimization method (JOM) on communication resource and
computation resource is summarized in Algorithm 1.

In Algorithm 1, the underlying idea is to approximate
the original model P1 at each iterate r by using a convex
quadratic programming model and to solve a feasible search
direction dr from the sub-model. To be specific, we denote

the Lagrangian function of f(X) by L(X, λ), where λ is the
Lagrange multiplier vector. Define the Hesse matrix U as the
positive definite approximation of∇2

XL(X, λ). Set the descent
search direction vector d = Xr+1 −Xr at the rth iteration.
According to the second-order Taylor expansion, we establish
a convex quadratic function, f(Xr)+∇f(Xr)

Td+ 1
2d

TUrd,
to approximate f(X) at r. The first-order Taylor expansion
is used to linearize the nonlinear constraints, i.e. C(X) ≈
C(Xr) +∇C(Xr)

Td. Then, we can formulate the quadratic
programming model at r by P2 as follows

P2 : min
d
∇f(Xr)

Td +
1

2
dTUrd (11a)

s.t. Cm(Xr) +∇Cm(Xr)
Td = 0, m ∈M, (11b)

Cn(Xr) +∇Cn(Xr)
Td > 0, n ∈ N , (11c)

where Cm(X) =
I∑
i=1

(toi [k] + tci [k])− τ, m = 1, ...,K,

Roi [k]toi [k]−RcUAVt
c
i [k], m = K + 1, ...,K + IK,

(12)

and Cn(X) =


toi [k], n = 1, ..., IK,

τ − toi [k], n = IK + 1, ..., 2IK,

P oi [k], j = 2IK + 1, ..., 3IK,

Pmax − P oi [k], j = 3IK + 1, ..., 4IK.
(13)

Another important step of Algorithm 1 is to exploit a simple
line search approach with quadratic interpolation steps to
calculate the step size αr [12]. Besides, we adopt the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [13] to update Ur

at each iterate as well. The BFGS method is considered as
one of the most effective quasi-Newton methods for solving
unconstrained optimization problems. It uses an approximation
to calculate the Hessian of the Lagrange function for the orig-
inal model P1 and such an approximate Hessian guarantees
the quadratic subproblem to remain convex at each iterate.

IV. PERFORMANCE EVALUATION

A. Basic Simulation Settings and Motion State Trajectory

The simulation parameters on the physical-layer commu-
nication like bandwidth B, noise power N0, and channel
power gain g0 are given based on [3, 5]. In terms of the
UAV’s processor computation parameters, we take UAV’s
maximum CPU frequency f according to Phantom 4 of SZ
DJI Technology Co., Ltd. Also, we refer to [3, 5] to adopt the
number of CPU cycles C and effective capacitance coefficient
λc. The power boundary Pmax is 100 mW [2]. The motion
state parameters of the IDM are recommended in [14]. To
sum up, the simulation parameters are presented in Table I.

In our vehicle mobility model, we set the leading vehicle’s
initial velocity at 15 m/s and its initial acceleration at 0
m/s2. At the first slot, the vehicle positions are stochastically
assigned obeying the rule that the distance between two
adjacent vehicles (head to head) is set from 10 to 100 m.



Algorithm 1: The JOM algorithm for solving the joint
optimization problem P1

1 Initialize k = 1.
2 for k 6 K do
3 Initialize X1[k], U1[k], and set ξ > 0, r = 1.
4 Transform P1 into P2 at the kth slot.
5 repeat
6 Solve P2 to obtain dr[k] and λr[k].
7 Determine αr by a line search approach.
8 Set Xr+1[k] = Xr[k] + αrdr[k].
9 if ||∇XL(Xr+1[k], λ)|| > ξ then

10 Update Ur+1[k] based on the BFGS.
11 Update r = r + 1.

12 until ||∇XL(Xr+1[k], λ)|| 6 ξ
13 Output X∗[k] = Xr+1[k].
14 Update k = k + 1.

15 Output the optimal solution X∗.

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Value Parameter Value
i 5 γ1 0.0037
K 500 γ2 500.206
vmax 30 m/s g 9.8 m/s2

amax 0.73 m/s2 B 4× 107 Hz
bmax 1.67 m/s2 N0 10−9 W
t0 1.5 s ρ0 -50 dB
smin 2 m f 2× 109 cyc/s
δ 4 C 103 cyc/bit
l0 5 m λc 10−28

The initial velocity of the platooning vehicles ranges from
13 to 17 m/s. Moreover, the motion energy consumption-
related parameters like γ1 and γ2 are set according to [2].
Fig. 2 clearly shows the motion state curves of the platooning
vehicles and the UAV over the time slot k.

B. Convergence Analysis and Performance Comparison

Under diverse initial values of the independent variable X0,
the diagrams of the energy efficiency at the 500th slot against
iterations are given in Fig. 3. As is shown, the curves climb
gradually with the increasing iterations and tend to be roughly
stable, which convincingly verifies the convergence of our
proposed algorithm. Under the condition of X0 = 0.0025,
there is a fast convergence performance within 15 iterations.

In contrast with other approaches including the stochastic
power method (SPM) and uniform time method (UTM), the
performance comparison is plotted, which shows the improve-
ment of our proposed JOM algorithm. Fig. 4 plots the variation
of the optimal energy efficiency sum with the height of the
UAV under the time slot length τ = 0.2 s. The optimal value
declines as the UAV flying height increases. We can infer
that the flight altitude affects the communication quality, and
too high flight altitude will have a negative impact on the
energy efficiency of the UAV. Obviously, the optimal function
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Fig. 3. The energy efficiency at the 500th slot against iterations.

values of our proposed method are always higher than the
other methods. Under the five flight heights, JOM improved
an average of 2.65% over SPM and 6.34% over UTM. It can
be seen that our algorithm has a significant advantage.

Fig. 5 draws the variation of the optimal energy efficiency
sum with the length of a slot under the height of the UAV
H = 10 m. We can see that the function value is positively
correlated with the slot length. It indicates that the longer the
slot is, the more time can be allocated for the platooning
vehicles and UAV to offload and calculate, which is more
beneficial to the improvement of UAV’s energy efficiency.
Similarly, JOM is superior to the others approaches. During
the 500 slots, the optimal energy efficiency sum of JOM is
1.120 × 105 Bits/J higher than SPM and 2.117 × 105 Bits/J
higher than UTM. The above experiment results demonstrate
the availability and efficiency of our designed algorithm.
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V. CONCLUSION

In this paper, we have investigated that the UAV, as a
mobile edge server, offers computation resources to platoon-
ing vehicles, especially when there are no or few wireless
infrastructures. We build a joint optimization system model
integrating mobility, communication, computation, and energy
consumption to maximize the UAV’s energy efficiency sum
during the whole process. To address the model con-convexity,
we devise the JOM algorithm based on the convex approxi-
mation theory. Experimental results prove that this algorithm
can converge quickly. And compared with other benchmark
approaches, this algorithm can efficiently improve the UAV
energy efficiency. The scheme and algorithm proposed in this
paper will provide a theoretical basis for the further application
of 6G technology and the Internet of Things technology.
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