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Mitochondria are double-membrane organelles that contain their own genome, the
mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria
are responsible for cellular respiration via the function of the electron oxidative
phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and
composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and
the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS
components, the large majority of the structural subunits and additional biogenetical
factors (more than seventy proteins) are encoded in the nucleus and translated in the
cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome,
mitochondria have evolved varied, and sophisticated import machineries that specifically
target proteins to the different compartments defined by the two membranes. The
intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are
mostly imported via the MIA40 oxidative folding system, dependent on the reduction,
and oxidation of key Cys residues. Several of these proteins are structural components
or assembly factors necessary for the correct maturation and function of the ETC
complexes. Interestingly, many of these proteins are involved in the metalation of the
active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due
to their function in oxygen reduction, mitochondria are the main generators of reactive
oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and
the IMS. ROS generation is important due to their role as signaling molecules, but an
excessive production is detrimental due to unwanted oxidation reactions that impact
on the function of different types of biomolecules contained in mitochondria. Therefore,
the maintenance of the redox balance in the IMS is essential for mitochondrial function.
In this review, we will discuss the role that redox regulation plays in the maintenance of
IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory
factor for ETC biogenesis, especially for complex IV.
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INTRODUCTION

Mitochondrial biogenesis is essential for cell fitness and viability.
Mitochondria are double membrane bound organelles composed
of an outer membrane (OM), intermembrane space (IMS), inner
membrane (IM), and matrix that harbors its own mitochondrial
genome, the mtDNA. This mtDNA encodes only 13 polypeptides
in humans or 8 polypeptides in yeast cells that are translated into
key components of the respiratory chain complexes embedded in
the IM. Assembly of the respiratory chain complexes relies on the
protein import process through which most of these subunits find
their way into the organelle.

A large number of proteins imported into the intermembrane
space (IMS) are cysteine rich proteins that are imported via
the mitochondrial import and assembly (MIA) pathway which
involves oxidation of specific cysteine residues and subsequent
folding of proteins into their mature conformation thereby
trapping them in this compartment. As many of the substrates
of this pathway include a variety of chaperones, proteases,
mitochondrial dynamics factors and assembly factors for the
respiratory chain complexes, and redox regulation of the IMS
plays a crucial role in a wide variety of processes within
the mitochondria. In this review we give a brief overview of
the protein import pathways moving on to a more detailed
presentation of the redox-regulated MIA pathway with a focus
on the yeast and human systems. We then discuss the redox
regulation features of mitochondria dynamics and proteases in
the IMS following on with an analysis of the redox regulation
mechanisms that are pertinent for the assembly process of the
electron transport chain (ETC) complexes. Finally, we examine
the possible role of reactive oxygen species (ROS) on maintaining
the homeostasis of the respiratory chain.

OVERVIEW OF MITOCHONDRIAL
PROTEIN IMPORT PATHWAYS

The mitochondrial proteome consists of 1,000–1,500 proteins
(Sickmann et al., 2003; Reinders et al., 2006; Pagliarini et al.,
2008; Rath et al., 2021) but only eight in the yeast S. cerevisiae
and thirteen in humans, and other mammalian species, are
encoded in the mitochondrial genome and translated inside the
organelle. This implies that ∼99% of all mitochondrial proteins
(1163 polypeptides in human mitochondria according to the last
compendium of MitoCarta 3.0 (Rath et al., 2021) are nuclear
encoded, translated on cytosolic ribosomes and guided to the
mitochondria by a variety of cytosolic chaperones. From here
they can be sorted within the organelle (Figure 1).

Protein Entry Into Mitochondria
The translocase of the outer membrane (TOM) complex forms
the entry gate for most imported mitochondrial proteins.
The TOM complex is composed of seven different functional
and receptor subunits. Precursors with a cleavable N-terminal
presequence are recognized on the surface of mitochondria by the
Tom20 receptor, while the Tom70 receptor recognizes precursor
proteins that lack such a presequence but contain an internal

targeting signal instead (Brix et al., 1997; Yamamoto et al., 2009;
Backes et al., 2018). Tom22 is the central receptor that helps
recruit both Tom20 and Tom70 to the TOM core complex and
is involved in transferring preproteins from the receptor subunits
to the translocation pore (Van Wilpe et al., 1999; Yamano
et al., 2008). The structure of the S. cerevisiae TOM complex
was recently solved using cryo-electron microscopy at a 3.8Å
resolution (Araiso et al., 2019). This detailed structure revealed
the architecture of the TOM entry gate providing a framework
how the additional subunits Tom5, Tom6, Tom7 and Tom22 are
organized within the complex. We will not provide a detailed
analysis here as the TOM structural and functional features have
been reviewed extensively (Shiota et al., 2015; Araiso et al., 2020).

Protein Sorting in the Inner
Mitochondrial Compartments
Following translocation through the TOM complex in the OM,
proteins are sorted through different import pathways into
the matrix, the IM and the IMS (Jensen and Johnson, 2001;
Grevel et al., 2019; Hansen and Herrmann, 2019). Most of
the precursor proteins targeted to the matrix are synthesized
with an N-terminal positively charged cleavable presequence
(Vögtle et al., 2009) and follow the matrix targeting pathway,
which accounts for almost two thirds of all mitochondrial
proteins. The presequence translocase of the inner membrane
(TIM23 complex) is the key translocon that allows passage
of these matrix-targeted precursor proteins through the inner
membrane. The positively charged region of the presequence
is recognized by the TOM receptors Tom20 and Tom22 that
facilitate the translocation across the OM. The Tim50 subunit
feeds the positively charged region into the Tim23 channel
(Dayan et al., 2019). The translocation of these precursors
through the pore of the TIM23 complex is dependent on
the membrane potential (1ψ) across the inner membrane
generated from the activity of the respiratory chain complexes.
Additionally, the TIM23 complex is also involved in releasing
proteins, containing a strongly hydrophobic transmembrane
segment adjacent to the matrix-targeting presequence, laterally
into the inner membrane. These proteins start to engage with
the Tim23 channel guided by their presequence but become
stalled because of their strong hydrophobic “stop-transfer” signal
in the translocation pore of the Tim23 channel, preventing
their complete import into the matrix. A specific cleavage of
the ‘stop-transfer’ signal by the IMS localized IMP protease
releases the mature protein into the IMS. The translocation-
arrest mechanism of such bipartite presequence containing
preproteins requires a specific conformation of the TIM23
complex that contains Tim17, Tim21, and Tim23, termed the
TIM23SORT translocase (Chacinska et al., 2010). By contrast,
the TIM23 complex associated with the matrix-localized Pam18
(TIM23PAM) blocks the lateral release into the lipid bilayer
and instead promotes import into the matrix (Schendzielorz
et al., 2018). Protein transport into the matrix requires the
ATP-dependent activity of the mitochondrial heat shock protein
70 (mtHsp70) (Pais et al., 2011) in addition to the membrane
potential. Once in the matrix, the presequence is cleaved off from
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FIGURE 1 | Schematic representation of the general import pathways for proteins destined for localization to the mitochondria. Incoming nuclear-encoded proteins
destined for import into the mitochondria follow a number of particular import pathways depending on the sub compartment where they become localized. Matrix
targeted proteins follow the presequence pathway, passing through the TOM40, and TIM23 translocases where they become cleaved by matrix processing proteins
(MPP) in the matrix to form the mature protein. Preproteins targeted to the outer membrane (OM) are inserted by the Sam complex if they are β-barrel proteins and
via the mitochondrial import machinery (MIM) if they are α-helical containing proteins. Integration of preproteins into the inner membrane (IM) involves interaction with
the Tim9-Tim10 chaperone complex that targets proteins to the TIM22 translocase for membrane insertion or via a variation of the TIM23 complex that promotes
integration of the protein into the IM. Mitochondrial encoded proteins are synthesized on mito ribosomes located in the matrix and inserted into the IM via the Oxa1
complex.

the precursor by the matrix processing peptidase (MPP), giving
rise to the mature mitochondrial protein (Yang et al., 1991).

The mitochondrial metabolite inner membrane carrier
proteins (at least 35 proteins in S. cerevisiae and more than
50 in mammalian cells) are critical for the trafficking of
small metabolites and are synthesized without a cleavable
presequence. They interact with the Tom70 receptor,
engage with the TOM channel and are guided to the inner
membrane TIM22 complex, by a number of small TIM
chaperones in the IMS that escort them in the aqueous IMS
preventing their aggregation. This import and insertion process
constitutes the carrier pathway, and it is membrane potential-
dependent but independent of ATP hydrolysis in the matrix
(Sirrenberg et al., 1996).

Protein Insertion Into the Mitochondrial
Outer Membrane
The mitochondrial outer membrane contains either β-barrel
membrane proteins (which are absent from the inner membrane)
or α-helical transmembrane proteins. Precursors of the β-barrel
proteins are first recognized by the TOM complex and then
transferred to the sorting and assembly (SAM) complex from
the IMS side of the OM. A recent cryo-electron microscopy
structure of the SAM complex revealed that it is made up of
two copies of the central subunit Sam50, forming a β-barrel
channel (Takeda et al., 2021) that allows the lateral release
of the precursor proteins into the outer membrane (Paschen
et al., 2003; Klein et al., 2012). The SAM complex also contains
the Sam35 and Sam37 proteins found on the cytosolic side

of the outer membrane. Sam35 is thought to stabilize the
precursor-Sam50 interaction, while Sam37 is involved in the
release of substrate proteins from the SAM complex (Chan and
Lithgow, 2008; Kutik et al., 2008). Transfer from the IMS to
the OM is mediated by the IMS small TIM chaperones that
transiently bind to exposed hydrophobic regions preventing their
aggregation (Wenz et al., 2015; Weinhäupl et al., 2018). α-helical
membrane proteins in the OM follow a dedicated pathway via the
mitochondrial import machinery (MIM) complex (Becker et al.,
2011; Dimmer et al., 2012).

Import of Proteins Into the
Intermembrane Space – The MIA
Pathway
A detailed analysis of the proteome of the mitochondrial IMS
for the yeast S. cerevisiae revealed that around 50 proteins
were localized to this sub-compartment (Vögtle et al., 2012).
In humans, the IMS proteome accounts for about 5% of
the total mitochondrial proteome (53 proteins) (Rath et al.,
2021). The majority of these IMS-located proteins lack a typical
mitochondrial targeting sequence and are instead characterized
by conserved cysteine residues organized into twin CXnC
(typically either CX3C or CX9C) motifs that are necessary for
their import, correct folding and maturation. The oxidative
folding or mitochondrial protein import and assembly (MIA)
pathway relies on the function of Mia40, in yeast, and CHCHD4
(also known as MIA40), in humans, as the key protein that
facilitates the disulfide bonds in these proteins (Mesecke et al.,
2005; Figure 2).
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FIGURE 2 | Schematic representation of the mitochondrial import and assembly (MIA) pathway in yeast. A subset of proteins destined for the intermembrane space
(IMS) are imported via the MIA pathway which results in the oxidative folding of these substrates thereby trapping them in the IMS. Nuclear encoded CXnC motif
containing proteins are first imported through the TOM complex. These proteins contain an IMS-Targeting signal (ITS) that interacts with Mia40 resulting in the
oxidation and subsequent folding of the substrate protein, thereby trapping it in the IMS. This interaction leaves Mia40 in a reduced state that must be reoxidized to
allow it to further oxidize incoming substrates. This reoxidation is facilitated by interaction with Erv1 with subsequent electron transfer to cytochrome c and complex
IV (COX) of the respiratory chain in aerobic conditions, or onto Osm1 in anaerobic conditions. The system varies in humans, where CHCHD4/MIA40 is a soluble IMS
protein that interacts with membrane bound AIFM1 and with ALR/GFER/ERV1 (Reinhardt et al., 2020).

Many of these classical MIA substrates are vital for the
biogenesis and function of mitochondria as, for example, the
members of the small Tim protein family, including Tim 8, Tim 9,
Tim 10, and Tim13 (Sideris and Tokatlidis, 2007). These proteins
form the Tim9-Tim10 and Tim8-Tim13 chaperone complexes
that are essential to deliver hydrophobic proteins to the TIM22
complex for insertion into the inner membrane. Other examples
of MIA substrates are proteins necessary for the biogenesis of the
ETC complexes. These will be discussed in detail in subsequent
sections and include proteins with a dual CX9C motif that are
involved mostly in the assembly and maintenance of cytochrome
c oxidase (COX), also known as complex IV (CIV) (Gabriel et al.,
2007; Koch and Schmid, 2014a; Habich et al., 2019a; Gladyck
et al., 2021). It is, however, clear that Mia40 can recognize
proteins that do not have CXnC motifs, like the yeast Erv1 protein
(with a CX15C motif) (Terziyska et al., 2007; Kallergi et al.,
2012), yeast Atp23 (with 10 cysteine residues not organized in
any specific cysteine motif (Weckbecker et al., 2012), yeast Mix23
(with an unusual twin cysteine CX13C/CX14C motif (Vögtle et al.,
2012; Zöller et al., 2020), or human COA7 containing thirteen
Cys residues (Mohanraj et al., 2019). Other proteins without
classical CXnC motifs that have been described as substrates of
CHCHD4/MIA40 also include p53, AK2 and MICU1 (Zhuang
et al., 2013; Petrungaro et al., 2015). It is also of note that Ccs1,
the copper chaperone for Cu,Zn superoxide dismutase (Sod1),
is a Mia40 substrate in yeast but the IMS import of the human

ortholog (CCS1) does not depend on CHCHD4/MIA40 (Groß
et al., 2011; Suzuki et al., 2013).

The other main component of the yeast MIA pathway is the
FAD-dependant sulfhydryl oxidase Erv1 (Chacinska et al., 2004;
Mesecke et al., 2005). The human ortholog is known as ERV1,
ALR, or GFER (Lange et al., 2001; Di Fonzo et al., 2009). Mia40
and Erv1 function as a disulfide relay system to catalyze the
import of proteins into the IMS through an oxidative folding
process. This results in introduction of disulfide bonds into
the imported proteins, promoting their folding into their native
conformation and thereby trapping them in the IMS. Substrates
of the MIA pathway are translated cytosolically and pass through
the TOM complex in a reduced and unfolded state (Lu et al.,
2004; Sideris and Tokatlidis, 2007). During translocation these
substrates interact with Mia40, which acts as a trans site receptor
to drive protein import into the IMS (Milenkovic et al., 2007;
Sideris and Tokatlidis, 2007; Peleh et al., 2016).

The yeast Mia40 has an N-terminal transmembrane domain
that inserts the protein to the inner mitochondrial membrane
and exposes its C-terminal domain to the IMS (Chacinska
et al., 2004; Naoé et al., 2004; Terziyska et al., 2005). The
human MIA40 (or CHCHD4) lacks this N-terminal domain and
instead is found as a soluble protein of around 15 kDa in the
mitochondrial IMS (Hofmann et al., 2005) where it interacts with
the membrane anchored AIFM1 and this interaction facilitates
the import of MIA40 into the IMS (Hangen et al., 2015). The
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C-terminal region was recently demonstrated to be important
in maintaining the stability of the protein in the cytosol where
it can often reside for extended periods as a consequence of
slow import kinetics during AIFM1-mediated import (Murschall
et al., 2020). However, all Mia40 homologs contain a highly
conserved core domain of around 8 kDa that harbors six
conserved cysteine residues that are folded into a coiled-helix-
coiled-helix (CHCH) domain (Banci et al., 2009). The structure
of the human and yeast homologs was solved by NMR and
X-ray crystallography, respectively (Banci et al., 2009; Kawano
et al., 2009). The invariant cysteines in this domain form a
redox-active CPC motif that can readily switch between oxidized
and reduced states, followed by a twin CX9C motif that forms
two structural disulfide bonds. The CHCH domain folds to
form a characteristic hydrophobic cleft where substrates can
bind and interact with Mia40 (Banci et al., 2009; Sideris et al.,
2009). Most Mia40 substrates contain a hydrophobic sequence,
also known as an IMS-targeting signal (ITS, Sideris et al.,
2009) or alternatively termed the mitochondrial IMS-sorting
signal (MISS, Milenkovic et al., 2009). This is a 9 amino
acid internal peptide sequence that is necessary and sufficient
for IMS targeting of proteins to Mia40. Deletion of the ITS
results in a complete loss of import (Sideris et al., 2009). The
sequence aids the first interaction with Mia40 via hydrophobic
stacking (Milenkovic et al., 2009; Sideris et al., 2009). This initial
interaction orientates the substrate toward Mia40 to allow the
formation of a transient intermolecular disulfide bond between
the second cysteine of the redox active CPC motif of Mia40
and the docking cysteine of the ITS in the imported substrate
(Banci et al., 2009; Koch and Schmid, 2014b). This transient
disulfide bond is subject to a nucleophilic attack by another
cysteine in the substrate to form an intramolecular disulfide
bond. This promotes the release of Mia40 and the correct folding
of the protein, thereby trapping it in the IMS and completing
its import process.

The introduction of a disulfide into a substrate by Mia40 leaves
it in a reduced state and unable to oxidize any further imported
proteins. Thus, to maintain a functional MIA pathway, Mia40
needs to continually be re-oxidized by interaction with Erv1,
which contains three cysteine pairs that are highly conserved
(Mesecke et al., 2005). The FAD-binding catalytic core domain
has a CXXC redox-active disulfide (Cys130 – Cys133) and a
C-terminal CX16C structural disulfide (Cys156 and 179). A third
disulfide bond (Cys30 – Cys33) is present within the flexible
N-terminal of the protein, which is natively disordered and is
involved in the interaction with reduced Mia40 and the transfer
of electrons toward the redox active-site disulfide (Lionaki et al.,
2010; Banci et al., 2011a, Banci et al., 2013). From here electrons
are transferred to a final electron acceptor via the FAD cofactor
(Banci et al., 2012). Under aerobic conditions Erv1 can either
transfer electrons directly onto molecular oxygen which results
in the production of hydrogen peroxide within the IMS, or onto
cytochrome c, the mobile electron transfer protein that donates
electrons to CIV (Allen et al., 2005; Dabir et al., 2007; Daithankar
et al., 2009; Banci et al., 2012; Peker et al., 2021). Alternatively,
under anaerobic conditions the fumarate reductase Osm1 can be
used as an electron acceptor (Neal et al., 2017).

Intriguingly, Mia40 itself is a substrate of the MIA pathway
requiring interactions with endogenous Mia40 during its own
import, which occurs in three steps. First, Mia40 is inserted
through the Tim23 translocon in the inner mitochondrial
membrane. Next, the core domain of the protein is folded
through interactions with endogenous Mia40. Lastly, Mia40
interacts with Erv1 to oxidize the CPC motif to produce
functional Mia40 that can oxidize incoming substrates of the MIA
pathway (Chatzi et al., 2013).

The Small Tim Chaperones
The small Tim proteins that function as chaperones in the
IMS were the first discovered substrates of the MIA pathway,
interacting with Mia40 to control their redox-regulated import
(Chacinska et al., 2004). These small Tims possess non-cleavable
internal targeting signals (ITS) that harbor conserved cysteine
motifs to target them to the mitochondria (Milenkovic et al.,
2009; Sideris et al., 2009). The cysteines are arranged in a CX3C
motif, a classical substrate motif for Mia40 (Koehler, 2004).
The ITS signal directs the small Tims to the IMS where they
are imported by the MIA pathway through direct interaction
with Mia40 (Chacinska et al., 2004; Sideris et al., 2009). This
interaction results in the oxidation of the small Tims, leading to
the formation of intramolecular disulfide bonds and trapping the
proteins in the IMS.

The small Tims form hexameric protein complexes consisting
of either Tim9 – Tim10 or Tim8 – Tim13 with three subunits of
each Tim protein. Structural analysis of the complexes revealed
the subunits take on the form of an α-propellor with two helical
blades that radiate from a narrow central pore (Webb et al., 2006;
Beverly et al., 2008). The subunits are stabilized by the formation
of intramolecular and structural disulfide bonds. Within the
IMS these complexes act as chaperones to transport incoming
hydrophobic precursors across this compartment to the TIM22
complex for their insertion into the IMM. The helper of Tims 13
(Hot13p) was also shown to be involved in maintaining the small
Tims in their active conformation (Curran et al., 2004).

The presence of the redox-regulated disulfide machinery in the
IMS raises the question of a broader level of redox regulation
in this sub-compartment that may affect not just the MIA
pathway itself or import substrates for this pathway, but other
important proteins and process linked to the IMS. In the next
sub-sections, we will discuss in particular the redox regulation of
mitochondrial dynamics and the effect of redox control on the
IMS protease system. Both of these are critical for many functions
of mitochondria and highlight the broader ramifications of
mitochondria-specific redox control pathways.

Redox Regulation of Mitochondrial
Dynamics
Mitochondria undergo coordinated processes of fission and
fusion, known as mitochondrial dynamics, to regulate their
size, shape, and integrity. There are several key proteins
involved in the control of mitochondrial dynamics that
have been demonstrated to be redox-regulated. Mitofusin
proteins (Mfn1/Mfn2) are large GTPases that are implicated
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in mitochondrial fusion. This process has been shown to be
triggered by oxidative stress, characterized by an accumulation of
oxidized glutathione (GSSG), which in turn leads to the assembly
of higher order Mfn oligomers mediated by the formation
of disulfide bonds between conserved cysteine residues in the
C-terminal region (Shutt et al., 2012). This region has been
recently identified to be topologically located in the IMS and
the conserved Cys demonstrated to be redox sensitive (Mattie
et al., 2018). Redox regulation in this compartment mediates the
formation of disulfide bonds in the Mfn proteins thereby driving
oligomerization and triggering mitochondrial fusion. Therefore,
the redox state of the IMS is likely to play a role in controlling
mitochondrial dynamics.

ROS modulator 1 (ROMO1) was identified as a key regulator
of mitochondrial fusion, with knockout cells displaying increased
fragmented mitochondrial networks. ROMO1 is also involved in
the generation of ROS by complex III (CIII) of the ETC and can
form disulfide bridges to become incorporated into inactive high-
molecular weight complexes (Chung et al., 2006; Norton et al.,
2014). Disulfide formation occurs between the Cys15 and Cys79
residues in response to oxidative stress, inhibiting fusion and
maintaining a fragmented mitochondrial network (Norton et al.,
2014). More recently ROMO1 was found to be required for the
import of the human inner membrane YME1L protease (Richter
et al., 2019).

During mitochondrial fusion there is separate merging of
the outer and inner mitochondrial membranes. Fusion of inner
mitochondrial membranes involves heterotypic interactions
between the dynamin-like GTPase optic atrophy 1 (OPA1) and
cardiolipin (Ban et al., 2017; Liu and Chan, 2017). Mammalian
OPA1 is an inner membrane associated protein that exists in
either a long form (L-OPA1) or soluble short-form (S-OPA1)
conformation (Del Dotto et al., 2018). Conversion of OPA1
between these two isoforms occurs as a result of proteolytic
cleavage of L-OPA1 that is catalyzed by the OMA1 and YME1L
proteases (Anand et al., 2014). A balance of both the long-
and short- isoforms of OPA1 depends on these proteases and is
required to maintain normal mitochondrial morphology.

Redox Regulation of Proteases in the
IMS
YME1L, the human ortholog of yeast Yme1, is an integral
membrane protein with its C-terminal domain exposed to
the intermembrane (Stiburek et al., 2012). Yme1 is a subunit
of the inner membrane anchored oligomeric complex known
as the i-AAA protease that displays both ATP-dependent
proteolytic and chaperone-like activities in the IMS (Leonhard
et al., 1996, 1999; Schreiner et al., 2012). Yme1 is involved
in the degradation of misfolded inner membrane proteins
and more recently shown to be implicated in the clearance
of the small Tim9 and Tim10 IMS chaperones (Leonhard
et al., 2000; Baker et al., 2012). YME1L is rapidly degraded
by OMA1, an ATP-independent protease, upon oxidative stress
conditions (Rainbolt et al., 2015). This suggests that YME1L
is a stress-sensitive protease and thus degradation of YME1L
under oxidative stress conditions may provide a mechanism

to segregate damaged mitochondria from the healthy pool,
by restricting the ability of YME1L to regulate the fusion
activity of OPA1 through its degradation. More recently it
was demonstrated that YME1L adopts unique conformations
depending on the ATP and ROS concentrations (Brambley et al.,
2019). Under oxidative stress conditions, YME1L undergoes
a conformational change, exposing OMA1 recognition sites
that were previously unreachable in basal conditions, further
supporting the mechanism of YME1L degradation by OMA1
during oxidative stress (Brambley et al., 2019).

Oma1, responsible for mediating OPA1 degradation, is an
IMS facing ATP-independent metalloprotease embedded in the
inner mitochondrial membrane displaying enhanced activity in
response to stress conditions (Käser et al., 2003; Head et al., 2009).
Oma1 is synthesized as a pre-pro-protein of 60 kDa that upon
import into the mitochondria is proteolytically processed to a
mature 40 kDa form (Head et al., 2009). The protein is normally
dormant under normal physiological conditions but becomes
rapidly activated upon changes in membrane potential, chronic
hyperpolarization and oxidative stress (Bohovych et al., 2014).
The 40 kDa Oma1 is proposed to be a stress-sensitive pro-protein
that undergoes further autocatalytic cleavage in response to stress
insults to produce the active form of the protein that is involved
in proteolysis of substrates (Baker et al., 2014).

Oma1 exists in a semi-oxidative state in both yeast and
mammalian cell types and the activity and stability of the homo-
oligomeric complex was found to be altered in a redox sensitive
manner. Two evolutionary conserved cysteine residues, Cys272
and Cys332, which are exposed to the IMS can form a disulfide
bond that likely influences the stability of the oligomeric complex.
It is proposed that the formation of this disulfide is controlled
by the redox status of the cysteine residues which act as a redox
sensor to influence the proteolytic activity of Oma1 in response to
deviations from normal cell homeostasis (Bohovych et al., 2019).

A subset of IMS-located proteases has been shown to be
involved in the proteolytic control of ETC assembly and stability,
including the m-AAA, i-AAA and Oma1. These enzymes
control the proteolysis of unassembled, misfolded OXPHOS
subunits to prevent the formation of dysfunctional ETC subunits
(Bohovych et al., 2015). Oma1 in particular is involved in the
degradation of non-hemylated cytochrome c oxidase subunit 1
(Cox1) (Bestwick et al., 2010b; Khalimonchuk et al., 2012). In
human mitochondria, the proteolytic activity of YME1L was
shown to be involved in preventing the accumulation of non-
assembled respiratory chain subunits including COX4, MT-ND1
and NDUFB6 (Stiburek et al., 2012).

In S. Cerevisiae, Atp23 was identified as an IMS protease
required for the processing of the mtDNA-encoded subunit 6 of
the mitochondrial ATPase (Atp6) (Osman et al., 2007). Atp23
contains ten cysteine residues, that during the import and folding
into mitochondria form five disulfide bonds. The reduced Atp23
precursor is translocated into the IMS where Mia40 is then
involved in introducing the disulfide bonds to promote folding
of Atp23 into its mature conformation (Weckbecker et al., 2012).

The morphology of the inner membrane is regulated by
the mitochondrial contact site and cristae organization system
(MICOS) complex (Harner et al., 2011). Mic19, a peripheral
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inner membrane component of this complex is involved in the
maintenance of the architechture of the inner membrane. Human
MIC19 has five cysteine residues, four of which are arranged in a
twin CX9C motif in the coiled-coil helix coiled-coil helix fomain,
a typical motif for Mia40 substrates. This domain was shown to
be essential for import of MIC19 into mitochondria and MIC19
demonstrated to form a transient disulfide-bond intermediate
involving its Cys193 residue (Darshi et al., 2011, Darshi et al.,
2012). Yeast Mic19, however, lacks the typical CX9C motif, and
instead contains two conserved cys residues in a CX10C motif.
Yeast Mic19 was identified in two different redox states in the
mitochondria. The oxidized form displays an intermolecular
disulfide with Mic60, which is not essential for its integration into
the complex, but does play a role in the stability of the MICOS
complex (Sakowska et al., 2015). This suggests that Mic19 may
be a redox-sensor regulator of MICOS function and, therefore, of
maintenance of inner membrane morphology.

REDOX-REGULATION OF OXPHOS
COMPONENTS AND BIOGENESIS
FACTORS

Many of the import, dynamics and redox-regulated processes
mentioned so far culminate in the biogenesis of the oxidative
phosphorylation (OXPHOS) system. This is physically located
in the mitochondrial inner membrane (therefore in contact
to the IMS on the one side) and it is composed of the four
complexes (complexes I-IV) of the respiratory or ETC, which
transfer reducing equivalents from NADH or FADH2 to oxygen,
reducing it to water, using the two mobile electron carriers:
coenzyme Q (CoQ) and cytochrome c. Electron transfer through
complexes I, III and IV is coupled with proton pumping
from the matrix to the IMS. This electrochemical gradient
generates the protonmotive force (pmf) employed by the ATP
synthase (or complex V) for the synthesis of the majority of
the cellular ATP in aerobic eukaryotes (Wikström et al., 2015).
Complexes I, III, IV, and V are large multimeric enzymes
whose structures span the IMM, with subunits that protrude
either in the matrix, the IMS or both (Letts and Sazanov,
2017). The processes of assembly and maturation of these
complexes are intricate and require the action of a significant
number of proteins, generically called assembly factors, that
are not part of the mature complex but are necessary for
ETC biogenesis. The structure and assembly of the respiratory
complexes seem to be conserved for the most part between yeast
and humans, except for the absence of a multimeric, and proton
pumping complex I in S. cerevisiae (Signes and Fernandez-
Vizarra, 2018). There is an additional level of complexity in the
organization of the ETC, which is the formation of supercomplex
structures. In yeast, all of CIV is associated with the invariantly
dimeric CIII (CIII2) in III2IV1-2 stoichiometries (Hartley et al.,
2019; Rathore et al., 2019). In mammalian mitochondria, CI,
CIII2 and CIV associate with different stoichiometries into
supercomplexes, in which CIII2 is always present, that coexist
with the individual non-associated complexes (Letts and Sazanov,
2017; Lobo-Jarne and Ugalde, 2018).

Several structural subunits and assembly factors directly
involved in OXPHOS biogenesis are Cys-containing proteins
located in the IMS and, therefore, potentially subject to
redox regulation (Habich et al., 2019b; Reinhardt et al.,
2020). In addition, many of these are MIA40/CHCHD4
substrates (Table 1).

The Cys residues in these proteins are important for their
biogenesis (i.e., their import and stability in the IMS), but in
some cases also for their function (Gladyck et al., 2021). Most
members of this group of proteins are also interesting from a
medical point of view, as pathological variants in several genes
encoding them have been found associated with respiratory
chain deficiency and mitochondrial disease (Fernandez-Vizarra
and Zeviani, 2021). Interestingly, the majority of IMS-located
assembly factors appear to be involved in the maturation of CIV
(Khalimonchuk and Winge, 2008; Longen et al., 2009; Bourens
et al., 2013; Timón-Gómez et al., 2018; Gladyck et al., 2021). In
addition to these, COA8 is a particular case of a CIV assembly
factor, located in the IM facing the matrix, containing Cys
residues within and immediately after its MTS and whose import
and/or stability appears to be redox regulated (Signes et al., 2019).

Role of IMS Proteins in Complex I
Biogenesis
The MIA pathway has been thoroughly studied using the yeast
S. cerevisiae as a reference model (Chatzi and Tokatlidis, 2013).
However, there is no multimeric complex I (CI) present in this
unicellular organism, having instead three monomeric NADH
dehydrogenases denominated Ndi1, Nde1, and Nde2 (Velázquez
and Pardo, 2001). Nonetheless, the strong dependence of the
mammalian CI biogenesis on the MIA pathway was made
evident by the fact that Apoptosis Inducing Factor Mitochondria
Associated 1 (AIFM1) deficiency, which was discovered to be
an important interactor of CHCHD4 in the IMS (Hangen
et al., 2015). AIFM1 was originally discovered as a caspase-
independent effector of cell death when migrating from the
mitochondrion to the nucleus (Susin et al., 1999). However,
it soon became clear that AIFM1 defects were related with a
strong mitochondrial CI deficiency (Vahsen et al., 2004; Bénit
et al., 2008). Subsequent studies revealed that loss of AIFM1
function produced a more generalized combined respiratory
chain deficiency in mouse and human cells (Ghezzi et al., 2010;
Delavallée et al., 2020), but the full ramifications of the AIFM1-
CHCHD4 interaction remain to be resolved (Reinhardt et al.,
2020). More recently and using Drosophila melanogaster models,
it was suggested that the dependency of CI biogenesis on AIFM1
was not direct but a consequence of decreased Mic19 levels
instead (Murari et al., 2020).

More specifically, four CI supernumerary subunits, i.e.,
outside the fourteen evolutionarily conserved core subunits, are
located in the IMS (Zhu et al., 2016). These are NDUFA8,
NDUFB7, NDUFS5 and NDUFB10 (Table 1 and Figure 3), the
first three subunits are CHCHD4 substrates containing typical
twin Cx9C motifs (Szklarczyk D. et al., 2011; Fischer et al.,
2013). NDUFB10 is also imported into the IMS via CHCHD4
(Friederich et al., 2017), although it appears to contain two extra
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TABLE 1 | IMS-located Cys-rich structural subunits of the ETC complexes and assembly factors.

Name Molecular role Target complex Contains twin
Cx9C motifs?

MIA40/CHCHD4
substrate?

Pathological
variants identified
to date?

References

NDUFA8 Structural CI Yes Yes Yes Szklarczyk R. et al., 2011; Fischer
et al., 2013; Zhu et al., 2016; Tort
et al., 2020; Yatsuka et al., 2020

NDUFB7 Structural CI Yes Yes No Szklarczyk et al., 2012; Zhu et al.,
2016

NDUFB10 Structural CI No Yes Yes Zhu et al., 2016; Friederich et al.,
2017; Helman et al., 2021

NDUFS5 Structural CI Yes Yes No Szklarczyk et al., 2012; Zhu et al.,
2016

NDUFAF8? Assembly CI Yes Not known Yes Floyd et al., 2016; Alston et al.,
2020

C9orf72 Assembly CI No Yes Yes Wang et al., 2021

UQCRH/ Qcr6 Structural CIII Yes Yes No Vögtle et al., 2012

COX6B*/Cox12 Structural CIV Yes Yes Yes Massa et al., 2008; Szklarczyk
et al., 2012; Abdulhag et al., 2015

CMC1 Assembly CIV Yes Yes No Horn et al., 2008; Bode et al.,
2015; Bourens and Barrientos,
2017a

CMC2 Assembly CIV Yes Yes No Horn et al., 2008; Longen et al.,
2009

COA4/CMC3/CHCHD8 Assembly CIV Yes Yes No Longen et al., 2009; Bestwick
et al., 2010a; Bode et al., 2013;
Fischer et al., 2013

COA5/ Pet191 Assembly CIV Yes Yes? Yes Khalimonchuk et al., 2008;
Huigsloot et al., 2011

COA6/C1orf31 Assembly CIV Yes Yes Yes Baertling et al., 2015; Stroud et al.,
2015; Ghosh et al., 2016; Maghool
et al., 2020; Pacheu-Grau et al.,
2020

COA7 Assembly CIV No Yes Yes Kozjak-Pavlovic et al., 2014; Lyons
et al., 2016; Higuchi et al., 2018;
Mohanraj et al., 2019

COX11 Assembly CIV No No No Tzagoloff et al., 1993; Hiser et al.,
2000; Carr et al., 2002; Banci et al.,
2004

COX17 Assembly CIV Yes Yes No Moira Glerum et al., 1996a;
Amaravadi et al., 1997; Beers et al.,
1997; Horng et al., 2004; Banci
et al., 2008a; Oswald et al., 2009

COX19 Assembly CIV Yes Yes No Nobrega et al., 2002; Rigby et al.,
2007; Bode et al., 2015

CHCHD7/ Cox23 Assembly CIV Yes Yes No Barros et al., 2004; Banci et al.,
2012; Dela Cruz et al., 2016

SCO1 Assembly CIV No No Yes Moira Glerum et al., 1996b; Valnot
et al., 2000; Leary et al., 2004,
2007, 2009

SCO2 Assembly CIV No No Yes Moira Glerum et al., 1996b;
Papadopoulou et al., 1999; Jaksch
et al., 2000; Leary et al., 2004,
2007, 2009

*Two isoforms of COX6B exist: the ubiquitously expressed COX6B1 and the testis specific COX6B2 (Sinkler et al., 2017).

disulfide bonds, all of which most probably contribute to the
stability of the complex (Zhu et al., 2016). In fact, lack of any of
these four subunits is detrimental to the assembly of CI (Stroud
et al., 2016). In accordance, a pathological variant in a conserved
Cys residue in NDUFB10 and those in NDUFA8 predicting

changes in conserved Arg residues located at the vicinity of the
CX9C motifs result in the structural loss of CI (Friederich et al.,
2017; Tort et al., 2020; Yatsuka et al., 2020), reinforcing the
importance of these domains for the import and/or stability of
these IMS subunits and, consequently, that of the whole complex.
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FIGURE 3 | Schematic representation of the MIA40 protein substrates located in the IMS involved in the assembly of complexes I and III2. Each one of the IMS CI
structural subunits, NDUFA8, NDUFS5, NDUFB10, and NDUFB7 belongs to a different module (ND1, ND2, ND4, and ND5, respectively) of the membrane arm,
responsible for proton pumping. The peripheral arm of CI is composed of the quinone binding (Q) and NADH dehydrogenase (N) functional modules. UQCRH, Qcr6
in yeast, is an IMS-located supernumerary subunit.

NDUFAF8 is a CI assembly factor that was identified through
proteomic studies as an interactor of other CI-related proteins
and then determined to be encoded by a mitochondrial disease
gene (Floyd et al., 2016; Alston et al., 2020). Sequence analysis
predicted its IMS localization due to the presence of twin
CX9C motifs. However, even though the exact submitochondrial
localization has not been proven experimentally, it is likely that
NDUFAF8 is located in the matrix due to its strong interaction
with NDUFAF5, a well-known matrix protein (Floyd et al., 2016;
Alston et al., 2020).

Defects in C9orf72 have been associated with the development
of amyotrophic lateral sclerosis and frontotemporal dementia
(ALS/FTD) but the molecular functions of this protein are still
unclear (Braems et al., 2020). Very recently it was determined
that a proportion of C9orf72 is imported into the mitochondrial
IMS via AIFM1/CHCHD4 where it binds to the prohibitin
complex and the m-AAA protease (Merkwirth and Langer, 2009)
regulating the proteolysis of the CI assembly factor TIMMDC1
(Guarani et al., 2014) and, consequently, the amounts of fully
assembled CI (Wang et al., 2021).

Role of IMS Proteins in Complex III
Biogenesis
Qcr6 in yeast and UQCRH in mammals, is the only structural
component of the ten subunits that constitute the cytochrome bc1
complex (or complex III; CIII2) localized completely in the IMS
and containing Cx9C motifs (Iwata et al., 1998; Hunte et al., 2000;
Szklarczyk R. et al., 2011; Vögtle et al., 2012). Qcr6/UQCRH

is a supernumerary subunit, not involved in the catalytic
Q-cycle, whose function is still unclear. The first observations
in 1qcr6 strains showed normal growth in non-fermentable
carbon sources and CIII2 activity. However, further investigations
revealed a temperature-sensitive petite phenotype associated with
a defect in the assembly of the bc1 complex and lack of maturation
of cytochrome c1 (Cyt1), one of the three catalytical subunits
(Yang and Trumpowers, 1994). Using different deletion strains,
including that of Qcr6, it was determined that the subunit was
incorporated on its own in the middle states of the assembly
pathway (Zara et al., 2009). However, proteomic studies using a
human cell line with a strong defect in CIII2 assembly, revealed
the formation of intermediates containing UQCR10, cytochrome
c1 (CYC1) and most probably UQCRH as well (Protasoni et al.,
2020). One can speculate that Qcr6/UQCRH would somehow
contribute to the maturation of CYC1 before it is incorporated
into nascent CIII2 also in human mitochondria. This possible
function and the involvement of a redox regulatory mechanism
through the Cys residues present in UQCRH, remains an
interesting aspect to investigate.

Role of IMS Proteins in Complex IV
Biogenesis
Of all the ETC complexes, cytochrome c oxidase (COX) or
complex IV (CIV) is probably the most heavily dependent on
Cys-rich redox regulated IMS proteins for its biogenesis and
function. COX catalysis, oxidizing cytochrome c, and reducing
molecular oxygen, involves the presence of two heme a moieties
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and one copper (CuB center) ion in Cox1/MT-CO1, and two
Cu ions (CuA center) in Cox2/MT-CO2 (Wikström et al., 2018).
The processes of metal cofactor insertion, i.e. hemylation and
Cu delivery, occur in the IMS and therefore, a significant
number of Cys-rich proteins located in this compartment seem
to be involved in these processes, especially in the formation
of the CuA site, as well as in the stabilization of these two
COX subunits in early assembly stages (Khalimonchuk and
Winge, 2008; Jett and Leary, 2018; Timón-Gómez et al., 2018;
Gladyck et al., 2021; Table 1 and Figure 4). In addition to
all the assembly factors that will be described below, there is
one structural subunit exclusively localized in the IMS, which
is yeast Cox12 or human COX6B1 (ubiquitous isoform) or
COX6B2 (testis-specific isoform), containing one CX9C and
one CX10C motif (Tsukihara et al., 1996). The first mammalian
CIV structure was in dimeric form, appearing COX6B1 to
serve as a bridge and stabilize the COX dimer, as well as
modulating the interaction with cytochrome c (Kadenbach and
Hüttemann, 2015). However, it was recently determined that
the monomer harboring COX6B1, could also be isolated and
that it displayed high activity (Shinzawa-Itoh et al., 2019). Apart
from a stabilization role, a function in Cu delivery to the active
center of Cox2/MT-CO2 was also proposed for Cox12/COX6B1
(Ghosh et al., 2016). In any case, this structural subunit is clearly
important for completion of the assembly process and for the
activity of the enzyme, as mutations destabilizing COX6B1 or
Cox12 result in assembly defects and COX deficiency in human
and yeast (Massa et al., 2008; Abdulhag et al., 2015).

Cmc1 was firstly identified in yeast as an IMS-located
protein containing twin CX9C motifs and imported by the MIA

pathway that was necessary for COX expression (Horn et al.,
2008; Bourens et al., 2012; Fischer et al., 2013). Later, it was
determined that human CMC1 was necessary for the stabilization
of MT-CO1, being released from the first intermediate of the
MT-CO1 module once this subunit joins the early nuclear-
encoded subunits COX4 and COX5A (Bourens and Barrientos,
2017a). The exact function of CMC1 is still not clear but
it was proposed to either bind Cu itself or to somehow
assist the process of MT-CO1 metalation (Horn et al., 2008;
Bourens and Barrientos, 2017a).

Cmc2 was identified in yeast via a screening of all the
genes encoding for CX9C motif-containing proteins (Longen
et al., 2009). Deletion of Cmc2 produced a respiratory-deficient
phenotype associated with low COX activity (Longen et al.,
2009; Horn et al., 2010). Cmc2 is homologous to and interacts
with Cmc1, cooperating in COX assembly with a different non-
overlapping molecular role. The human and C. elegans CMC2
orthologs contain the conserved Cys residues, are localized in
mitochondria and appear to be involved in CIV biogenesis as well
(Horn et al., 2010).

Cmc3 is another member the group of Cx9C proteins
identified in yeast, also related with COX biogenesis (Longen
et al., 2009). This protein was later renamed Coa4 (cytochrome
c oxidase assembly number 4) and its involvement in CIV
assembly was confirmed being identified as a genetic suppressor
of mutations in Shy1 modeling those found in the human
ortholog SURF1 and associated with Leigh syndrome (Petruzzella
et al., 1998; Zhu et al., 1998; Bestwick et al., 2010b). The twin
CX9C motives in Coa4/Cmc3 are highly conserved in the human
protein, which is known also as CHCHD8, being also imported

FIGURE 4 | Schematic representation of the MIA40 protein substrates located in the IMS involved in the assembly of complex IV (COX). The proteins involved in the
stabilization and metalation of MT-CO1 and MT-CO2 are indicated in red and blue color, respectively. COX17 is the archetypal twin CX9C protein, mediating copper
(Cu) delivery to the active centers of both MT-CO1 and MT-CO2. The exact molecular role of COA5/Pet191 and COA7 is still unknown. COX6B, Cox12 in yeast, is
the only COX subunit fully localized in the IMS.
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into the IMS using the oxidative folding pathway (Fischer
et al., 2013), although its direct relationship with human CIV
biogenesis has not been proven experimentally yet.

Pet191 was also determined to be important for COX activity
in a screen for respiration deficient yeast strains (McEwen et al.,
1993). It contains a variation of the twin Cx9C motifs (i.e., two
Cx9C and one Cx10C) and there are still conflicting evidences to
whether its import in the IMS is mediated by Mia40 and Erv1
or not (Khalimonchuk and Winge, 2008; Bragoszewski et al.,
2013). Although its involvement in COX biogenesis was clearly
proven, Pet191 is not a Cu-binding protein (Khalimonchuk
and Winge, 2008). C2orf64, also known as COA5, is the
human ortholog of S. cerevisiae Pet191 (Szklarczyk et al., 2012).
A pathological variant in C2orf64 was associated with COX
activity and assembly defects. Although the exact molecular role
of this protein remains unknown, its levels are increased in cells
where the MT-CO2 copper chaperones SCO1 and SCO2 are
defective (Leary et al., 2013). In addition, the pattern of CIV
subassemblies accumulated in the patient-derived cultured cells
indicated a function in the early steps of assembly (Huigsloot
et al., 2011).

Coa6 in yeast is a COX assembly factor as well as an IMS-
localized protein and a substrate of the MIA import pathway
(Vögtle et al., 2012). The human and zebrafish orthologs also
contain the conserved CX9CXnCX10C motifs and have been
proven to be important for the correct biogenesis of CIV
(Szklarczyk et al., 2012; Ghosh et al., 2014; Baertling et al., 2015;
Pacheu-Grau et al., 2015; Stroud et al., 2015). The fact that
Cu supplementation restored the growth of defective strains in
fermentative substrates, the fact that COA6 binds Cu in vitro,
together with the connection of the protein with SCO1 and
SCO2 and with MT-CO2 maturation, led to the idea that COA6
was a Cu-binding protein involved in the process of delivery of
this metal to the CuA site (Ghosh et al., 2014, 2016; Baertling
et al., 2015; Pacheu-Grau et al., 2015; Stroud et al., 2015; Bourens
and Barrientos, 2017b; Aich et al., 2018). However, more recent
studies have suggested that COA6 is a thiol-reductase binding
SCO1 and/or SCO2 and catalyzing the reduction of critical Cys
residues in SCO1 and/or SCO2 as well as MT-CO2 allowing
the transfer and binding of Cu to MT-CO2 (Soma et al., 2019;
Pacheu-Grau et al., 2020). The exact COA6 binding partners and
mechanisms are still not completely clear as the interpretation
of the results varied in different laboratories depending on the
experimental approach used (Maghool et al., 2020).

COA7/C1orf63/SELRC1 is a protein only present in metazoa
that was originally studied as a Mitofilin interactor whose
decreased levels were associated with defects in the respiratory
chain (Kozjak-Pavlovic et al., 2014). Although one report
localized this protein within the mitochondrial matrix (Lyons
et al., 2016), more detailed biochemical analyses determined
its IMS localization (Kozjak-Pavlovic et al., 2014; Mohanraj
et al., 2019). Although it does not contain the typical Cx3C
or Cx9C motifs, it is a Cys-rich protein that it is imported
inside the mitochondria via CHCHD4 (Mohanraj et al., 2019).
The first indication that COA7 is involved in COX biogenesis
came from the fact that pathological variants in the COA7 gene
are associated with mitochondrial CIV deficiency in humans

(Lyons et al., 2016; Higuchi et al., 2018; Ban et al., 2021). Recent
data suggest that it is a haem-binding protein involved in the early
stages of COX assembly (Formosa et al., 2021). The right Cys
composition in COA7 was shown to be crucial for IMS import
efficiency and for its stability (Mohanraj et al., 2019).

Cox11 deficiency in yeast results in decreased COX levels
(Tzagoloff et al., 1990). Originally proposed to be involved in
heme a synthesis (Tzagoloff et al., 1993) it is clear now that it is a
Cu binding protein involved in the formation of the CuB center
in Cox1, through conserved Cys residues in its Cu-binding motif
(Hiser et al., 2000; Carr et al., 2002; Banci et al., 2004). A gene
encoding a protein showing high homology to yeast Cox11 is
present in the human genome (Petruzzella et al., 1998) and
although the direct involvement of COX11 in metalation human
CIV assembly has not yet been proven, it was shown to interact
with CIV subunits and assembly factors (Vidoni et al., 2017).

Cox17 is the archetypal twin CX9C IMS protein involved in
Cu binding in mitochondria, and it has been extensively studied
at the functional and structural levels both in yeast and human
systems (Gladyck et al., 2021). Cox17 plays a fundamental role
in COX biogenesis by donating Cu to Sco1 for metalation of
Cox2 on one side, and to Cox11 for the formation of the CuB
center, on the other (Horng et al., 2004; Cobine et al., 2006,
2021). The highly conserved residues contained in the Cx9C
motifs and in the Cu binding motif are necessary for import
using the MIA system, binding of Cu, oligomerization and
promoting CIV assembly (Heaton et al., 2000, 2001; Palumaa
et al., 2004; Mesecke et al., 2005; Banci et al., 2008a,b, 2011b).
Although Cox17 is found both in the IMS and the cytosol and
for that reason it was proposed to act as a Cu shuttle to the
inside of mitochondria (Beers et al., 1997), other investigations
point out to the fact that the only active partially oxidized
form of Cox17 is the one present in the IMS (Maxfield et al.,
2004; Palumaa et al., 2004; Banci et al., 2008b). COX17 is
also an essential protein in mammals as knocking-out the
mouse gene leads to embryonic lethality (Takahashi et al., 2002).
Human cell lines with knock-down expression of COX17 display
decreased amounts of MT-CO1 and MT-CO2 together with the
accumulation of assembly intermediates containing MT-CO1 but
lacking MT-CO2 (Oswald et al., 2009; Vanišová et al., 2019).
Curiously, the proportion of CIV associated with complexes I
and III within the supercomplexes was more sensitive to the
loss of COX17 that the “free” complex (Oswald et al., 2009).
In addition, intramitochondrial Cu amounts were reduced in
human cells where COX17 expression was stably knocked down
(Vanišová et al., 2019). All in all, these observations point
out to a completely conserved function of COX17 between
yeast and humans.

The amino acid sequence of Cox19 is homologous to that
of Cox17, containing the twin CX9C motifs but lacking the
additional Cys residues of the Cu binding domain (Gladyck
et al., 2021). As indicated by its name it is also a necessary
factor for COX biogenesis (Nobrega et al., 2002). Similarly,
the yeast and human proteins also localize both in the cytosol
and mitochondria, being the steady-state levels and distribution
of COX19 Cu-dependent (Nobrega et al., 2002; Leary et al.,
2013). The import into the IMS is mediated by Mia40/CHCHD4
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(Fischer et al., 2013) and Cox19 also shows Cu binding properties
in vitro (Rigby et al., 2007), whereas, in vivo Cu binding by
Cox19 appears to be less likely. COX19 interacts with COX11
in a redox regulated manner, most likely to keep the Cu-binding
Cys residues of COX11 reduced and, therefore, in an active form
(Bode et al., 2015; Cobine et al., 2021).

Cox23 was again identified in S. cerevisiae as a protein
necessary for COX biogenesis showing high homology to Cox17
(Barros et al., 2004) with a potential function in Cox1 maturation
(Dela Cruz et al., 2016). Structural analysis of the human
homolog CHCHD7/COX23, predicted the presence of an ITS
and the dependence on MIA40 for its folding creating the typical
disulfide bridges between the twin CX9C motifs (Banci et al.,
2012). Interestingly, the levels of human COX23 decrease when
the Cu binding proteins SCO1 and SCO2 are defective or in the
presence of a Cu chelating agent (Leary et al., 2013).

SCO1 and SCO2 are not members of the CHCHD family,
but they are IM tethered proteins facing the IMS containing Cys
residues important for Cu binding, essential for their function in
the metalation of MT-CO2 (Nittis et al., 2001; Leary et al., 2004).
As pointed out above, there is clearly an interplay between SCO1
and SCO2 and the twin CX9C motif-containing chaperones
involved in Cu delivery to the COX active sites, and this is
illustrated by the fact that yeast Sco1 and Sco2 were originally
identified as suppressors of Cox17 deficiency (Moira Glerum
et al., 1996b). However, contrary to Sco1, the lack of Sco2 did
not affect COX (Moira Glerum et al., 1996b). This differs from
human mitochondria, where defects in both SCO1 and SCO2
result in CIV deficiency and pathological mutations in both
these genes are associated with manifestations of mitochondrial
diseases (Papadopoulou et al., 1999; Jaksch et al., 2000; Valnot
et al., 2000; Leary et al., 2004; Fernandez-Vizarra and Zeviani,
2021). In human cells, SCO1 and SCO2 have non-overlapping
cooperative roles in MT-CO2 maturation, where SCO2 acts
upstream of SCO1 oxidizing its Cu-binding Cys residues during
the process of Cu delivery to MT-CO2 (Leary et al., 2004,
Leary et al., 2009). The importance of these processes not only
for COX biogenesis but for other aspects of cellular health,
is pointed out by the fact that functional SCO1 and SCO2
are required to maintain Cu homeostasis (Leary et al., 2007;
Cobine et al., 2021).

REACTIVE OXYGEN
SPECIES-REGULATED ASSEMBLY AND
TURNOVER OF THE ETC COMPLEXES

The production of ROS is inherent to the aerobic metabolic
routes located in mitochondria (Murphy, 2009; Brand, 2016).
These ROS are mainly superoxide (O2

−), the majority of which
is produced at the levels of complexes I and III (Brand,
2010, 2016), which is subsequently dismutated to hydrogen
peroxide (H2O2), and the highly reactive and unstable hydroxyl
radical (OH), produced through the Fenton reaction (Lambert
and Brand, 2009). Mitochondria also produce other redox
active compounds such as reactive nitrogen species (RNS),
mainly nitric oxide (NO) (Ghafourifar and Cadenas, 2005),

or H2S (Kimura et al., 2010; Paul et al., 2021), which induce
modifications of Cys in proteins, modulating their activities
(Habich et al., 2019b). However, discussion of these species
is beyond the scope of this review, which focuses on ROS
directly produced by the ETC (Figure 5), due to electrons
slipping off of the system and escaping from the redox
active centers to partially reduce oxygen. The idea that ROS
are only harmful molecules leading to detrimental effects for
the cell and causing different diseases and aging, is now
changing (Scialò et al., 2017; Ji and Yeo, 2021). Nowadays,
ROS are recognized as signaling molecules mediating a myriad
of cellular responses (Holmström and Finkel, 2014; Reczek
and Chandel, 2015). However, in parallel, cells have had to
develop antioxidant defense systems to protect themselves from
ROS overaccumulation and oxidative damage, whilst these
antioxidant systems themselves might be involved in the ROS-
mediated signaling as well (Holmström and Finkel, 2014; Reczek
and Chandel, 2015). Consequently, a correct balance between
ROS production and scavenging is important to ensure the
appropriate cellular responses while preventing oxidative stress
(Ji and Yeo, 2021). In fact, a moderate production of ROS
is the basis of the phenomenon called “mitohormesis” leading
to a stress adaptive response and ultimately to improved
mitochondrial function and life extension (Schulz et al., 2007;
Palmeira et al., 2019). In addition, it is becoming evident that
ROS produced in the mitochondria play an important role
in mediating mitochondrial biogenesis to compensate for ETC
dysfunction (Dogan et al., 2018).

Superoxide radicals produced by CIII2 and glycerol-3-
phosphate dehydrogenase (GPDH) are generated in both sides
of the IM (the IMS and the matrix), whereas, all the other
sites produce ROS in the matrix (Brand, 2010; Figure 5). In
addition, ALR (Erv1) seems to be a significant contributor of
O2

− radicals within the IMS (Daithankar et al., 2012). O2
−

produced in the matrix side is dismutated to H2O2 by the
mitochondrial Mn superoxide dismutase (SOD2) and can then
diffuse to the cytosol (Boveris et al., 2006; Murphy, 2009),
whereas, that released into the IMS can be transported through
voltage-dependent ion channels into the cytosol (Han et al.,
2003; Muller et al., 2004). Once in there, the Cu,Zn superoxide
dismutase (SOD1) converts it to H2O2. SOD1 is dually localized
in the cytosol and the IMS in mammals and yeast, and the
IMS pool appears to be inactive in basal conditions and
activated by modulating its redox state (Iñarrea et al., 2005,
2007). H2O2 in the cytosol is then able to modify the redox
state of key Cys residues in target proteins, modulating the
function of factors such as signaling regulatory kinases and
phosphatases or transcription factors (Holmström and Finkel,
2014; Reczek and Chandel, 2015).

There are three aspects in which ROS production in
mitochondria may influence directly the biogenesis and
function of the ETC complexes: (1) by generating oxidation
in the IMS and inducing changes in the redox state of key
Cys residues and thus, in the structure and function of
the redox-sensitive biogenesis factors; (2) the role of ROS
produced inside mitochondria as signaling molecules to
regulate ETC biogenesis; and (3) ROS-mediated protease
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FIGURE 5 | Main sites of ROS generation by the ETC and possible pathways of ROS-mediated regulation of mitochondrial biogenesis. Complex I (CI) represented in
blue, generates superoxide (O2

−) both via forward electron transfer (FET) or reverse electron transfer (RET) from a highly reduced coenzyme Q (Q) pool and high
membrane potential. Two other prominent sites of O2

− production are the two Q binding sites in CIII2 (Qo and Qi). O2
− is dismutated to hydrogen peroxide (H2O2)

by the two differently localized superoxide dismutases SOD1 and SOD2. See main text for details.

activation inducing the degradation of components of
the ETC complexes.

Redox Homeostasis in the IMS and
Regulation of ETC Biogenesis
Given the essentiality of the Cys-containing subunits and
assembly factors of the ETC complexes, a correct redox
homeostasis in the IMS is crucial for the biogenesis of the
respiratory complexes. Thus, it is important to maintain the
redox sensitive residues in the correct oxidation state for import
and retention in the IMS, as well as for protein function
(Habich et al., 2019a; Dickson-Murray et al., 2021). Considering
the number of redox regulated IMS-located factors involved,
this is particularly relevant for the assembly and metalation of
CIV (Khalimonchuk and Winge, 2008; Jett and Leary, 2018).
Although there are still many open questions as to how the
IMS maintains its redox homeostasis (Dickson-Murray et al.,
2021), it is clear that it contains several systems that ensure
it, having glutathione as a central component (Calabrese et al.,
2017). One such mechanism for maintaining homeostasis in this
compartment is the retro-translocation of reduced proteins back
into the cytosol through the Tom40 import pore protein. This

provides a means to regulate the abundance of IMS proteins
either in response to various changes in cellular physiology or for
the removal of misfolded proteins by presenting them to protein
quality control machineries located in the cytosol (Bragoszewski
et al., 2015). Surprisingly, the IMS is not as oxidizing as one
would expect, being the glutathione pools as highly reduced in
yeast and human mitochondria as in the cytosol (Kojer et al.,
2012; Fischer et al., 2013). In such a reducing environment, the
essential oxidative folding pathway is maintained by limiting
glutaredoxin (Grx) activity in the IMS (Kojer et al., 2015). As
mentioned before, the IMS, where most of the Cys-rich redox
sensitive proteins reside, receives significant amounts of ROS.
H2O2 oxidizes target thiols of the Cys residues to form disulfide
bonds, but also to higher oxidation states such as sulfenic, sulfinic
and sulfonic acids, changing the functional properties of the
Cys-containing proteins (Habich et al., 2019b). Sulfonylation is
irreversible and sulfinylation was thought to be as well until
an enzyme called sulfiredoxin (Srx) was identified in yeast and
humans, catalyzing the reduction of Cys sulfinic acids in vivo
(Jacob et al., 2004). Enzymes aimed to detoxify H2O2 and/or
remove thiol modifications have been found in the IMS of both
yeast and human mitochondria (Vögtle et al., 2012; Hung et al.,
2014). Peroxiredoxins 3 and 4 (PRDX3 and 4) react directly
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with H2O2, reducing it to water, resulting in the oxidation
of Cys residues that can be reduced again by thioredoxin 1
(TRX1), TRX1 is then recycled by Thioredoxin reductase (TRR)
(Cardenas-Rodriguez and Tokatlidis, 2017; Habich et al., 2019b).
In addition, glutathione peroxidase 3 (Gpx3) is found in the
IMS, where it becomes actively targeted to through the addition
of an N-terminal extension of 18 amino acids (N18) and is
thought to play a role in H2O2 detoxification (Kritsiligkou
et al., 2017). Translation of this long form of Gpx3 with the
N18 extension can be modulated by H2O2 stress (Gerashchenko
et al., 2012). The cytoplasmic isoform of GPX4, the human
homolog of Gpx3, has also been found in mitochondria (Liang
et al., 2009; Tadokoro et al., 2020) but the role it plays there
is still unclear.

ROS-Mediated Signaling Promoting ETC
Biogenesis
In certain situations, dysfunction or inhibition of CI, CIII, or
CIV leads to increased ROS production (Verkaart et al., 2007;
Kowaltowski et al., 2009; Brand, 2016; Dogan et al., 2018).
However, as briefly discussed above, the nature and topology of
these ROS is different depending on what complex is affected. In
addition, the physio-pathological consequences can also diverge.
CI can generate ROS both by “forward electron transfer (FET)”
or by “reverse electron transfer (RET),” i.e., by transferring

electrons from a highly reduced CoQ pool back to CI, in
conditions where the membrane potential is high (Robb et al.,
2018; Figure 5). This is relevant because ROS generated at
the level of CI, but only if its via RET, are able to induce an
adaptive program leading to improved mitochondrial activity
and increased life span in D. melanogaster (Scialò et al., 2016).
O2− generated at the level of the first CoQ binding site of
cIII2 (Qo), closest to the IMS, has been described to be the
origin of signaling pathways such as the hypoxic responses
(Guzy et al., 2005; Bell et al., 2007). At the mitochondrial
level, the ROS-mediated hypoxic transcriptional program leads
to the expression of specific COX isoforms, regulating the
activity of the complex under these conditions (Bourens et al.,
2013). Also, ROS produced in the mitochondria activate AMPK,
which activates PGC-1α, a transcriptional master regulator of
mitochondrial biogenesis (Jäer et al., 2007; Rabinovitch et al.,
2017; Figure 5). This ROS-mediated signaling axis is necessary
to induce an increase in mitochondrial mass to counteract CIV
deficiency in muscle (Dogan et al., 2018). Apart from these
mitochondrial remodeling effects mediated by transcriptional
changes, an attractive possibility is that ROS produced in the
mitochondria can directly modulate the activity of biogenetical
factors such as COA8 (Figure 6). The absence of COA8
(formerly known as APOPT1) leads to CIV deficiency and the
accumulation of MT-CO1-containing partially assembled species
(Melchionda et al., 2014; Signes and Fernandez-Vizarra, 2018).

FIGURE 6 | Possible mechanism of ROS-mediated CIV assembly regulation by COA8. The ROS produced by a hemylated partially assembled MT-CO1 could
represent a signal triggering the increased import and/or stabilization of COA8, promoting CIV assembly and, thereby, reducing oxidative stress.
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COA8 was shown to be readily degraded by the proteasome in
the cytosol but stabilized inside mitochondria when cells were
stressed with both exogenous H2O2 or with mitochondrially
targeted paraquat (mitoPQ), which induces the production of
O2

− in the matrix (Signes and Fernandez-Vizarra, 2018). The
COA8 sequence contains Cys residues within the mitochondrial
targeting sequence that could potentially be oxidized by H2O2
in the cytosol, inducing its stabilization and/or mitochondrial
import (Signes and Fernandez-Vizarra, 2018). Yeast strains
deleted of Sco1 or Cox11 show increased sensitivity to acute
hydrogen peroxide stress (Khalimonchuk et al., 2007; Veniamin
et al., 2011). This effect was linked to impaired COX assembly
leading to the accumulation of hemylated Cox1 intermediates
acting as pro-oxidant species (Khalimonchuk et al., 2007).
Interestingly, COA8-null patient derived fibroblasts produce
more ROS when they are oxidatively challenged (Melchionda
et al., 2014) and dCoa8 knock-down flies are more sensitive
to oxidative stress (Brischigliaro et al., 2019). A hypothesis
that can be derived from these observations is that ROS
produced because of the accumulation of pro-oxidant MT-CO1
subcomplexes serve as a signal to induce the assembly of CIV
mediated by COA8, which also appeared to have a role in
protecting MT-CO1 from oxidative stress induced degradation
(Signes and Fernandez-Vizarra, 2018). More experimental data
must be collected to confirm or disprove these ideas and to
determine whether there are more redox sensitive assembly
factors for CIV and the rest of the complexes, which may be

regulated in this way to promote a rapid biogenetical response
to regulate ETC function.

ROS-Mediated Degradation of ETC
Components
A much less explored yet interesting component in the
control of the amounts and function of the ETC is the
turnover, i.e., balance between synthesis and degradation, of its
components (Szczepanowska and Trifunovic, 2021). In yeast, the
accumulation of pro-oxidant COX subcomplexes is attenuated by
the activity of the AAA-ATPase Afg1, facilitating the degradation
of Cox1, Cox2, and Cox3 (Khalimonchuk et al., 2007; Figure 7).
Afg1 human ortholog is LACE1, and it was shown to be involved
in the degradation of nuclear-encoded CIV subunits (Cesnekova
et al., 2016). As mentioned earlier, Cox1 accumulated due to
the absence of the assembly factor Coa2 is degraded by Oma1
(Khalimonchuk et al., 2012) and Oma1 is redox regulated both
in yeast and human mitochondria (Bohovych et al., 2019). Also
in human mitochondria, in the case of defective CIV assembly
at different stages with the accumulation of MT-CO1 module
subassemblies, is associated with an increased turnover of the
mtDNA-encoded CIV subunits (Leary et al., 2009; Bourens et al.,
2014; Bourens and Barrientos, 2017a,b; Signes and Fernandez-
Vizarra, 2018). Another ETC component in mammals, whose
turnover is potentially regulated by ROS is CI (Figure 7).
The assembly of this huge complex happens in a modular

FIGURE 7 | Possible involvement of ROS in the regulation of the degradation by active proteolysis of some of the catalytical components of the ETC. ROS produced
by RET at the level of CI have been proposed to trigger the degradation of the full complex. The mechanistic details are still unknown. The matrix protease CLPP is
responsible for the degradation of the catalytic N-module of CI, preventing its accumulation as an assembly intermediate in the mitochondrial matrix as well as
promoting the interchange of an oxidatively damaged N-module for a newly synthesized one. Some Cox1 (MT-CO1) intermediates are actively degraded by the inner
membrane-bound protease OMA1, which is redox activated. Other pro-oxidant Cox1 intermediates are degraded through a mechanism mediated by the
AAA-ATPase Afg1 in yeast being LACE1 its human ortholog. See main text for details.
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fashion and the N-module containing the redox active Fe-S
clusters and flavin (FMN) is preassembled and then added in
the last step of assembly (Guerrero-Castillo et al., 2017). CLPP
is responsible for the turnover of both the pre-assembled and
assembled N-module (Szczepanowska et al., 2020). In this case,
one could think that this might be a way of preventing the
accumulation of a highly reactive pro-oxidant species and to
remove oxidatively damaged protein components in proximity
to the N-module FMN center, which is one of the main sites
of ROS production in mitochondria (Brand, 2016; Hirst and
Roessler, 2016). Then again, mammalian CI shows a high
interdependence with the other components of the ETC. Strong
CIII2 and CIV assembly defects produce a secondary decline in
CI amounts (Diaz et al., 2006; Protasoni et al., 2020; Čunátová
et al., 2021). This was explained by the existence of an active
degradation of fully assembled CI in response to RET-mediated
ROS production and oxidative damage (Guarás et al., 2016).
However, the exact mechanism and the protease/s mediating
this accelerated turnover have not been defined yet, and other
levels of regulation, i.e., repression of mitochondrial translation
and attenuated assembly of the N-module, have been shown
(Protasoni et al., 2020; Čunátová et al., 2021). In the case of the
CIII2 defects originated by mutations in the central subunit MT-
CYB, mitochondrial translation was not affected (Protasoni et al.,
2020; Tropeano et al., 2020). However, the steady-state levels of
CI subunits and specially those of the N-module were severely
reduced (Protasoni et al., 2020; Páleníková et al., 2021). One
can imagine that if the N-module is being preassembled but not
incorporated into fully assembled CI, it will need to be degraded
before its assembly, as previously shown (Szczepanowska et al.,
2020). One can hypothesize that this might be ROS mediated
and induced by a pro-oxidant intermediate, because xeno-
expression of an alternative oxidase (AOX), which decreases ROS
production by the ETC (Dogan et al., 2018; Robb et al., 2018;
Szibor et al., 2020), resulted in increased amounts of N-module
subunits and fully assembled CI in MT-CYB mutated human cells
(Protasoni et al., 2020).

Whether the enhanced proteolysis of the redox active, and
potentially damaging, CI and CIV subassemblies is directly
modulated by ROS, and which are quality control proteases
that are involved and regulated in this way, constitute extremely
interesting topics to explore in the future.

CONCLUSION AND PERSPECTIVES

Mitochondria contain dedicated import and sorting machineries
to direct mitochondrial proteins that are nuclear encoded
and synthesized in the cytoplasm. The MIA pathway makes
use of reduction and oxidation reactions involving particular

Cys residues so that the correctly folded and functional
proteins are retained in the IMS. Therefore, redox homeostasis
in the IMS plays a crucial role in the regulation of the
ETC complexes because essential factors involved in their
maturation are proteins containing twin Cx9C motifs and
substrates of Mia40/CHCHD4. In order to guarantee a correct
ETC biogenesis, redox homeostasis of the IMS needs to be
maintained in spite of its proximity to the ETC. The ETC
contains major sites of ROS production, which were traditionally
envisioned as merely harmful molecules contributing to aging
and disease. It is now becoming clearer that an exquisite
balance between ROS production and scavenging is essential to
maintain mitochondrial activity. Another emerging concept is
that they constitute signaling molecules important for a correct
mitochondrial biogenesis, mediating feedback mechanisms
regulating the biogenesis and degradation of ETC components.
The mechanisms and players underlying these phenomena are
just starting to be unraveled. In this respect, an interesting
hypothesis to explore is the fact that ROS might be a sensor
of unbalanced ETC activity, triggering mechanisms aimed to
compensate it, through biogenetical factors and proteases whose
activity is directly redox regulated.
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