Hysteresis-based supervisory control with application to non-pharmaceutical containment of COVID-19

Michelangelo Bina,∗, Emanuele Crisostomib, Pietro Ferraroc, Roderick Murray-Smithd, Thomas Parisii,\textasterm; Robert Shortenc,8, Sebastian Steind

aDepartment of Electrical and Electronic Engineering, Imperial College London, London, UK
bDepartment of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Pisa, Italy
cDyson School of Design Engineering, Imperial College London, London, UK
dSchool of Computing Science, University of Glasgow, Glasgow, Scotland
eKIOS Research and Innovation Center of Excellence, University of Cyprus, Aglantzia, Cyprus
fDepartment of Engineering and Architecture, University of Trieste, Trieste, Italy
gDepartment of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland

\textbf{A R T I C L E I N F O}

\textbf{Keywords:}
COVID-19
Supervisory control
Hysteresis control

\textbf{A B S T R A C T}

The recent COVID-19 outbreak has motivated an extensive development of non-pharmaceutical intervention policies for epidemics containment. While a total lockdown is a viable solution, interesting policies are those allowing some degree of normal functioning of the society, as this allows a continued, albeit reduced, economic activity and lessens the many societal problems associated with a prolonged lockdown. Recent studies have provided evidence that fast periodic alternation of lockdown and normal-functioning days may effectively lead to a good trade-off between outbreak abatement and economic activity. Nevertheless, the correct number of normal days to allocate within each period in such a way to guarantee the desired trade-off is a highly uncertain quantity that cannot be fixed a priori and that must rather be adapted online from measured data. This adaptation task, in turn, is still a largely open problem, and it is the subject of this work. In particular, we study a class of solutions based on hysteresis logic. First, in a rather general setting, we provide general convergence and performance guarantees on the evolution of the decision variable. Then, in a more specific context relevant for epidemic control, we derive a set of results characterizing robustness with respect to uncertainty and giving insight about how a priori knowledge about the controlled process may be used for fine-tuning the control parameters. Finally, we validate the results through numerical simulations tailored on the COVID-19 outbreak.

1. Introduction

1.1. Problem description

Different recent studies Bin, Cheung et al. (2021), Della Rossa et al. (2020), Ferguson et al. (2020), Giordano et al. (2021), Karin et al. (2020), Kennedy, Zambrano, Wang, and Neto (2020), Morato, Bastos, Caijsero, and Norry-na Rica (2020), Sadeghi, Greene, and Sontag (2021) and Sontag (2021) have provided evidence that the fast alternation of lockdown and “normal” days may effectively hinder the COVID-19 outbreak while permitting a reduced but sustained economic activity. While full lockdown maximally abates the outbreak, leaving some normal days lessens the social and economical stress associated with a continued lockdown. Hence, a compromise between lockdown and normal days has to be found.

In particular, the main result of Bin, Cheung et al. (2021) states that if one has to allocate a given number of lockdown and normal days, the best way, from the standpoint of minimizing the number of infections, is to switch between them at the largest possible frequency.
Specifically, if one considers a periodic arrangement of lockdown and normal days (called in Bin, Cheung et al., 2021 a Fast Periodic Switching Policy (FPSP)), then the smaller is the period the closer the induced epidemic trajectories are to those of a fictitious epidemic characterized by a reproductive number which is a weighted average of the ones we would obtain, respectively, with full lockdown and no lockdown at all (Bin, Cheung et al., 2021, Theorem 1). The average weights are defined by the policy’s duty cycle, i.e. the relative number of normal days in each period.

An FPSP is thus characterized by two degrees of freedom: its duty cycle, which defines the reproductive number of the fictitious epidemic, and its frequency, which determines how well the actual epidemic approximates the fictitious one. The frequency has to be taken as large as possible, consistent with societal constraints, and it thus represents an “open-loop parameter” (in particular, the numerical analysis of Bin, Cheung et al. (2021) shows that periods of 1–4 weeks are good choices in the case of COVID-like pandemics). The duty cycle, instead, cannot be fixed once for all in advance. In fact, the range of values for which the relative number of normal days is large whilst the epidemic is still taken under control as desired is highly uncertain, and depends on the unknown characteristics of the epidemic. To deal with this problem, in Bin, Cheung et al. (2021) a slow data-driven supervisory controller is proposed to adapt the FPSP’s duty cycle at run-time on the basis of observations, suitably averaged and filtered over longer time periods. The supervisor realizes a basic hysteresis switching logic, as it is sufficiently simple to be implemented by a policy maker but sufficiently robust to deal with the high uncertainty characterizing the measured signals.

While the supervisor shows promising performance in the numerical analysis of Bin, Cheung et al. (2021), its claimed robustness and exactness properties have not been formally established yet, and some fundamental points remained open. Specifically:

P1. The regulation properties of the employed hysteresis controller have not been given a formal characterization. What guarantees does hysteresis-based control provide?

P2. The relation between the control parameters and the characteristics of the underlying controlled process and the uncertainty and delays affecting measurements is not clear. How can we use a priori information about the epidemic to improve performance?

As detailed below in Sections 1.2 and 1.3, the current state of the art of control theory does not satisfactorily cover P1 and P2 in a context relevant for epidemics mitigation. Moreover, P1 and P2 raise questions of crucial importance not only for Bin, Cheung et al. (2021), but also for all the other possible data-based mitigation techniques employing an hysteresis-like mechanism (these include many heuristic decision policies currently adopted worldwide by politicians). Therefore, developing a comprehensive theory addressing P1 and P2 in a context general enough to embrace many different hysteresis-based mitigation techniques is a timely open problem with a considerable potential impact on epidemics mitigation going well beyond the specific technique used in Bin, Cheung et al. (2021). The development of such theory is, in a nutshell, the main goal of this article.

1.2. Literature overview

The hysteresis decision logic follows a rather basic rule: when a measured “monitoring signal” exceeds a given value, action is taken to change the process behavior so as to bring the monitoring signals within bounds again. Controllers based on this logic are simple to implement, and boast inherent robustness as only a rough knowledge about how decisions qualitatively affect the controlled process is required for the hysteresis logic to function well.

When the size of the hysteresis band is zero and the decision map is single-valued, the hysteresis logic reduces to a basic “step” nonlinearity, leading to state-dependent switching between two values. In this simplified form, it provides the solution to minimum-time optimal control problems for both ODEs (Bellman, Glicksberg, & Gross, 1956; Krener, 1974) and PDEs (Casas, Wachsmuth, & Wachsmuth, 2017; Mizel & Seidman, 1997), well-known under the name of “bang–bang controller” and boasting countless applications ranging from reservoir flooding (Zandvliet, Bosgra, Jansen, Van den Hof, & Kraaijvanger, 2007), vibration control of structures (Lim, Chung, & Moon, 2003), game theory (Olser, 2002), control of quantum systems (Morton et al., 2006; Viola & Lloyd, 1998), and optimal intervention for cancer chemotherapy (Ledzewicz & Schättler, 2002). Moreover, when the two switching values are equal, the control logic takes the form of an amplified “sign” function, and in this form it is widely used especially in the context of sliding mode control (Söötine & Sastry, 1983), with many applications in mechatronics and robotics (Šabanovic, 2011; Söötine & Sastry, 1983; Zhihong, Paplinski, & Wu, 1994).

In the general form with non-zero band size, hysteresis controllers are instead standard components of industrial electronic devices (Bose, 1990; Buso, Fasolo, Malesani, & Mattavelli, 2000; Kawamura & Holf, 1984; Li, Ruan, Zhang, & Lo, 2020; Mohseni & Islam, 2010; Šabanovic, 2011), and provide simple and robust solutions for a wide range of problems in engineering, from combustion devices (Guan et al., 2010) and temperature regulation (Cahlon, Schmidt, Shillor, & Zou, 1997; Gurevich, Jäger, & Skubachevskii, 2009), to epidemic control (Bin, Cheung et al., 2021; Ferguson et al., 2020), as mentioned earlier. Moreover, the hysteresis logic is a basic design principle for supervisory and hierarchical control, and lies at the core of many adaptive control approaches (Angeli & Mosca, 2004; Baldi, Battistelli, Mari, Mosca, & Tesi, 2012; Battistelli, Hespanha, & Tesi, 2012; Hespanha, Liberzon, & Morse, 2002, 2003; Hespanha & Morse, 1999; Jin & Safonov, 2012; Kosmatopoulos & Ioannou, 1999; Ma, 2008; Middleton, Goodwin, Hill, & Mayne, 1988; Morse, 1990, 1996, 1997; Morse, Mayne, & Goodwin, 1992; Stefanovic & Safonov, 2008; Stefanovic, Vang, & Safonov, 2004; Vu & Liberzon, 2011; Wellner & Goodwin, 1994; Ye, 2008).

Outside application-specific analyses, adaptive control is indeed the field where hysteresis logic has been studied more thoroughly from a control standpoint, as it provides a more direct exploration tool with respect to the non-uniform, exhaustive searches of early “universal controllers” (Mårtensson, 1985; Minyue Fu & Barmish, 1986) along pre-defined paths. Specifically, in Baldi et al. (2012), Hespanha et al. (2002, 2003), Middleton et al. (1988), Morse (1990, 1996, 1997), Morse et al. (1992) and Wellner and Goodwin (1994) hysteresis-based control is used to switch between candidate controllers on the basis of a measured monitoring signal in such a way to stabilize uncertain linear systems. A common feature of these approaches is the presence of multiple candidate controllers, each one associated with a monitoring signal measuring its performance. The control logic chooses at run time the controller associated with the best performance. Under the assumption that a stabilizing controller exists among the candidates, asymptotic stability can be concluded, with switching that typically stops in finite time. Extensions to nonlinear or time-varying systems in a discrete or continuous-time setting are provided, for instance, in Angeli and Mosca (2004), Battistelli et al. (2012), Bin, Bernard, and Marconi (2021), Bin and Marconi (2020), Bin, Marconi, and Teel (2019), Hespanha and Morse (1999), Jin and Safonov (2012), Kosmatopoulos and Ioannou (1999), Ma (2008), Stefanovic and Safonov (2008), Stefanovic et al. (2004), Vu and Liberzon (2011) and Ye (2008).

Finally, we underline that the convergence analysis of Morse et al. (1992) and Stefanovic et al. (2004) and related extensions, e.g. Hespanha et al. (2002, 2003), Hespanha and Morse (1999), Jin and Safonov (2012), Morse (1996, 1997) and Stefanovic and Safonov (2008), is carried out in a modular way. First, some convergence properties for the hysteresis logic decision variables are proved depending only on “open-loop assumptions” about the measured variables (see, e.g., the “Hysteresis Switching Lemma” of Morse et al. (1992)). Then, these are used to prove the desired regulation performance during closed-loop operation.
1.3. Contribution and organization

Although multi-model supervisory control is a well-established field, and the aforementioned modularity in the analysis is favorable in an uncertain setting such as virus outbreaks, we cannot directly rely on the aforementioned results for several reasons. First, we do not dispose of reliable models or “predictors” assessing the quality of a decision before it is implemented, so as at switching time we cannot choose the decision minimizing an expected cost. Indeed, as the recent COVID-19 shows, assessing the effect of non-pharmaceutical interventions is a complex task. Models are incapable of guaranteeing reliable predictions (Huutson, 2020), and typically effects can be only assessed a posteriori from data (Ferguson et al., 2020; Flaxman et al., 2020). Hence, motivated by the problem described in Section 1.1, we shall rather consider a case in which the effect of a decision may be only assessed a posteriori, after it is held for a while.

Second, even if predictors were available, the aforementioned approaches have as objective convergence to a stabilizing controller, typically the “most stabilizing,” which in our case would result in enforcing a full lockdown. This is in sharp contrast with our objective which, we recall, is that of keeping the outbreak under control with the minimum number of lockdown days. Lastly, we cannot rely on exhaustive search, such as the universal controller of Mårtensson (1985) and related extensions, for obvious time constraints requiring uniformity and fast convergence. Hence, Points P1 and P2 (Section 1.1) remain substantially uncovered.

In this article, we study a class of hysteresis-based control schemes addressing Items P1 and P2. As we aim at a methodology that applies to a wider spectrum of techniques than just Bin, Cheung et al. (2021), in Section 2 we first develop a general theory in a broader context than epidemic outbreaks. Under many aspects, this is the heart of the paper, where we develop general results without relying on quantitative models such as SI-like differential equations. Specifically, along the lines of Morse et al. (1992) and Stefanovic et al. (2004), we provide analytical results on the dynamics of the decision variables and we establish a set of convergence and stability properties that are independent from the underlying controlled process and only depend on the measured signals. Then, we identify sufficient conditions ensuring that the generated decision variables properly regulate the underlying process as desired. Similar to Jin and Safonov (2012), Stefanovic and Safonov (2008) and Stefanovic et al. (2004), these conditions take the form of a robust detectability assumption guaranteeing that the information extracted from the measurements effectively matches the actual status of the underlying unmeasured process. Proceeding in this way allows us to separate the role of the control logic from that played by the assumptions we make on the underlying controlled process and on the relationship between its dynamics and our measurements, including the effect of uncertainty and delays. Moreover, it confers modularity on the analysis, making it applicable to a broader class of problems.

In Section 3, we then focus on the problem of virus outbreak mitigation and, in particular, on the specific context of Bin, Cheung et al. (2021). We provide robustness results with respect to uncertainty affecting the measurements, and we provide results and insights about how to use a priori information on the controlled process to choose the design parameters. Finally, in Section 4 we provide numerical simulation validating the developed theory on the case of COVID-19.

1.4. Notation

We denote by R and N the sets of real and natural numbers, respectively. If s is any order on a set S, for an s ∈ S, S_s := {z ∈ S : s ≤ z}. By A \ B := {a ∈ A : a ∉ B} we denote the set difference and by A' the complement. Moreover, S and S' denote the closure and interior of S and δS = S \ S' its boundary. The symbol C denotes non-strict inclusion. Strict inclusion is denoted by ⊆. When clear from the context, we shall identify singletons with their element. For instance, we shall use X \ x and x × X in place of X \ {x} and {x} × X respectively. We denote by B^A the set of functions A → B, as well as families or nets in B indexed by A. For a net ((a_k, b_k)_{k ∈ K}) of elements (a_k, b_k), we use the short notation (a_k, b_k)_{k ∈ K}. We denote by B^A^B the set of functions C → A with C ⊂ B. Given a set A and a totally ordered real vector space (T, ⊑), a flow on (T, A) is a function f : dom f ⊂ T × A → A such that: (i) for each a ∈ A such that (0, a) ∈ dom f, f(0, a) = a; (ii) if s, r ∈ T are such that s ≤ r ≤ t and (r, a) ∈ dom f for some a ∈ A, then (r, a) ∈ dom f; (iii) if (s, a) ∈ dom f, then for all t ∈ T such that (s + t, a) ∈ dom f, it holds that (t, f(s, a) ∈ dom f, and f(t, s, a)) = f(t + s, a). The set of flows on (T, A) is denoted by Φ(T, A).

2. General theory

2.1. Basic definitions

We denote by X the decision space. For simplicity, we shall consider the case in which X is finite, although all results apply to countable decision spaces as well with uniformity of convergence over finite subset of initial conditions in place of fixed-time convergence. We endow X with the discrete topology, so that convergence in X means convergence in finite-time. We assume that X can be ordered by a total order ≤ (we write x ≥ y for y ≤ x, x < y if x ≤ y and x ≠ y, and x > y for y < x), and given any x ∈ X, we denote by

\[x^+ = \begin{cases} \inf \mathcal{A}_x & \text{if } \mathcal{A}_x \neq \emptyset, \\ x & \text{otherwise.} \end{cases} \]

\[x^- = \begin{cases} \sup \mathcal{A}_x & \text{if } \mathcal{A}_x \neq \emptyset, \\ x & \text{otherwise.} \end{cases} \]

the (projected) successor and predecessor of x in (X, ≤).

With Y and Z sets, the controlled system is modeled by a pair \(Σ = (ζ, ψ) \), in which \(ζ : X → Φ(ℝ, Z) \) is a function mapping decisions x ∈ X into process trajectory flows \(ζ(x) ∈ Φ(ℝ, Z) \) (see Section 1.4), and \(ψ \) is an operator mapping trajectories \(x : \text{dom} \ z ⊂ ℝ → Z \) and decisions x ∈ X to measurement signals \(ψ(z, x) : \text{dom} \ z → Y \). Specifically, ζ represents the unknown family of trajectories of the uncertain underlying process, for instance an epidemic, which we would like to control but which we do not measure. Instead, the images of ψ represent the available measurements that can be used for control, and depend on the decision taken and on the underlying process. Both \(ζ(x) \) and \(ψ(z, x) \) describe signals evolving in continuous time. This carries no loss of generality as it includes discrete-time signals as particular case, since they can always be extended to ℝ. Nevertheless, we restrict our focus only to discrete-time updates of the decision variable.

A decision profile is a pair \(ξ = (x_1, t_k)_{k ∈ ℓ} \) in which \((x_1, t_k)_{k ∈ ℓ} \) is a sequence of decisions and decision times, with dom ξ of the form \(\{0, 1, …, n\} \) for some n ∈ N, and \(ξ ≥ 0 \). We assume that from every initial condition \(z_0 \) every decision profile ξ induces a realization of the process and the measured signal, denoted by \(z(ξ) \) and \(y(ξ) \), defined on

\[\text{dom} \ z(ξ) = \text{dom} \ y(ξ) = \bigcup_{k ∈ ℓ} (t_k, t_k+1]. \]

(1)

with \(z(t_0) = z_0 \), and such that for all k ∈ dom ξ

\[z(t) = \begin{cases} x(t) & \text{if } t ≤ t_k, z(t_k)), \forall t ∈ (t_k, t_{k+1}), \\ y(t) = \psi(z(ξ), x(t_k)) & \forall t ∈ (t_k, t_{k+1}), \end{cases} \]

(2)

where we let \(t_{k+1} = t_k + 1 \) for \(k = \sup \text{dom} ξ \) in both (1) and (2). With slight abuse of notation we shall refer to y and z generically as “signals”. Moreover, we shall omit references to ξ or x when clear from the context.

From now on, we suppose \(z_0 \) is fixed (albeit unknown) and we drop the dependency from it. Thus, given a decision profile ξ, in the following we denote without ambiguity by \(z(ξ) \) and \(y(ξ) \) the signals defined as above corresponding to \(z_0 \).
2.2. The logic workflow and the evaluation principle

The aim of the decision logic is to generate a suitable decision profile inducing the desired behavior of the process \(\zeta \). Decisions are taken recursively at some decision times \(t_0, t_1, \ldots \in \mathbb{R} \). For simplicity, we assume that decisions are taken periodically, with period \(\Delta \in \mathbb{R}_{>0} \). Hence, \(t_{k+1} = t_k + \Delta \) for all \(k \in \mathbb{N} \). This is not necessary in principle, yet it simplifies the forthcoming analysis.

The interaction between the controlled process and the decision logic follows the workflow described below starting at \(k = 0 \):

S1. The controller takes the decision \(x_k \) at time \(t_k \) on the basis of the information available up to time \(t_k \), which is given by the realization \(y \) induced by the decision profile \((x_{\nu}, t_{\nu})_{\nu=0,\ldots,k-1}, \Delta \).

S2. The decision \(x_k \) is held constant on \((t_k, t_{k+1}) \).

S3. The process is then repeated for \(k + 1 \).

For every \(x \in \mathcal{X} \), we let \(\mathbb{E}(x) \) be the set of decision profiles of the form \(\xi = ((t_0, x_0)_{0 \leq \nu < \infty}, \Delta) \) with \(n \in \mathbb{N} \) and satisfying \(t_{k+1} - t_k = \Delta \) for all \(k = 0, \ldots, n-1 \) and \(x_0 = x \). Moreover, we let \(\mathbb{E} = \mathbb{E}(X) \).

According to S1, every new decision is taken upon evaluation of the performance of the previously applied decisions. Ideally, one would evaluate the effect the past decisions had on the controlled process \(z \). An evaluation model is a scheme serving such purpose. In this article, it formally consists of a tuple \((\mathcal{O}, \mathcal{A}, \omega, \alpha)\) in which \(\mathcal{O} \) is a topological space, \(\mathcal{A} \subset \mathcal{O} \) is an open set, and \(\omega, \alpha : \mathcal{O} \to \mathcal{A} \) are functions designed so that \(\omega(z) \in \mathcal{A} \) when \(z \) is characterized by an “excessively unstable” behavior while \(\alpha(z) \in \mathcal{O} \), when \(z \) is characterized by an “overly stable” behavior (see Section 3 for specific choices in the COVID-19 case). Hence, \(\mathcal{O}^c \) represents a compromise region such that if \(\omega(z) \in \mathcal{O} \) and \(\alpha(z) \in \mathcal{O}^c \) then \(z \) is neither overly unstable nor stable. In this case, the behavior of \(z \) is considered satisfactory.

In our setting, however, we do not measure \(z \). Hence, we cannot directly check whether \(\omega(z) \) or \(\alpha(z) \) are in \(\mathcal{O} \). An inference model is an equivalent notion applicable to the measured signal \(y \). In particular, it is a tuple \((A, A, \alpha, \omega)\) in which \(A \) is a topological space, \(A \subset A \) is open, and \(\omega, \alpha : Y^{CR} \to \mathcal{A} \) are designed so that, similarly to evaluation models, \(\omega(y) \in \mathcal{A} \) when \(y \) is considered “excessively unstable”, and \(\alpha(y) \in A \) when \(y \) is considered “excessively stable”. Thus, if \(\omega(y) \) and \(\alpha(y) \) are both in \(A \), the behavior of \(y \) is considered acceptable.

For this design principle to be well-posed, we make the following assumption, implying that the two conditions \(\omega(y) \in A \) and \(\alpha(y) \in A \) are mutually exclusive.

Assumption 1 (Consistency). For every decision profile \(\xi \in \mathbb{E} \), the following implications hold

\[
\begin{align*}
\omega(y(\xi)) \in A \implies \omega(y(\xi)) \notin A. \\
\alpha(y(\xi)) \in A \implies \alpha(y(\xi)) \notin A.
\end{align*}
\]

In general, the inference model has to be designed so that if we are able to choose \(x \) guaranteeing \(\omega(y) \), \(\alpha(y) \) in \(A \), then such a decision would be also associated with a satisfactory behavior for \(z \) in the sense mentioned earlier. This is, of course, possible only under certain conditions linking the underlying process and the available measurements. In our setting, these conditions are given by a detectability property described in the assumption below.

Assumption 2 (Robust Detectability). For every decision profile \(\xi \in \mathbb{E} \), the following implications hold

\[
\begin{align*}
\omega(z(\xi)) \in \mathcal{O} \implies \omega(y(\xi)) \notin A. \\
\alpha(z(\xi)) \in \mathcal{O} \implies \alpha(y(\xi)) \notin A.
\end{align*}
\]

Remark 1. In qualitative terms, the ability of designing inference models so as to satisfy Assumption 2 with respect to some desirable evaluation model depends on the available knowledge on the plant and on the quality of the measurements. In turn, it is here that the prior knowledge about delay, noise, parameters, and structural properties of the process come into play, and it is here that the raised robustness of hysteretic-based control originates: all the uncertainties/disturbances that do not destroy robust detectability do not affect the regulator performances (this notion of robustness, in turn, may be better framed within the more general notion of robustness in the broader context of output regulation, see e.g. Bin, Astolfi, Marconi, and Praly (2018)).

In the forthcoming Sections 2.3–2.7, we study a class of hysteretic-based control schemes seeking online a decision \(x \) guaranteeing that both \(\omega(y) \), \(\alpha(y) \notin A \). We carry out the analysis without any reference to \(z \), thus extracting a set of convergence properties depending only on the measurements. Later, in Section 2.8, we show that robust detectability permits to extend some key guarantees to the unmeasured process \(z \). In turn, robust detectability will not be assumed until there. The problem of designing inference models to fulfill robust detectability in the case of epidemics control is further studied in Section 3, and the results are applied to the COVID-19 case in Section 4.

2.3. The hysteresis control logic

Given an inference model \((A, A, \alpha, \omega)\), the class of hysteresis controllers we study in this article is given as follows. An initial decision \(x_0 \) is arbitrarily taken at time \(t_0 \). For every \(k \in \mathbb{N} \), we denote by \(\xi_k : = ((t_k, x_k)_{k \in \mathbb{N}}, \Delta) \in \mathbb{E} \) the decision profile collecting the past decisions and decision times. Then, the decision \(x_{k+1} \) is taken at time \(t_{k+1} = t_k + \Delta \) according to the following inclusion

\[
x_{k+1} \in F(x_k, y(\xi_k)),
\]

where

\[
F(x, y) := \begin{cases}
-\quad \{x^- \} & \text{if } \omega(y) \in A, \\
\quad \{x^+ \} & \text{if } \alpha(y) \in A, \\
\{x^-, x^+\} & \text{if } \omega(y) \notin A \text{ and } \alpha(y) \in A, \\
\quad \{x^+ \} & \text{if } \omega(y) \in A \text{ and } \alpha(y) \notin A, \\
\quad \{x^- \} & \text{if } \omega(y) \notin A \text{ and } \alpha(y) \notin A, \\
\quad \emptyset & \text{otherwise}.
\end{cases}
\]

A decision profile \(\xi = ((t_0, x_0)_{k \in \mathbb{E}(\xi)}, \, \xi) \) for which (4) holds is called a solution to (4).

Remark 2 (Wellposedness). For \(\omega(y) \in A \) and/or \(\alpha(y) \in A \), \(F(x, y) \) is a set. This is somewhat different from canonical hysteresis controllers in which, instead of \(F \), one typically employs a selection \(\tilde{F} \) of \(F \) satisfying \(\tilde{F}(x, y) = x \) if \(\omega(y) \in A \) and/or \(\alpha(y) \in A \). This modification has been introduced to make Eq. (4) wellposed in the same sense of Goebel, Sanfelice, and Teel (2012, Chapter 6), ensuring that limits of “converging sequences” of solutions are solutions as well.\footnote{More precisely, if we endow the set of signals \(\text{dom } y \subset \mathbb{R} \to Y \) with a topology for which \(a \) and \(a^i \) are continuous, then by using \(F \), we may have cases in which a convergent net \((y_n) \) exists such that, for instance, \(\omega(y_n) \in A \) for all \(n \), but its limit \(y^* \) satisfies \(\omega(y^*) \notin A \). In this case, \(F(x_n, y_n) = x^- \) for all \(n \), so that \(\text{lim } F(x_n, y_n) = x^- \) satisfies \(\text{lim } y_n = y^* \), which in turn implies that \(y^* \) does not produce a solution. Instead, by using \(F \), we always have \(\text{lim } F(x_n, y_n) \subset F(x, \text{lim } y_n) \).}

Remark 3. Nothing in (4) prevents one to always chose \(x_{k+1} = x_k \) if \(\omega(y) \in A \) and/or \(\alpha(y) \in A \). In fact, this choice corresponds to a solution of (4) and, as such, it is feasible. In other terms, (4)–(5) can be seen as a “robust version” of the control logic that uses the function \(\tilde{F} \) defined in Remark 2: multiple choices for the cases in which \(\omega(y) \)}
and/or \(a^i(y) \) are in \(\partial A \) can model a decision logic that cannot determine the conditions \(a^i(y), a^{i'}(y) \in \partial A \) with arbitrary accuracy and, thus, may mistake decisions when \(a^i(y) \) and \(a^{i'}(y) \) too close to \(\partial A \).

2.4. The stationarity and monotonicity assumptions

We analyze System (4) under the following main “open-loop” assumptions.

Assumption 3 (Stationarity). For every \(x \in X \) and every two decision profiles \(z^1, z^2 \in \Xi(x) \), the following hold

\[
\begin{align*}
\alpha_i(z^1) \in A &\implies \alpha_i(z^2) \in A, \\
\alpha_i(z^1) \in A &\implies \alpha_i(z^2) \in A.
\end{align*}
\]

Assumption 3 is better understood when \(a(y) \) depends only on the last decision, as in the application considered in Section 3. In this case, it requires that the same decision must lead to the same qualitative behavior of \(y \) (although, we stress, it does not require that \(a(y) = a(y) \) or \(a(y) = a(y) \)).

Assumption 4 (Monotonicity). For every \(x \in X \) and every \(\xi \in \Xi(x) \), \(z^1 \in \Xi(x) \), the following hold

\[
\begin{align*}
\alpha_i(z^1) \in A &\implies \alpha_i(z^2) \in A, \\
\alpha_i(z^1) \in A &\implies \alpha_i(z^2) \in A.
\end{align*}
\]

Assumption 4 is the essence of the functioning of the hysteresis logic (4), and it is what ultimately justifies the choice of \(F \) in (4). With Assumption 3, it implies that there is a preferred direction in \(X \) to bring \(y \) out of the set in which \(a(y) \in A \), and another one to exit in which \(a(y) \in A \). This assumption is what permits a hysteresis logic to avoid exhaustive explorations over “open-loop” or predefined paths, typical of universal controllers (Mårtensson, 1985; Minyu Fu & Barmish, 1986), and instead to tell the exploration direction from closed-loop measurements. In the context of epidemic control, and in particular in the context of Bin, Cheung et al. (2021) described in Section 1.1, Assumption 4 is justified by the result of Bin, Cheung et al. (2021), Theorem 1 which links increasing (resp. decreasing) duty cycles with increasing (resp. decreasing) values of the reproductive number.

2.5. Target sets of decisions

Under Assumption 3, we can define the following sets without ambiguity

\[
\begin{align*}
\tilde{X}^1 &:= \left\{ x \in X : a^i(y(z^1)) \not\in A, \forall z \in \Xi(x) \right\}, \\
\tilde{X}^1 &:= \left\{ x \in X : a^i(y(z^2)) \not\in A, \forall z \in \Xi(x) \right\}, \\
\end{align*}
\]

and their intersection \(X^* := \tilde{X} \cap \tilde{X} \).

The sets \(\tilde{X} \) and \(\tilde{X} \) contain, respectively, the decisions leading to a behavior of \(y \) which is not too unstable and not too stable according to the chosen inference model. Thus, the set \(X^* \) contains decisions for which \(y \) behaves satisfactorily, and it is called the “target set”. Under consistency and stationarity, at least one among \(\tilde{X} \) and \(\tilde{X} \) is always nonempty, as established by the following lemma.

Lemma 1 (Non-emptiness of \(X^* \)). Suppose that Assumptions 1 and 3 hold. Then, \(\tilde{X} \cup \tilde{X} \not= \emptyset \).

Proof. If \(\tilde{X} \not= \emptyset \) there is nothing to prove. If, instead, \(\tilde{X} = \emptyset \), then for all \(x \in X \), there exists \(\xi \in \Xi(x) \), such that \(a^i(y(z)) \not\in A \). By Assumption 1, this implies \(a^i(y(z)) \not\in A \). Assumption 3, then implies that \(a^i(y(z)) \not\in A \) holds for all \(z \in \Xi(x) \). Hence \(\tilde{X} \not= \emptyset \). □

In general, however, the target set \(X^* \) may be empty even if both \(\tilde{X} \) and \(\tilde{X} \) are not. Moreover, as we shall clarify later in Proposition 1, \(X^* \) may fail to be invariant. This motivates us to study also a relaxation of \(\tilde{X} \) and \(\tilde{X} \), consisting of their one-point dilations

\[
\begin{align*}
\tilde{X}^1 &:= \tilde{X} \cup \left\{ x \in X : x = \tilde{x}, \tilde{x} \in \tilde{X} \right\}, \\
\tilde{X}^1 &:= \tilde{X} \cup \left\{ x \in X : x = \tilde{x}, \tilde{x} \in \tilde{X} \right\},
\end{align*}
\]

and their intersection \(\tilde{X}^1 \cap \tilde{X}^1 \) that always satisfies \(\tilde{X}^1 \cap \tilde{X}^1 \not= \emptyset \). The set \(\tilde{X}^1 \) is slightly larger than \(X^* \) but, as detailed below, in general it enjoys stronger properties, as it is nonempty under weaker conditions (Lemma 3), and it is always forward invariant (Proposition 3). The sets \(\tilde{X}^1 \), \(\tilde{X}^1 \), \(\tilde{X}^1 \) and \(\tilde{X}^1 \) satisfy the following closure properties with respect to the predecessor and successor operators.

Lemma 2. Under Assumptions 1, 3 and 4:

\[
\begin{align*}
x \in \tilde{X}^1 &\implies x^{-} \in \tilde{X}^1, \\
x \in \tilde{X}^1 &\implies x^{+} \in \tilde{X}^1, \\
x \in \tilde{X}^1 &\implies x^{-} \in \tilde{X}^1, \\
x \in \tilde{X}^1 &\implies x^{+} \in \tilde{X}^1.
\end{align*}
\]

The proof of Lemma 2 is in the Appendix. Clearly, Lemma 1 implies \(\tilde{X}^1 \cup \tilde{X}^1 \not= \emptyset \) under consistency and stationarity. Moreover, if also monotonicity holds, we can conclude that, unlike \(X^* \), \(\tilde{X} \) is always nonempty if so are \(\tilde{X} \) and \(\tilde{X} \). This is established by the following lemma, proved in the Appendix.

Lemma 3. Suppose that Assumptions 1, 3 and 4 hold, and that \(\tilde{X} \) and \(\tilde{X} \) are nonempty. Then, \(\tilde{X} \not= \emptyset \) and \(\tilde{X}^1 \cup \tilde{X}^1 = X \).

2.6. Forward invariance

In this section, we study the forward invariance properties of the decision sets \(X^* \), \(\tilde{X} \), \(\tilde{X} \), and \(\tilde{X} \). In particular, a set \(X \) is said to be weakly forward invariant for (4) if, for every \(x \in X \) and every decision profile \(\xi \in \Xi(x) \), it holds that \(F(x, y(\xi)) \cap X \not= \emptyset \). Moreover, \(X \) is said to be forward invariant for (4) if, for every \(x \in X \) and decision profile \(\xi \in \Xi(x) \), it holds that \(F(x, y(\xi)) \subseteq X \).

In general, even if nonempty, the target set \(X^* \) may fail to be forward invariant. This is due to \(F \) being set-valued for \(a^i(y) \in \partial A \) and/or \(a^i(y) \in \partial A \), and due to the lack of an “ordering” on \(X \). The key established by Assumption 4 when \(a^i(y) \in A \) or \(a^i(y) \in A \). Nevertheless, the target set \(X^* \) is always weakly forward invariant whenever nonempty, as established by the following proposition.

Proposition 1 (Weak forward invariance of \(X^* \)). Suppose that Assumptions 1, 3 and 4 hold and that \(X^* \not= \emptyset \). Then, \(X^* \) is weakly forward invariant.

Proof. Pick \(x \in X \) and \(\xi \in \Xi(x) \) arbitrarily. Then \(a^i(y(\xi)) \not\in A \) and \(a^i(y(\xi)) \not\in A \). In view of (5), this implies \(x \in F(x, y(\xi)) \not= \emptyset \). □

While weaker than invariance, Proposition 1 guarantees that, if \(x_0 \in X^* \), then we can always choose \(x_{n+1} \in X^* \) according to (4). Under some additional conditions on the set of decisions for which \(a^i(y) \not\in A \) and \(a^i(y) \not\in A \), forward invariance is recovered.

Proposition 2 (Forward Invariance of \(X^* \)). In addition to the assumptions of Proposition 1, suppose that

\[
\begin{align*}
(\text{a}) & \text{ The cardinality of } X^* \text{ is larger or equal than } 2. \\
(\text{b}) & \text{ The set of } x \in X \text{ such that } a^i(y(\xi)) \in \partial A \text{ and } a^i(y(\xi)) \in \partial A \text{ hold at the same time for some } \xi \in \Xi(x) \text{ is empty.}
\end{align*}
\]

□
M. Bin et al.

Annual Reviews in Control 52 (2021) 508–522

(c) If $x \in X^*$ is such that $a^1(\gamma(\xi)) \in \partial A$ for some $\xi \in \Xi(s)$, then x^* satisfies $a^1(\gamma(\xi)) \in A$ for all $\xi \in \Xi(x^*)$.

(d) If $x \in X^*$ is such that $a^1(\gamma(\xi)) \in \partial A$ for some $\xi \in \Xi(s)$, then x^* satisfies $a^1(\gamma(\xi)) \in A$ for all $\xi \in \Xi(x^*)$.

Then, X^* is forward invariant.

Proposition 2 is proved in the Appendix. Unlike X^*, which in general is "only" weakly forward invariant, the sets \tilde{X}_1^+, \tilde{X}_2^+ and $\tilde{X}_2^−$ are always forward invariant whenever nonempty. This is established by the following proposition, proved in the Appendix.

Proposition 3 (Forward Invariance). Suppose that Assumptions 1, 3 and 4 hold. Then each of the sets \tilde{X}_1^+, \tilde{X}_2^+ and $\tilde{X}_2^−$ is invariant whenever nonempty.

2.7. Convergence analysis

In this section, we study attractiveness of the decision sets \tilde{X}_1^+, \tilde{X}_2^+ and $\tilde{X}_2^−$. In particular, a set $X \subseteq \mathcal{X}$ is said to be uniformly attractive for (4) from another set $X_0 \subseteq \mathcal{X}$ if there exists $h \in \mathbb{N}$ such that every solution $x(t)$ to (4) with $x(0) \in X_0$ and $h_0 \in h$ satisfies $x(t) \in X$ for all $t \in [h_0, h)$. Recall that, being the topology on \mathcal{X} discrete, convergence in \mathcal{X} is finite-time convergence.

Theorem 1 (Attractiveness of \tilde{X}). Suppose that Assumptions 1, 3 and 4 hold, and consider the set

$$
\tilde{X} := \begin{cases}
\tilde{X}_1^+ & \text{if } \tilde{X}_1^+ \neq \emptyset \text{ and } \tilde{X}_1^+ = \emptyset, \\
\tilde{X}_2^+ & \text{if } \tilde{X}_2^+ \neq \emptyset, \\
\tilde{X}_2^- & \text{if } \tilde{X}_2^- \neq \emptyset.
\end{cases}
$$

Then, for every solution $x(t)$ to (4), and every $k \in dom \xi$ such that $k+1 \in dom \xi$, the following implication holds

$$
x_k \in \tilde{X} \implies d(x_{k+1}, \tilde{X}) = d(x_k, \tilde{X}) - 1.
$$

Thus, in particular, \tilde{X} is uniformly globally attractive for (4).

Proof. We first prove (6) for $\tilde{X} = \tilde{X}_1^+$. Assume that $\tilde{X}_1^+ \neq \emptyset$ and that $\tilde{X}_1^+ \subseteq \mathcal{X}$ (otherwise the claim trivially holds). Pick a solution $x(t)$ to (4) and $k \in dom \xi$ such that $k+1 \in dom \xi$, and suppose that $x_k \notin \tilde{X}_1^+$. By Lemma 2, necessarily $x_k > sup \tilde{X}_2^+$. In view of (4), Lemma 2 and Assumptions 3 and 4, this implies $\tilde{X}_2^+ = \emptyset$ and, hence, $d(x_k, \tilde{X}_2^-) = d(x_k, \tilde{X}_2^-) - 1$, which is (6). The proof of (6) for $\tilde{X} = \tilde{X}_1^+$ follows the same argument. The proof of (6) for $\tilde{X} = \tilde{X}_2^+$ follows by noticing that, since in view of Lemma 3, $\tilde{X}_1^+ \cup \tilde{X}_2^+ = \mathcal{X}$, then if $x_k \notin \tilde{X}_1^+ \cap \tilde{X}_2^+$ either (i) $x_k \notin \tilde{X}_1^+(\gamma(\xi^+))$, or (ii) $x_k \notin \tilde{X}_2^+(\gamma(\xi^+))$. In case (i), $d(x_k, \tilde{X}_1^+) = d(x_k, \tilde{X}_1^+)$, which is (6) holds on both cases.

Regarding global attractiveness of \tilde{X}, as \tilde{X} is always forward invariant (Proposition 3), it suffices to show that there exists $h \in \mathbb{N}$ such that, for every solution of (4) with $h \in dom \xi$, we have $x_h \in \tilde{X}$. This, however, is a direct consequence of (6) and of the finiteness of \mathcal{X}.

Remark 4. Theorem 1 implies that decisions always converge in finite time to the set $\tilde{X}_2^−$ whenever nonempty. Moreover, since the topology of \mathcal{X} is discrete, (Lyapunov) stability is always trivially implied by forward invariance, since each singleton is a neighborhood of its element. Nevertheless, Theorem 1 claims a stronger result, given by (6), and guaranteeing that the distance to \tilde{X} is always decreasing. This, in turn, permits to directly extend the uniform attractiveness result to the case in which \mathcal{X} is countable.

When X^* is nonempty, one is most interested in solutions that reach and stay in it, rather than \tilde{X}. As in general X^* is not forward invariant, we cannot conclude attractiveness. Yet, this is just a technical obstacle, and we can prove several properties of X^* which in practice have the same implications that Theorem 1 has for $\tilde{X}_2^−$.

1. X^* is always reached in finite time from every initial condition. A solution may jump outside X^*, but if it does, it enters X^* again within the next update.

2. From every initial condition there always exists a solution reaching X^* in finite time and staying in it for all successive times. These properties are stated in the following theorem.

Theorem 2 (Attractiveness of X^*). Suppose that Assumptions 1, 3 and 4 hold, and assume that $X^* \neq \emptyset$. Then, the following hold:

(a) For every solution $x(t)$ to (4), and every $k \in dom \xi$ such that $k + 1 \in dom \xi$, if $x_k \in \tilde{X}_2^− \cap X^*$ then $x_{k+1} \in X^*$.

(b) From every initial condition x_0, there exists a solution $x(t)$ and an $h \in \mathbb{N}$ such that either $sup dom \xi < h$ or $x_h \in X^*$ for all $k \in (dom \xi)_h$. In particular, X^* is nonempty, one is most interested in solutions that reach and stay in it, rather than \tilde{X}. As in general X^* is not forward invariant, we cannot conclude attractiveness. Yet, this is just a technical obstacle, and we can prove several properties of X^* which in practice have the same implications that Theorem 1 has for $\tilde{X}_2^−$. In particular:

1. X^* is always reached in finite time from every initial condition. A solution may jump outside X^*, but if it does, it enters X^* again within the next update.

2. From every initial condition there always exists a solution reaching X^* in finite time and staying in it for all successive times. These properties are stated in the following theorem.
Under Assumption 5, we can define the sets
\[\tilde{Z}^1 := \{ x \in \mathcal{X} : \omega^I(z(\xi)) \not\in O, \forall \xi \in \mathcal{Z}(x) \}, \]
\[\tilde{Z}^2 := \{ x \in \mathcal{X} : \omega^I(z(\xi)) \not\in O, \forall \xi \in \mathcal{Z}(x) \}, \]
\[\tilde{Z}^1 := \tilde{Z}^1 \cup \{ x \in \mathcal{X} : x = x^*, \, \tilde{x} \in \tilde{Z}^1 \}, \]
\[\tilde{Z}^2 := \tilde{Z}^2 \cup \{ x \in \mathcal{X} : x = x^*, \, \tilde{x} \in \tilde{Z}^2 \}, \]
\[Z^* := \tilde{Z}^1 \cap \tilde{Z}^2, \]

which are the analogues of \(\tilde{X}^1, \tilde{X}^1, \tilde{X}^*, \tilde{X}^* \) and \(\tilde{X}_z \) with \(z \) in place of \(y \).

Under robust detectability, the following result establishes a set of relationships among the decision sets defined earlier on. The importance of this result stems from the fact that it implies that, if robust detectability holds, then the sets \(X^* \) and its relaxation \(\tilde{X}_z \) to which the solutions of \((4)\) converge are subsets of the sets \(Z^* \) and \(\tilde{Z}_z \) respectively, which are the sets of decisions making the unmeasured process \(z \) behave satisfactorily. This, in turn, permits to infer a satisfactory behavior of the underlying process \(z \) from the decision based only on \(y \).

Theorem 3. Suppose that Assumptions 1, 2 and 5. Then \(\tilde{X}^1 \subset \tilde{Z}^1, \, \tilde{X}^2 \subset \tilde{Z}^1, \, \tilde{X}^* \subset \tilde{Z}^* \subset Z^* \) and \(\tilde{X}^* \subset \tilde{X}_z \).

Proof. To see that \(\tilde{X}^1 \subset \tilde{Z}^1 \) holds, pick \(x \in \mathcal{X} \setminus \tilde{Z}^1 \). Then, there exists \(\xi \in \mathcal{Z}(x) \) such that \(\omega^I(z(\xi)) \in O \). Assumption 5 implies that \(\omega^I(z(\xi)) \not\in O \) for all \(\xi \in \mathcal{Z}(x) \). Assumption 2, in turn, implies \(\omega^I(z(\xi)) \in O \) for all \(\xi \in \mathcal{Z}(x) \). Namely, \(x \in \mathcal{X} \setminus \tilde{Z}^1 \). For arbitrariness of \(x \), this shows that \(\mathcal{X} \setminus \tilde{Z}^1 \subset \tilde{X}^* \), which in turn implies \(\tilde{X}^1 \subset \tilde{Z}^1 \). The inclusion \(\tilde{X}^* \subset \tilde{X}_z \) is proved in the same way, while all the others follow directly from these.

3. Application to epidemics control

3.1. The setting

In the remainder of the paper, we focus on the application of the theory developed in the previous sections to the problem of non-pharmaceutical control of epidemics. As anticipated in Section 1.1, we build on the result of Bin, Cheung et al. (2021). In particular, we consider a FPSP alternating \(N^1 \) days of lockdown and \(N^1 \) normal days, where society works as normal (modulo additional policies, such as social distancing and use of masks).

We define the FPSP period \(P \) and duty cycle \(\rho \) as
\[P := N^1 + N^1, \quad \rho := N^1 / P. \]

According to Bin, Cheung et al. (2021), the period is decided in advance as the smallest possible period compatible with societal constraints (typically one, two or three weeks) and kept fixed. The duty cycle, instead, is the variable we control. In particular, the decision space is
\[\mathcal{Z} := \{ z \in \mathbb{R}^O : z(\xi) \geq 0, \, \xi \in \mathcal{Z}(x) \}. \]

For each \(0 < \delta < 1 \), we may define a new decision set
\[\mathcal{Z}_{\delta} := \{ z \in \mathcal{Z} : \omega^I(z(\xi)) \geq \delta, \, \xi \in \mathcal{Z}(x) \}. \]

The decision sets \(\mathcal{Z}_{\delta} \) and \(\mathcal{Z} \) are related through a scalar parameter \(\delta \), which controls the size of the decision set. For large \(\delta \), the decision set is small, and for small \(\delta \), the decision set is large.

3.2. Evaluation and inference models

We suppose that the initial condition \(z_0 \) is fixed (albeit unknown) and we make reference to the definitions \((1)-(2)\), which for each decision profile \(z \) produce the time signals \(z(t) \) and \(y(t) \). We let \(\gamma(x) \) be an operator extracting from \(z(t) \) the (unmeasured) variables \(\theta(t) := \gamma(z(t)) \) of interest whose growth we aim to control (\(\gamma \) is chosen so as to be \(\text{dom} \theta(z(t)) \)). For example, in the case described above in which the epidemic dynamics is given by \((7)\), \(\theta \) may consist in just the \(I \) variable, or a combination of \(I \) and \(C \). For ease of exposition, we define that \(\theta(t) \in \mathbb{R} \) for all \(t \) and \(z \).

We fix a number \(T \geq P \) (typically, \(T \) is a multiple of \(P \)) and we define two operators, \(I \) and \(D \), acting on time signals \(\eta : \text{dom} \eta \subset \mathbb{R} \rightarrow \mathbb{R} \) as
\[I \eta(t) := \frac{1}{T} \int_{t-T}^{t} \eta(s) - \eta(t-T) \, ds, \]
\[D \eta(t) := \eta(t-T), \]

in which \(I \eta \) and \(D \eta \) are defined for all \(t \in \mathbb{R} \) such that \(t-T \in \text{dom} \eta \). For each \(t \) in \(\text{dom} I \eta \) and \(\text{dom} D \eta \) then equals the average growth of \(\eta \) in the interval \([t-T, t]\).

With \(\omega^I, \omega^C, \mu_1, \mu_1 \geq 0 \), we then consider a class of evaluation models obtained with \(O = \mathbb{R}, \, O = \mathbb{R}_{0^O} \) and
\[\omega^I(z) := \bigg[I - \omega^I \bigg] (\sup \text{dom} z) - \mu_1, \]
\[\omega^C(z) := \bigg[D - \omega^C \bigg] (\sup \text{dom} z) - \mu_1. \]

Bearing in mind \((1)-(2)\), for every decision profile of the form \(z = (\hat{t}_1, x_2)_{\text{dom} \xi} \), the condition \(\omega^I(z(t)) \leq 0 \) is equivalent to
\[\frac{1}{T} \int_{t-T}^{t} \bigg(\theta(s) \omega^I(z(t)) - \theta(t-T) \bigg) \, ds \leq \frac{1}{T} \int_{t-T}^{t} \bigg(\theta(s) \omega^I(z(t)) - \theta(t-T) \bigg) \, ds + \mu_1, \]

in which \(t \in \text{sup} \text{dom} z + \Delta \). Likewise, Condition \(\omega^I(z(t)) \leq 0 \) reads
\[\frac{1}{T} \int_{t-T}^{t} \bigg(\theta(s) \omega^I(z(t)) - \theta(t-T) \bigg) \, ds \leq \frac{1}{T} \int_{t-T}^{t} \bigg(\theta(s) \omega^I(z(t)) - \theta(t-T) \bigg) \, ds + \mu_1. \]

Therefore, the evaluation principle underlying the evaluation model \((O, \omega, \omega^I, \omega^C)\) considers a behavior of \(z \) to be "excessively unstable" if the average growth during the interval \([t-T, t]\) exceeds the critical value \(\mu_1 \) of the bias \(\mu_1 \). Likewise, it considers a behavior of \(z \) to be "overly stable" if the average growth during the interval \([t-T, t]\) is lower than that during \([t-2T, t-T]\) by a factor of \(\omega^I \) minus a fixed bias \(\mu_1 / \omega^I \).
The inference models we consider are of the same kind. In particular, we let $A = R$, $A = R_{>0}$ and, with $a^i, a^j, \varepsilon^i, \varepsilon^j \geq 0$ design parameters, we let
\[
\begin{align*}
\bar{a}^i(y) := & \left[II - a^i DII \right] y(\text{sup dom } y) - \varepsilon^i, \\
\bar{a}^j(y) := & \left[DII - a^j DII \right] y(\text{sup dom } y) - \varepsilon^j,
\end{align*}
\]
whose interpretation is the same as that given above for the evaluation model.

In the following, we say that $(\alpha^i, \alpha^j, \mu^i, \mu^j)$ (resp. $(a^i, a^j, \varepsilon^i, \varepsilon^j)$) generates the evaluation model $(\mathbb{R}, R_{>0}, \omega^i, \omega^j)$ (resp. the inference model $(\mathbb{R}, R_{>0}, a^i, a^j)$), in which ω^i, ω^j (resp. a^i, a^j) are defined as in (9) (resp. (10)).

Remark 5. The proposed definitions for the evaluation and inference models suggest (although this is not necessary, in principle (Bin, Cheung et al., 2021)) to choose the decision period Δ in such a way that

$$\Delta \geq 2T,$$

which in turn implies $\Delta \geq 2P$, namely that decisions must be held for at least two periods of the FPSP. This, indeed, permits to evaluate the average growth of the signals in the same conditions, and it is assumed in the forthcoming Section 3.3.

Remark 6. We observe that if $\varepsilon^i = \varepsilon^j = 0$ (resp. $\mu^i = \mu^j = 0$), then the conditions $a^i(y) \in A$ and $a^j(y) \in A$ (resp. $\omega^i(z) \in O$ and $\omega^j(z) \in O$) are “scale-independent” (Hespanha & Morse, 1999). Indeed, they are conditions only on the growth rate of y (resp. θ) not depending on its actual amplitude. This, in turn, is associated with a larger domain of validity of Assumptions 3 and 4.

Remark 7. If the acquisition of y is delayed by a fixed, known delay $\delta > 0$, then all what said in the remainder of the section still holds if (10) substituted by
\[
\begin{align*}
\bar{a}^i(y) := & \left[II - a^i DII \right] y(\text{sup dom } y - \delta) - \varepsilon^i, \\
\bar{a}^j(y) := & \left[DII - a^j DII \right] y(\text{sup dom } y - \delta) - \varepsilon^j.
\end{align*}
\]
In this case, moreover, the decision period Δ must be taken so that $\Delta \geq 2T + \delta$ (cf. Remark 5).

3.3. Achieving robust detectability

Now, we study a few pathways to achieve robust detectability in a number of relevant cases of interest for epidemic control. Unless stated otherwise, in the remainder of the section we shall assume that the parameters a^i, a^j, μ^i, μ^j, and hence an evaluation model for z, have been fixed, and we focus on the inference model. Moreover, we assume that $\Delta \geq 2T$, so as for every decision profile $\xi \in \Xi$, the signals $\Pi y(\xi)$, $\Pi \theta(\xi)$, $\Pi z(\xi)$, and $\Pi \theta(\xi)$ are defined for all $t \in \text{dom } z(\xi)[t_1]$, where $t_1 = \Delta$ is the first decision time. Finally, we denote by $M(\alpha^i, \alpha^j, \mu^i, \mu^j)$ the set of tuples $(\alpha^i, \alpha^j, \varepsilon^i, \varepsilon^j) \in \mathbb{R}_{>0}$ generating an inference model satisfying Assumption 2 with respect to the evaluation model generated by $(\alpha^i, \alpha^j, \mu^i, \mu^j)$.

3.3.1. Robust detectability in presence of uncertainty

As a first case, we assume that we can choose some ideal parameters $(a^i, a^j, \varepsilon^i, \varepsilon^j)$ generating an inference model satisfying robust detectability for an ideal measurement signal y^\ast. For example, $y = \theta$ and $(a^i, a^j, \varepsilon^i, \varepsilon^j) = (\alpha^i, \alpha^j, \mu^i, \mu^j)$. Then, we suppose that, instead of y^\ast, we measure the “perturbed signal”
\[
y(\xi) := y^\ast(\xi) + \omega(\xi),
\]
in which $\omega(\xi) : \text{dom } y^\ast(\xi) \rightarrow \mathbb{R}$ models additive perturbations. We thus consider the problem of constructing a new tuple $(a^i, a^j, \varepsilon^i, \varepsilon^j)$

$$
\begin{align*}
\Pi \eta(\xi) & \leq \omega DII \Pi \eta(\xi) + \varepsilon^j, \\
\Pi \eta(\xi) & \geq DII \Pi \eta(\xi) - \varepsilon^j,
\end{align*}
\]
with $t = \text{sup dom } \theta(\xi)$.
Then, the following proposition (proved in the Appendix) holds.

Proposition 5. Suppose that Assumptions 7 and 8 hold and that y is given by (12). Let $\alpha^1 = \alpha^1$ and $\alpha^1 = \alpha^1$. Then, for every $\epsilon^1 \in [0, r(\mu^1 - v^1)]$ and $\epsilon^1 \in [0, r(\mu^1 - v^1)]$, $(\alpha^1, \alpha^1, \epsilon^1, \epsilon^1) \in \mathcal{A}(\eta, \omega^1, \mu^1, \mu^1)$.

We now provide some sufficient conditions on θ and the evaluation model under which Assumption 8 always holds. In particular, we assume the following.

Assumption 9 (Bounded Variations). There exists $k \geq 0$ such that, for every decision profile $\xi \in \mathcal{Z}$, $|h(t(\xi))| \leq k$ for almost all $t \in \text{dom} \theta(t(\xi))$.

Then, the proposition below (proved in the Appendix) holds.

Proposition 6. Suppose that Assumption 9 holds, and that the parameters $(\omega^1, \omega^1, \mu^1, \mu^1)$ satisfy

\[\mu^1 \geq 2 \lambda (1 + \omega^1), \mu^1 \geq 2 \lambda (1 + \omega^1). \]

Then, **Assumption 8 holds** with $v^1 = 2 \lambda (1 + \omega^1) / \lambda$ and $v^1 = 2 \lambda (1 + \omega^1) / \lambda$.

Remark 9. The statement of Proposition 6 can also be read in the following way. If y is given by (12), and Assumption 9 holds, then every set of parameters $(\omega^1, \omega^1, \mu^1, \mu^1) \in \mathbb{R}_+^4$ generates a valid inference model satisfying robust detectability with respect to an evaluation model of the form $(\omega^1, \omega^1, \mu^1, \mu^1)$ with $\omega^1 = \omega^1$, $\omega^1 = \omega^1$ and with μ^1 and μ^1 satisfying the bounds (13). In this respect, we stress that the fact that Proposition 6 requires $\mu^1, \mu^1 > 0$ does not imply that also ϵ^1 and ϵ^1 must be strictly positive. Indeed, we can always choose $\epsilon^1 = \epsilon^1 = 0$. The assumptions of Proposition 6 rather limit the class of evaluation models for which the inference model fixed as in Proposition 5 can guarantee robust detectability. The imposed limits, in turn, are directly related to the maximum rate of change of θ, given by k, and reflect the fact that our promptness in detecting events of θ from y is necessarily affected by the delay introduced by the exponential filter (12).

Remark 10. The result of Proposition 6 holds for every T, r and λ which are independent quantities in general. Hence, no knowledge of r and λ is required in principle to choose an inference model for (12). In view of Remark 9, indeed, the values of r and λ only affect the resolution with which the inference model can detect events of the underlying process x (or, formally, the class of evaluation models for which it guarantees robust detectability).

We now consider the question whether it is possible to exploit prior knowledge on λ and r to reduce the bounds (13). In particular, Proposition 7 below (proved in the Appendix) establishes a result stating that, if we can choose T and ω^1, μ^1 in terms of the process parameter λ, then tighter bounds can be established. This ultimately results in a higher accuracy of inference models produced by Proposition 5 (see Remarks 9 and 10).

Proposition 7. Suppose that Assumption 9 holds, and that ω^1, ω^1, λ, and T satisfy

\[\omega^1 = e^{-\lambda T}, \omega^1 = e^{-\lambda T}, T = 1 / \lambda. \]

If the parameters $(\omega^1, \omega^1, \mu^1, \mu^1)$ satisfy

\[\mu^1 \geq 2 \lambda, \mu^1 \geq 2 \lambda, \]

then **Assumption 8 holds** with $v^1 = 2 \lambda / \lambda$ and $v^1 = 2 \lambda / \lambda$.

Extensive numerical simulations showing the efficacy of FPSP in suppressing the COVID-19 outbreak have been already presented in Bin, Cheung et al. (2021). Hence, here we focus on evaluating the effect of the parameters ω^1, ω^1, λ, and T on the closed-loop performance. As in Bin, Cheung et al. (2021), we rely on the SIDARTHE model of Giordano et al. (2020), as it provides a specific model of the form (7) tuned on the early COVID outbreak in Italy. In particular, the model is obtained by letting in (7) $n_c = 6$, $C = (D, A, R, T, H, E)$, and

\[f_S(\beta, S, I, C) = -\beta S (s_1 I + s_2 D + s_3 A + s_4 R) \]

\[f_T(\beta, S, I, C) = \beta S (s_1 I + s_2 D + s_3 A + s_4 R) - (s_5 + s_6 + s_7) \]

\[f_C(\beta, S, I, C) = \]

\[\begin{cases} s_1 I - (s_3 + s_4) D \\ s_1 I - (s_1 + s_2 + s_3) A \\ s_1 D + (s_1 - (s_4 + s_5) \lambda) T \\ s_1 I + s_2 D + s_3 A + s_4 R + s_7 T \\ s_1 I + s_6 T \end{cases} \]

The parameters $s_1, i = 1, \ldots, 16$ are rates (in 1/ days) and have been identified in Giordano et al. (2020) as $s_1 = 0.57$, $s_2 = 0.011$, $s_3 = 0.456$, $s_4 = 0.171$, $s_5 = 0.098$, $s_6 = 0.125$, $s_7 = 0.034$, $s_8 = 0.371$, $s_9 = 0.012$, $s_{10} = 0.14$, $s_{11} = 0.017$, $s_{12} = 0.027$ and $s_{13} = 0.003$. The dimensionless parameter $\beta \in [0, 1]$ modulates the rate of effective contacts, and it equals $\beta^1 = 1$ during normal days and $\beta^1 = 0.175$ during lockdown days, as suggested in Bin, Cheung et al. (2021) and Giordano et al. (2020). Finally, the compartment S (Susceptible) represents susceptible individuals, I (Infected) the infected asymptomatic and undetected, D (Detected) the infected asymptomatic and detected, A (Ailing) the infected symptomatic and undetected, R (Reconceived) the infected symptomatic and detected, T (Threatened) the acutely symptomatic detected, H (Healed) the healed, and E (Extinct) the dead individuals. Initial conditions are restricted to $[0, 1]^3$, so as compartments represent percentages of people. We refer to Giordano et al. (2020) for further details.

The control goal is to keep the active cases under control while avoiding full lockdown. As anticipated in Section 3.1, in this case $\zeta(x)$ is the flow of the SIDARTHE model. Hence, once fixed an initial condition, for every decision profile $\zeta = (x_1, x_2, x_3; \text{dom} \zeta(t))$ the signal $z(t)$ equals the unique solution (S, I, D, A, R, T, H, E) of the SIDARTHE model subject to the time-varying parameter

\[\lambda(t) = \lambda(t, x) \quad \forall t \in [0, 1]. \]

where $t_{sup, dom} := \tilde{t}$ and where the function $\beta(t, x)$ is defined in (8). Moreover, according to the SIDARTHE model, the active cases we measure D, R and T. Hence, our measurement is $z(t) = D + R + T$.

From the model’s equations, we obtain for every $\lambda \geq \text{max}[\sigma_9, \sigma_{14}, \sigma_{15} + \sigma_{16}]$ (we omit the argument x)

\[y = -\lambda x + \lambda \theta \]

where

\[\theta = \theta(z) := \frac{k_1 I + k_2 D + k_3 A + k_4 R + k_5 T}{k_7 + k_8 + k_9 R + k_10 T} \]

and $r := (\lambda^1)^4(k_1 + k_2 + k_5 + k_6)$. Therefore, the output y has the linear-filter property (12) with respect to the variable θ. Note that $I + D + A + R + T$ represents the total infected population. Hence, θ represents a (normalized) weighted sum of all the components of the infected population in which some components are weighted more than others. For example, with $\lambda = 1/7$, the above values of the coefficients σ_9 give $k_1 \approx 0.17, k_2 \approx 0.1, k_3 \approx 0.38, k_4 \approx 0.12, k_5 \approx 0.12$. Hence, the unmeasured variables I and A weight more in the sum. Fig. 1 shows the “free” evolution of the epidemic from the initial conditions $I(0) = 1/500$, $D(0) = A(0) = R(0) = T(0) = H(0) = E(0) = 0$, $S(0) = 1 - I(0)$. As shown in the figure, θ reaches its peak before $I + D + A + R + T + H + E$. This is due to the larger importance of I and A in the sum (16). In the following simulations, the control logic (4)–(5) is applied to the SIDARTHE model defined above for $t_f := 365$ days, with $P = 7$ days, $\Delta = 2T$, $\lambda = 1/T$ (chosen according to Proposition 7), and with
initial conditions $I(0) = 1/500$, $D(0) = A(0) = R(0) = T(0) = H(0) = E(0) = 0$, $S(0) = 1 - I(0)$, $x_0 = 0$. Figs. 2-(a) and 2-(b) summarize the closed-loop behavior obtained for different values of a^\uparrow and a^\downarrow and with $\varepsilon^\uparrow = x^\downarrow = 0$, while Fig. 3 shows some sample time series. In particular, Fig. 2-(a) shows the mean value of the resulting decision time series x rounded to the first decimal. The larger the value, the better it is, since x equals the number of normal days in each FPSP period. Fig. 2-(b) shows instead the RMS norm of θ, defined as

$$|\theta|_{\text{RMS}} := \sqrt{\frac{1}{t_f - t_0} \int_{t_0}^{t_f} (100 \cdot \theta(s))^2 \, ds}, \quad (17)$$

and rounded to the second decimal. The smaller the value the better it is, as θ is a weighted sum of the active cases. For reference, in the uncontrolled outbreak case depicted in Fig. 1, $|\theta|_{\text{RMS}} \approx 14.8$.

All the simulated pairs $(a^\uparrow, a^\downarrow)$ stabilize the infection-free equilibrium, although some are better than others. In particular, the orange contours in Figs. 2-(a) and 2-(b) group pairs $(a^\uparrow, a^\downarrow)$ associated with a good compromise between average x and $|\theta|_{\text{RMS}}$. Specifically, the pair $(a^\uparrow, a^\downarrow) = (0.3, 0.9)$ produces a stable behavior.

Among the time series shown in Fig. 3, the second and third (shown respectively in Figs. 3-(b) and 3-(c) and obtained with $(a^\uparrow, a^\downarrow) = (0.3, 0.9)$ and $(a^\uparrow, a^\downarrow) = (0.3, 2.7)$) are inside the orange contour and, indeed, are associated with a relatively large mean value of x (about 2 days per FPSP period) and with a relatively small RMS norm of θ. Specifically, the pair $(a^\uparrow, a^\downarrow) = (0.3, 0.9)$ produces a stable behavior.
Fig. 4. Time series of the decision variable x, the observed variable y and the controlled variable θ obtained with $\epsilon^+ = \epsilon^- = 10^{-4}$ and with (a) $(a^+, a^-) = (0.3, 0.3)$, (b) $(a^+, a^-) = (0.3, 0.9)$, (c) $(a^+, a^-) = (0.3, 2.7)$, and (d) $(a^+, a^-) = (0.9, 2.1)$.

in which the decision variable converges in two steps to a stationary steady state equal to 2 days for each FPSP period (Fig. 3-(b)). The pair $(a^+, a^-) = (0.3, 2.7)$, instead, is characterized by a persistent oscillation of the decision variable, although maintaining the same average value of about 2 days per period. This persistent oscillation may be caused by the fact that stationarity (Assumption 3) does not hold in a strict sense. The time series shown respectively in e 3-(a) and 3-(d) are instead outside the orange contours, as they are too conservative in terms of the decision x, although they are associated with a faster decay of the infected population. As evident from the heat maps of Figs. 2-(a) and 2-(b), indeed, for fixed a^+ increasing a^- leads to a less conservative control policy. Conversely, for fixed a^+ increasing a^- leads to a more conservative control policy.

For the same range of values for (a^-, a^+), Figs. 2-(c) and 2-(d) show the mean value of x and the RMS norm of θ in the case of $\epsilon^+ = \epsilon^- = 0$. Comparing Fig. 2-(a) with 2-(c) and Fig. 2-(b) with 2-(d) shows that positive values of ϵ^+ and ϵ^- have the effect of “shifting” in the bottom-right direction and “enlarging” the heat maps. In particular, some of the choices of (a^-, a^+) that with $\epsilon^+ = \epsilon^- = 0$ showed a good behavior, now with $\epsilon^+ = \epsilon^- = 10^{-4}$ are too conservative. For instance, compare the time series shown in Fig. 3, which corresponds to $\epsilon^+ = \epsilon^- = 0$ with those shown in Fig. 4, which instead are obtained with $\epsilon^+ = \epsilon^- = 10^{-4}$.

As for Figs. 2-(a) and 2-(b), the orange contours in Figs. 2-(c) and 2-(d) group choices of (a^-, a^+) associated with a good trade-off between average value of x and RMS norm of θ. Moreover, in all four heat maps, green contours group the “intersection” of the orange ones, thus
individuating the set of choices of \((\ell^1, \ell^1)\) associated with a good trade-off between average value of \(x\) and RMS norm of \(\theta\) for both choices of \((\ell^1, \ell^1)\). Those are choices which are “robust” with respect to different choices of \((\ell^1, \ell^1)\) inside \(\{ (\ell^1, \ell^1) \in \mathbb{R}^2_{\geq 0} : \ell^1 = \ell^1 \in \{0, 10^{-4}\}\}\). In this respect, we underline that, since the values \(y\) and \(\theta\) are percentages of the overall population, a value of \(\ell^1\) and \(\ell^2\) of the order of \(10^{-4}\) equals the 0.01% of the population, and thus represents a reasonable value.

We also observe that the choice suggested by Proposition 7, i.e.

\[
(a^1, a^2) = (e^{-2T}, e^{2T}) = (e^{-1}, e^1) \approx (0.368, 2.718)
\]

(18)

lies with margin inside the interior of the green contour. Thus, the values (18) suggested by Proposition 7 represent a robust choice guaranteeing good performances for different values of \(\ell^1\) and \(\ell^2\).

Regarding the choice of \(\ell^1\) and \(\ell^2\), we observe that while in an ideal case in which \(y\) is measured without uncertainty \(\ell^1 = \ell^1 = 0\) is fine, \(\ell^1, \ell^2 > 0\) may instead help in presence of uncertainty, as they act as a regularizer. In particular, Fig. 5 shows some simulations obtained with \(a^1\) and \(a^2\) given by (18), with \(\ell^1 = \ell^2 = \ell\) for \(\ell = 0, 10^{-6}, 10^{-5}, 10^{-4}\), and with \(y\) given by

\[
y = (D + R + T) \cdot (1 + v),
\]

(19)

in which \(v\) is a disturbance term produced as

\[
\dot{u}_n = \ell (d - u_n), \quad \nu = A_n u
\]

with \(u_n(0) = 0, A_n = 10^7\), \(\ell = 10^{-3}\), and where \(d\) is obtained as a linear interpolation of a uniform random noise with values in \([-10^{-5}/2, 10^{-5}/2]\) and sampled with frequency \(10^5\) days\(^{-1}\). We observe that (19) fits in the case considered in Section 3.3.1, with \(\nu := (D + R + T)y\). For every value of \(\ell\), 100 simulations have been performed.

As shown in Fig. 5, increasing values of \(\ell\) lead to a more robust behavior with respect to the perturbation on \(y\). Fig. 6 shows some statistics of the perturbation signals used in the simulation. In particular, the level of perturbation is so that the measurement of \(y\) deviates also 10%-20% from its nominal value \(D + R + T\).

Finally, we underline that in all the simulation the control logic considerably limits the virus growth (compare with Fig. 1) while maintaining, on average, a steady-state number of normal days of about 2 per period.

5. Conclusions

In this paper we have studied a class of hysteresis-based control schemes with the aim of providing theoretical support of the use of supervisory control for data-driven containment of epidemics. In particular, we have focused on the setting of Bin, Cheung et al. (2021) in which supervisory control is used to tune online, from measured data, the value of the FPSP duty cycle (Sections 3 and 4). Nevertheless, the theory developed in Section 2 goes far beyond such application, and can be used for a broader class of problems. Specifically, in Section 2 we have developed the main theoretical framework in a rather abstract setting, where inference and evaluation models are left generic. First, we have proved invariance and attractiveness properties of sets of decisions that lead to a good behavior of the observed variables. Then, under robust detectability, we have proved that such decisions also lead to a satisfactory behavior for the unmeasured underlying process.

In Section 3, we have restricted the focus to a case relevant for epidemic control, and we have provided additional results determining conditions under which robust detectability can be achieved in presence of uncertainty and in the relevant case in which the measured output is a filtered version of the variables whose growth must be contained. Moreover, we have shown that the knowledge of the filter time constant can be used to tune the controller parameters to improve performance (Proposition 7).

Overall, the theoretical analysis carried out in Sections 2 and 3 confirms prior intuitions on hysteresis-based control, and in particular the claims on its robustness with respect to perturbations and model uncertainties. Indeed, models enter into play in terms of evaluation models, inference models, and robust detectability (see Section 2.1 and Assumption 2). Evaluation and inference models are descriptions capturing the qualitative way in which decisions affect, respectively, the unmeasured controlled process and the measured variables. As such, they can be approximate models, and are considerably weaker hypotheses than typical models expressed in terms of differential equations. Robust detectability, on the other hand, is an assumption linking inference and evaluation models, permitting in this way to infer the response of the unmeasured variables to a decision from measurements. As discussed in Remark 1, the decisions of the hysteresis logic remain valid for all uncertainties and disturbances that do not ruin robust detectability. This, in turn, is what confers robustness on the decision logic.

The numerical simulations performed in Section 4 validate the theoretical conclusions in the context of the model of COVID-19 outbreak. The simulations confirm robustness with respect to uncertainty in the measurements and to variability of the control parameters. In particular, in all the simulated cases the outbreak is contained, and also in the worst realizations the overall closed-loop behavior is better, from the virus growth standpoint, than the uncontrolled outbreak. Remarkably, simulations provide clear evidence in favor of the theoretical values for the parameters \(a^1\) and \(a^2\) found in Proposition 7 in studying performance improvement. In particular, such values are associated, at the same time, with a good trade-off between virus growth and number of normal days per FPSP period, and robustness with respect to different values of \(\ell^1\) and \(\ell^2\). The latter parameters, in turn, were shown in the simulations to have a beneficial effect in presence of uncertainty in the measurements, while overall leading to a more conservative behavior for fixed \((a^1, a^2)\).

Ultimately, both theoretical analysis and simulations provide evidences supporting the use of hysteresis-based decision mechanisms in the control of epidemics. Nevertheless, many aspects of reality have been neglected in both theory and simulations, and the presented results thus only provide a starting point requiring further empirical study. Moreover, also several theoretical questions remain open. For instance, the theory of Section 2 only relies on qualitative models on how decisions affect the underlying process (evaluation and inference models), and quantitative models, such as for example SI-like differential equations, are not considered. This is inherited by Section 3, which indeed focuses on how to construct inference and evaluation models. A SIDARTE equation is only used in Section 4 to model a plausible outbreak and, notably, to infer a relation of the form (12) linking \(y\) and \(\theta\). In turn, this is an example on how additional information or assumptions may help in building better inference models. However, there are many other ways in which such kind of prior information may be used to refine the models (e.g., how to choose \(\ell^1\) and \(\ell^2\)), and here these are not discussed.

Finally, we observe that seasonality, vaccination, and even new restrictions can change the effect decisions have on the outbreak. These sources of time-variability are not considered here. But since they happen at a slower time scale than the virus dynamics, the developed theory can still be used within a limited time horizon, with models that must be possibly adapted time to time so as to reflect the new conditions. An interesting alternative, is to embed seasonality, vaccinations, and the other sources of variability directly in the inference and evaluation models, that thus become time-varying. In turn, this is a further open problem requiring additional research.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Appendix. Technical proofs

Proof of Lemma 3. Suppose that $\tilde{X} \neq \emptyset$. Then, $\tilde{X} = X$, and thus $\tilde{X} \neq \emptyset$ implies $\tilde{X} \neq \emptyset$ and $\tilde{X} \cup \tilde{X} = X$.

Suppose, instead, that $\tilde{X} \subset X$. Then, Lemma 2 implies that $\tilde{x} := (\sup X)^* x \in X \setminus \tilde{X}$. By definition of \tilde{X}, we have $\tilde{x} \in \tilde{X}$. Moreover, in view of Assumption 3, $\tilde{x} \notin \tilde{X}$ implies $a_1(y(x)) \in A$ for all $x \in X(x)$. Thus, Assumption 4 implies $a_1(y(x)) \notin A$ for all $x \in X(x) = \tilde{X}$. This, however, implies $x \notin \tilde{X}$ which is a contradiction. Hence, $x \in \tilde{X}$ for all $x \in \tilde{X}$, and the first implication holds. Next, notice that by definition and by the implication just proved, $x \notin \tilde{X}$ whereas $x \notin \tilde{X}$. Hence also $\tilde{X} \cup \tilde{X} = X$. The last two implications are proved by similar arguments.

Proof of Lemma 3. Suppose that $\tilde{X} = X$. Then, $\tilde{X} = X$, and thus $\tilde{X} \neq \emptyset$ implies $\tilde{X} \neq \emptyset$ and $\tilde{X} \cup \tilde{X} = X$.

Consider case (i). We prove that $x^* \in X^*$ by contradiction. For suppose that $x^* \notin X^*$. Since $x \in X \times X$ and, by Lemma 2, $\tilde{X} \subset X$, then necessarily $a_1(y(x)) \notin A$ for all x. In view of Assumption 3, if $\tilde{x} \notin X^*$, then necessarily $a_1(y(x)) \in A$ for all $x \in X(x^*)$, which is a contradiction. Therefore, we conclude that $X^* = x$. However, this violates Condition (a). Thus, by contradiction, we can conclude that, necessarily, $x \notin X^*$. Then, by (5), $F(x, y(x)) = \{x^* \in X^* \} \times x^*$ holds. In the case (ii), $F(x, y(x)) = \{x \times x \} \times X$ is proved by a similar argument. Thus, in both cases we have $F(x, y(x)) \subset X^* \times x \in X^*$, and the claim follows.

Proof of Proposition 6. We first prove invariance of $\tilde{X} \cup \tilde{X}$. Pick $x \in \tilde{X}$, and $\xi \in X(\tilde{X})$ arbitrarily. We have two possibilities: (i) $x \in \tilde{X}$, or (ii) $x \in X \setminus \tilde{X}$. First, assume (i) holds. By definition of \tilde{X}, in this case $x^* \in \tilde{X}$. Moreover, since under Assumptions 1-3 and 4, \tilde{X} is invariant under the predecessor operator (Lemma 2), then $x^* \in \tilde{X}$ as well, implying $F(x, y(x)) \subset \{x^* \times x \} \times \tilde{X}$. Consider now case (ii). As $x \notin \tilde{X}$, then $a_1(y(x)) = a_1(x) \in A$, so as (i) implies $F(x, y(x)) = \{x \times x \} \times \tilde{X}$ by Lemma 2. This proves that $\tilde{X} \cup \tilde{X}$ is forward invariant for (4).

Forward invariance of \tilde{X}, as proved by means of a symmetric argument. Finally, forward invariance of \tilde{X}, follows by the fact that (a) $\tilde{X} \neq \emptyset$ implies that both \tilde{X} and \tilde{X} are nonempty, and (b) the intersection of forward invariant sets is forward invariant.

Proof of Proposition 4. As $(a_0', a_1', e_1', e_2') \in M(\alpha', \beta', \mu')$, then for every decision profile $\xi \in X$

$$a_0'(\xi(x)) > 0 \implies a_0'(y(x)(\xi)) > 0,$$

$$a_1'(\xi(x)) > 0 \implies a_1'(y(x)(\xi)) > 0,$$

where a_0' and a_1' are given by (10) for (a_0', a_1', e_1', e_2'). Likewise, let a' and a' be given by (10) for (a_0', a_1', e_1', e_2') for some $e' \in [0, e' - v_1]$ and $e' \in [0, e' - v_1]$. Let $t := \sup dom y(x) = \sup dom \omega(x) = \sup dom y(x)$. In terms of the operators D and D', (11) implies

$$\omega(t(x)) \geq a_0' D \omega(t(x)) - v_1,$$

$$e' D' \omega(t(x)) \leq D' \omega(t(x)) + v_1.$$}

Hence, we have

$$a_0'(y(x)(\xi)) > 0 \implies \left[D - a_0' D \right] y(t(x)) > e_1'$$

$$\Rightarrow \left[D - a_0' D \right] \left(y(t(x)) - \omega(t(x)) \right) > e_1'$$

$$\Rightarrow \left[D - a_0' D \right] y(t(x)) > e_1' - v_1 \geq e_1$$

$$a_1'(y(x)(\xi)) > 0.$$}

Thus, $a_0'(y(x)(\xi)) > 0$. The other implication, i.e. that $a_0'(y(x)(\xi)) > 0 \implies a_1'(y(x)(\xi)) > 0$, follows by a similar argument from the second inequality of (A.1).

Proof of Proposition 5. Pick $\xi \in X$ arbitrarily. First, notice that for all t, $e(t) = \frac{d}{dt} [e(t)] d\tau$. Hence, integrating by parts yields (for ease of notation, we omit the argument ξ when clear)

$$\gamma(t) = r e(c(t)) + \frac{e(c(t))}{\mu} \gamma(t)$$

$$\Rightarrow r [e(c(t))] \gamma(t) = - \frac{e(c(t))}{\mu} \gamma(t)$$

$$\Rightarrow \gamma(t) = r [e(c(t))] \gamma(t) = e(c(t)) \gamma(t)$$

$$\gamma(t) = r [e(c(t))] \gamma(t) = e(c(t)) \gamma(t)$$

Thus, with $a_0' \neq 0$ and $e(t) \notin [0, \mu \cdot (\xi - v)]$, we obtain for $t = \sup dom y$

$$a_0'(y(x)) = \left[D - a_0' D \right] y(t(x)) > e_1'$$

$$\Rightarrow \left[D - a_0' D \right] \left(y(t(x)) - \omega(t(x)) \right) > e_1'$$

$$\Rightarrow \left[D - a_0' D \right] y(t(x)) > e_1' - v_1 \geq e_1$$

$$\Rightarrow \left[D - a_0' D \right] y(t(x)) > 0.$$}

This, however, implies

$$\gamma(t) = r e(c(t)) + \frac{e(c(t))}{\mu} \gamma(t)$$

$$\Rightarrow r [e(c(t))] \gamma(t) = - \frac{e(c(t))}{\mu} \gamma(t)$$

$$\Rightarrow \gamma(t) = r [e(c(t))] \gamma(t) = e(c(t)) \gamma(t)$$

Thus, with $a_0' \neq 0$. The implication $a_0'(y(x)) > 0 \implies a_0'(y(x)) > 0$ is proved in a similar way.

Proof of Proposition 6. Pick $\xi \in X$ arbitrarily, and let $t = \sup dom \omega(x)$. Expanding the expression of $\omega(t(x)) - D \omega(t(x))$ leads to (again, we omit the argument ξ)

$$\left[D - a_0' D \right] \omega(t(x)) = \frac{1}{T} \int_{T}^{t} \int_{T}^{t} c(t) e(t) \mathrm{d}t \mathrm{d}r d\tau$$

$$\Rightarrow \left[D - a_0' D \right] \omega(t(x)) = \frac{1}{T} \int_{T}^{t} \int_{T}^{t} c(t) e(t) \mathrm{d}t \mathrm{d}r d\tau$$

$$\Rightarrow \left[D - a_0' D \right] \omega(t(x)) = \frac{1}{T} \int_{T}^{t} \int_{T}^{t} c(t) e(t) \mathrm{d}t \mathrm{d}r d\tau$$

Using Assumption 9 yields

$$\left[D - a_0' D \right] \omega(t(x))$$

$$\leq \frac{1}{T} \int_{T}^{t} \int_{T}^{t} c(t) e(t) \mathrm{d}t \mathrm{d}r d\tau$$

$$+ \frac{1}{T} \int_{T}^{t} \int_{T}^{t} c(t) e(t) \mathrm{d}t \mathrm{d}r d\tau$$

$$\leq \frac{1}{T} \int_{T}^{t} \int_{T}^{t} c(t) e(t) \mathrm{d}t \mathrm{d}r d\tau$$

In the same way, we find that $|D' \omega(t(x)) - D' \omega(t(x))| \leq 2 \epsilon(x + 1 + \epsilon)/\lambda$. Hence, if (13) holds, then $v_1 = 2 \epsilon(x + 1 + \epsilon)/\lambda$ and $v_1 = 2 \epsilon(x + 1 + \epsilon)/\lambda$ satisfy $v_1 \in [0, \mu]$. Therefore, $v_1 \in [0, \mu]$ are such that Assumption 8 holds.
Proof of Proposition 7. Pick \(\xi \in \mathbb{R} \) arbitrary, and let \(t = \sup \text{dom} \theta(\xi) \).
From Proter and Morrey (1985, Theorem 7, Chapter 5), we obtain (we omit the argument \(\xi \))
\[
\int_{t-T}^{t} \eta(s) ds = \int_{t-T}^{t} \int_{t-T}^{s} e^{(s-t)\theta(t)} \eta(t) \, dt \, ds
= \int_{t-T}^{t} \int_{t-T}^{t} e^{(s-t)\theta(t)} \, dt \, ds + \int_{t-T}^{t} \int_{t-T}^{s} e^{(s-t)\theta(t)} \, dt \, ds
= \int_{t-T}^{t} e^{(s-t)\theta(t)} \, dt + \int_{t-T}^{t} \int_{t-T}^{s} e^{(s-t)\theta(t)} \, dt \, ds.
\]
Therefore, using (14), we obtain
\[
\left[I - \delta \frac{\partial \pi}{\partial \theta(\xi)} \right] \eta(t) = -\int_{t-T}^{t} e^{(s-t)\theta(t)} \, dt + \int_{t-T}^{t} \int_{t-T}^{s} e^{(s-t)\theta(t)} \, dt \, ds - e^{-1} \int_{t-T}^{t-T} \theta(t) \, ds
\leq \kappa \left(\int_{t-T}^{t-T} e^{(s-t)\theta(t)} + e^{s-T} \right) \leq \frac{2\kappa}{\lambda},
\]
A similar bound for \(\left[I - \delta \frac{\partial \pi}{\partial \theta(\xi)} \right] \eta(t) \) is obtained with the same arguments. Hence, if (15) hold, then \(\nu^1 = 2\kappa/\lambda \) and \(\nu^1 = 2\kappa/\lambda \) satisfy \(\nu^1 \in [0,1] \) and \(\nu^1 \in [0,1] \) and are such that Assumption 8 holds.

References

