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Abstract: The siderophore organic ligand N,2-dihydroxybenzamide (H2dihybe) incorporates the
hydroxamate group, in addition to the phenoxy group in the ortho-position and reveals a very
rich coordination chemistry with potential applications in medicine, materials, and physical sci-
ences. The reaction of H2dihybe with TiCl4 in methyl alcohol and KOH yielded the tetranuclear
titanium oxo-cluster (TOC) [TiIV4(µ-O)2(HOCH3)4(µ-Hdihybe)4(Hdihybe)4]Cl4·10H2O·12CH3OH
(1). The titanium compound was characterized by single-crystal X-ray structure analysis, ESI-MS,
13C, and 1H NMR spectroscopy, solid-state and solution UV–Vis, IR vibrational, and luminescence
spectroscopies and molecular orbital calculations. The inorganic core Ti4(µ-O)2 of 1 constitutes a rare
structural motif for discrete TiIV4 oxo-clusters. High-resolution ESI-MS studies of 1 in methyl alcohol
revealed the presence of isotopic distribution patterns which can be attributed to the tetranuclear clus-
ters containing the inorganic core {Ti4(µ-O)2}. Solid-state IR spectroscopy of 1 showed the presence
of an intense band at ~800 cm−1 which is absent in the spectrum of the H2dihybe and was attributed
to the high-energy ν(Ti2–µ-O) stretching mode. The ν(C=O) in 1 is red-shifted by ~10 cm−1, while
the ν(N-O) is blue-shifted by ~20 cm−1 in comparison to H2dihybe. Density Functional Theory (DFT)
calculations reveal that in the experimental and theoretically predicted IR absorbance spectra of the
ligand and Ti-complex, the main bands observed in the experimental spectra are also present in the
calculated spectra supporting the proposed structural model. 1H and 13C NMR solution (CD3OD)
studies of 1 reveal that it retains its integrity in CD3OD. The observed NMR changes upon addition
of base to a CD3OD solution of 1, are due to an acid–base equilibrium and not a change in the
TiIV coordination environment while the decrease in the complex’s lability is due to the improved
electron-donating properties which arise from the ligand deprotonation. Luminescence spectroscopic
studies of 1 in solution reveal a dual narrow luminescence at different excitation wavelengths. The
TOC 1 exhibits a band-gap of 1.98 eV which renders it a promising candidate for photocatalytic
investigations.

Keywords: titanium(IV) oxo-clusters; band gap modification; multinuclear NMR; ESI-MS stud-
ies; photoluminescence

1. Introduction

The design, synthesis, and physicochemical characterization of polyoxo-titanium clus-
ters (PTCs) have been an active research area over the last decade, due to their interesting
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electronic properties for various applications in nanotechnology [1–6], photocatalytic hy-
drogen production [7–9], degradation of environmental pollutants [10,11], catalysis [12–17],
solar energy conversion [18,19], and copolymerization of carbon dioxide [20]. At this
point, it is worth noting that according to an excellent review, published very recently, the
chemistry of group IV elements is underexplored [21].

The knowledge of the structural features of PTCs from single-crystal X-ray structure
analysis is of fundamental importance to predict the binding modes of various ligands
to TiO2 since the PTCs are considered solution-processable molecular analogs of TiO2.
Moreover, the 3.20 eV band-gap of TiO2 limits its applications in photocatalysis [22,23].
However, the use of strong organic chelators allows the modulation of the band-gap with
subsequent Vis-NIR absorption by PTCs to appropriate values, which is a fundamentally
important parameter for practical applications [24].

Siderophores are low molecular weight organic compounds that are produced by
microorganisms and plants suffering from iron deficiency [25]. Siderophores have re-
ceived much attention in recent years due to their potential applications in environmental
research [26]. Siderophores are divided into three main families depending on the charac-
teristic functional group, i.e., hydroxamates, catecholates, and carboxylates [27].

Metal-hydroxamate has greater resistance to hydrolysis [28] in comparison to car-
boxylic acids and greater electronic coupling over carboxylic and phosphonic acids that
ensures efficient electron transport [29,30]. The main binding modes of hydroxamate with
metal ions are shown in Figure S1 [28].

The organic molecule N,2-dihydroxybenzamide (H2dihybe) (Scheme 1A) incorporates a
hydroxamate group in addition to the phenoxy group in the ortho-position and exhibits a rich
coordination chemistry with many transition metals [31–40] with potential applications in
various fields ranging from medicine [41–43] to materials [44], and physical sciences [40,45].
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Scheme 1. The ligand used in this study (A) and the µ3-η1:η2:η1:η1 binding mode of the ligand
H2dihybe, in its iminol form, in the reported [46] three TiIV/H2dihybe TOCs (B).

The ligand H2dihybe has been used previously in the synthesis of titanium(IV) oxo-
clusters [47] under hydrothermal conditions to give three TOCs, namely: [Ti6(µ-O)(µ3-O)2
(OiPr)10(OOCCH3)2(dihybe)2]; [Ti7(µ3-O)2(OEt)18(dihybe)2]; and [Ti12(µ-O)4(µ3-O)4 (OEt)20
(dihybe)4]. The ligand in these three TOCs interacts with the titanium(IV) in its iminol
tri-deprotonated µ3-η1:η2:η1:η1 form (Scheme 1B).

The formation of various metal–siderophore complexes (nuclearity-binding modes of
siderophore) among other factors greatly depends on the pH of the reaction mixture since
there is a competition between free protons and metal ions for the free siderophore ligands.

To further explore the coordination chemistry of N,2-dihydroxybenzamide (H2dihybe)
(Scheme 1) with titanium(IV), we explored the interaction of TiIVCl4 with H2dihybe at
low pH under mild conditions (room temperature). Herein, we report the synthesis, struc-
tural, and physicochemical characterization of the tetranuclear TOC [TiIV4(µ-O)2(HOCH3)4
(µ-Hdihybe)4(Hdihybe)4]Cl4.10H2O.12CH3OH (1). The cluster 1 constitutes a rare exam-
ple of a discrete TOC containing the inorganic core {Ti4(µ-O)2}. Spectroscopic studies in
the solid state revealed a reduced bandgap value of 1.98 eV. In addition, this compound
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produced dual emission because of changes in the emitting light with variations in the exci-
tation wavelength. The materials with dual emission properties such as 1 can be applied in
OLED devices, allowing tuning of the color of the emitting light depending on the voltage
applied to the device [47].

2. Results and Discussion
2.1. Synthesis of 1 and Comparison with the Reported Higher Nuclearity TOCs/H2dihybe

The synthesis of the TOC 1 takes place according to equation 1 and the produced HCl is
responsible for the low pH (1.5) of the system and presumably for the mono-deprotonation
of the eight ligands of 1.

4TiCl4 + 8H2dihybe + 8KOH→ [Ti4(µ-O)2(Hdihybe)8]Cl4 + 8KCl + 4HCl + 6H2O(1) (1)

In Equation (1), the molar ratio (mr) of TiCl4/H2dihybe is 1:2, while in the reported [46]
TiIV/H2dihybe TOCs {[Ti6(µ-O)(µ3-O)2(OiPr)10(OOCCH3)2(dihybe)2]; [Ti7(µ3-O)2(OEt)18
(dihybe)2]; and [Ti12(µ-O)4(µ3-O)4(OEt)20(dihybe)4]} the mr of Ti(OiPr)4/H2dihybe is four
and this means that more positions of the coordination sphere of titanium(IV), in our case, are
occupied by the donor atoms of the ligand which precludes the formation of bigger clusters.
On the other hand, the use of Ti(OiPr)4 with the very strong base −OiPr, [deprotonated
HOiPr (pKa = 16.5) is a stronger base than H2dihybe (pKa = 9.57), thus, in these solutions,
the ligand was deprotonated, −Hdihybe], the high temperature and high pressure under
the hydrothermal conditions lead to the formation of the tri-deprotonated ligand which is
capable of bridging more metals and thus, leading to the formation of higher nuclearity TOCs.

From all the above, it is clear that the low molar ratio of titanium(IV)/H2dihybe, low
pH, and room temperature lead to the formation of low nuclearity TOCs. The ligation of
the ligand to TiIV makes the hydroxamic proton [~C(O)NHO-H] more acidic, and thus,
despite the low pH, results in the deprotonation of the ligand.

2.2. Description of the Structure

Interatomic distances and bond angles relevant to the Ti(1) coordination sphere
are listed in Table 1. The molecular structure of the cation [TiIV4(µ-O)2(HOCH3)4(µ-η1,
η2-Hdihybe-O,O′)4(η1,η1-Hdihybe-O,O′)4]4+ of 1 is presented in Figure 1 which is com-
posed of two dinuclear [TiIV2(HOCH3)2(µ-η1,η2-Hdihybe-O,O′)2(η1,η1-Hdihybe-O,O′)2]4+

(Figure 2A) units interlinked through two µ-bridging oxygen atoms (Figure 2B). Each tita-
nium(IV) atom in 1 is bonded to two mono-deprotonated Hdihybe–ligands, one of which
acts as a bidentate-O,O′ chelate through the carbonyl and the deprotonated hydroxamate
oxygen atoms (see Scheme 2a) and the other one as a chelate-bridging-O,O′ through the
same oxygen atoms (see Scheme 2b). All the titanium centers in 1 are seven-coordinate,
with an O7 donor set, in a pentagonal bipyramidal environment and are sharing one
of their edge (Figure 2B) in the {Ti2} structural unit and through a corner in the Ti(1)-
O(15)-Ti(1)′ ′ ′ unit (Figure 2B). The Ti(1)···Ti(1)′ and Ti(1)···Ti(1)′ ′ distances within the two
dimeric {Ti2} units are 3.515(1) and 3.561(1) Å, respectively, while the Ti(1)-O(15)-Ti(1)′ ′ ′

angle is 165.8(1)◦. The inorganic core {Ti4(µ-O)2} constitutes a rare example of such a
structural motif for discrete {TiIV4} oxo-clusters. The other two examples which have
been reported are the following: (NH4)6[TiIV4(µ-O)2(C2H2O3)4(C2H3O3)2(O2)4] [48,49]
and [TiIV4(µ-O)2(µ-OEt)4(κ3-tbop)4] [50].
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Table 1. Interatomic distances (Å) and angles (◦) relevant to the Ti(1) coordination sphere for the
tetranuclear titanium cluster 1.

Bond Distances

Ti(1)-O(1) 2.112(3) Ti(1)-O(4) 1.978(3)
Ti(1)-O(1)’ 2.087(3) Ti(1)-O(9) 2.114(3)
Ti(1)-O(2) 2.043(3) Ti(1)-O(15) 1.7945(10)
Ti(1)-O(3) 2.027(3)

Bond Angles

Ti(1)’-O(1)-Ti(1) 113.65(13) O(15)-Ti(1)-O(1) 91.07(13)
Ti(1)”-O(15)-Ti(1) 165.8(2) O(4)-Ti(1)-O(1) 138.26(12)
O(15)-Ti(1)-O(4) 97.77(10) O(3)-Ti(1)-O(1) 144.82(12)
O(15)-Ti(1)-O(3) 94.60(15) O(2)-Ti(1)-O(1) 72.89(11)
O(4)-Ti(1)-O(3) 75.20(12) O(1)’-Ti(1)-O(1) 63.64(13)
O(15)-Ti(1)-O(2) 90.87(10) O(15)-Ti(1)-O(9) 176.42(13)
O(4)-Ti(1)-O(2) 146.94(12) O(4)-Ti(1)-O(9) 85.45(13)
O(3)-Ti(1)-O(2) 72.33(12) O(3)-Ti(1)-O(9) 87.73(2)

O(15)-Ti(1)-O(1)’ 93.56(14) O(2)-Ti(1)-O(9) 87.23(12)
O(4)-Ti(1)-O(1)’ 75.11(12) O(1)’-Ti(1)-O(9) 85.73(12)
O(3)-Ti(1)-O(1)’ 150.00(12) O(1)-Ti(1)-O(9) 85.47(12)
O(2)-Ti(1)-O(1)’ 136.35(12)
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titanium cluster 1. Chelating (a) and bridging-chelating (b).

2.3. ESI-MS Spectrometry

In an effort to further characterize the tetranuclear titanium(IV) cluster in solu-
tion, we employed high-resolution ESI-MS to unambiguously determine the structural
integrity and composition of the titanium-based species in solution [51,52]. The low
m/z region of the negative ion mass spectrum of 1 exhibits two characteristic sets of
isotopic distribution patterns (Figure 3) which can be attributed to the dinuclear and
trinuclear fragments of 1 and are centered at: ca. (a) 698.98, 736.93, and 768.95 m/z
with the formulae of {TiIII2O2(OCH3)3(C7H5NO3)3(OH2)H6}–, {TiIII2O2(C7H5NO3)4H5}–

and {TiIII2O2(OCH3) (C7H5NO3)4H6}– for the dinuclear fragment and at (b) 895.911 and
931.90 m/z with the formulae of {TiIII3O2(OCH3)(C7H5NO3)4(HOCH3)2(OH2)H3}– and
{TiIII3O2(OCH3)(C7H5NO3)4(HOCH3)2(OH2)3H3}– for the trinuclear fragments, respec-
tively. The observation of different oxidation states for the metal centers and the presence
of other fragments during the studies is due to the ionization and transfer process and has
been observed in numerous occasions [53–57].
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Figure 3. Negative mode of the low m/z region electrospray ionization mass spectrum (ESI-MS) of
the {Ti4} (1) cluster in CH3OH.

The high m/z region of the negative ion mass spectrum of 1 (Figure 4) exhibits char-
acteristic isotopic distribution patterns which can be attributed to the tetranuclear cluster
containing the inorganic core {Ti4O2} and are centered in the region ca. 1078–1315 m/z.
See Table 2 for the assigned species. The partial fragmentation during the ESI-MS studies
provides additional information on the relevant stability of the fragments that can exist in
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solution. Thus, this can provide an indication of the potential assembly pathway followed
during the formation of the tetranuclear species which can be formed by the combination
of smaller dimeric fragments, e.g., 2 × {Ti1}→ 2 × {Ti2}→ {Ti4}.
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Figure 4. Negative mode of the high m/z region electrospray ionization mass spectrum (ESI-MS) of
the {Ti4} (1) cluster in CH3OH.

Table 2. Representation of the experimentally identified and simulated m/z values of distribution
patterns of {Ti4} cluster.

Experimental Theoretical Charge Formula

698.98 698.09 −1 {TiIII2O2(OCH3)3(C7H5NO3)3(OH2)H6}–

736.93 737.03 −1 {TiIII2O2(C7H5NO3)4H5}–

768.95 769.06 −1 {TiIII2O2(OCH3)(C7H5NO3)4H6}–

895.91 896.04 −1 {TiIII3O2(OCH3)(C7H5NO3)4(HOCH3)2(OH2)H3}–

931.90 932.10 −1 {TiIII3O2(OCH3)(C7H5NO3)4(HOCH3)2(OH2)3H3}–

1048.95 1049.05 −1 {TiIITiIII3O2(OCH3)(C7H5NO3)5(H2O)2H3}–

1086.90 1086.97 −1 {TiII3TiIIIO2(OCH3)(C7H5NO3)5(H2O)4H5}–

1124.90 1125.03 −1 {TiIVTiIII3O2(OCH3)4(C7H5NO3)5(OH2)H4}–

1245.90 1246.05 −1 {TiIII2TiIV2O2(OCH3)3(C7H5NO3)6(OH2)H5}–

1281.90 1281.06 −1 {TiIIITiIV3O2(OCH3)3(C7H5NO3)6(OH2)3H3}–

1315.90 1316.05 −1 {TiIIITiIV3O2(OCH3)3(C7H5NO3)6(OH2)5H3}–

2.4. IR Spectroscopy

Quantitative agreement between experimental and theoretical spectra predicted by ab
initio DFT/B3LYP calculations with the Los Alamos National Laboratory 2 double zeta
(LanL2DZ) split-valence basis set. The specific basis set is an ideal choice for quantum
mechanical calculations for complexes whose centers are first-row transition metals, such
as titanium. The calculations of such molecules with the LANL2DZ basis set and the fact
that the complex has D2 point group symmetry are characterized by a relatively short
computational time. Considering the LANL2DZ basis set, a reason for the reduction in
the computational time is that ECP (Effective Core Potential) plus double zeta on Na-Bi is
used in this basis set. ECP describes the inner electron orbitals and so no basis functions
are required for them. Another advantage of this basis set is that it includes relativistic
effects, but does not include polarization functions. These results add detailed confidence
to our present understanding of the chemistry of the systems. The experimental spectra
of the ligand and complex, denoted as H2dihybe and 1, respectively, in the solid state
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at ambient conditions are given in Figure 5, allowing for direct comparison. At a first
glance, we observe that the spectrum of the H2dihybe is less complicated compared to
the spectrum of the complex 1. Furthermore, its energy minimum is lower as expected
for a simpler structure. In the high-frequency spectral region, only the N–H, OH, and
C–H stretching modes are detected for both spectra and do not provide any significant
information concerning complexation. Thus, we have chosen to focus our attention on the
low-frequency region, the so-called fingerprint region. This part of the spectrum is more
informative in relation to the comprehensive understanding of the structural features of
the titanium complex. In this region, a larger number of bands are present. Besides the
fact that these bands are sharper and of higher intensity, also evidenced is a strong band
overlapping that implies the inherent structural complexity of the studied complex. An
intense band at ~800 cm−1 is observed in the spectrum of the complex which is absent in
the spectrum of the H2dihybe. This band is attributed to the titanium complex formation
and more specifically is assigned to the high-energy ν(Ti2–µ-O) stretching modes. The low-
frequency band of H2dihybe observed at ~780 is red-shifted to 770 cm−1 in the spectrum
of complex, while the band of H2dihybe at ~744 cm−1 remains in the same frequency with
much lower absorbance. Additional relative absorbance changes are observed between the
two spectra. The formation of the complex is expected to affect the vibrational frequency
and/or absorbance of the C=O, C-O, C-N, and N-O bonds. Indeed, the frequency of C=O is
red-shifted ~10 cm−1. This band is observed at ~1577 cm−1 and at ~1567 cm−1 in the spec-
trum of H2dihybe and complex, respectively. The bands at ~1250 cm−1 and ~1360 cm−1,
attributed to C-O and to C-N, respectively, exhibit only a significant absorbance decrease,
while there is no frequency shift upon formation of the complex formation. On the contrary,
the band assigned to the N-O vibration is blue-shifted from ~1050 cm−1 to ~1070 cm−1

without any additional absorbance variation after complex formation. The experimental
and theoretically predicted by ab initio DFT/B3LYP/LANL2DZ IR absorbance spectra
of the H2dihybe and Ti-complex 1 are presented in Figure S2a,b, respectively. All the
main bands detected in the experimental spectra are also present in the calculated spectra
supporting our proposed structural model. Any differences observed in intensities and
frequencies are reasonable, considering that the calculation was performed in the vapor
state without the presence of any additional interactions. The IR absorbance data are
indicative of a structural rearrangement and complex formation which further support the
structural information revealed by the rest of the experimental techniques utilized in the
present study.
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2.5. NMR Spectroscopy

The 1H and 13C NMR chemical shifts of the CD3OD solutions of the H2dihybe and
1 are collected in Table 3. The 1H NMR spectrum of a CD3OD solution of the H2dihybe
(Figure 6A) gave two doublets of doublets at 7.669, 6.928 ppm and two triplets of doublets
at 7.338, 6.897 ppm assigned to the protons attached to carbon atoms C(d), C(a), and C(b),
C(c), respectively.

Table 3. 1H and 13C NMR chemical shifts (ppm) for the ligand H3dihybe, the tetranuclear titanium
compound 1, and the shielding/deshielding effect (∆δ) upon complexation α.

1 H2dihybe
13C 1H 13C 1H 13C (∆δ, ppm) β 1H (∆δ, ppm) β

C(d)γ 129.9 7.837 128.2 7.669 1.7 0.168
C(c)γ 119.9 7.004 119.4 6.897 0.5 0.107
C(b)γ 134.3 7.436 133.6 7.338 0.7 0.098
C(a)γ 115.5 7.017 117.2 6.928 −1.7 0.089
C(g)γ 163.3 167.2 −3.9
C(f)γ 156.6 159.2 −2.6
C(e)γ 111.1 114.1 −3.0

α The chemical shifts of the protons are the center of multiplets. β ∆δ is the chemical shift difference between
the chemical shift of the NMR peaks (13C or 1H) of the complex 1 and the respective peaks of the ligand. γ The
carbon atoms of the ligand H2dihybe shown in Figure 6.
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Figure 6. 1H NMR spectra of the solutions (CD3OD) of the ligand H3dihybe (A); of 1 (B); and of
1 after the addition of two equivalents of But4NOH (C). H(a)–H(d) are the protons of the ligand
shown at the top of the Figure. * The H(d)-1H NMR peaks of the minor titanium complex 2 (See
Supplementary Material: Table S1).

The 1H NMR spectrum of the CD3OD solution of 1 shows peaks of the same multi-
plicity with H2dihybe, however, the peaks were shifted to lower field suggesting ligation
of the ligand to TiIV; with ∆δ for a, b, c, d protons 0.10, 0.07, 0.11, 0.16 ppm, respectively
(Figure 6B). The 1H NMR spectrum of 1 shows only one set of peaks for the complex.
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However, the crystal structure of 1 (Figure 6) shows two mono-deprotonated Hdihybe−

ligands bound to each titanium atom with two different modes of ligation (Scheme 2), and
this means that either the complex 1 in solution does not have the same structure as the
solid state or there is a fast-chemical exchange between the bridged and the non-bridged
Hdihybe− ligands. ESI MS experiments indicate that the complex retains its solid-state
structure in CD3OD, therefore, the bridged and the non-bridged Hdihybe− ligands cannot
be distinguished by 1H NMR because they exchange fast. In addition, the chemical shifts
of the bridged and the non-bridged Hdihybe− ligands are not expected to be very different,
thus, any exchange will result in their coalescence. Chemical exchange between the two
coordinated Hdihybe− ligands is supported by the much broader 1H peaks of 1 than the
respective peaks of H2dihybe. The carbonylic 13C NMR peak of the CD3OD solution of
1, determined by 2D grHSQC and gr HMBC spectroscopies (Figures S3–S6), shows the
largest shift compared to the respective peak of the ligand, ∆δ = −3.9 ppm, suggesting
coordination of TiIV to the carbonylic oxygen atom [24,58–61].

In addition to the peaks originated from 1, the 1H NMR spectrum gave peaks origi-
nated from a minor species (10%) and the free ligand (12%) (Figure 6). The chemical shifts
of 1H and 13C, as they have been found from 2D {1H} grCOSY (Figure S4) and 2D {1H, 13C)
grHSQC (Figure S5), are the same as 1 except C(d)-H proton which is shifted to the lower
field (0.110 ppm) than the respective proton of 1 (Table 3). Apparently, the minor species
2 and 1 have a similar structure. Looking at the structure of 1, one can suggest various
isomers. The most possible one is that with the non-bridged Hdihybe− ligated to TiIV at
different orientations (Scheme 3).
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Scheme 3. Two possible isomers that might be formed in CD3OD solutions of 1.

The 2D {1H} NOESY-EXSY spectrum (Figure 7) of the CD3OD solution of 1 gave
NOESY cross peaks between the neighboring aromatic protons and EXSY cross-peaks
between 1 and the free ligand, the minor species and ligand as well as between 1 and the
minor species. The intensity ratios of the cross-peaks vs the diagonal were similar for all
exchange processes suggesting that the conversion of 1 to the other isomer (Scheme 3)
is intermolecular.

In addition, the 2D {1H} NOESY-EXSY spectrum showed two NOESY cross-peaks
between protons H(b) and H(d) (See Figure 6) having the same phase with the diagonal
peaks (Figure 7, blue circles). Despite the opposite phase than the expected one, these peaks
should be originated from NOESY interactions; the possibility of these peaks originating
from a chemical exchange is improbable. The phase of this peak is attributed to the fast
exchange between the bridged and non-bridged Hdihybe−. These NOESY signals are
assigned to the interactions between the H(b) and H(d) protons of different non-bridged
Hdihybe− ligands, each of which belongs to one of the two parallel planes, defined from
two TiIV and four Hdihybe− ligands (Scheme 4). Apparently, this supports the complex in
retaining its tetranuclear structure in agreement with the ESI measurements.

The 2D {1H} NOESY-EXSY spectrum (Figure 8) of the CD3OD solution of 1 gave
NOESY cross-peaks between the neighboring aromatic protons and EXSY cross-peaks
between 1 and the free ligand. In addition, it showed and two NOESY cross-peaks between
protons d and b (Figure 8, blue circles).
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Figure 7. Two-dimensional {1H} grNOESY of 1. The blue lines show the chemical exchange between
the titanium complexes and the free ligand. The red lines show the chemical exchange between
the titanium complexes. In the blue circles, NOESY peaks between H(d) and H(b) protons of two
chelating Hdihybe− ligands (Scheme 2). H(a)–H(d) the protons of the ligand shown in Figure 6. * The
H(d)-1H NMR peaks of the minor titanium complex 2 (See Supplementary Material; Table S1).
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ligands which belong to two parallel planes. Each plane is defined by two TiIV atoms and four
Hdihybe− ligands (Figure 1).

In contrast to the spectrum of 1 without a base, the peaks now have the expected
negative phase, assigned to the significant decrease in the complex’s lability after the
addition of the base to the solution. The NOESY interactions between protons b and d
suggest that the complex retains its tetra-nuclear structure after the addition of the base,
permitting interactions between the protons of the parallel aromatic rings (Scheme 4).
Another observation that supports a similar tetranuclear structure before and after the
addition of the base, is the fact that the NMR spectra of 1 after the addition either of one or
four equivalents per equivalent of 1 are the same (Figures S7 and S8). Thus, supporting
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that the NMR changes observed after the addition of the base in the CD3OD solution of 1,
is a result of acid–base equilibrium and not a change in the TiIV coordination environment,
and the decrease in the complex’s lability is due to the better electron-donating properties
of the ligand after its deprotonation as shown in Scheme 5.
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blue circles correspond the NOESY peaks between H(d) and H(b) protons of two chelating dihybe2−

ligands (Scheme 5). H(a)–H(d) are the protons of the ligand shown on the top of Figure 6. * The
protons of the free ligand.
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2.6. Solution UV–Vis and Luminescence Spectroscopies

Figure 9 shows the solution UV−Vis spectra of the MeOH solutions of compound 1
without and with the presence of a base (But4NOH), The MeOH solution of 1 gave two
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peaks at 310 nm (38 cm−1M−1) and 242 nm (71 cm−1M−1). The peaks are attributed to n-π*
and π-π* electronic transitions. The peak at 310 nm is characteristic for phenolate groups.
After the addition of But4NOH, the peaks remain the same, but their intensity increased
significantly. The results support that the structure of 1 remains the same in solution after
the addition of the base, whereas the increase in the intensity of the peak at 310 nm is
assigned to deprotonation of the phenol, in line with the NMR experiment.
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Figure 10 shows the luminescence spectra of the MeOH solutions of compound 1
in the presence of a base (But4NOH), The MeOH solution of 1 gave dual-luminescence,
emitting light at 620 nm for excitation wavelength 524 nm and at 573 nm for excitation
wavelength 490 nm. The emitting peaks are relatively sharp with linewidths ~30 nm. The
intensity of the emitting light was doubled after the addition of an equimolar quantity of
base in the MeOH solution of 1, however, the excitation and emission wavelengths remain
the same suggesting that the structure in solution remains the same after the addition of
the base. The increase in the intensity is assigned to the phenol deprotonation.
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2.7. Solid-State UV−Vis Spectroscopy

Figure 11 shows the solid-state UV−Vis spectra of the compound 1 and the ligand
H2dihybe. The band gap for the compound 1 was found to be 1.98 eV and was calculated
from the solid-state spectrum by the Kubelka−Munk method [62] (Figure S9). This low
band gap value for compound 1 reveals its potential use as a semiconducting photocatalyst.
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3. Materials and Methods
3.1. Experimental Details

All chemicals and solvents were purchased from Sigma-Aldrich and Merck (Saint
Louis, MO, USA), were of reagent grade, and were used without further purification, except
TiCl4, which was distilled under high vacuum just prior to use. C, H, and N analyses were
conducted by the microanalytical service of the School of Chemistry, the University of
Glasgow. FT-IR transmission spectra of the compounds, in KBr pellets, were acquired using
a Bruker Alpha spectrophotometer (Bruker, Billerica, MA, USA) in the 4000−400 cm−1

range. The UV−Vis diffuse reflectance spectra were recorded at room temperature on an
Agilent Cary 60 UV−Vis spectrophotometer (Agilent Technologies, Santa Clara, CA, USA).
The UV–Vis and the luminescence solution spectra were acquired on a Shimadzu UV-2600i
UV–Vis Spectrophotometer (Shimadzu, Nagoya, Japan) and on a Jasco Spectrofluorometer
FP-8300 (JASCO, Mary’s Court Easton, MD 21601, USA), respectively, at room temperature.

3.2. Synthesis of [TiIV4(µ-O)2(HOCH3)4(µ-η1,η2-Hdihybe-O,O′)4(η1,η1-hdihybe-O,O′)4]
Cl4.10H2O.12CH3OH (1)

To a stirred methyl alcohol solution (4 mL) were successively added N,2-dihydroxyben-
zamide (H2dihybe) (139.7 mg, 0.912 mmol) and TiCl4 (0.05 mL, 86.5 mg, 0.456 mmol). The
colorless solution of the ligand turned orange upon the addition of TiCl4. Then, solid
KOH (51.1 mg, 0.912 mmol) was added in one portion. The solution was filtered, and the
orange filtrate (pH = 1.5) was kept at ≈4 ◦C for 9–10 days during which period 90.0 mg of
orange crystals of compound 1 were formed. The crystals were filtered off and dried at
an ambient atmosphere (≈20 ◦C). (Yield: 35%, based on TiCl4). Elemental anal. calc. for
(C72H132N8O52Cl4Ti4, Mr = 2275.112 g mol−1): C, 38.01; H, 5.85; N, 4.92; found: C, 37.98; H,
5.81; N, 4.95.

3.3. X-ray Crystallographic Details

A suitable single crystal was selected and mounted onto a rubber loop using Fomblin
oil. Single-crystal X-ray diffraction data of 1 was recorded on a Bruker Apex II Quazar
CCD diffractometer (Bruker, Bremen, Germany) (λ (MoKα) = 0.71073 Å) at 150 K equipped
with a graphite monochromator. Structure solution and refinement were carried out
with SHELXS-97 [63] and SHELXL-97 [64] using the WinGX software package [65]. Data
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collection and reduction were performed using the Apex2 software package. Corrections
for the incident and diffracted beam absorption effects were applied using empirical
absorption corrections [66]. All the atoms and most of the carbon atoms were refined
anisotropically. Solvent molecule sites were found and included in the refinement of the
structures. Final unit cell data and refinement statistics for compounds 1 are collated in
Table 4. The crystallographic data for compound 1 (CCDC 1: 2096669) can be obtained free
of charge from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge,
CB2 1EZ; fax:(+44)-1223-336-033, deposit@ccdc.cam.ac.uk.

Table 4. Crystal data and details of the structure determination and refinement for the tetranuclear titanium cluster 1.

Formula C72H132N8O52Cl4Ti4

Formula weight 2275.112 g mol−1

Temperature 150(2) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group F d d d

Unit cell dimensions
a = 20.040(4) Å
b = 26.118(5) Å
c = 36.745(11) Å

a = 90◦

b = 90◦

g = 90◦

Volume 19232(8) Å3

Z 16

Density (calculated) 1.453 Mg/m3

Absorption coefficient 0.587 mm−1

F(000) 8624

Crystal size 0.200 × 0.170 × 0.100 mm3

Theta range for data collection 1.396 to 26.515◦.

Index ranges −24 ≤ h ≤ 25, −32 ≤ k ≤ 32, −45 ≤ l ≤ 45

Reflections collected 45,786

Independent reflections 4976 [R(int) = 0.1227]

Completeness to theta = 25.242◦ 100.0%

Absorption correction Empirical

Max. and min. transmission 0.7454 and 0.6576

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 4976/5/304

Goodness-of-fit on F2 0.967

Final R indices [I>2sigma(I)] R1 = 0.0657, wR2 = 0.1703

R indices (all data) R1 = 0.1101, wR2 = 0.2058

Extinction coefficient n/a

Largest diff. peak and hole 1.117 and −0.473 e.E−3

3.4. ESI MS Experimental Details

All MS data were collected using a Bruker Q-trap, time-of-flight MS (Maxis Impact
MS, Bremen, Germany) instrument supplied by Bruker Daltonics Ltd. The detector was a
time-of-flight, micro-channel plate detector and all data was processed using the Bruker
Daltonics Data Analysis 4.1 software, whilst simulated isotope patterns were investigated
using Bruker Isotope Pattern software and Molecular Weight Calculator 6.45. The calibra-
tion solution used was the Agilent ES tuning mix solution, Recorder No. G2421A, enabling
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calibration between approximately 100 m/z and 3000 m/z. This solution was diluted 60:1
with MeCN. Samples were dissolved in MeOH and introduced into the MS via direct
injection at 180 µL h−1. The ion polarity for all MS scans recorded was negative, at 180 ◦C,
with the voltage of the capillary tip set at 4000 V, endplate offset at −500 V, funnel 1 RF at
300 Vpp, and funnel 2 RF at 400 Vpp.

3.5. FT-IR Spectroscopy

The FT-IR spectra of the ligand and the complex were recorded in the 4000–400 cm−1

mid-infrared range on a Bruker Apha FT-IR spectrophotometer (Bruker, Billerica, MA,
USA) with 256 scans at a resolution of 2 cm−1. All samples in the solid form were ground
with spectroscopic grade potassium bromide (KBr) powder (2 mg of sample per 200 mg
dry KBr) and then pressed into pellets with a thickness of 1 mm.

3.6. Ab Initio Modeling of Ligand and Ti-Complex

Based on the crystal structures of the ligand N,2-Dihydroxybenzamide (H2dihybe) and
titanium(IV) complex with N,2-Dihydroxybenzamide (1), we calculated the corresponding
vibrational properties. All calculations were performed with the Gaussian 09 W Revision
D.01 package [67]. The initial structure of the complex used in the calculations emerged after
its study by X-ray crystallography, while the structure of the H2dihybe was obtained from
the electronic library of chemical compounds from PubChem [68]. The Density Functional
Theory (DFT) using hybrid functional B3LYP, Becke’s three-parameter exchange functional
with the Lee–Yang–Parr correlation functional [69,70], was chosen for all calculations. In
addition, the basis set used was the 3–21 G split valence basis set. All calculations were
performed without the effect of solvent, in the gaseous phase. The vibrational frequencies
were calculated and scaled by a vibrational scaling factor of 0.965 to attain an acceptable
agreement between the theoretical and experimental values. This is reasonable since the
3–21 G basis set used in the calculation is relatively simple and provides larger inter-atomic
distances and shifted vibrational frequencies. Nevertheless, the predicted geometry for the
complex resulted in reasonable parameters. No imaginary frequencies were observed in
the results of all calculations indicating that the structures correspond to minimal points
on the potential energy surface.

4. Conclusions

In conclusion, we synthesized a tetranuclear TOC 1 through the reaction of the hy-
droxamate ligand H2dihybe with TiCl4 and KOH in methyl alcohol at a pH of 1.5. The
X-ray structure analysis of 1 revealed that it constitutes a rare example containing an
{Ti4(µ-O)2} inorganic core with an almost square planar arrangement of the {Ti4} unit. The
low molar ratio of TiIV/H2dihybe, low pH, and room temperature lead to the formation of
low nuclearity TOCs.

1H and 13C NMR solution (CD3OD) studies of 1 show its structural integrity in solution
which is in good agreement with the high-resolution ESI-MS studies which revealed
characteristic isotopic distribution envelopes attributed to the intact tetranuclear clusters
containing the inorganic core {Ti4(µ-O)2}. The observed NMR, UV–Vis, and luminescence
changes after the addition of the base to the CD3OD solution of 1, are a result of acid–base
equilibrium and not a change in the TiIV coordination sphere. Moreover, the decrease in
the complex’s lability is due to the improved electron-donating properties of the ligand
dihybe2− associated with the deprotonation of its phenoxy group.

The structural features of 1 have also been investigated by means of vibrational
spectroscopy revealing a ν(C=O) red-shift by ~10 cm−1, and a ν(N-O) blue-shift by ~20 cm–1

upon complexation in comparison to the free ligand H2dihybe.
The solid-state spectroscopic studies of 1 revealed a band gap of 1.98 eV (band gap of

TiO2 3.20 eV) demonstrating not only the ability of the siderophore H2dihybe to stabilize
rare metallic cores but to also modulate their electronic structure with potential uses in



Molecules 2021, 26, 5588 16 of 19

semiconducting photocatalytic applications. The origin of the dual-luminescence properties
of the cluster 1 is currently under investigation.

Supplementary Materials: The following are available online, Figure S1: Possible modes for hydroxa-
mate binding; Figure S2: Experimental and calculated in vacuum by ab initio DFT/B3LYP/LANL2DZ
modeling spectra for the H2dihybe (a) and 1 (b); Figure S3: 2D {1H,13C} HMBC of H2dihybe;
Figure S4: 2D {1H} grCOSY of 1; Figure S5: 2D {1H,13C} grHSQC of 1; Figure S6: 2D {1H,13C}
grHMBC of 1; Figure S7: 2D {1H,13C} grHSQC of 1 + 4 eq But4NOH + 0.1 eq H2dihybe; Figure S8:
2D {1H,13C} grHMBC of 1 + 4 eq But4NOH + 0.1 eq H2dihybe; Figure S9: Tauc plot of compound
1; Table S1: 1H and 13C NMR chemical shifts (ppm) for the ligand H3dihybe, the minor titanium
species 2 and the shielding/deshielding effect (∆δ) upon complexation; Table S2: 1H and 13C NMR
chemical shifts (ppm) for 1 and H2dihybe after addition of three equivalents of But4NOH per 1 and
the shielding/deshielding effect (∆δ, ppm) upon complexation. The following are available online,
Supporting Information (pdf) containing crystal data. CIF files containing crystal data for complex 1.
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