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Abstract
Increasing resilience to natural hazards and climate change is critical for achieving many Sustainable Development Goals 
(SDGs). In recent decades, China has experienced rapid economic development and became the second-largest economy in 
the world. This rapid economic expansion has led to large-scale changes in terrestrial (e.g., land use and land cover changes), 
aquatic (e.g., construction of reservoirs and artificial wetlands) and marine (e.g., land reclamation) environments across 
the country. Together with climate change, these changes may significantly influence flood risk and, in turn, compromise 
SDG achievements. The Luanhe River Basin (LRB) is one of the most afforested basins in North China and has undergone 
significant urbanisation and land use change since the 1950s. However, basin-wide flood risk assessment under different 
development scenarios has not been considered, although this is critically important to inform policy-making to manage the 
synergies and trade-offs between the SDGs and support long-term sustainable development. Using mainly open data, this 
paper introduces a new framework for systematically assessing flood risk under different social and economic development 
scenarios. A series of model simulations are performed to investigate the flood risk under different land use change scenarios 
projected to 2030 to reflect different development strategies. The results are systematically analysed and compared with the 
baseline simulation based on the current land use and climate conditions. Further investigations are also provided to consider 
the impact of climate change and the construction of dams and reservoirs. The results potentially provide important guidance 
to inform future development strategies to maximise the synergies and minimise the trade-offs between various SDGs in LRB.

Keywords Sustainable Development Goals · Flood risk · Climate change · Land use change · Hydrodynamic flood 
modelling · Open data

Introduction

To achieve a sustainable future, the UN’s 2030 Agenda for 
Sustainable Development (UN 2015) proposed an ambi-
tious plan of action for “People, planet, and prosperity”. 
The Agenda sets out 17 Sustainable Development Goals 
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(SDGs) adopted by all member states to action to end pov-
erty, hunger and inequalities and protect the planet, ensuring 
all people enjoy peace and prosperity by 2030. The Agenda 
recognises that disasters linked to natural hazards could set 
back development progress in some countries, especially in 
low- and middle-income countries (UN 2015). In this con-
text, disaster risk reduction (DRR) is important to the Sus-
tainable Development Agenda and is primarily driven by the 
Sendai Framework for Disaster Risk Reduction 2015–2030 
(UNISDR 2015). DRR is directly or indirectly incorpo-
rated in the SDG framework, and its importance has been 
explicitly recognised in many targets, including building the 
resilience of the poor and reducing their exposure to climate-
related disasters (Target 1.5), ensuring sustainable and resil-
ient food production systems that maintain ecosystems and 
adapt to climate change (Target 2.3), building sustainable 
and resilient infrastructure (Target 9.1), reducing deaths 
and impacts from disasters including water-related disasters 
(Target 11.5), implementing integrated policies for holistic 
DRR in link with the Sendai Framework (Target 11.b), and 
the targets under Goal 13 of climate action including par-
ticularly Target 13.1 on strengthening resilience and adaptive 
capacity to climate-related hazards and natural disasters and 
Target 13.3 on awareness-raising and capacity building on 
climate mitigation, adaptation and early warning. Achieving 
these Goals and Targets will impact further on the achieve-
ment of other SDGs, particularly SDG 1 (no poverty), SDG 
3 (good health and well-being), SDG 5 (gender equality), 
SDG 6 (clean water and sanitation), SDG 8 (decent work and 
economic growth), SDG 10 (reducing inequalities) and SDG 
15 (protection of ecosystems and biodiversity).

Flooding is one of the most widespread natural hazards 
globally, flood-related disasters accounting for 44% of the 
total number of globally recorded natural disasters between 
2000 and 2019, 41% of the total affected people, and 22% 
of the total economic losses, with China being one of the 
most affected countries (CRED and UNDRR 2020). Flood 
risk is increasing due to climate change and more active 
human-landscape interaction (IPCC 2014; Hirabayashi et al. 
2013; Arnell and Gosling 2016). In particular, the impact of 
climate change on flood risk can be exacerbated by rapid and 
uncontrolled economic development that leads to increasing 
impermeable surface area; population growth and socio-eco-
nomic development continue to drive rapid land use change 
and developments in flood-prone areas, potentially increas-
ing flood exposure and eventually flood risk.

In the past few decades, substantial research has been 
undertaken to better understand the impact of climate change 
on flood risk from the global to local scales. For example, 
on the global scale, Hirabayashi et al. (2013) investigated 
flood risk in the 21st century by applying a global river rout-
ing model under four different Representative Concentra-
tion Pathway (RCP) scenarios, revealing an increase in flood 

frequency in Southeast Asia, Peninsular India, eastern Africa 
and the northern Andes. On the continental or regional scale, 
Bevacqua et al. (2019) analysed the concurrence of high sea 
level and heavy precipitation events across Europe, showing 
that the Mediterranean coasts are currently subject to the 
highest probability of compound flooding, and parts of the 
northern European coast may expect a higher probability 
of compound flooding in the future due to climate change. 
At a national scale, Miller and Hutchins (2017) provided an 
overview of the flood risk in the UK under the impacts of 
urbanisation and climate change. At a more localised scale, 
Bouwer et al. (2010) combined projected future socio-eco-
nomic change (land use change and increase in the value 
of assets), flood scenarios and a simple damage model to 
investigate the variation in future flood risk due to climate 
change and development in a Dutch polder area. Most of 
these studies, although at a range of scales, have concluded 
that climate change and human activity will change future 
flood risk and so will cause greater challenges in develop-
ing effective multi-scale flood risk management strategies to 
ensure flood resilience and sustainability.

The adaptive capacity to address flood risk on a local or 
regional scale is one of the most critical factors for timely 
and effective decision-making on developing strategies 
(Bosher and Chmutina 2017), which is especially germane 
in the context of dynamically changing socio-economic and 
climatic conditions. Scott et al. (2013) argue that any devel-
opment in a flood-risk area that does not factor in flood risk 
reduction and management is not going to be sustainable in 
the long term. Likewise, Lizarralde et al. (2015) explain that, 
while there are challenges to making physical built assets 
more sustainable and suitably resilient to hazards such as 
floods, there are also exciting opportunities for synergy. 
Therefore, scientists and engineers are increasingly being 
urged to quantify flood risk under different scenarios so that 
more informed decisions can be made about how new devel-
opments can be planned, designed and constructed to be 
more resilient and sustainable for the long term.

Socio-economic development drives land use and land 
cover (LULC) changes, affecting hydrological processes that 
may lead to flooding and also determine water resources 
and the transport and dilution of pollutants (Wheater and 
Evans 2009). Based on LULC scenarios representing differ-
ent socio-economic development strategies, Te Linde et al. 
(2011) estimated both current and future (2030) fluvial flood 
risk for the whole Rhine basin, summarised that a major part 
of annual expected damage in the Rhine basin was imposed 
by climate change. Whilst substantial research has been 
undertaken to understand and assess flood risk under dif-
ferent climate change and LULC conditions (e.g., Lugeri 
et al. 2010; Akter et al. 2018), most published studies have 
focused on high-income nations due to the availability of 
high-quality data and modelling and assessment tools.
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Furthermore, flood risk is directly impacted by climate 
change and socio-economic development, and so is inevi-
tably an important factor to be considered when imple-
menting the SDGs. Flood risk may significantly affect the 
linkages between the SDGs (Baldassarre et al. 2019). There 
are apparent research needs, including the development of 
fit-for-purpose flood risk assessment frameworks to better 
understand how flood risk is related to the synergies and 
trade-offs between the SDGs that are influenced by social 
development, human–environment interactions, and climate 
change. A particular focus should be placed on developing 
countries where further research is urgently needed to better 
understand the interconnected links between socio-economic 
development, climate change and flood risk, and provide 
scientific evidence to inform SDG implementation policies 
to minimise trade-offs and maximise synergies.

After 40 years of rapid economic development, China 
has become the second largest economy in the world but 
remains to be the largest developing economy with a per 
capita GDP of only 1/6th that of the United States. China's 
rapid economic development has created noticeable impacts 
on the environment, climate and social elements which are 
inevitably linked to future flood risk and create different bar-
riers in the realisation of SDGs at different levels. Being 
part of an important socio-economic zone in North-Eastern 
China, the Luanhe River Basin (LRB) has undergone rapid 
socio-economic development in the last 40 years that has 
been significantly influenced by Central and local govern-
ment policies, leading to tremendous changes of land use, 

land cover and environment. It provides an ideal case study 
to investigate and understand the change of the flood risk 
influenced by different levels of policies and climate change 
and its linkages with SDG realisation at a basin level, which 
has not been done. Therefore, this study presents an inte-
grated framework to systemically analyse flood risk under 
different socio-economic development strategies and climate 
change scenarios in LRB, providing essential information to 
better understand the interlinkages between different SDGs. 
Based on a high-performance hydrodynamic flood model 
and open data, the flood risk assessment framework can be 
applied to river basins in other developing countries where 
access to high-quality data is limited.

Study area and datasets

This work focuses on a river basin/catchment that provides 
a natural hydrological unit to support flood risk assessment 
and understand the impact of national and basin-level poli-
cies on local development and SDG achievement. Being 
home to a large population and 27 counties in Hebei Prov-
ince, Inner Mongolia and Liaoning Province, the case study, 
LRB, is an important socio-economic zone on its own in 
North-Eastern China, and also directly contributes to and 
influences the socio-economic development of the Beijing-
Tianjin-Hebei region.

Fig. 1  Location and terrain of 
LRB and the locations of pre-
cipitation stations and reservoirs
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Luanhe River Basin (LRB)

The 44,750  km2 LRB is located in the northeast of the 
North China Plain (115°30ʹ E-119°45ʹE, 39°10ʹ N-42°40ʹ 
N) (Fig. 1). The 888 km long Luanhe River originates from 
Bayanguertu Mountain, Fengning County, Hebei province, 
flows through Hebei Province, Inner Mongolia and Liaoning 
Province, and finally enters Bohai Bay at Laoting County 
(Liu 2012). About 98.2% (43,940  km2) of the river basin 
area is classified as mountainous landscapes with the dra-
matic change of elevation from north to south, before the 
basin enters a low elevation coastal plain at its southern end. 
The climate across the basin changes from semi-arid tem-
perate continental monsoon to semi-humid, and finally to 
humid from northwest to southeast (Bi et al. 2018). Accord-
ing to the records between 1982 and 2015, the basin-wide 
mean annual temperature and precipitation are 7.0 ± 2.6 ℃ 
and 488.4 ± 80.7 mm, respectively (Wu et al. 2020). The 
precipitation demonstrates a clear heterogeneous seasonal 
distribution with the main wet period in July and August 
every year (Sheng and Xiuling 2004; Lu 2005; Jiang et al. 
2019). Overall, the basin has a complex climate pattern fea-
tured with four distinct seasons, significant monsoon effects, 
concentrated precipitation and heat over the same period.

LRB has a population of approximately 7.23 million, and 
the average density of population is 162 people/km2. The 
GDP per capita is about 50% more than the national average 
(Liu 2012). The predominant land use types in the basin are 
forest, agriculture, grassland and urbanised areas (Li et al. 
2018). In particular, LRB provides an essential ecological 
barrier to alleviate the impact of sandstorms that originate in 
Mongolia on Beijing and the surrounding areas. With three 
large reservoirs, at Panjiakou, Daheiting and Shuangfengsi 
(under construction) (Fig. 1), the basin provides important 
water resources for the Beijing-Tianjin-Hebei region, which 
is the most socio-economically active region in North China 
(Wu et al. 2020), and thus the LRB directly contributes to 
the region’s development.

As shown in Fig. 1, the LRB becomes significantly nar-
rower in its furthest downstream reaches. This, combined 
with the upstream mountainous landscape, leads to rapidly 
converging flood flows during wet seasons, increasing flood 
risk in the downstream floodplain areas where major cities, 
including Qinhuangdao and Tangshan, are located (Shao 
et al. 2001). The basin’s specific climate and landscape fea-
tures make it vulnerable to large flood events (Han 1999; 
Yang and Yang 2013). Therefore, LRB provides an ideal 
case study to investigate the linkages between rapid eco-
nomic development, key infrastructure construction (dams 
and reservoirs), environmental protection (afforestation to 
mitigate sandstorm impacts), flood risk and climate change. 
Particularly, the rapid land use change as a result of acceler-
ating economic development has created significant impacts 

on hydrological processes, which, combined with climate 
changes, may significantly change flood risk across the 
basin. However, whilst it can provide essential information 
to support policy-making and planning for LRB's sustain-
able future, basin-wide flood risk assessment under different 
development strategies has not been conducted so far.

Data

The proposed flood risk assessment framework (see  “The 
flood risk assessment framework”) adopts a high-perfor-
mance hydrodynamic model to predict flood inundation, 
which requires spatial data, including a digital elevation 
model (DEM) and land use maps covering the whole domain 
for model set-up. Three sets of rainfall data are used to drive 
flood simulations, including historical rainfall records from 
the surrounding meteorological stations for reproducing a 
historical flood event for model calibration, city-wise design 
rainfall to drive the simulation of flood scenarios and dif-
ferent Representative Concentration Pathway (RCP) data to 
account for the impact of future climate change. Climate 
projections were extracted from the NASA Earth Exchange 
Global Daily Downscaled Projections (NEX-GDDP) data-
set, which provides downscaled climate scenarios across the 
globe, derived from the simulation results from 21 General 
Circulation Models (GCMs) through the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) for both RCP4.5 
and RCP8.5 (Thrasher and Nemani 2015). Each of the cli-
mate projections includes daily maximum temperature, min-
imum temperature, and precipitation for the period between 
1950 and 2100, wherein precipitation from 1950 to 2005 
is defined as the 'retrospective run' and from 2006 to 2099 
as the 'prospective run'. Furthermore, open remote sensing 
data are available to provide observed flood extent for vali-
dating model results. The Gridded Population of the World-
Version 4 (GPWv4) is further used to assess the population 
at risk. The key datasets used in this study are summarised 
in Table 1. The current risk assessment framework mainly 
uses open data to ensure the transferability of the approach 
to other river basins, especially those in developing countries 
where data availability may be limited.

The flood risk assessment framework

In the flood risk assessment framework developed herein 
for LRB, city-wise design rainfall is first derived to drive 
flood inundation modelling using the High-Performance 
Integrated hydrodynamic Modelling System (HiPIMS) 
(Liang and Smith 2015; Xia et al. 2019). The flood model-
ling results are then combined with the land use and popu-
lation data to evaluate flood impact and indicate flood risk. 
The different components/procedures considered in the 
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flood impact/risk assessment are introduced in the follow-
ing sections.

Design rainfall and climate change impact

The Chicago design storm model (Keifer and Chu 1957) 
is used to obtain the intensity–duration–frequency (IDF) 
curves for different administrative zones (i.e., cities) in LRB. 
The average rainfall intensity of a certain frequency (return 
period) can be defined as:

where i is the average rainfall intensity (mm/min), D is the 
storm duration (minutes); P is the return period (years; 
only 100-year events are considered in this work and so 
P = 100 years); A, C, b and u are model parameters rep-
resenting local hydrological conditions, which are usually 
assumed to be constant and estimated by fitting the historical 
data (Keifer and Chu 1957). Herein, D = 24 × 60 min, i.e. 
1-day event, is considered to maintain consistency with the 
daily climate data and a similar approach has been adopted 
by other researchers (e.g. Xu et al. 2012; Gilroy and McCuen 
2012; Schuster et al. 2012; Chang et al. 2013).

From Eq. (1), a storm advancement coefficient r = 0.4 (i.e. 
the ratio between the time to peak and rainfall duration) is 
further defined, based on which the rainfall distribution/
hyetograph can be calculated as follows:

(1)i =
A(1 + C lgP)

(D + b)u

with Rt = r for t < Dp , and Rt = 1 − r for t ≥ Dp , where Dp 
is the time to peak. For different cities in the LRB, the rel-
evant parameters of the above Chicago design storm model 
are obtained from the Chinese Hydrological Yearbook and 
summarised in Table 2.

To consider the potential climate change impact on 
rainfall and thus flood risk, the climate change scenarios 
RCP4.5 and RCP8.5 (IPCC 2014) are used. The uplift fac-
tors derived from the climate change modelling results are 
added to the city-wise IDF curves to account for the change 
to rainfall induced by climate change in 2030. To obtain 
the uplift factors, a Log-Pearson type III distribution (Chow 
1988) was fitted to the NEX-GDDP dataset to calculate the 

(2)i(t) =
A(1 + C lgP)

[
(1 − u)t∕Rt + b

]
(
t∕Rt + b

)u+1

Table 1  The datasets used by the flood risk assessment framework, and their sources

Data type Scale/resolution Data source

Spatial data
 DEM 90 m × 90 m MERIT Hydro: (http:// hydro. iis.u- tokyo. ac. jp/ ~yamad ai/ MERIT_ Hydro/)
 Land use data 90 m × 90 m Resources and Environmental Sciences Data Centre, Chinese Academy of Sciences (http:// www. resdc. 

cn/)
Meteorologic data
 Daily rainfall 10 stations China Meteorological Data Service Centre (http:// data. cma. cn)
 Design rainfall 8 cities Hydrological Yearbook
 RCPs 0.25° × 0.25° NASA Earth Exchange Global Daily Downscaled Projections (https:// www. nccs. nasa. gov/ servi ces/ data- 

colle ctions/ land- based- produ cts/ nex- gddp)
Remote sensing
 Landsat 7 30 m × 30 m Landsat 7 top-of-atmosphere (TOA) reflectance image collections available from Google Earth Engine 

(http:// earth engine. google. org), collected originally by USGS/EROS (http:// lands at. usgs. gov/)
 MODIS 250 m × 250 m 16-day MOD13Q1 version 6 Terra Vegetation Indices product available from Google Earth Engine 

(http:// earth engine. google. org), collected originally by the NASA Earth Observing System (EOS) 
(ftp:// ladsw eb. nascom. nasa. gov/ allDa ta/6/)

Population
 GPWv4 1000 m × 1000 m Centre for International Earth Science Information Network—CIESIN—Columbia University. 2018. 

Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, 
NY: NASA Socio-economic Data and Applications Center (SEDAC) ( https:// doi. org/ 10. 7927/ H49C6 
VHW)

Table 2  Parameters for deriving city-wise design storms in LRB

City A1 C b u

Tangshan 11.90 0.69 10.23 0.702
Zhangjiakou 22.66 0.906 15.479 0.948
Chengde 17.747 0.789 14.72 0.829
Chaoyang 24.50 0.979 18.92 0.92
Qinhuangdao 3.6335 0.711 1.04 0.464
Huludao 13.20 0.85 7 0.8
Chifeng 9.60 1.35 10 0.8
Xilinguole 6.76 1.55 12.77 0.715

http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/
http://www.resdc.cn/
http://www.resdc.cn/
http://data.cma.cn
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp
http://earthengine.google.org
http://landsat.usgs.gov/
http://earthengine.google.org
ftp://ladsweb.nascom.nasa.gov/allData/6/
https://doi.org/10.7927/H49C6VHW
https://doi.org/10.7927/H49C6VHW


1370 Sustainability Science (2022) 17:1365–1384

1 3

magnitudes of 100-year design rainfall at each pixel within 
the domain for the ‘retrospective run’ (i.e. the historical 
period between 1950 and 2005) without climate change to 
give Rhis (mm/day), and future periods (2006–2030) with 
climate change (RCP4.5 and RCP8.5) to provide Rcli(mm/
day). The pixel-based climate change uplift can then be 
calculated as up2006,2030 = Rcli∕Rhis . However, the baseline 
year for the land use analysis is 2015, so the uplift values 
are adjusted accordingly to be consistent with the land use 
change scenarios. Assuming the impact of climate change on 
the design rainfall distributes linearly against time, the uplift 
factors calculated from 2015 are obtained via linear interpo-
lation, up2015,2030 = 8up2006,2030∕

(
3up2006,2030 + 5

)
 , and the 

final results are presented in Fig. 2. The pixel-based uplift 
factors ( up2015,2030 ) are then resampled to 90 m resolution 
to be consistent with the DEM and land use data, and are 
further averaged to create the city-wise uplifts (right panel 
of Fig. 2, with the city boundaries illustrated in the central 
panel). These uplift factors are then applied to the design 
rainfall to account for climate change impact. The design 
rainfall (uniformly distributed across each of the pixels), 
with and without considering climate uplifts, will be used 
to drive flood modelling.

Future land use and flood scenarios

The design rainfall is combined with the future land use dis-
tributions to create flood scenarios to support further flood 
impact/risk analysis. Four future land use scenarios, labelled 
as “Trend”, “Expansion”, “Sustainability” and “Conserva-
tion”, were designed and projected to 2030 by Xu et al. 
(2021) using the CLUMondo model (Asselen and Verburg 
2013) to reflect different socio-economic development and 
environmental protection strategies, local development plans 
and policies (Fig. 3 and Table 3). The “Trend” scenario is 
projected as a pathway to maintain “business as usual”, i.e., 
to follow the current development trend. The “Expansion” 
scenario follows the fossil-fuelled development or shared 
socio-economic pathway (SSP5) (O'Neill et al. 2014), in 
which abundant fossil fuel resources are exploited, the 
global economy grows at the highest speed, and the global 
urban population reaches 92% in 2100. The “Sustainability” 
scenario is based on the sustainable shared socio-economic 
pathway (SSP1) (O'Neill et al. 2014). Finally, the “Conser-
vation” scenario adopts the socio-economic context of the 
“Sustainability” scenario as a baseline, but it is extended 
by further implementing ecological restoration and environ-
mental protection policies in the LRB.

The original 100-year design rainfall (without consid-
ering climate change impact) and the two sets of uplifted 

Fig. 2  City-wise climate uplift: pixel-based uplift data, with the pixel uplift value range from 0.9 to 2.0 (left panel); city mask specifying the city 
boundaries for uplift estimation (centre panel); and city-wise uplift factors (right panel)
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design rainfall (considering RCP4.5 and RCP8.5 climate 
scenarios) are combined with the four projected land use 
patterns to create 12 flood scenarios. Taking two large reser-
voirs, Panjiakou and Shuangfengsi Reservoirs, as examples, 
further flood scenarios are designed to investigate the impact 
of this key type of infrastructure on flood risk. Since the 
Shuangfengsi Reservoir is currently under construction, it 
is not included in the original 12 flood scenarios. Consider-
ing, respectively, removing the Panjiakou Reservoir from 
and adding the Shuangfengsi Reservoir to the simulations, 
another 16 flood scenarios are created. Together with the 
2015 Baseline simulation, it gives a total of 29 flood sce-
narios, as summarised in Table 4, which are simulated using 
HiPIMS in this work.

Flood modelling

To predict the rainfall-induced flooding process and the 
resulting inundation, the hydrodynamic flood model HiPIMS 
(Xia et al. 2019) is used in this work, which solves the shal-
low water equations (SWEs) written in matrix form as

where t is time; x and y are the two spatial Cartesian coordi-
nates; q is the vector of conserved flow variables; f and g are 
the vectors of fluxes in the x- and y-directions, respectively; 
S contains different source/sink terms. The vector terms are 
given by:

(3)
�q

�t
+

�f

�x
+

�g

�y
= S

Fig. 3  The land use distributions of LRB at the current stage and under different socio-economic development strategies

Table 3  The areas  (km2) 
of different land use types: 
comparing the four future land 
use scenarios with the 'Baseline' 
condition in 2015

Land use type Cropland Forest Grassland with 
livestock

Water Built-up Unused land

Socio-economic scenarios
 Baseline 10,258 16,926 14,101 718 1633 1114
 Trend 10,351 13,957 15,629 1003 3803 7.1
 Expansion 10,352 14,723 16,649 965 1977 84
 Sustainability 10,360 16,112 15,327 1093 1684 175
 Conservation 10,314 17,631 14,091 1033 1678 1.9
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in which h is the water depth; qx = uh and qy = vh are the 
unit-width discharges in the x- and y-directions, with u and 
v being the corresponding depth-averaged velocity compo-
nents; g = 9.81 m/s2 is the acceleration due to gravity. The 
source terms S are subdivided into the mass source terms R 
including rainfall rate (R) and infiltration rate (I), the slope 
source terms Sb and the friction source terms Sf to account 
for the effects of gravity and friction, respectively. Wherein, 
z is the bed elevation extracted from the DEM data; Cf = g 
n2/h1/3 is the friction parameter with n being the Manning 
coefficient that can be assigned according to different land 
use types. The infiltration rate I  is estimated using the 
Green–Ampt method (Heber Green and Ampt 1911), which 
may be written as

where Ks is the hydraulic conductivity (m/s); � is the cap-
illary head (m); �e = �s − �r and �ie = �i − �r are respec-
tively the effective porosity and initial effective soil mois-
ture, with �s , �i and �r defined as the saturated water content, 
initial water content and residual water content; f  is the 

(4)

q =

⎡
⎢⎢⎣

h

qx
qy

⎤
⎥⎥⎦
, f =
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cumulative infiltrated depth. The parameters Ks , � , �e and 
�ie are assumed to be constants throughout a simulation. 
Equation (5) may be solved using a backward Euler method 
to estimate the infiltration rate, as introduced in Xia et al. 
(2019).

In HiPIMS, the above governing SWEs are solved using 
a Godunov-type finite volume method implemented with the 
latest flux and source term discretisation schemes introduced 
by Zhao and Liang (2021) for stable and accurate predic-
tion of overland flows and flooding processes. HiPIMS is 
implemented on multiple GPUs to achieve high-performance 
computing and has been widely applied and tested for the 
simulation of different types of flooding processes (e.g., Xia 
et al. 2019; Xing et al. 2019). During the simulations, the 
resolution of the computational grid is taken to be the same 
as the DEM data, and the time step is controlled by the CFL 
condition. In this work, HiPIMS will be calibrated for appli-
cation in LRB by reproducing a historical flood event.

Table 4  The 29 flood scenarios designed to support flood risk analysis

Herein, ‘P’ represents Panjiakou Reservoir (including Daheiting); ‘S’ denotes Shuangfengsi Reservoir; ‘ + ’ and ‘–’means adding and removing 
the respective reservoirs

Rainfall 100-year design rainfall 100-year design rainfall (RCP4.5) 100-
year design rainfall (RCP4.5)

100-year design rainfall (RCP8.5)

Land use
 Land use (2015) Baseline
 Trend (2030) Trend Trend (RCP4.5)

Trend (RCP4.5) − P
Trend (RCP4.5) + S

Trend (RCP8.5)
Trend (RCP8.5) − P
Trend (RCP8.5) + S

 Expansion (2030) Expansion Expansion (RCP4.5)
Expansion (RCP4.5) − P
Expansion (RCP4.5) + S

Expansion (RCP8.5)
Expansion (RCP8.5) − P
Expansion (RCP8.5) + S

 Sustainability (2030) Sustainability Sustainability (RCP4.5)
Sustainability (RCP4.5) − P
Sustainability (RCP4.5) + S

Sustainability (RCP8.5)
Sustainability (RCP8.5) − P
Sustainability (RCP8.5) + S

 Conservation (2030) Conservation Conservation (RCP4.5)
Conservation (RCP4.5) − P
Conservation (RCP4.5) + S

Conservation (RCP8.5)
Conservation (RCP8.5) − P
Conservation (RCP8.5) + S
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Flood impact/risk assessment

Due to the lack of data to define flood vulnerability and 
derive flood damage functions/curves, we combine flood 
modelling results with land use data to quantify the accu-
mulative inundation areas against water depth for different 
land use types to indicate flood risk. The information can be 
further integrated with damage functions/curves to estimate 
flood loss when such data become available. The GPWv4 
population distribution data (CIESIN 2018) are overlaid 
with the inundation maps to estimate the number of people 
affected by a flood and specify the potential hazard level. 
For large-scale flood impact analysis, the definition reported 
by Kang et al. (2006) is adopted, which classifies the haz-
ard level to people according to flood depth as “low risk” 
(0.3–1 m), “moderate risk” (1–1.5 m), “high risk” (1.5–2 m) 
and “extremely high risk” (> 2 m).

Calibration of HiPIMS for application in LRB

To calibrate HiPIMS for flood modelling in LRB, we con-
sider the flood event caused by Typhoon Saola and Damrey 
in 2012. The Typhoon brought heavy rainfall (Fig. 4) to LRB 
from late July to the beginning of August 2012, leading to 
severe flooding in the downstream areas. The event caused 
32 deaths and 12.3 billion RMB of economic losses in Hebei 
Province, which was one of the most severe flood disasters 
in LRB (Yang and Yang 2013).

The 90 m MERIT DEM is used to discretise the compu-
tational domain covering the whole LRB, resulting in 7.08 
million valid cells for numerical calculations. Since the 
whole river basin is considered, the computational domain is 
only hydrologically linked to the outside through a tidal river 
mouth. The Luanhe River enters the Bohai Sea through a 
river mouth exposed to weak tides. The average tidal height 

ht ranges between 1–1.5 m (Gao and Shanming 1981) and 
the average slope of the river mouth area is about S = 1/2378, 
which may be used to estimate the backwater extent as 
0.7ht/S = 1664–2497 m. This suggests that the tidal bound-
ary does not pose any significant influence on the flooding 
processes in the basin. Therefore, the measured rainfall as 
shown in Fig. 4 is used to drive the flood simulation and a 
free outflow boundary is imposed in the whole domain. The 
simulation lasts for 16 days, starting at 0:00 on 21st July and 
ending at 0:00 on 6th August 2012.

To obtain the necessary data to validate the flood simu-
lation results, the flood footprints of the region in 2012 are 
extracted from satellite data, including Landsat 7 (US Geo-
logical Survey 2019) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS) (Didan et al. 2015). Nine Land-
sat 7 images acquired during the flooding period are pro-
cessed using a data-driven Random Forest model to extract 
all of the water surfaces, including rivers, reservoirs/lakes 
and ponding areas (refer to Chen et al. (2020) for detailed 
implementation). However, certain inherent limitations of 
the Landsat 7 data may lead to underestimation of the actual 
water surface extent and thus flood footprints (Chen et al. 
2020). Therefore, the vegetation response captured by the 
MODIS images is also used to identify the flood footprints 
by detecting the changes to the Enhanced Vegetation Index 
(EVI) (refer to Chen et al. (2019) for detailed implementa-
tion). The final footprints of the 2012 flood are then pro-
duced by combining the Landsat 7 water surface extent and 
detected vegetation response area.

One of the key model parameters in HiPIMS is the Man-
ning n, which may be generally set according to land use 
types using textbook values (Chow 1988). However, for the 
built-up area, due to the use of a relatively coarse computa-
tional grid (90 m), it is necessary to calibrate the Manning n 
for this land use type to account for the blockage effects cre-
ated by the dense buildings and other engineering structures 

Fig. 4  Rainfall records during 
the 2012 Typhoon Saola and 
Damrey from Meteorological 
Monitoring Stations
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that cannot be resolved by such a coarse-resolution grid. 
The range of Manning n values for calibration is set to be 
[0.1, 0.15, 0.2]. Another set of model parameters is related 
to infiltration, which is determined by the underlying soil 
property but highly influenced by different land use types 
in real-world applications (Thompson et al. 2010; Liu et al. 
2012; Wang et al. 2013; Rogger et al. 2017; de Almeida et al. 
2018). The main soil types in LRB are loam, sandy loam, 
clay loam and sandy clay loam, and their infiltration proper-
ties are similar (Nachtergaele et al., 2009). The infiltration 
parameters for the LRB flood simulation are initially set for 
these soil types using textbook values as found in Chow 
(1988) and further calibrated for different land use types. 
Notably, LRB is typically a dry catchment throughout most 
of the time in a year and no significant rainfall was recorded 
before the flood event in 2012. Therefore, the initial soil 
water content for the simulation is assumed to be equal to the 
residual water content (i.e., �ie = 0.0 ), and the effective soil 
water content �e is considered for model calibration. After 
neglecting infiltration for the “water” and “built-up” land 
use types, a Sobol sequence method (Sobol′ 2001) is used 
to create the calibration samples of infiltration parameters 
for the remaining land use types including cropland, forest, 
grassland with livestock and unused land. Combined with 
the calibration samples of Manning n for the built-up area, a 
total of 7800 groups of parameters are created and used for 
model calibration. The final values of the model parameters 
used in the simulation are summarised in Table 5.

To quantitively compare the predicted and observed flood 
extents, the remotely sensed flood extent is resampled to 
90 m resolution, i.e. the grid resolution adopted in the simu-
lation. The overlap ratios are then calculated as follows:

where O ( 0 ≤ O ≤ 1 ) is the overlap ratio with O = 0 
indicating no overlap and O = 1 representing a perfect 
match; PR is a Boolean matrix of the numerical results and 
a cell with water depth larger than 0.3 m is defined to be 

(6)
O

��
= CNZ(��⊙ ��)∕CNZ(��) and O

��

= CNZ(��⊙ ��)∕CNZ(��)

inundated; RS is a Boolean matrix of the remote sensing 
data with 0 for dry and 1 for inundated pixels; ��⊙ �� is 
the Hadamard product to calculate the overlap matrix; CNZ 
counts the non-zero values in the corresponding matrices.

The flood extent reproduced by HiPIMS for the 2012 
event with the calibrated parameters is presented in Fig. 5, 
comparing with the observed extent extracted from the satel-
lite data. The overlap ratios are respectively O

��
= 0.75 and 

O
��

= 0.71 , i.e., more than 70% of the observed inundated 
area is predicted to be flooded by HiPIMS. The modelling 
results are considered to be satisfactory for such a large-scale 
and relatively long simulation and the modelling approach 
is therefore deemed to be sufficient for the following flood 
simulations to support risk assessment in the LRB.

Results

The 29 flood scenarios introduced previously are simulated 
to produce results to investigate and discuss the flood risk 
in LRB under different development strategies and climate 
change. Driven by 100-year design rainfall, the baseline 
simulation for comparison is based on the 2015 land use, 
and the resulting basin-wise inundation map is presented 
in Fig. 6, showing significant inundation of the floodplains 
along the rivers.

The impact of land use change on flooding

Figure 7 shows the simulation results of the 100-year 
floods in terms of accumulative inundated areas against 
flood depth for each of the considered land use types for 
the baseline and the four projected land use scenarios. The 
cumulative curves represent the increment of the flooded 
area (vertical axis) against the increase of the flood depth 
(horizontal axis). The total flooded area for each of the 
land use types is returned and the curve becomes horizon-
tal after the maximum water depth is reached, i.e. after 
all of the flooded area has been taken into account. The 
total flooded areas for the baseline, “Trend”, “Expansion”, 

Table 5  Model parameters for 
the application of HiPIMS in 
LRB

Parameters Manning coeffi-
cient n  (sm−1/3)

Hydraulic conductiv-
ity K (1.0 ×  10–7 m/s)

Capillary head � 
(1.0 ×  10–2 m)

Effective soil 
water content 
�
e
 (–)

Land use
 Cropland 0.035 9.44 9.07 0.434
 Forest 0.1 1.93 8.0 0.309
 Grassland with livestock 0.035 2.08 6.89 0.401
 Water 0.04 0.0 0.0 0.0
 Built-up 0.15 0.0 0.0 0.0
 Unused land 0.03 2.1 4.0 0.423
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“Sustainability” and “Conservation” simulations are cal-
culated to be 7110, 7205 (+ 1.3%), 7173 (+ 0.9%), 7174 
(+ 0.9%) and 7184 (+ 1.0%)  km2, respectively, where 

the values in the brackets indicate the percentage of the 
increment compared to baseline result. Clearly, the total 
flooded areas predicted for the different scenarios do not 

Fig. 5  Comparison between the predicted and observed flood extents in the 2012 flood event: the zoomed-in areas located at downstream of Pan-
jiakou reservoir (left); Qianan city (upper right); and Lulong county (lower right)

Fig. 6  The inundation map from 
the baseline simulation: inunda-
tion is marked in blue
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change much. This is because the inundation area is con-
trolled mainly by the topography of the domain rather than 
the land use for an extreme rainfall event as considered 
herein. However, the distribution of the inundated land 
use types changes significantly across different scenarios. 
In the baseline scenario, whilst occupying a smaller area 
than forest and grassland with livestock (refer to Table 3), 
cropland is the most inundated type of land use. The rea-
son is that croplands are mainly located in floodplains and 
relatively low-lying areas. The final inundated areas for 
water bodies, built-up areas, and unused land are similar.

Under the “Trend” land use/development scenario, 
rapid urbanisation causes expansion of the urban area 
(Table 3). This leads to a significant increase in the inun-
dation of the built-up area. Similarly, the increased inun-
dation of grassland with livestock is due to the expansion 
of this land use type. Although its total area increases, 
the inundated area of cropland decreases. This reduction 
may reflect the relocation of croplands to higher grounds 
because of rapid urbanisation at the lower levels. Whilst 
the forest area decreases, the inundated area remains 
largely unchanged compared to the baseline. The reduc-
tion of the unused area leads to the inundation of this type 
of land use becomes almost zero.

The “Expansion” scenario follows the global pat-
tern of development, but since China has been the fast-
est developing country globally in the last 40 years, the 
rate of development under the “Trend” scenario is more 
aggressive than “Expansion”. Therefore, compared with 
the flood simulation results for the “Trend” scenario, 
the built-up area in “Expansion” is smaller, and so is the 
corresponding inundated area. The inundated areas of all 
other land use types show little change, except that the 
inundated area of the grassland now becomes slightly 
larger than that of cropland. The “Expansion” scenario 
predicts slightly more “unused land” which is reflected 
in the inundation result.

For “Sustainability” and “Conservation”, it is notice-
able that the predicted inundation of the built-up areas 
decreases in comparison with the baseline simulation, 
although the total built-up areas slightly increase for both 
of these development/land use scenarios. While the total 
areas of forest in both scenarios do not show a signifi-
cant change from the baseline, the inundated areas both 
increase significantly, reflecting the redistribution of land 
use types to support sustainable development.

Fig. 7  Accumulative inundated areas against water depth under the baseline and the other four scenarios without considering climate change 
impacts
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Fig. 8  Accumulative inundated areas against water depth for the 
four future flood scenarios, after considering climate change impacts 
(through RCP4.5 and RCP8.5 climate scenarios). The top two panels 
show the inundated areas predicted for each of the six key land use 

types under the RCP4.5 and RCP8.5 climate scenarios, respectively. 
The bottom panel shows the corresponding ratios between the inun-
dated areas with and without considering climate change

Fig. 9  The inundated areas of 
the six land use types predicted 
by different flood simulations
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Impact of climate change on flooding

Driven by the uplifted 100-year design rainfall, eight fur-
ther flood simulations (Table 4) are run to consider climate 
change impact based on both RCP4.5 and RCP8.5 climate 
scenarios, and the simulation results are illustrated in Fig. 8. 
Whilst the distribution of inundation across different types 
of land use remains largely unchanged, both RCP4.5 and 
RCP8.5 climate scenarios cause an increase in the inundated 
areas across all land use types, with the RCP8.5 scenario 
having a greater impact. These results reflect that both of 
the climate scenarios predict an increase in precipitation 
across the basin. These simulation results demonstrate that 
climate change may lead to more areas being flooded and 
subsequently an increase in the flood risk in LRB in 2030.

Figure 9 compares the inundated areas predicted for the 
six key land use types in the 13 flood simulations (the base-
line simulation and the 3 simulations (i.e. with and without 
considering the two climate change scenarios) on each of the 
four future land use projections). The baseline simulation 
predicts the maximum inundation of unused land because 
this land use type is projected to decrease dramatically to 
almost zero in all four development scenarios. However, it 
should be noted that the baseline simulation also returns the 
maximum inundated area for cropland, although the area 
of cropland increases in all four land use change scenarios. 
This apparent contradiction reflects the spatial redistribution 
of cropland across the basin to higher areas to make space 
for urban and industrial activities as the land use changes. 
The simulations under the RCP8.5 climate scenario predict 
the maximum inundated areas for all other land use types 

as RCP8.5 projects increased rainfall across the basin in the 
future.

Flood impact on population

The inundated areas are mainly distributed along rivers and 
adjacent floodplains where most of the population and socio-
economic activities are located. The exposure of the popula-
tion to flooding can be spatially identified by overlaying the 
predicted inundation maps with the population distribution 
dataset GPWv4. Since there is no projected population dis-
tribution data in 2030, the 2015 GPWv4 dataset is used in 
all of the following population exposure analyses. Assuming 
population distribution will remain unchanged (thus repre-
senting a conservative estimate), we explore how land use 
and climate changes influence the exposure of the population 
to flooding. The flood hazard level to people can be classi-
fied based on the predicted flood depths (“Flood impact/risk 
assessment”). To quantitatively compare the results with the 
baseline simulation, the relative change to the at-risk popula-
tion is calculated as:

where  Pops and  PopB are respectively the affected 
population estimated for the future flood scenarios and 
the baseline simulation. The results are summarised in 
Table 6, showing the affected population (AP) per 100,000 
people at different hazard levels for all of the 12 future 

(7)RC =
(
Pops − PopB

)
∕PopB × 100%

Table 6  Affected population 
(AP) (per 100,000 people) 
predicted on the four future 
land use scenarios with and 
without considering climate 
change, in comparison with the 
baseline simulation, and the 
corresponding RCs calculated 
using Eq. (7)

Affected level Low risk Moderate risk High risk Extremely high 
risk

AP RC AP RC AP RC AP RC

Land use scenario
 Baseline 6505 1943 1283 4290
 Trend 6580 1.15 1992 2.54 1304 1.67 4367 1.79
 Expansion 6605 1.53 1982 1.98 1285 0.19 4323 0.77
 Sustainability 6605 1.53 1978 1.80 1294 0.83 4309 0.44
 Conservation 6602 1.50 1994 2.63 1304 1.65 4304 0.32
 Trend (RCP4.5) 6770 4.07 2028 4.38 1370 6.76 4678 9.05
 Expansion (RCP4.5) 6787 4.33 2024 4.15 1344 4.77 4642 8.21
 Sustainability (RCP4.5) 6788 4.35 2024 4.19 1342 4.56 4634 8.02
 Conservation (RCP4.5) 6781 4.24 2044 5.19 1351 5.30 4630 7.93
 Trend (RCP8.5) 7109 9.28 2154 10.85 1452 13.20 5603 30.61
 Expansion (RCP8.5) 7127 9.56 2154 10.88 1436 11.93 5557 29.53
 Sustainability (RCP8.5) 7131 9.63 2149 10.62 1440 12.22 5544 29.23
 Conservation (RCP8.5) 7121 9.47 2169 11.61 1453 13.21 5538 29.08
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scenarios and the relative change in comparison with the 
baseline simulation.

The results show that, across all of the scenarios, large 
proportion of the population is exposed to low (7,000 
per 100,000 papulation on average) and extremely high 
(5,000 per 100,000) flood risk, with smaller proportion of 
people having moderate or high risk (c. 2,000 and 1,000 
per 100,000 population, respectively). Without climate 
change, the number of people exposed to flooding does 
not undergo substantial change under all the four future 
land use scenarios, with the largest RC calculated to be 
smaller than 2.7%. Including climate change shows sub-
stantially increased flood risk to people. Under the worst 
RCP8.5 climate scenario, the number of people exposed 
to “extremely high risk” increases by c. 30% compared to 
the baseline.

The distribution of affected population at different 
hazard levels across the four land use scenarios does not 
show clear patterns, but the “Trend” development strategy 
will lead to the maximum number of people exposed to 
extremely high risk no matter whether climate change is 
considered or not. Conversely, the “Conservation” devel-
opment is predicted to be the most effective at reducing 
the number of people subject to extremely high risk from 
flooding. The positive RC values show that all four devel-
opment strategies will increase flood risk to people, espe-
cially under climate change conditions. This may be due 
to the increase of built-up areas in the low-lying areas that 
are more vulnerable to flooding.

Potential impact of the construction of key 
infrastructure on flooding

LRB provides important water resources for the downstream 
cities and the Beijing-Tianjin-Hebei region, and several large 
reservoirs have been constructed (Panjiakou, Daheiting) or 
are under construction (Shuangfengsi). Large reservoirs may 
significantly influence downstream flood risk. Therefore, 
further simulations (Table 3) are conducted to investigate 
the impact of Panjiakou and Shuangfengsi reservoirs on 
flood risk.

Taking the “Conservation” and “Trend” land use sce-
narios as examples, Fig. 10 presents the zoomed-in maps 
to show the impact of the reservoirs on the local inunda-
tion extents. The results shown in Fig. 10a and b indicate 
that including Shuangfengsi Reservoir in the simulation 
evidently reduces the predicted flood extent downstream, 
potentially providing an effective measure to mitigate 
the downstream flood risk. Similarly, the Pandjiakou and 
Daheiting Reservoirs also impact the downstream flood risk, 
and the simulations without including the reservoirs predict 
more severe flooding and greater flood extents downstream 
(Fig. 10c and d). However, due to the large size of the basin, 
the impact of these reservoirs on overall inundation extent 
across the basin is limited for all of the simulated scenarios 
(the total flooded areas when removing/including Panjiakou/
Shuangfengsi reservoirs under “Trend” development strat-
egy with RCP8.5 climate scenario are calculated to be 8172 
and 8163  km2, respectively).

Fig. 10  Flood extents (zoom-in views to show the flooded areas adja-
cent to the reservoirs) predicted for the “Conservation” and “Trend” 
land use scenarios considering infrastructure construction: a without 

Shuangfengsi Reservoir; b with Shuangfengsi Reservoir; c with Pan-
jiakou and Daheiting Reservoirs; d without Panjiakou and Daheiting 
Reservoirs
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However, downstream of these reservoirs are urbanised 
areas with high population densities, and so the impact of 
the reservoirs on the safety of the downstream population 
may affect the basin-wise statistics. To assess this, the rela-
tive change to the at-risk population related to infrastructure 
construction (RCI) is calculated against the previous flood 
simulation results as:

where  Pops,I is the population affected by flooding after 
including/removing reservoirs, as appropriate. The num-
bers of affected population from different simulations and 
the values of RCI are summarised in Table 7. The results 
clearly indicate that these large reservoirs reduce the risk to 
people downstream, and the values of RCI are calculated to 
be ± 10% for the extremely high-risk population in all of the 
simulated scenarios.

Discussion and conclusion

Driven by the city-wise 100-year design rainfall, a total of 
28 future flood scenarios are simulated in this work using a 
high-performance flood inundation model to better under-
stand the basin-scale flood risk in the whole LRB. The 
scenarios vary by different land use, climate change and 
key infrastructure construction conditions. The four future 
land use scenarios are projected to 2030 to reflect different 

(8)RCI =
(
Pops,I − Pops

)
∕Pops × 100%

development strategies and used to explore the relationships 
between flood risk, policy-driven development and realisa-
tion of Sustainable Development Goals.

Flood risk under different development and climate 
scenarios

The flood simulation results show that different land use 
changes do not significantly influence the total inundated 
area across the basin for the extreme 100-year rainfall under 
consideration. This is because flood inundation is distributed 
mainly according to hydrological processes and the basin 
topography rather than land use under the extreme rainfall 
conditions. However, the inundated areas of individual land 
use types vary significantly in different scenarios due to relo-
cation and expansion/reduction of different types of land use. 
For example, whilst the area of forested land is projected 
to decrease in the “Trend”, “Expansion” and “Sustainabil-
ity” land use scenarios, the inundation of this land use type 
is predicted to increase in all four scenarios, potentially 
due to the redistribution of forest areas into flood-prone 
areas. Commonly being located on flat lands close to water 
resources (rivers) and occupying a large area, the agricul-
tural land use types including cropland and grassland with 
livestock are most exposed to flooding and have the largest 
inundated areas in all of the simulations, including the base-
line simulation. The “Trend” scenario predicts rapid urban 
expansion, including development in flood-prone zones. 
This gives rise to a significant increase in the inundation of 

Table 7  Affected population (AP) (per 100,000 people) predicted on the future land use and climate scenarios also considering the impact of key 
infrastructure construction

Affected level Low risk Moderate risk High risk Extremely high risk

AP RCI AP RCI AP RCI AP RCI

Land use scenario
 Trend (– P, RCP4.5) 6715 − 0.81 2030 0.10 1354 − 1.11 5213 11.42
 Expansion (– P, RCP4.5) 6734 − 0.79 2021 − 0.14 1327 − 1.29 5170 11.36
 Sustainability (– P, RCP4.5) 6733 − 0.81 2025 0.05 1321 − 1.53 5159 11.31
 Conservation (– P, RCP4.5) 6725 − 0.83 2048 0.18 1333 − 1.35 5148 11.18
 Trend (– P, RCP8.5) 7039 − 0.98 2121 − 1.54 1466 0.92 6202 10.69
 Expansion (– P, RCP8.5) 7062 − 0.91 2125 − 1.38 1449 0.88 6150 10.67
 Sustainability (– P, RCP8.5) 7064 − 0.94 2120 − 1.38 1455 1.04 6134 10.65
 Conservation (– P, RCP8.5) 7050 − 0.99 2146 − 1.02 1464 0.79 6118 10.48
 Trend (+ S, RCP4.5) 6833 0.93 2039 0.52 1358 − 0.86 4161 − 11.06
 Expansion (+ S, RCP4.5) 6848 0.90 2039 0.77 1335 − 0.72 4132 − 10.99
 Sustainability (+ S, RCP4.5) 6851 0.93 2036 0.56 1336 − 0.44 4127 − 10.94
 Conservation (+ S, RCP4.5) 6845 0.95 2053 0.43 1345 − 0.43 4128 − 10.85
 Trend (+ S, RCP8.5) 7189 1.13 2197 2.00 1454 0.11 4985 − 11.03
 Expansion (+ S, RCP8.5) 7203 1.07 2195 1.86 1439 0.19 4944 − 11.03
 Sustainability (+ S, RCP8.5) 7209 1.09 2190 1.89 1440 0.04 4934 − 11.01
 Conservation (+ S, RCP8.5) 7197 1.07 2203 1.58 1458 0.39 4937 − 10.84
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built-up land, potentially putting a much larger population at 
risk of flooding and creating much higher economic losses.

Climate change impacts are taken into account by deriv-
ing city-wise uplift factors to adjust the design rainfall 
under the two IPCC recommended future climate scenarios, 
RCP4.5 and RCP8.5. Climate change will increase future 
rainfall intensity in LRB, leading to higher flood peaks and 
the prediction of increased total inundated areas across 
the basin. However, the distribution of the inundated areas 
between different land use types does not show significant 
change. The RCP8.5 climate scenario predicts a greater 
uplift in rainfall than RCP4.5 and subsequently much greater 
inundated areas across the basin and for most of the land use 
types. These predictions are consistent for all four land use 
scenarios (see Fig. 9).

Based on the 2015 global population distribution data 
from GPWv4, the number of people affected by flooding to 
different hazard levels is estimated. The population at risk 
of flooding does not show much change between the simula-
tions under different land use scenarios. This insensitivity to 
the development scenarios may be related to several poten-
tial reasons. A large portion of the population is located in 
the low-lying areas close to rivers, which are always more 
vulnerable to flooding. Whilst the built-up area may expand 
to different extents in different development scenarios, the 
newly developed areas will increasingly be located at higher 
grounds and hence are less exposed to flooding. The exist-
ing urbanised zones will continue to develop but normally 
will not be relocated and replaced by another land use type. 
The population distribution is based on the 2015 data and 
has not been projected to take account of potential changes 
in total population by 2030, which represents a limitation 
of this work.

LRB contains several large reservoirs, and their impact on 
downstream flood risk is also explored. Through simulations 
with and without including reservoirs, it is found that, whilst 
the reservoirs can mitigate flood risk in the downstream 
areas close to their locations, their impact on the basin-wide 
flood inundation is limited. However, due to the existence 
of major cities downstream, the large reservoirs can effec-
tively reduce the number of people at extremely high risk of 
flooding, and the relative change of the extremely high-risk 
population can reach 10% for all of the simulated scenarios.

Interactions between Sustainable Development 
Goals

All of the four future development strategies considered 
for the LRB are projected to induce significant land use 
change, which will influence future flood risk and affect 
SDG achievement in LRB. As Northern China's most for-
ested river basin, development strategies under the “Sustain-
ability” and “Conservation” scenarios will further increase 

the forest area. This directly links to SDG 15 on terrestrial 
ecosystem conservation and management, including for-
ests. The increase in cropland and grassland areas due to 
the increase in livestock breeding will exert different impacts 
on achieving SDG 2, which aims at ending hunger, achieving 
food security, improving nutrition and promoting sustainable 
agriculture. Increased waters, e.g., through the construction 
of reservoirs, water transport systems and irrigation systems, 
will help achieve SDG 6, including its targets to address 
water accessibility, improve water quality and water-use 
efficiency, and protect water-related ecosystems, including 
mountain forests and wetlands, rivers, aquifers and lakes/
reservoirs. Achieving SDG 6 can further generate synergies 
with SDG 15 and SDG 2 via enhanced ecosystem services, 
particularly related to the provision and regulation services 
and improved irrigation systems. Moreover, as a vital water 
source for Tianjin Municipality, the realisation of SDG 6 
in LRB will contribute to achieving SDGs in Tianjin as 
water is an essential resource supporting all aspects of life 
and social-economic development. The expansion of built-
up land under the “Trend” and “Expansion” development 
strategies will substantially increase the areas of human set-
tlement and cities, contributing to economic growth through 
infrastructure development and industrialisation. This will 
directly contribute to SDG 11 on sustainable cities and com-
munities such as Target 11.1 on safe and affordable housing. 
However, rapid urbanisation may lead to the generation of 
pollutants, effluents and solid wastes, which could damage 
public health (SDG 3), water resources (SDG 6) and related 
ecosystems (Goal 15). Detailed analysis of the synergies and 
trade-offs between SDGs under different development strate-
gies in LRB can be found in Zhou et al. (2021).

Effective management of flood risk, or disaster risk reduc-
tion (DRR) in general, is directly or indirectly embedded in 
the SDG framework and is a critical aspect for considera-
tion when evaluating the impacts of national and regional 
development strategies on SDGs. Based on the preceding 
results and analysis, whilst different development strategies 
may not lead to substantial changes in the total flooded area 
across the basin, the inundated areas of different land use 
types can be significantly changed and shifted. It is therefore 
necessary to analyse in more detail the impact of flooding 
on different land use types to better understand the complex 
relationships between flood risk and socio-economic devel-
opment and how the synergies and trade-offs between the 
SGDs are affected. For example, the “Trend” development 
strategy is predicted to see rapid socio-economic develop-
ment and substantial expansion of built-up areas. This may 
positively contribute to SDG 8 in terms of promoting eco-
nomic growth and providing full and productive employ-
ment and decent work for all, and is therefore related to SDG 
1 (No Poverty). However, this will inevitably increase flood 
inundation of built-up areas and pose higher flood risk to 
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people, properties and businesses, which will in turn create 
trade-offs for achieving other SDGs.

Climate change may increase the frequency and intensity 
of extreme rainfall, and hence flood risk. This in turn can 
substantially increase the number of people exposed to high 
and extremely high risk from flooding (Tables 6 and 7). This 
may directly affect the realisation of SDG 1 (e.g., Target 
1.5 on building resilience to disasters), SDG 11 (e.g., Tar-
get 11.5 on reducing the adverse effects of disasters), SDG 
13 (e.g., Target 13.1 on strengthening resilience and capac-
ity to climate-related hazards and disasters), among others. 
Meanwhile, different development strategies may influence 
or intensify climate change to different levels.

Construction of key infrastructure, e.g., dams and reser-
voirs, may help better regulate water resources and protect 
people from flooding damage, but it may also exert negative 
impacts on the environment. All these will further compli-
cate the issues and create challenges in evaluating the rela-
tionship between development strategies and SDG attain-
ment, as well as the linkages between SDGs.

Limitations of this study

This work presents a new framework to systematically ana-
lyse basin-wide flood risk in connection to different devel-
opment scenarios in LRB. The study is subject to several 
limitations that need to be resolved in future work. First, the 
resolutions of different spatial datasets are not consistent. 
For example, both the land use and the GPWv4 population 
distribution data are at 1000 m resolution, which is resam-
pled to 90 m to match the resolution of the adopted DEM to 
support flood modelling and the following analysis. This will 
inevitably introduce uncertainties to the analysis and results. 
Secondly, GPWv4 does not provide future projections, and 
the population distribution data available for the baseline 
year of 2015 is directly used in all of the analyses to identify 
the at-risk population, assuming there is no change to the 
population distribution from 2015 to 2030. The land use 
change, especially the expansion of the built-up area, may 
encourage redistribution and migration of population, and 
such a rough assumption may affect the accuracy of at-risk 
population statistics. Therefore, the conclusions from this 
analysis may be conservative and should be used with care.

Furthermore, the adopted global climate dataset (NEX-
GDDP) has 1950–2005 as the retrospective period. But in 
the current study, 2015 is adopted as the baseline year to 
produce future development/land use scenarios. To obtain 
the climate uplift factors against 2015, simple linear inter-
polation is implemented by assuming climate change affects 
design rainfall linearly across time. The assumption may be 
rough, and the climate projections and uplift factors should 
be adjusted in the future if local climate data are available.

Moreover, the initial soil conditions for all of the scenario 
simulations are assumed to be the same as those adopted for 
the 2012 event. Although the soil conditions of the basin are 
not expected to change significantly, the initial soil water 
content will be highly influenced by hydrological/weather 
conditions before the flood event occurs and also land use. 
But since LRB is a dry catchment and major precipitation 
occurs in a short wet period of a year, it seems to be reason-
able to assign infiltration parameters according to the soil 
conditions following a dry season, as done in this work. In 
the future, it is worth further investigating the effect of vary-
ing initial soil water content conditions on the flood simula-
tion and risk analysis results.

Finally, due to the lack of relevant socio-economic data, 
the potential flood losses cannot be quantified. But the simu-
lation results are presented as accumulated inundated areas 
against inundation depth, which can be directly coupled with 
socio-economic data and vulnerability curves to estimate 
flood losses when such information becomes available.

Conclusion

From the simulation and analysis results, the following con-
clusions are drawn:

• Whilst the basin-wide inundated areas are predicted to 
be similar under different land use change scenarios for 
the extreme 100-year rainfall as considered in this work, 
the inundated areas of individual land use types may vary 
significantly, indicating different exposure to flood risk.

• The number of people at high risk of flooding is closely 
linked to the distribution of the built-up areas, which 
commonly accommodate dense population and are 
located in low-lying areas and floodplains that are more 
vulnerable to flooding. All four land use change scenarios 
project expanded built-up area, leading to increased flood 
risk to the people.

• Climate change, especially the RCP8.5 climate scenario, 
may lead to more frequent and intense rainfall, subse-
quently causing an increase in the total inundated areas 
as well as the number of people at high and extremely 
high risk of flooding.

• Large dams and reservoirs can substantially reduce inun-
dation in the downstream areas close to the dam sites but 
only have a limited impact on the total inundated areas 
across the basin. Dams and reservoirs may provide criti-
cal protection to the downstream population and substan-
tially reduce the number of people exposed to extremely 
high risk. However, large dams and reservoirs may pose 
an adverse impact on the environment and increase the 
risk of catastrophic dam-break floods.
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It is evident from the modelling and analysis results that 
flood risk at LRB is closely related to different development 
strategies, which will affect the realisation of SDGs. It is 
essential to investigate and understand the inter-dependent 
relationships between basin development strategies, flood 
risk and realisation of SDGs to inform the development of 
a suitable policy to ensure the sustainable future of LRB. 
This will help minimise the trade-offs and maximise the 
synergies between SDGs. The proposed basin-scale flood 
risk assessment framework provides an important tool for 
this purpose. Based on a physically based high-performance 
hydrodynamic flood model and open data, the framework 
can be readily applied to other river basins, especially those 
in developing countries where access to high-quality data 
from government agencies is limited.
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