Andersson, T. R. et al. (2021) Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nature Communications, 12, 5124. (doi: 10.1038/s41467-021-25257-4) (PMID:34446701) (PMCID:PMC8390499)
![]() |
Text
250358.pdf - Published Version Available under License Creative Commons Attribution. 2MB |
Abstract
Abstract: Anthropogenic warming has led to an unprecedented year-round reduction in Arctic sea ice extent. This has far-reaching consequences for indigenous and local communities, polar ecosystems, and global climate, motivating the need for accurate seasonal sea ice forecasts. While physics-based dynamical models can successfully forecast sea ice concentration several weeks ahead, they struggle to outperform simple statistical benchmarks at longer lead times. We present a probabilistic, deep learning sea ice forecasting system, IceNet. The system has been trained on climate simulations and observational data to forecast the next 6 months of monthly-averaged sea ice concentration maps. We show that IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events. This step-change in sea ice forecasting ability brings us closer to conservation tools that mitigate risks associated with rapid sea ice loss.
Item Type: | Articles |
---|---|
Status: | Published |
Refereed: | Yes |
Glasgow Author(s) Enlighten ID: | Elliott, Dr Andrew |
Authors: | Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B., Blanchard-Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E. |
College/School: | College of Science and Engineering > School of Mathematics and Statistics > Statistics |
Journal Name: | Nature Communications |
Publisher: | Nature Research |
ISSN: | 2041-1723 |
ISSN (Online): | 2041-1723 |
Copyright Holders: | Copyright © 2021 The Authors |
First Published: | First published in Nature Communications 12: 5124 |
Publisher Policy: | Reproduced under a Creative Commons License |
University Staff: Request a correction | Enlighten Editors: Update this record