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Abstract

A new method is proposed to estimate the long term seasonal component
by a Multi-stage Optimization filter with a leading Phase Shift (MOPS). It
can be utilized to provide better predictions in case of the seasonal compo-
nent auto-regressive (SCAR) model, where data is filtered/decomposed into
trend and remainder components, then forecasts for constituent components
generated separately and later combined. This reinforces the importance of
trend estimation filtering/decomposition methods, which are scarce and only
few methods, primarily wavelet decomposition, have improved upon the fore-
casts generated by statistical linear models. We contribute to the literature
by introducing a new trend estimation method and the forecast results are
compared to the most popular trend estimation methods, such as frequency
filters, wavelet decomposition, empirical mode decomposition and HP filter,
through their performance in generating short term forecasts for day-ahead
electricity prices. Our method for trend estimation performs better in terms
of providing short-term forecasts as compared to some well-known methods
and the best forecast, according to the Diebold and Mariano (1995) test, is
obtained by using our MOPS filter with annual trend period length.
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1. Introduction

The trend or long-term seasonal component provides the future direction
of the data series (Hyndman et al., 2008). This characteristic of the trend
is often utilized in long-term predictions, generally for policy making and
strategic planning. Conversely, in short-term forecasting the trend is often
ignored; indeed, modelling the trend has been believed to make the short-
term forecasts overly complex (Weron, 2014). However, a series of recent
papers on electricity price forecasting (EPF), such as Uniejewski et al. (2019),
Marcjasz et al. (2019), Nowotarski and Weron (2016), Weron and Zator
(2015), Lisi and Nan (2014) highlight the importance of the trend in short-
term forecasting. The forecasts generated by filtering/decomposing the trend
and forecasting series components separately in a seasonal component auto-
regressive (SCAR) model, referred to as trend-based forecasting in this paper,
outperformed forecasts in which the trend was not predicted separately, in
the cases of statistical (Nowotarski and Weron, 2016) and neural network
models (Marcjasz et al., 2019).

The success of these trend-based forecasting procedures varies with se-
lected trend period lengths, typically ranging from monthly to annual trend
period lengths, and the specific filtering/decomposition procedures used for
trend estimation. In the case of statistical linear forecasting models, only
wavelet decomposition based trends have currently been shown to improve
the forecasts for certain trend period lengths (Nowotarski and Weron, 2016).
However, the difficulty with wavelet decomposition lies both with the com-
plexity of choosing suitable wavelets and the lengthy computational run-time
(Weron and Zator, 2015). The popular Hodrick-Prescott (HP) filter performs
well only in neural network non-linear model based forecasts (Marcjasz et al,
2019) but not in linear statistical model based contexts (Nowotarski and
Weron, 2016). Also, the HP filter is often criticised for end-point bias and
causing the appearance of spurious dynamic relations (Hamilton, 2017). This
all poses two crucial challenges for the trend based forecasting scheme; firstly,
finding the most suitable trend estimation method that overcomes the poten-
tial disadvantages of wavelets and HP filters, which are commonly the only
methods used for trend-based forecasting in the EPF literature. Secondly,
the choice of period length to be used for trend or long-term seasonal compo-
nent estimation also has a large impact on forecast performance (Nowotarski
and Weron, 2016).

In order to assess the optimal trend estimation method for a trend-based



forecasting scheme, we explore a number of the existing popular trend esti-
mation methods in literature; additionally, we introduce a new multi-stage
optimization filter with inherent phase shift (MOPS). The phase shifts nor-
mally occur after the filtration/decomposition, in shape of a lagging or lead-
ing time shift between the original data and the filtered output, see figure
1. These phase shifts are removed usually through a convolution function to
bring the filtered output to the same level as original data. Contrary to this
practice of fixing the phase shift, we aim to induce a leading phase shift in
our filter; the intuition behind our proposed model is that a trend estima-
tion method that closely follows the mean and contains a leading phase shift
provides a natural opportunity for trend forecasting.

Original  Filtered
b data Output

Time Axis

p:»has-e
shift

Figure 1: Phase shift occurring in the filtered output plotted against the original data
with amplitude on vertical axis and time on horizontal axis

We focus specifically on forecasting the UK electricity day-ahead price
data. This will be comparable to much of the earlier literature on trend-based
forecasting which used similar datasets from other electricity day-ahead mar-
kets. Additionally, the stylized features of the electricity prices are suitable
for trend-based forecasting procedures (see Nowotarski and Weron, 2016;
Marcjasz et al., 2019). In particular, the stylized features of electricity prices
are high volatility, mean reversion, multiple seasonality and extreme spikes
due to economically in-viable large scale storage, and also, demand or supply
shifts (Higgs and Worthington, 2008). These features make EPF a com-
plex task and prediction using one specific model that encompasses all such
features does not provide precise results; instead a combination of differ-
ent methods are used for best forecasts (Maciejowska et al., 2015). One
way to tackle this complexity is to decompose prices, predict the resulting
constituent series separately and later combine the predictions to obtain an



overall forecast for the price series. Such an approach is practised for trend-
based forecasting and followed in this paper.

The structure for rest of the paper is that existing trend estimation meth-
ods used in our analysis are discussed in section 2. The literature covering
statistical linear forecasting models and filtering/decomposition, specifically
for electricity prices, is reviewed in section 3. The details for our proposed
multi-stage optimization filter with phase shift (MOPS) are provided in sec-
tion 4. The data and methodology for trend estimation and the forecasting
exercise are given in section 5. Finally, sections 6 and 7 contain the discussion
of results and conclusion.

2. Existing trend estimation methods

2.1. Frequency filters

Filters are commonly used in signal processing to remove undesirable
frequencies before or after a specific cut-off point or within or outside a fre-
quency band range of the original signal to reduce noise. Frequency filters
are also popular in economic and financial time series applications to re-
move trend and seasonal components, including Baxter-King and Christiano-
Fitzgerald filters that are based on the analogous filtering principles. Of
course, low (f;) and high frequencies (fy) are determined by the wavelength
of the sinusoids; the low frequency sinusoids have a high wavelength and, in
particular, the trend or long-term seasonal component falls into this category.
As shown in figure 2, there are four main types of filters based on different
cut-off points - low pass, high pass, band pass and band stop filters - which
are discussed in more detail below.
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Figure 2: Categories of frequency filters

2.1.1. Low Pass filters

In Low pass filters only low frequencies are allowed to pass, consequently
removing all high frequencies in the data after the specified cut-off point.
Low pass filters are useful for extracting short-term fluctuations and are
commonly used to smooth time series. The Butterworth filter is an example
of a low pass filter, in which the frequency response is particularly flat.

2.1.2. High Pass filters

In high pass filters only high frequencies are allowed and they are often
used to extract the trend of the time series by capturing the long term sea-
sonal component. Of course, the frequencies retained by using a high pass
filter can also be defined as those frequencies removed after applying a low
pass filter.

2.1.3. Band Pass filters

They let intermediate frequencies to pass, while removing the low and
high frequencies and are often used to isolate business cycles in the given data
series. The Christiano-Fitzgerald filter (see Christiano and Fitzgerald, 2003)
is based on an ideal band pass filter that extracts the cyclical component ¢
at time ¢ for the time series y through estimating coefficients B at different
intervals from beginning of time series t till the end point in time 7. The
coefficient B is estimated as B = b — a/mw, where a = 27 /p, and b = 27 /p,.
Here, the upper and lower cut-off cycle lengths (user defined) are represented
by p, and p;, the filter output ¢ contains the cycle lengths shorter than p,
and longer than p;.

¢t = Boyr+Biyis1+...+Br_1—yr—1+Br_yi+Biyi—1+... Bi_oyo+Br_y1 (1)
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2.2. Other decomposition techniques

2.2.1. Wawvelet decomposition

A wavelet decomposes a data series into a set of waves fluctuating around
zero. A similar technique is the Fourier transformation, the standard Fourier
transform provides decomposition based on frequency, whereas the wavelets
take care of both the time and frequency, which is more useful for time series
analysis. The wavelets have the property of functional bases and they can op-
erate to extract information at different frequency domains along with record-
ing the instance of wave oscillations. There are different families of wavelets
that are normally chosen based on their merits for specific wavelet analy-
sis. The wavelet used for estimating the daily trend in this paper belongs
to Daubechies family order 24 as previously used by Nowotarski and Weron
(2016).

2.2.2. Empirical Mode decomposition

Based on the “Hilbert-Huang Transform”, the empirical mode decompo-
sition splits a given data series into different components called as Intrinsic
Mode Functions. These Intrinsic mode functions produce decomposed series
at different scales from low to high frequencies. It is being used extensively
for decomposing economic data and identifying business cycles due to its
flexibility and range of component series produced at different scales.

2.2.3. HP Filter

This is one the most extensively utilized method for financial data filtering
despite all the critism it has received. It was introduced by Hodrick and
Prescott (1997)to analyse the business cycles in US labour market. The HP
filter decomposes a time series into a growth 7; and cyclical ¢; component.

Y =Ty + ¢ (2)

The overall equation for smoothing time series is based on a constrained
minimization problem for estimating the growth component 7;.

rrEanf + A Z[(Tt —Ti1) — (Tim1 — Ty—2)]? (3)

Where, ¢; is the business cycle component, it shows the deviation from
the trend. The parameter A\ is a constant which constraints the growth
component and its larger values makes 7 smoother, if A = 0, then 7 = y.
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The value for lambda is usually chosen based on the frequency of time series
under observation, the most commonly used parameter to estimate the value
of lambda is provided by Ravn Uhlig (2002).

3. Literature review

The literature review section is discussed in two parts, providing the
key focus points of this paper. The first part focuses on the linear statisti-
cal models for electricity price forecasting and the second part presents the
filtering/decomposition schemes and methods. Before we explore these two
streams of literature on electricity price forecasting (EPF), it is worthwhile to
mention some key review or survey papers summarizing the different models
used in the literature for forecasting electricity prices. Among these review
papers, Weron (2014) stands out for its comprehensive and precise enquiry
on the topic; it covers most of the methods and procedures suggested in the
literature to forecast the electricity prices. Some other reviews of electric-
ity price forecasting literature are more tailored towards providing in-depth
knowledge of specific categories of the models, broadly statistical, economic
or computer intelligence models (Amjady and Hemmati (2006);Ventosa et
al. (2005); Chan et al. (2012); Garcia-Martos and Conejo (2013)) and the
procedures applied such as variable segmentation, forecast combination and
pre-processing (Aggarwal et al. (2009a); Bunn (2000)).

These review papers generally cover all procedures used in EPF but lack
the in depth inquiry of filtering and decomposition of electricity prices which
is a common practice in electricity price forecasting literature due to the price
spikes and extreme volatility. However, one such review recently conducted
by Shao et al. (2017) focuses particularly on decomposition methodologies
but solely for electricity demand forecasting rather than the electricity price
forecasting. An important point to take under consideration while looking at
the surveys focused more on electricity demand forecasting is the difference
in the characteristics of electricity price and demand as the former is much
more difficult to forecast (Dominik Liebl, 2013). This is why we specifically
focus only on the literature of electricity price forecasting instead of demand
forecasting. Later in this section, we provide a general review of commonly
used statistical methods followed by the price filtering and decomposition for
electricity price forecasting.



3.1. FExisting Models to Forecast Electricity Prices

The electricity price forecasting models used in the literature are usually
statistical or computer intelligence models that can be divided primarily into
time series models and neural network (artificial intelligence) models that
are equally famous in EPF literature, or a combination of both models is
used for forecasts(Weron, 2014). However, a single most parsimonious model
to predict spot electricity prices does not exist, instead a combination of
different models are used for best forecasts(Maciejowska et al, 2015). The
computer intelligence and neural networks are still equally popular in EPF,
but we focus particularly on statistical methods as the aim of this paper is on
decomposition of prices and forecasting through statistical models, hence the
relevant literature is reviewed and researches using computational intelligence
models are not reviewed.

3.1.1. Parameter Rich models

Generally, using a parameter rich model with substantial number of ex-
planatory variables and their past values is often a trend observed in EPF
researches and up to 100 parameters have been used in a single model for
electricity price forecasting (Ziel, 2016). Accordingly, selecting the right vari-
able is a key issue in predicting the future prices and load. A common way
adopted for choosing the right variables by earlier researches is to eliminate
statistically insignificant variables for (AR) models (Uniejewski et al, 2016).

Another way to deal with large number of variables recently applied by
Alonso et al (2016) is to choose few components or factors to explain the
major changes without using all the parameters. They adopted the dynamic
factor model based on extracting principle components that provides dimen-
sionality reduction and avoids multicollinearity and it is a substitute to pa-
rameter rich models that is based on regression for the entire explanatory
variables. As the dynamic factor models extract the information before the
forecasts and the forecast combination works after the forecasts, they com-
bined both techniques to obtain a single prediction. Forecasts generated for
ARIMA models and factors are later converted to original variable values
to obtain individual predictions for each hour and forecast combination is
applied by averaging the forecasts of alternative models for improved fore-
casts. Log prices were used to avoid heteroscedasticity but it did not make
difference to forecasting performance. A rolling window of 1.5 years was used
with 36 alternative seasonal ARIMA for each factor in a window. In terms



of further research, they suggest using different weights for combination of
forecasts rather than fixed weights, seaDFA and GARCH- seaDFA, other
variables like demand, fuel, weather etc, and use of bootstrap procedures to
obtain confidence intervals of the predictions.

3.1.2. Long memory models

In terms of model building, different specifications have been used for elec-
tricity price forecasting autoregressive structures perform well due to the lag
dependence and mean reverting properties of electricity prices. Autoregres-
sive (AR, ARX) models are most widely used for electricity price forecasting
for time series models. These models express the future price in terms of
combination of their past prices and they are useful in exploring the mean
reverting properties of the electricity prices, the electricity prices for some
countries do exhibit non-stationarity and deviation from mean, for which
GARCH models are more suitable. To cope with this, researcher sometimes
use both the models, as Liu Shi (2013) used the combination of ARMA and
different GARCH models, in ARMA-GARCH framework to forecast hour
ahead electricity prices. In their case of New England market, electricity
prices show time-varying volatility and daily, weekly and monthly periodici-
ties.

In a comparison by Weron and Misiorek (2008) of 12 short term electricity
price forecasting models including regime switching, stochastic mean revert-
ing jump diffusion model and different autoregressive models, the smoothed
nonparametric calibrations of ARX and AR models performed the best. Fur-
thermore, the use of demand as an exogenous variable improved the forecasts
in most of the cases.

3.1.3. Structural/Equilibrium models

Equilibrium models are often used to study the dynamics of electricity
market, based on the balance between demand and supply, and they are
referred as structural models in electricity pricing literature (Carmona and
Coulon, 2014). These models are used to study the behaviour of electricity
wholesale prices on the industrial side through the marginal costs, and sup-
ply /demand curves. However, such models have not yet been extensively
explored to forecast the electricity prices in wholesale markets.

Electricity prices are inelastic to demand, and lack of storage usually
causes the prices to spike massively due to supply and demand shocks. Sub-



sequently, earlier researches used the relation between the price with de-
mand and with supply (or available capacity/margins) for pricing electricity
derivatives. Boogert and Dupont (2008) used a supply-demand framework to
model day-ahead electricity spot prices for each of the 24 hours and forecast
the price spikes. Kanamura and Ohashi (2007) proposed a model for pricing
electricity based on demand and supply, providing a better fit for spikes than
jump diffusion and Box cox transformation model.

3.1.4. Quantitative/Mathematical models

The quantitative models, also referred as reduced form models, often use
stochastic differential equations and thus they are more useful in pricing
derivatives rather than forecasting(Weron, 2014). However, the quantitative
models that encompass correctly the properties of electricity prices, provide
good forecasts. As the electricity prices are mean reverting and have huge
spikes, mean reverting jump diffusion models are often used to capture these
properties. Ornstein-Uhlenbeck processes are often used to explore these
mean reverting properties, as by Barlow (2002), Benth et al (2007) and more
recently for power demand by Verdejo et al (2016). Moreover, Geometric
Brownian Motion is often used to depict the stochastic component of elec-
tricity prices that at times does not respond to the extreme spikes and fails
in the reversion to mean(Weron, 2014).

3.2. Filtering and decomposition

The filtering processes involve retaining a specific component of the data
and discarding the rest of the components, whereas decomposition processes
breaks up the data series based on specific features but then retain all the
constituent components. Due to the seasonality and spikes in the electricity
prices, filtering and decomposition of prices before building a model is popu-
lar in EPF literature. Filtering and decomposing the original prices before ap-
plying the statistical models can provide at least better short term day-ahead
forecasts as compared to forecasts obtained without prior filtering (Conejo et
al, 2005; Janczura et al, 2013; Nowotarski and Weron, 2016; Weron, 2014).
The figure below illustrates the filtering and decomposition into resulting
constituent series that is often performed in EPF literature(Weron, 2014).
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Figure 3: Filtering and decomposition procedures for electricity price forecasting (own
elaboration)

3.2.1. Filtering spikes

The filtering price spikes process generally involves removing or substi-
tuting the spikes from the data. After applying a filter, the resulting series
of spikes and non-spikes are modelled separately and the later the forecasts
of each series are combined. This is done because the statistical methods
for both price-only and fundamental variable models do not provide good
forecasts in the presence of spikes (Weron, 2014). And so the extreme spikes
in electricity prices are suggested to be pre-filtered before modelling the elec-
tricity prices. However, there is no single best method to identify or filter
the price spikes but regardless which method is chosen, the forecast results
are observed to be better when spikes are removed(Janczura et al, 2013).

One of the earliest research conducted in this regard was Lu et al (2005),
in which, electricity prices were filtered mainly using fixed threshold of two
standard deviations. The resulting two series were named normal price and
spikes, the spikes were further filtered to obtain the abnormal high price,
which was forecasted using statistical method based on demand and supply
of electricity. Whereas, the normal price was decomposed using wavelet
analysis and forecasts were produced using neural network method. Finally,
the forecasts of spikes and normal price (non-spikes) were reconstructed to
obtain the comprehensive forecasts of the electricity price.
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One of the key issues in filtering the spikes is choosing the filtering method
and cut-off price threshold, as a price spike in one market may be considered
a normal price in other electricity markets. The best way is to study all
the procedures applied in the literature and choose the one that performs
better for a given market or look at the studies that provide a comparison
for these filtering procedures for electricity prices. In this regard, Janczura
et al (2013) is the most detailed and comprehensive study on the topic, it
provides a detailed comparison of the filtering techniques namely fixed price
threshold, variable price threshold, fixed price change threshold, variable
price change threshold , Gaussian threshold, wavelet filtering, Markov regime
switching model classification and recursive seasonal model. Out of these
methods, the Markov regime switching model classification and the variable
price thresholds provided the best forecast results.

3.2.2. Components based Decomposition/Filtering

The electricity price decomposition procedures can be divided into broadly
three inherent components based categories; firstly the deterministic and
stochastic components, secondly the time-frequency components and finally
model based components, as illustrated in figure 3. Once the decomposition
is performed, the constituent series are forecasted individually using a suit-
able method and then these forecasts are combined in either a multiplicative
or additive manner, as explained in the introduction section of the paper.

The traditional approach in business and economics is to decompose a
series in three constituent components including long term seasonal compo-
nent (LTSC), short term seasonal component (STSC) and stochastic com-
ponent; then model them separately and combine the forecasts(Hyndman
et al, 2008). In EPF literature, the decomposition of electricity price (F;)
is often focused on one of the three components; either the long term sea-
sonal component (7}), short term seasonal component (s;) or remainder (X3)
component, shown in equation (4).

Pt - Tt + Xt (4)
Py = s+ X;
Conejo et al (2005) was one of the first papers to decompose the original

prices into short term seasonal component (s;) and remainder component
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(X;) using wavelet transformation before applying the ARIMA model for
day-ahead electricity price forecasting. Since then, more focus has been on
modelling and forecasting of STSC in electricity price forecasting literature,
which was based on decomposing the prices into only stochastic and short
term seasonal component, whereas the LTSC merged with the STSC was
often modelled and forecasted together. The LTSC alone was considered
to add complexity in forecasting electricity prices, however, this approach
has changed recently with evidence of better forecasts from the trend based
forecasting scheme by Nowotarski and Weron (2016) , Marcjasz et al (2019)
and Uniejewski et al (2019).

The long term seasonal component(LTSC), also referred as trend pro-
vides the long term direction to the series (Hyndman et al, 2008). The
LTSC gradually changes so it is often considered to be same as previous
day (LTSC = LTSC4_1y). Thus, persistent forecasts are used for the
trend in short-term electricity price forecasting as suggested by Lisi Nan
(2014) and later implemented by Nowotarski and Weron (2016) to study
the impact of long term seasonal component in day-ahead electricity price
forecasting. Nowotarski and Weron (2016) used different decomposition lev-
els of wavelet transformations and the HP filter in a seasonal component
autoregressive models (SCAR) and the benchmark Autoregressive models
(ARX). The variables chosen were one day, two day and weekly lags of
spot price (hourly Nordpool) along with day dummies, hourly load and last
day minimum price. The methods used for forecast evaluation/comparison
were WMAE (weekly mean absolute error) and the DM (Diebold Mariano)
test. The SCAR model with different trend decompositions and AR without
decomposition was used and the SCAR-type models with selective wavelet
transformations with higher decomposition levels for the long term seasonal
component (LTSC) performed the best. Although the approach for identi-
fying these components has changed over time but still similar methods are
being used for component estimation, primarily based on wavelet methods
for more than a decade.

3.2.8. Frequency based Decomposition/Filtering

The frequency based filtering and decomposition methods are borrowed
from the signal processing field of engineering and they have gain much pop-
ularity in business and economics literature, especially to study the business
cycles using low pass, band pass and high pass frequency filters. The most
commonly used method in EPF to decompose the prices based on frequency

13



is again wavelet decomposition (specifically Discrete Wavelet Transforma-
tion), for example see Xu and Niimura (2004); Mandal et al (2012); Osério
et al (2014); Yang et al (2017). The discrete wavelet transformation by Mal-
lat (1989) is unique among the wavelet family as it decomposes prices based
on low and high frequency rather than the mother and father wavelet ap-
proach in rest of the wavelet methods. Only few papers have explored other
frequency based methods due to excessive reliance on the traditional wavelet
families.

Lisi and Nan (2014) made an attempt to identify the best trend es-
timation methods for electricity prices. Out of the 11 methods used to
estimate the trend, two frequency based methods were used namely, Kol-
mogorov—Zurbenko (KZ) filter, which is a low pass frequency filter and Chris-
tiano—Fitzgerald (CF) filter, which belongs to the band pass frequency filter
category. Although, the focus of their research was not forecasting electric-
ity prices, however, one of the criteria used for ranking the trend estimation
method was the predictive performance of electricity spot prices, which is
close to our aim of this paper. They suggest filtering based on smoothing
splines performs best with regard to the overall set of criteria but they did
not specifically rank based solely on the forecasting abilities of the trend es-
timation methods. We have also incorporated these smoothing splines as the
second stage of our multi-stage optimization filter.

3.3. Model based decomposition/Filtering

There are certain methods that decompose or filter the prices based on
inherent characteristics of the models, which are not necessarily based on
time-frequency or component estimation. One such model, used in EPF is
the empirical mode decomposition (EMD), which is based on Hilbert—-Huang
transform that decomposes data into intrinsic mode functions by restricting
the maxima and minima points in the data. Lisi and Nan (2014) used empir-
ical mode decomposition in their comparison study of the trend estimation
methods and the results for EMD trend were not as promising as the trends
estimated by other methods. He et al (2015) also used empirical mode de-
composition for de-noising the electricity prices before producing forecasts,
however, it has been more often used in electricity demand forecasting rather
than electricity price forecasting due to its compatibility with non-stationary
and non-linear demand data, see An et al (2013); Fan et al (2016); Ghelardoni
et al (2013); Hong et al (2013).
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Another category of filtering/decomposition technique is based on opti-
mization, in order to minimize certain features of the data; some popular
methods are Kalman Filter and Hodrick-Prescott (HP) filter. Weron and
Zator (2015) compared the performance of HP filter against the wavelet de-
composition, which is best performing method and most commonly used in
EPF literature, to estimate the trend in electricity prices. They emphasized
on the ease of use and computational efficiency of HP filter and in this regard
ranked it superior to the wavelet method. Since then, HP filter has received
some attention in EPF to estimate the trend of electricity prices, see Lisi
Nan (2014); Nowotarski and Weron (2016); Marcjasz et al (2019).

3.4. Summary of literature

The key takeaway from the literature for electricity price forecasting is
that linear statistical models with long memory dynamics and properly cali-
brated for seasonality work better than most of the complex or parameter rich
models (Weron, 2014). This is why; we aim for a simple linear autoregressive
model with more focus on short term and long term seasonality. In terms
of filtering/decomposition schemes, literature suggest that newly developed
trend based forecasting is best, in terms of convenience and minimum forecast
error. Lastly, there is a scarcity of well performing trend estimation methods,
which is a hurdle for trend based forecasting scheme and is addressed in this
paper. The best method suggested by the literature for trend estimation is
wavelet decomposition (Nowotarski et al, 2013), but due to the complexity
of the wavelets, as discussed in the introduction section, new methods need
to be explored for trend estimation that could improve the forecasts.

4. MOPS Filter

We are particularly interested in designing a filter to obtain the trend of
the series that could be later used for forecasting electricity prices. Our aim
is to take the input time series vector of electricity prices y and transform
using filter function 7" to generate the trend output c¢[n| over the time period
n as

c[n] = T{y} (5)
In order to record the abrupt changes over different time intervals, y is

split based on regular intervals of time, such that these sub-intervals can be
concatenated to give the original time series y
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Y = {ymlypn.g Hae2q - FYpasing Vi = (1,2..n — 1) (6)

Where, 7 represents the number of sub-intervals and d is the length of each
sub-interval in number of days (d stands for one day, 2d stands for 2 days and
nd shows n number of days), for tri-weekly sub-intervals |d|=17, Quarterly
|d|=T73, semi-annually |d|=183 and annually |d|=365; which are chosen based
on the trend cycles in the electricity market and approximate comparison
with other filter lengths. These sub-intervals are then transformed using our
filter to obtain the trend.

In terms of building the filter, the first and foremost important part is the
filter designing method that has to be chosen from the different filter design
and estimation methods that can be broadly categorized as finite impulse
response (FIR) filters, infinite impulse response (IIR) filters, Nyquist filters,
Multi-rate Filter Design, Multistage Filter Design and Special Multi-rate
Filters (Losada, 2008). Out of these filters, multistage filters can provide
ten times more efficiency than the rest of single stage filters (Zhu et al,
2016). To benefit from these efficiency gains, we base our method on the
Multistage Filter Design, in which, the first stage applies optimization and
second stage performs interpolation. In the first stage, the optimization is
performed by specifying an optimal design filter, which are normally used
to minimize certain deviations using the optimization method; specifically
between the ideal filter and the proposed filter (Losada, 2008). However,
we are more interested in minimizing the deviation from mean of the series
through choosing to minimize f(y) by the input choice of y, € y, where y
is a vector of electricity prices.

min f(y) (7)

Y[n) €Y
As a measure of deviation from mean for the function f , the root mean
square error is used as it cumulates the error magnitude and it is scale-
dependant that penalises abrupt deviations.

n

min f(,| Y (@ = ym)?) (8)

€
Y Y —1

The minimization function, given in equation (8), minimizes ¥, to ob-
tain minimum root mean square error closer to zero for a given length of
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data by using the mean z,), resulting in the trend to be on the same mean
level as the original data series. This minimization function is applied over
a rolling window of approximately 3 weeks, quarter, and semi-annual and
annual time intervals to be used for forecasting and comparison with other
filtering methods. In the second stage, the minimized solutions obtained at
regular intervals are used for interpolation splines to produce trend curve of
the same length as the original data series.

The requirements that are considered essential for decomposition/filtering
method to work well and give desired results are mainly filter response, phase
shift, stability and consistency of the filter. The phase shift is usually ex-
pected once a filter is applied on the data, this makes the filtered output data
to either lead or lag the original data points. The phase shifts are normally
resolved using convolution methods to remove the delay between filtered data
and the original data points. However, this delay could be useful in terms
of forecasting the future prices if the filtered data leads the original data
series, as this brings a natural forecast for the future. For making use of this
natural forecast opportunity, we keep the lead phase shift (that naturally oc-
curs in the filtered output) in estimating trend from our MOPS (Multi-stage
optimization with phase shift) filter.

5. Data and Methodology

The electricity day-ahead market prices for UK are obtained from Nord-
pool (data is available on request from the authors). The day-ahead market
is a blind auction, in which, participants have to submit their prices for each
of the 24 hours of next day before the gate closure at 12:00 CET (Central
European Time). The final price is calculated by matching the demand and
supply and publically announced at 12:42 CET or later. The data for intra-
day market consists of 24 hourly prices of each day for the periods between
01/01/2015-31/12/2017 (3 years). This time has been chosen because of the
rapid changes in electricity generation mix and integration of renewable en-
ergy that makes the demand and supply more uncertain, which leads to more
volatility and difficulty in forecasting the electricity prices

The descriptive statistics for the data are provided in table 1, the electric-
ity day-ahead prices and load both have only positive values. The maximum
and minimum values for both price and load have large margins; also the
volatility in terms of standard deviation is quite high, pointing towards the
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(Insert Table 1 here)

presence of extreme spikes. The skewness and kurtosis are both positive and
provide evidence of huge jumps particularly for day-ahead electricity prices
and non-normality, also confirmed by the Jarque-Bera. As stationarity is a
pre-requisite for time series regression analysis, both data series are station-
ary and contain no unit roots, the results are not included here.

The electricity load data is taken from ELEXON website, which is also in
hourly frequency and the same time period as electricity prices (01/01/2015-
31/12/2017). Both electricity prices and load are converted into natural
logarithmic values as it would be convenient to convert back the forecasted
output through exponents for comparison against the real prices, as it is a
norm in electricity price forecasting literature. The plots for electricity day-
ahead prices in GBP/MWh and electricity load in GWh are presented below,
in figure 4.

5.1. Forecast Scheme and trend estimation

Electricity price forecasting is carried out for short term horizon, as the
short-term forecasts are important for smooth daily operations to keep the
system in balance. The short-term forecasts are generated for 24 hours-ahead
for day ahead prices using a rolling window as displayed in the figure 4. The
estimation period ends on 31/12/2016 and forecast is generated for 24 hours
of next day (01/01/2017). In the next step, the estimation period is extended
by 24 hours to 01/01/2017 and then forecasts are generated for next 24 hours
of 02/01/2017.

The filtering and forecasting is performed in the following steps:

1. In the first step the log Prices are filtered/decomposed using six most
popular trend estimation methods in the literature e.g. HP filter, CF
filter, Butterworth filter, Wavelet decomposition and Empirical mode
decomposition along with our MOPS filter. Persistent forecasts for the
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Figure 4: Plots of electricity day-ahead market price and load data with estimation period
and the Forecast Window

next 24 hours are used (assuming the price in the trend estimated for
yesterday to be the same as today, following the Nowotarski and Weron
(2016) ). Out of these methods, only wavelet and HP filter have been
previously used for trend based forecasting, and only the forecasts of
trend from wavelet decomposition performed well for linear statistical
models.

2. The out of sample 24 hours ahead forecasts for daily trend are ob-
tained using persistent forecasts of last 24 hour trend as suggested by
Nowotarski and Weron (2016).The remainder part after subtracting
the trend is forecasted using autoregressive lags structure (ARX) pro-
posed by Misiorek et al. (2006) and used extensively in electricity price
forecasting literature, provided in equation (9).

3
Shit = 01Sht—1+02Sh 1—2 4+ 035 -7+ Bmpy +yld—1 + Z diDi+€ (9)
=1

Where, S is the spot price, h denotes the hour and t is the day, mp;,
is the minimum price from last day, Id is the electricity load from
yesterday and three dummy for Monday, Saturday and Sunday.

3. In the third step, the forecasts obtained for the trend and remainder
parts are combined.
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4. Fourth step, the forecast results from this Trend-ARX scheme are then
compared with the ARX forecasts without decomposition and Naive
method, in which the forecast for each hour h of monday, saturday and
sunday is the price for each hour A of previous week’s monday, saturday
and sunday. While, the forecast of each hour h of tuesday, wednesday,
thursday and friday is the previous days price for that hour h. This
naive method was originally proposed by Nogales et al. (2002) and it
is often used in EPF literature as a benchmark method!.

5. In the last step, the exponents are used to convert the log prices and

then evaluated against the original electricity prices using Weekly-
weighted Mean Absolute Error (WMSE) and Diebold Mariano test.

5.2. Forecast evaluation

The Diebold and Mariano (1995) test is used to examine if the forecasts
from different models have equal predictive accuracy. The test statistic is
computed as: extensively in electricity price forecasting literature, provided
in equation (9).
d
Sd

M = (10)

Where, d and s4 are the mean and sample standard deviation of d.

d:Ll—LQ

And L;, (i = 1,2) is absolute difference between the forecast and the
actual,

Li=[§-y| (11)

The null hypothesis suggests similar forecast accuracy for the different

models and it is represented as HO : E(d;) = 0, while the alternative hy-

pothesis would suggest the superiority of forecasts out of the given models

L As this paper focuses on the performance of different filters in forecasting the long-
term seasonal component (LTSC) and compares these with our MOPS filter, exogenous
variables have not been included. However, practitioners can include exogenous variables
(relating to their data set and particular market) to improve their forecasts. Moreover,
the setup for the forecasting exercise is the same as earlier papers on trend forecasting
in electricity prices for consistency and comparison, (see, for example, Nowotarski and
Weron, 2016). Finally, the setup is formulated to be used in the electricity auction market
where historic load and prices only up till 12:00 CET are used to forecast the next 24
hours electricity prices, in a rolling window scheme to prevent looking ahead.
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and it is represented as H1 : E(d;) # 0. In order to avoid auto-correlation
that multi-period forecast errors usually exhibit, the DM test is conducted
separately for the 24-hours of each day, following Bordignon et al. (2013).

6. Forecast Results

In this section, the results for the UK day-ahead electricity price forecast
are presented. As the trend forecasts alone are not comparable to the real
electricity prices for the next day, we combine the forecast of next 24 hours of
the day (¢ + 1) for the trend (7},1) and the remainder part (X;y1) and then
evaluate it against the real prices for the 24 hours of the next day Py, =
forecasted(Tiy1 + Xy11). Out of all three models compared, Naive, ARX
and Trend ~ARX model, the Naive forecast is the worst while Trend-ARX is
better than ARX with only selective trend estimation methods and period
lengths, with respect to WMAE in table 2, confirming previous findings
of Nowotarski and Weron (2016) and Marcjasz et al (2019), they used a
different day-ahead electricity prices dataset from Global energy forecasting
competition(2014) and Nordic countries (Denmark, Finland, Norway and

Sweden).

Wavelet based trend performs the best while our proposed MOPS based
trend performs better than other filters after wavelets. Also, our proposed
trend procedure provides better forecast than estimating the ARX model
without decomposition and the Naive method for all four trend periods.

(Insert Table 2 here)

In terms of WMAE, the best forecasts among the different trend esti-
mation methods used in Trend-ARX model is given by wavelet, similar to
Nowotarski and Weron (2016) and Marcjasz et al (2019), as it has outper-
formed all other methods in three out of the four trend length periods. Our
proposed optimization filter performs equally well with only slightly worse

21



WMAE but still ranks in second, out of all six trend estimation methods
considered.

Butterworth filter, which is a low pass frequency filter and the HP fil-
ter also performed better than the ARX benchmark model for all four trend
length periods and could be a good second tier choice for trend estimation af-
ter wavelet and MOPS filter. Both these methods provided best forecasts for
the semi-annual trend period lengths out of all six trend estimation methods.

The most disappointing forecast performance was given by the Christiano
Fitzgerald filter and the empirical mode decomposition, as the Trend-ARX
forecasts with both these methods were worse than the benchmark ARX
model in almost all trend period lengths, except for the semi-annual trend
period length of EMD, also observed by Lisi and Nan (2014). The reason
for this unsatisfactory performance could be higher sensitivity of both these
methods to subtle changes in electricity prices, which Is a demerit for trend
prediction, as electricity prices revert to the mean quickly.

(Insert Table 3 here)

Hence, any trend estimation method that is immune to sudden changes
would be much useful for at least forecasting the trend of day-ahead electricity
prices.

The four different trend length periods chosen at tri-weekly, quarterly,
semi-annually and annually period lengths are representative of the long term
seasonality that exists in electricity prices. Our choice of these trend lengths
comes from the existing literature on the subject and it is backed empirically
by our results, as the Trend-ARX gives superior forecasts in most of the cases
for the given trend period lengths over the ARX model. However, in order to
suggest best trend length period and estimation method, we refer to Diebold
and Mariano (1995) test results for predictive superiority, presented in table
3 and figure 5.
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Figure 5: Diebold and Mariano (1995) test static calculated for each Trend-ARX model
against the benchmark ARX model at different Trend period lengths.The test statistics
above the shaded area (-1.96< z <1.96) provide better predictive accuracy than the bench-
mark ARX model.

For the Diebold and Mariano (1995) test, only four trend estimation
methods are considered, namely, wavelet decomposition, MOPS filter, HP
filter and Butterworth filter. Both CF filter and EMD filter are eliminated
from the test, as they performed worse than the benchmark ARX model.
The DM test is conducted for individual trend method for each trend length
period to evaluate which Trend-ARX forecast is better against benchmark
ARX forecasts. The results from DM test show that only wavelet and our
optimization based trend-ARX models perform better than the benchmark
model, except for the semi-annual trend-ARX model. The best forecasts are
given by our MOPS filter with annual and quarterly trend, see figure 5.

Plots of the trend estimated by different filters used in forecasting are
presented in figure 6.
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7. Conclusion

We have analysed different methods for trend estimation and introduced
a new procedure based on optimization principles that could be used for fore-
casting day-ahead electricity prices. Recently, in EPF literature a new proce-
dure of filtering/decomposing the electricity prices into LTSC and remainder
part and then forecasting them independently has proved to improve the
prediction of day-ahead electricity prices. However, this improvement in pre-
dictions previously could only be achieved using the trend estimated through
the wavelet decomposition for statistical models as observed by Nowotarski
and Weron (2016) and HP filter only performed well for neural network model
(Marcjasz et al, 2019).

The aim of this paper was to enhance this pool of trend estimation meth-
ods, in case of statistical methods, providing the practitioners with more
choice of models rather than relying just on wavelet decomposition. In our
quest of finding trend estimation methods that can be used for day-ahead
electricity price forecasting, we compared five existing well known trend esti-
mation methods including, Butterworth low pass frequency filter, Christiano
Fitzgerald band pass frequency filter, wavelet decomposition, Empirical mode
decomposition and HP filter. Moreover, we introduced a new procedure for
estimation of the trend, which is a multi-stage optimization filter with phase
shift (MOPS). Out of all these trend estimation methods, only the wavelet
decomposition and our proposed MOPS filter were effective in improving the
predictions to the benchmark ARX model. In short, we have successfully en-
hanced the pool of trend estimation methods for day-ahead electricity price
forecasting by introducing the MOPS filter, which has even provided better
forecasts than the wavelet decomposition for the annual and quarterly trend
period lengths in Diebold and Mariano (1995) test. We believe that a key
reason for the success of our filter is the phase shift that leads the original
prices and creates natural opportunity to look into the future and provide
better forecasts. For the future research on this subject, we suggest to include
the lead phase shift in other trend estimation methods instead of removing
it through convolution, which is the normally practiced for filters.

In terms of trend length periods, we used tri-weekly, quarterly, semi-
annually and annual lengths following the literature (Nowotarski and Weron,
2016) and taking into account the seasonal periods for UK electricity market.
These trend length periods might vary with different electricity markets in

25



the world, but for British electricity market, we suggest using the annual
trend length would be most suitable based on the results of Diebold and
Mariano (1995) test.For future research, more markets and recent data could
be used to extend the scope of this forecasting scheme and trend estimation
methods.
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Day-ahead Load

prices (£/MWh) (GWh)
Mean 42.0602 62621.37
Median 39.3900 62015.50
Maximum 999 104854
Minimum 1.5700 33040
Std. Dev. 20.6975 14115.20
Skewness 19.8927 0.3071
Kurtosis 709.9900 2.4324
Jarque-Bera  5.5000 766.5909
Probability 0.0000 0.0000
Observations 26304 26304

Table 1: Descriptive statistics for electricity day-ahead price (£/MWh) and Load (GWh)



FORECASTING WMAE
MODELS
Naive 12.2538
ARX 10.4111
Trend-ARX
Tri-weekly Quarterly Semi-annually Annually
‘Wavelet 10.2968 10.2798 10.4138 10.3432
(S59) (S11) (512) (S13)
MOPS 10.3008 10.3064 10.4099 10.3444
Filter (D=17) (D=73) (D=183) (D=365)
HP Filter 10.3320 10.3300 10.3243 10.3699
(5€9) (5e10) (1lell) (5ell)
Butterworth 10.3295 10.3296 10.3244 10.4355
(S=1500) (S=3000) (S=3500) (S=6500)
CF Filter 10.5766 10.5483 10.5039 10.4265
(S=1500) (S=3000) (S=3500) (S=6000)
EMD 10.6747 10.4682 10.3882 10.6238
(IMF=6) (IMF=T7) (IMF=8) (IMF=9)

Table 2: The forecast results in terms of average Weekly-weighted Mean Absolute Error
(WMAE) are provided in this table. The filtering is done for four different time interval
lengths to obtain 3weekly, quarterly, semi-annual and annual trends that are comparable
to different decomposition methods. The forecasts better than the benchmark ARX are
in bold and the best two forecasts for each trend period length, considering all trend
estimation methods, are underlined. Note: The approrimations used in trend estimation

for each of the methods are provided in ()



ARX compared DM test
to Trend-ARX statistics
Tri-weekly Quarterly Semi-annually Annually
Wavelet 2.3382 2.6974 1.3377 2.7238
(S9) (511) (512) (513)
MOPS 2.0320 3.0839 1.5402 3.9245
Filter (D=17) (D=T73) (D=183) (D=365)
HP Filter 1.4692 1.0232 1.1319 0.8289
(5€9) (5e10) (1ell) (5ell)
Butterworth 0.2231 1.1265 1.0283 1.6308
(S=1500) (S=3000) (S=3500) (S=6500)

Table 3: The test statistics from Diebold and Mariano (1995) test for the equality of
forecast accuracy are presented in this table. The test static is calculated for each Trend-
ARX model against the benchmark ARX model to compare if the forecast accuracy from
Trend-ARX models is same or different than ARX model. Test statistic value greater than
z=1.96 means we can reject the null hypothesis and conclude the Trend-ARX models to
provide better predictive accuracy. The forecasts better than the benchmark ARX are in
bold and the best forecast for each trend length, considering all trend estimation methods,
are underlined. Note: The approzimations used in trend estimation for each of the methods

are provided in ()
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