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Abstract. Digital Twin is an emerging technology at the forefront of
Industry 4.0, with the ultimate goal of combining the physical space and
the virtual space. To date, the Digital Twin concept has been applied
in many engineering fields, providing useful insights in the areas of engi-
neering design, manufacturing, automation, and construction industry.
While the nexus of various technologies opens up new opportunities with
Digital Twin, the technology requires a framework to integrate the dif-
ferent technologies, such as the Building Information Model used in the
Building and Construction industry. In this work, an Information Fusion
framework is proposed to seamlessly fuse heterogeneous components in a
Digital Twin framework from the variety of technologies involved. This
study aims to augment Digital Twin in buildings with the use of AI and
3D reconstruction empowered by unmanned aviation vehicles. We pro-
posed a drone-based Digital Twin augmentation framework with reusable
and customisable components. A proof of concept is also developed, and
extensive evaluation is conducted for 3D reconstruction and applications
of AI for defect detection.

1 Introduction

A Digital Twin is the virtual replication of a physical object. Through mod-
elling and real-time data communication, the Digital Twin simulates the actual
properties and behaviours of its physical counterpart in the physical space, thus,
enable learning, reasoning, and dynamically re-calibrating for improved decision-
making [19, 21]. The tight and seamless integration between the physical and
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virtual space in the Digital Twin paradigm makes it one of the most promising
enabling technologies for the realization of smart manufacturing and Industry
4.0 [49]

To date, Digital Twin applications have seen success in various industries
and domains, including product design, production, prognostic and health man-
agement, building and construction, and many others. Recent advances in sen-
sor technologies, big data, cloud computing, social networks, Internet of Things
(IoT), Computer-Aided-Design (CAD), 3D modelling, and Artificial Intelligence
(AI) allow a massive amount of data to be collected while enabling real-time
communication for the realization of the Digital Twin paradigm throughout the
complete product’s life-cycle [18,40,47,49].

In the Building and Construction industry context, physical objects are build-
ings and structural components. To generate and capture their virtual coun-
terparts in the virtual space, Building Information Model (BIM) is a common
standard that encompasses a large amount of detail on building dimensions and
critical components. These components include façade features, dimensions of
staircases, slopes of walls, height of railings, etc. The use of BIM provides high-
quality preconstruction project visualisation, improved scheduling, and better
coordination and issue management. The Digital Twin paradigm in this indus-
try utilises BIM as one of the core technologies to facilitate information man-
agement, information sharing, and collaboration among stakeholders in different
domains over the building life cycle [1, 10].

In many cases, it is often desirable to obtain 3D models of the physical build-
ings and landscapes that can be used for enrichment, visualization, and advanced
analytics of Digital Twin models [13, 23, 36, 46]. Additionally, other sources of
information can be useful for the Digital Twin models, such as contextual infor-
mation and geographical information systems (GIS). However, there are some
limitations with the current BIM technologies that hinder the capability to in-
tegrate multiple sources of data. For instance, BIM files are restricted in size,
making it difficult to add large artefacts. The BIM format is neither initially de-
signed for the integration of heterogeneous data sources nor capable of capturing
real-time updates.

The process to obtain 3D models of the physical buildings and landscapes is
also labour-intensive. When 3D reconstruction is done manually using a hand-
held device, the ability to capture an extensive model of the building is often
limited due to physical constraints such as the size of tunnels or large construc-
tions. These issues call for a new and more scalable approach in 3D reconstruction
using unmanned aerial vehicles (UAV), optimal scanning methods, and advanced
onboard processing algorithms [8, 35,45,46].

On the other hand, real-time applications of AI and image analysis of BIM
is also underdeveloped. One application of imaging in building maintenance for
Digital Twin is defect detection, in which AI algorithms are employed to rec-
ognize defect regions such as cracks automatically. To develop such AI models,
appropriate training data is required which, however, is often found in 2D format,
prompting suitable methods on real-time transformation for AI applicability.
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Motivated by the current limitations of building and construction technolo-
gies, we aim to innovate BIM for Digital Twin in two broad areas: 1) Develop
an Information Fusion framework that extends BIM with a metadata layer to
support heterogeneous data integration; 2) Enhance real-time synchronization
between the physical space and virtual space in BIM through improved 3D re-
construction methods and real-time scanning.

To this aim, our approach is four-fold: First, we developed a proof of concept
Information Fusion framework to facilitate the integration of multiple sources
of information to produce useful data representations for BIM applications. It
utilises a distributed and fault-tolerant database to store geometry objects (e.g.,
buildings and structural components) and meta-information (e.g., defects and
tagged items) to provide maximal compatibility and highest/raw details; Second,
we built a drone-based 3D reconstruction solution for scalable data collection and
evaluate major scanning technologies including Light Detection and Ranging
(LiDAR) sensor, stereovision, and single-lens camera; Third, we tested our real-
time scanning capabilities by performing real-time 2D to 3D mapping from our
camera feed at five frames per second. The mapping computation is done on
the drone using an onboard miniature computer; Finally, we presented a defect
detection use-case as an application of AI in real-time image scanning.

The contributions of our work are as follows. We provided a comprehensive
review of Digital Twin technologies in conjunction with AI. We demonstrated an
end-to-end proof of concept of the use of BIM for Digital Twin and information
fusion. We conducted extensive experiments for the evaluation of 3D reconstruc-
tion techniques. Finally, we illustrated the feasibility of AI application in Digital
Twin through defect detection with deep learning use-case. Our work provides
some insights and theoretical and empirical implications for researchers as well
as practitioners in this emerging field.

2 Background

2.1 Digital Twin Technologies and Applications

The concept and model of the Digital Twin were publicly introduced in 2002 by
Grieves in his presentation as the conceptual model underlying Product Lifecy-
cle Management [20]. Although the term was not coined at that time, all the
Digital Twin’s basic elements were described: physical space, virtual space, and
the information flow between them. The key enablers of Digital Twin: sensor
technologies, cloud computing, Big Data, IoT, and AI have since then experi-
enced growth at an unprecedented rate. Recently, the concept of Digital Twin
was formally defined by NASA as a multiphysics, multiscale, probabilistic, ultra-
fidelity simulation that enables real-time replication of the state of the physical
object in cyberspace based on historical and real-time sensor data.

Tao et al. extended the model and proposed that Digital Twin modelling
should involve: physical modelling, virtual modelling, connection modelling, data
modelling, and service modelling [49]. From a more structural and technological
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viewpoint, Digital Twin consists of sensor and measurement technologies, IoT,
Big Data and AI [25,29].

The applications of Digital Twins span various domains from manufacturing,
aerospace to cyber-physical systems, architecture, construction, and engineering.

Digital Twin in Manufacturing Applications of Digital Twin are promi-
nent in smart manufacturing. Due to ever-increasing product requirements and
rapidly changing markets, there has been a growing interest in shifting prob-
lem identification and solving to early stages of product development lifecycle
(also known as “front-loading”) [51]. The Digital Twin paradigm fits perfectly
because virtual replications of physical products allow early feedback, design
changes, quality, and functional testing without entering the production phase.

Tao et al. suggested that a Digital Twin-driven product design process can
be divided into conceptual design, detailed design, and virtual verification [48].
Throughout the process, various kinds of data such as customer satisfaction,
product sales, 3D model, product functions, and configuration, sensor updates
can be integrated to mirror the life of the physical product to its corresponding
digital twin. With real-time closed-loop feedback between the physical and the
virtual spaces, designers are able to make quick decisions on product design
adjustment, quality control and improve the design efficiency by avoiding tedious
verification and testing.

During production, simulation of production systems, the convergence of the
physical and virtual manufacturing world leads to smart operations in the manu-
facturing process, including smart interconnection, smart interaction, smart con-
trol, and management. For example, Tao et al. proposed a shop-floor paradigm
consists of four components physical shop-floor, virtual shop-floor, shop-floor
service system driven by shop-floor digital twin data, enabled by IoT, big data,
and artificial intelligence [50]. Modeling of machinery, manufacturing steps, and
equipment also help in precise process simulation, control, and analysis, even-
tually leading to improvement of the production process [6]. A similar effort is
observed in [36] to evaluate different methods in automated 3D reconstruction in
SME factories. The authors explored the use of low-cost stereo vision techniques
with Simultaneous Localization and Mapping (SLAM) to generate Digital Twin
models of a physical factory floor and machinery.

Digital Twin in Building and Construction Modelling physical buildings
and landscapes with Digital Twin brought valuable opportunities to the archi-
tecture, construction, and engineering industry, such as improvements in urban
planning, city analytics, environmental analysis, building maintenance, defect
detection, and collaboration between stakeholders. An important concept in this
domain is BIM [26], i.e. a process involving the generation and management of
digital representations of physical and functional characteristics of places.

Yan et al. proposed a method for the integration of 3D objects and terrain in
BIMs supporting the Digital Twin, which takes the accurate representation of
terrain and buildings into consideration [53]. The authors discussed topological
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issues that can occur when integrating 3D objects with terrain. The key to
solving this issue lies in obtaining the correct Terrain Intersection Curve (TIC)
and amending 3D objects and the terrain properly based on it. Models developed
by such methods are used for urban planning, city analytics, or environmental
analysis.

For preventive maintenance of prestressed concrete bridges, Shim et al. pro-
posed a new generation of the bridge maintenance system by using the Digital
Twin concept for reliable decision-making [45]. 3D models of bridges were built
to utilise information from the entire lifecycle of a project by continuously ex-
changing and updating data from stakeholders

Digital Twin also finds application in recording and managing cultural her-
itage sites. The work by [12] integrated a 3D model into a 3D GIS and bridge the
gap between parametric CAD modeling and 3D GIS. The final model benefits
from both systems to help document and analyze cultural heritage sites.

From most construction projects, the presence of BIM is prominent due to its
wide range of benefits. BIM has received considerable attention from researchers
with works aiming to improve or extend its various aspects for e.g social aspect
[1], elasticity and scalability [10], sustainability [28], safety [55] and many others.

Digital Twin in Smart Nations Gartner’s Top 10 Strategic Technology Re-
port for 2017 predicted that Digital Twin is one of the top ten trending strategic
technologies [39]. Digital Twin since 2012 has entered rapid growth stage consid-
ering the current momentum with applications in several industries and across
variety of domains.

NASA and U.S Air Force adopted Digital Twin to improve production of
future generations of vehicles to become lighter while being subjected to high
loads and more extreme service conditions. The paradigm shift allowed the or-
ganisation to incorporate vehicle health management system, historical data and
fleet data to mirror the life of its flying twin, thus, enabled unprecedented levels
of safety and reliability [19].

The world’s 11th busiest airport, the second largest in the Netherlands, Am-
sterdam Airport Schiphol built a digital asset twin of the airport based on BIM.
Known as the Common Data Environment (CDE), Schiphol’s Digital Twin solu-
tion integrates data from many sources: BIM data; GIS data; and data collected
in real-time on project changes and incidents as well as financial information,
documents, and project portfolios. The information fusion capability of Digital
Twin presents opportunities to run simulations on potential operational failures
throughout the entire complex [3].

Port of Rotterdam built a Digital Twin of the port and used IoT and artificial
intelligence to collect and analyse data to improve operations. Digital Twin helps
to better predict accurately what the best time is to moor, depart and how much
cargo needs to be unloaded. Furthermore, real-time access to information enables
better prediction of visibility and water conditions [7].
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2.2 Artificial Intelligence in Digital Twin

The rapid adoption of enabling technologies such as IoT, cloud computing, and
big data opens up endless opportunities for AI applications in Digital Twin.
As a multidisciplinary field, AI encompasses Machine Learning, Data Mining,
Computer Vision, Natural Language Processing, Robotics, among many others.
AI emerges as a promising core service in Digital Twin to assist humans in
decision making by finding patterns, insights in big data, generation of realistic
virtual models through advanced computer vision, natural language processing,
robotics, etc.

Li et al. proposed a method that uses a concept of dynamic Bayesian net-
works for Digital Twin to build a health monitoring model for the diagnosis and
prognosis of each individual aircraft [31]. For example, in diagnosis by track-
ing time-dependent variables, the method could calibrate the time-independent
variables; in prognosis, the method helps predict crack growth in the physical
subject using particle filtering as the Bayesian inference algorithm.

In production, [2] introduced a Digital Twin-driven approach for developing
Machine Learning models. The models are trained for vision-based recognition of
parts’ orientation using the simulation of Digital Twin models, which can help
adaptively control the production process. Additionally, the authors also pro-
posed a method to synthesize training datasets and automatic labelling via the
simulation tools chain, thus reducing users’ involvement during model training.

Chao et al. [14] described an insightful vision of Digital Twin to enable the
convergence of AI and Smart City for disaster response and emergency man-
agement. In this vision, the authors listed four components in Disaster City
Digital Twin, i.e. 1) multi-data sensing for data collection, 2) data integration
and analytics, 3) multi-actor game-theoretic decision making, 4) dynamic net-
work analysis, and elaborated the functions that AI can improve within each
component.

Another interesting vision of Digital Twin in Model-Based Systems Engineer-
ing is described in [33] in which the realization of Digital Twin is progressively
divided into four levels 1) Pre-Digital Twin, 2) Digital Twin, 3) Adaptive Digital
Twin and 4) Intelligent Digital Twin. In the last two levels: Adaptive Digital
Twin and Intelligent Digital Twin, the authors emphasized the tight integration
of AI in engineering processes; for example, in level 3, an adaptive user interface
can be offered by using supervised machine learning to learn the preferences
and priorities of human operators in different contexts, therefore, support real-
time planning and decision making during operators, maintenance and support;
in level 4, additionally unsupervised machine learning can help discern objects,
and patterns in the operational environment and reinforcement learning can
learn from continuous data stream from the environment.

Power networks are the backbone of power distribution, playing a central
economical and societal role by supplying reliable power to industry, services,
and consumers. To improve the efficiency of power networks, researchers in the
Energy industry have also been putting initial effort into integrating Digital
Twin, and AI for informed decision-making in operation, support, and mainte-
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nance [34]. In particular, a virtual replication of the power network is developed.
Various time-series measurements from the physical power networks, such as pro-
duction values, loads, line thermal limits, power flows, etc., are streamed back
to the virtual models. Based on the digital models, researchers exploit machine
learning algorithms such as reinforcement learning to predict future states of the
networks, as well as suggest possible optimal control actions.

2.3 3D Reconstruction

Various 3D scanning technologies are emerging for a range of applications, from
outdoor surveying, 3D mapping of cities for digital twins, inspection to au-
tonomous driving. Most of these applications and technologies rely on LiDAR
sensors [32, 38, 41, 52]. However, most LiDAR sensors tend to be expensive and
heavy, making them less suitable for developing a drone-based surveying so-
lution. Other 3D scanning solutions use a single lens [42, 46] or stereo vision
cameras [9, 13,23,36] to compute a 3D model of the environment.

Photogrammetry The most common method for 3D reconstruction of outdoor
structures is photogrammetry. The 3D representation of complex structures such
as buildings, bridges, and even 3D maps of a whole neighbourhood can be gen-
erated using a single-lens camera based on the concept of Structure from Motion
(SfM) [43].

The steps to create a point cloud or textured mesh is to capture multiple pho-
tographs in sequence or randomising order with at least 70% overlapping and
at angle part of around 5-10 degrees [42]. This will ensure that the amount of
overlap is sufficient for matching photos to have common feature points. Match-
ing the features in different photos allows the SfM algorithm to generate a 3D
point cloud [46]. The generated point cloud can be meshed to create a smooth
or textured result of the 3D model.

Stereovision Stereovision is a 3D scanning method suitable for smaller or in-
door infrastructure projects where higher accuracy is required. The concept uses
stereovision cameras (infrared or RGB) to estimate the depth in the field of view
of the camera. Stereo Vision uses the disparity between images from multiple
cameras to extract depth information [37]. Similar to the binocular vision in
humans, when both eyes focus on an object, their optical axes will converge to
that point at an angle. The displacement parallel to the eye base (the distance
between both eyes) creates a disparity between both images. From the extent of
disparity, it is possible to extract the distance of an object and pixel in an image
through triangulation [17].

To generate the 3D model from the stereo or depth images, RGB-D cameras
require an additional processor to run a process called Simultaneous Localisation
and Mapping (SLAM) [5]. As the name suggests, the SLAM concept is able to
build a 3D map of the environment in real-time and at the same time estimate
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the location and orientation of the camera. SLAM works by scanning the im-
ages for key features which can be extracted with Speeded Up Robust Features
(SURF) [4] and matched with RAndom SAmple Consensus (RASAC) algorithm
between multiple images [16]. These two algorithms work simultaneously, SURF
compares two images and extracts matching key points. These key points are
then combined with the depth data to allow RANSAC algorithm to determine
the 3D transformations between the frames. The transformed key points are
optimised into a graph representation resulting in a 3D representation of the
environment.

LiDAR Scanning Laser measurements provide another means to obtain depth
information of the environment using the concept of time of flight of a light
signal reflected at the surrounding. Hence, LiDAR also uses an active approach
to obtain depth information similar to RGB-D technology. Still, LiDAR sensors
have a much larger range of 100 meters with accuracy in the millimetre range.
In recent years, LiDAR sensors have received a lot of attention, mostly due to
their extensive use in autonomous driving technologies. This resulted in many
available LiDAR sensors, which are affordable and light enough to be installed
on drones for aerial scanning of infrastructure projects.

Similar to RGB-D sensors, most LiDAR-based 3D scanning techniques also
use a SLAM approach to convert the instantaneous laser-point measurements to
2D or 3D point-cloud representations. GMapping is a common SLAM technique
introduced for LiDAR-based mapping, reducing the computation time for the
SLAM algorithms [22]. HectorSLAM is the SLAM algorithm used here for the
in-house development of a 2D mapping evaluation [27]. It was first developed for
Urban Search and Rescue (USAR) scenarios and is suitable for fast learning of oc-
cupancy grid maps with low computational requirements. HectorSLAM presents
a high update rate simultaneously on a 2D map for lower power platforms and
the results yielded were a sufficiently accurate mapping. A more recent SLAM
algorithm by Google is called Cartographer [24]. In a comparison study [15],
GMapping produced an inaccurate mapping while both the HectorSLAM and
Cartographer produced accurate and similar maps.

Many LiDAR-based 3D SLAM frameworks have been proposed specifically
for 3D reconstruction and form the foundation for most commercial scanning
technologies available. Among the many LiDAR-based 3D SLAM methods,
LOAM is a widely used real-time LiDAR odometry estimation and mapping
framework that uses a LiDAR sensor and optionally an inertial measurement
unit (IMU) [54]. This method achieves real-time performance by separating the
SLAM problem into odometry estimation algorithm and mapping optimisation
algorithm. The odometry estimation algorithm runs at high frequency with
low fidelity, while the mapping optimization algorithm runs at an order of
magnitude lower frequency with high accuracy for scan-matching. Since its
publication, LOAM has remained at the top rank in the odometry category
of various benchmarks. LOAM has since then been commercialized, and its
framework is no longer available in the public domain.
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The current state-of-the-art 3D SLAM method for LiDAR odometry and
mapping is LIO-SAM [44]. It utilizes factor graphs to incorporate multiple mea-
surement factors for odometry estimation and global map optimization. The
framework incorporates an IMU to improve the pose estimation and incorporate
GPS as an option for additional key factors.

3 Solution Design

The backbone of our solution is an Information Fusion module to extend beyond
the current limitations of BIM. The Information Fusion module has an extensive
set of APIs, scalable storage, advanced search, and indexing capabilities to fuse
multiple data streams, capture different types of BIM artefacts, AI models, and
defects while supporting online communication from our drones and management
site.

For 3D reconstruction, we present our drone-based setup. The drone has a
stereovision camera attached as a cost-effective solution. The main computing
unit is a miniature onboard computer responsible for processing the output from
the camera feed via USB, and streaming it back to the Information Fusion
module in a real-time manner.

To test our defect detection use-case as an application of AI in real-time
image scanning, we deployed a deep learning model on the on-board computer.
The defects detected from the camera feeds are sent back to the Information
Fusion module to fuse with the 3D models and other BIM-related information.

The overall architecture is illustrated in Fig. 1. We also described each com-
ponent in detail in the following sections.

On Site Information Fusion Management Site

Repository

BIM AI Defects
Droned-based 3D reconstruction

Drones Scanners

Real-time Image Scanning

Controllers

3D Models Deep Learning

BIM

Information Fusion

Novel 
EXperience

Data Analytics3D Modelling

Immersive Viz. Geo-Integration
Metadata

Onboard 
Computer AI  Model Neural 

Compute

Fig. 1. Overall Architecture
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3.1 Information Fusion

To be able to capture heterogeneous data sources including structured, unstruc-
tured, images, 3D models, meta-information beyond BIM’s capabilities, The In-
formation Fusion module leverages one of the most efficient and well-established
NoSQL database systems, Apache Cassandra, originally developed by Facebook,
hence, is able to handle a huge amount of data across multiple locations, includ-
ing on-site and off-site. With an extended database schema, the module offers
the ability to store and replicate large BIM files with high data protection and
fault-tolerance while also supporting imaging data, defects, and tagged items.
We also added an extensive set of API to enable real-time communication from
our drone for live streaming of RGB-D images and defect information.

3.2 Drone-based 3D Reconstruction

The stereovision camera used in our drone is an Intel RealSense D435i camera
which is more cost-effective compared to a LiDAR sensor. It is an RGB-D camera
that produces point-clouds in color instead of black and white. The depth data
provides the distance between the camera and the obstacle in its FOV. It has
an integrated Inertial Measurement Unit to predict the orientation of the drone
and provides a horizontal and vertical FOV of 87 degrees by 58 degrees that
allow a 3D map to be generated. Our drone setup is shown in Fig. 2

Fig. 2. Our drone configuration with integration of RPLidar A2 (bottom left) and Intel
RealSense D435i (bottom right).

Flight Controller Each drone requires a flight controller to allow the pilot
to have precise control over the vehicle and its motors. Even in manual flight,
the flight controller translates the throttle command on the radio control to
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individual motor commands to stabilize the drone. Flight controllers use several
inbuilt sensors to control the vehicle response. In this work, we used a Pixhawk
flight controller which allows us to operate the custom drone. The Pixhawk flight
controller also supports many additional sensors and companion computers to
be integrated.

Onboard Computing We used a companion computer attached to our drone
as the main processing unit. In our prototype, a Raspberry Pi4 single-board
computer is added to allow additional sensors and features to be integrated. For
e.g. it enables features such as obstacle avoidance, automated flight path track-
ing, or in this work, 3D scanning of the environment. Raspberry Pi4 is utilized
in this prototype due to its low cost, high specifications, and large supporting
community. The other significant factor for choosing the Raspberry Pi4 is its
compatibility with the additional sensors and the Robotic Operating Software
(ROS) used. The Intel RealSense D435i camera as mentioned in the previous
sections is connected and executed by the Raspberry Pi4 via USB port.

Fig. 3. 3D reconstruction scanning.

Implementation of SLAM Real-Time Appearance Based Mapping
(RTABMap) is an open-source SLAM environment [30] with numerous tools
to generate maps from RGB-D data. RTABMap has evolved to do online
processing, minimal drift odometry, robust localization map exploitation, and
multi-session mapping. The approach is based on the SLAM algorithm intro-
duced before and is illustrated in Figure 3, including the different algorithms
used to extract the features into the point cloud. Using SLAM as the base
to generate point clouds gives the user the flexibility to change parameters or
adjust flight paths during the scanning process.
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3.3 Real-time Image Scanning

One limitation of Raspberry Pi 4 as compared to conventional computers is the
limited processing power. This leads to low frame rates of only 5 frames per
second. To provide more processing power to the Raspberry Pi 4 and allow more
efficient Real-time Image Scanning, we explored the use of USB accelerators to
increase the frame rate. A USB accelerator is a USB stick that contains a Vision
Processing Unit aimed at boosting CPU performance. The USB accelerator used
in this work is an Intel Neural Compute Stick 2 that is compatible with the Intel
Real Sense D435. It also has a toolkit called the OpenVINO toolkit, which
allows the companion computer to recognise the NCS2 and make full use of the
additional CPU boost. After the implementation of the USB accelerator, the
frames rate provided a boost to the CPU of the Raspberry Pi 4 resulting in an
average of 12 fps.

3.4 AI for Defect Detection

To further evaluate our Real-time Image Scanning capability, we trained a deep
learning model for defect detection using convolutional neural networks. We em-
ployed the SDNET 2018, a publicly available dataset, that contains 56,000 im-
ages of cracks and non-cracks [11]. The dataset provides various types of cracks,
ranging from 0.06mm to 25mm, on different types of surfaces. We trained our
classifier engine with multiple backbones, including ResNet18, ResNet50, and
VGG; and then the classifiers’ performance was evaluated against current base-
lines. We utilized the best model to classify 2D images, coming from streaming
data sources. Our drone (in a simulated environment) captures the Red-Green-
Blue (RGB) channels and the depth layer from RGBA images for processing.
The drone position and intrinsic camera can be configured to provide the best 3D
locationing of the defects for visualizing them in the simulation. The AI defect
detection workflow is illustrated in Fig. 4.

RGB
(1280x800x3)

Drone Camera Feed
(5 fps)

Depth Layer
(1280x800x1)

Drone Position
(x,y,z)

SDSNet
(56K images)

Deep Learning CNN Models

Slicing to blocks
of 64x64x3

Defect 
Classification

(c_x,c_y)

Depth Merge
(c_x,c_y,c_z)

3D Locationing
List of Defects
[d_x,d_y,d_z]

Upload to API

Information 
Fusion Module

Fig. 4. AI Defect Detection
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4 Experiments and Results

We conducted experiments to validate our solution and answer the following
questions.

1. How do different scanning technologies perform compared to each other, and
how do they perform compared to manual measurements?

2. How does a scanning technology perform when being used as a handheld
device vs being used in a drone-based solution? And how are both approaches
compared to manual measurements?

3. How do different CNN architectures perform in defect detection?

The detail of the experiments and results are given in the following sections.

4.1 Scanning Performance

We evaluated the performance of three different 3D scanning technologies with
the following specific products.

1. Photogrammetry with Pix4D
2. Stereovision with Dot3D/Navisworks
3. 3D LiDAR with geoSLAM/Navisworks.

Table 1. 3D Scanning Technologies

Actual Stereovision 3D LiDAR Photogrammetry
Area of Interest Dist. M. Rel. %Err M. Rel. %Err M. Rel. %Err

(mm) (mm) (mm) (mm)

1) Ceiling height
Ceiling height (L1) 3185 3201 0.5% 3189 0.1%

2) Height of safety barriers
Balustrade (L2) 1120 1111 -0.8% 1007 -10.1%
Staircase Railing (L2) 1110 1082 -2.6% 1018 -8.3%

3) Profile of stairs
Thread width 1817 1817 0.0% 1845 1.5%
Riser height 148 149 0.7% 157 6.1%

4) Dimensions of windows and doors
Lift door width 1195 1199 0.3% 1204 0.8%
Toilet door width 1135 1139 0.4% 1116 011.1%
Corridor width (L2) 2100 2102 0.1% 1964 -6.5%

5) Gradients of ramp
Ramp length 3800 3845 1.2% 3851 1.3% 3890 2.4%
Ramp height 295 294 -0.3% 297 0.7% 330 11.9%
Ramp height/length 59/760 64/837 -1.5% 30/389 -0.7% 33/389 9.3%
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We manually measured selected areas of interest as well as scan them with
the listed products. For photogrammetry, we only included the results for the
ramp as the technology is deemed unsuitable for indoor scanning. The results
are summarised in Table 1.

The evaluation of the methods showed that stereovision and 3D LiDAR
achieve accuracies sufficient for indoor surveying, with stereovision achieving
more consistent accuracies. Photogrammetry was found to not be suitable for
indoor surveying due to the high inaccuracy of the results.

4.2 Measurement errors

Drone-based Inspection with Stereovision We used the drone-based setup
described in Section 3 to compare with manual measurements as well as when
being used as a handheld device. The results are given in Table 2.

Table 2. Comparison between handheld and drone-based scanning using the stereovi-
sion approach against manual measurements

Measured Handheld Drone-based
Area of Interest Distance Distance Error % Error Distance Error % Error

Room Width 9140 mm 9263 mm 123 mm 1.34% 9260 mm 120 mm 1.31%
Shelf Width 690 mm 688 mm 2 mm 0.29% 691 mm 1 mm 0.14%
Shelf Height 2130 mm 2127 mm 3 mm 0.14% 2127 mm 3 mm 0.14%

Both approaches produce very accurate results with the highest error of 1.3%.
In addition, the flight scan results are slightly improved even since the drone only
can move around in straight directions (up down, left right, front back) for the
scan to be completed. This means that with lesser pitching of the drone the
accuracy of results will be improved. This demonstrates that the drone-based
concept using stereovision is a feasible approach for automated indoor scanning.

Drone-based Inspection with 2D LiDAR Next, we compared handheld
and drone-based scanning using the 2D LiDAR approach against manual mea-
surements. The result is given in Table 3.

Similar to the stereovision approach, the drone-based scan for the 2D LiDAR
also shows better accuracy compared to the handheld scanning. Although the
difference between the handheld and drone-based readings is small, with the
largest being at around 1%, it can be seen that the drone-based scan produces
more consistent results, as the drone is more stable than the handheld method.

Comparison of the generated point-clouds from both scanning technologies,
stereovision, and LiDAR, shows that using a drone to automate the scanning
process has no detrimental effects. In fact, the results demonstrate that drone-
based scanning provides a more accurate method compared to the handheld
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Table 3. Comparison between handheld and drone-based scanning using the 2D Li-
DAR approach against manual measurements

Measured Handheld Drone-based
Area of Interest Distance Distance Error % Error Distance Error % Error

Room Width 9140 mm 9103 mm 37 mm 0.40% 9104 mm 36 mm 0.39%
Shelf Width 690 mm 695 mm 5 mm 0.72% 697 mm 7 mm 1.01%
Door Height 950 mm 945 mm 5 mm 0.53% 949 mm 1 mm 0.11%

approach due to drone stability during flight. Hence, our work demonstrated
that it is possible to use 3D scanning technologies integrated on a drone to
enable automated indoor surveying.

4.3 Defect Detection Performance

Our drone-based setup scans the surrounding environment and uses the AI model
deployed on the on-board computer for inference on the image stream as illus-
trated in Fig. 5.

Fig. 5. Drone-based defect detection

The detection performance from our three trained models is given in the
Table 4.

The ResNet-50 outperformed ResNet-18 by 2% in accuracy; nevertheless,
there is a clear improvement of 9% in the recall of crack detection. The results
showed that the deeper architecture allowed a better way to recognise cracks
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Table 4. Performance Evaluation of CNNs on Crack Detection

Crack No Crack Overall Accuracy
Precision Recall F1-score Precision Recall F1-score

Resnet18 0.86 0.52 0.65 0.92 0.98 0.95 0.91
Resnet50 0.86 0.61 0.72 0.93 0.98 0.96 0.93
VGG16 0.88 0.59 0.71 0.93 0.99 0.96 0.93

in different forms. VGG-16 has achieved comparable performance with ResNet-
50. However, it has a slightly lower performance in terms of F1-score in the
Crack category, hence, Resnet-50 is selected as our AI model of choice for defect
detection

5 Conclusion

In this paper, we presented a drone-based AI and 3D Reconstruction for Dig-
ital Twin augmentation. We illustrated an Information Fusion framework that
extends beyond BIM’s capabilities to enable the integration of heterogeneous
data sources. We developed a proof of concept drone-based 3D reconstruction
and real-time image scanning and provided evaluation and comparison results
from extensive experiments. Finally, we studied the feasibility of AI applica-
tions in real-time image scanning through a defect detection use-case. Our work
shows that with Information Fusion, the applicability of BIM can be greatly
enhanced because the additional data allows additional applications such as 3D
reconstruction to be built on top of BIM. Our empirical experiments also give
suggestions to researchers and practitioners that the use of drones, onboard com-
puting, RGB-D cameras, and neural computing unit are viable options for the
realisation of large-scale, real-time image scanning and AI in Digital Twin.
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30. Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous
localization and mapping library for large-scale and long-term online operation.
Journal of Field Robotics 36(2), 416–446 (2019)

31. Li, C., Mahadevan, S., Ling, Y., Wang, L., Choze, S.: A dynamic bayesian network
approach for digital twin. In: 19th AIAA Non-Deterministic Approaches Confer-
ence. p. 1566 (2017)

32. Liu, X.: Airborne lidar for dem generation: some critical issues. Progress in physical
geography 32(1), 31–49 (2008)

33. Madni, A.M., Madni, C.C., Lucero, S.D.: Leveraging digital twin technology in
model-based systems engineering. Systems 7(1), 7 (2019)

34. Marot, A., Guyon, I., Donnot, B., Dulac-Arnold, G., Panciatici, P., Awad, M.,
O’Sullivan, A., Kelly, A., Hampel-Arias, Z.: L2rpn: Learning to run a power net-
work in a sustainable world neurips2020 challenge design (2020)

35. Mauriello, M.L., Froehlich, J.E.: Towards automated thermal profiling of buildings
at scale using unmanned aerial vehicles and 3d-reconstruction. In: Proceedings
of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct Publication. pp. 119–122 (2014)

36. Minos-Stensrud, M., Haakstad, O.H., Sakseid, O., Westby, B., Alcocer, A.: Towards
automated 3d reconstruction in sme factories and digital twin model generation. In:
2018 18th International Conference on Control, Automation and Systems (ICCAS).
pp. 1777–1781. IEEE (2018)

37. Nair, D.: A guide to stereovision and 3d imaging - tech briefs :: Tech briefs (2012),
http://www.techbriefs.com/component/content/article/14925?start=1

38. Nys, G.A., Billen, R., Poux, F.: Automatic 3d buildings compact reconstruction
from lidar point clouds. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences (XLIII-B2-2020), 473–478 (2020)

39. Panetta, K.: Gartner’s Top 10 Strategic Technology Trends
for 2017 (2016), http://www.gartner.com/smarterwithgartner/

gartners-top-10-technology-trends-2017/
40. Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L., Nee, A.: Enabling

technologies and tools for digital twin. Journal of Manufacturing Systems (2019)
41. Sampath, A., Shan, J.: Segmentation and reconstruction of polyhedral building

roofs from aerial lidar point clouds. IEEE Transactions on geoscience and remote
sensing 48(3), 1554–1567 (2009)

http://www.techbriefs.com/component/content/article/14925?start=1
http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/
http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/


Drone-based AI and 3D Reconstruction for Digital Twin Augmentation 19

42. Santagati, C., Inzerillo, L., Di Paola, F.: Image-based modeling techniques for
architectural heritage 3d digitalization: limits and potentialities. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences 5(w2), 555–560 (2013)

43. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 4104–4113
(2016)

44. Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., Rus, D.: Lio-sam: Tightly-
coupled lidar inertial odometry via smoothing and mapping. arXiv preprint
arXiv:2007.00258 (2020)

45. Shim, C.S., Dang, N.S., Lon, S., Jeon, C.H.: Development of a bridge maintenance
system for prestressed concrete bridges using 3d digital twin model. Structure and
Infrastructure Engineering 15(10), 1319–1332 (2019)

46. Spreitzer, G., Tunnicliffe, J., Friedrich, H.: Large wood (lw) 3d accumulation map-
ping and assessment using structure from motion photogrammetry in the labora-
tory. Journal of Hydrology 581, 124430 (2020)

47. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven
product design, manufacturing and service with big data. The International Journal
of Advanced Manufacturing Technology 94(9), 3563–3576 (2018)

48. Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., Guo, Z., Lu, S.C.Y., Nee, A.:
Digital twin-driven product design framework. International Journal of Production
Research 57(12), 3935–3953 (2019)

49. Tao, F., Zhang, H., Liu, A., Nee, A.Y.: Digital twin in industry: State-of-the-art.
IEEE Transactions on Industrial Informatics 15(4), 2405–2415 (2018)

50. Tao, F., Zhang, M.: Digital twin shop-floor: a new shop-floor paradigm towards
smart manufacturing. Ieee Access 5, 20418–20427 (2017)

51. Thomke, S., Fujimoto, T.: The effect of “front-loading” problem-solving on prod-
uct development performance. Journal of Product Innovation Management: An
International Publication of the Product Development & Management Associa-
tion 17(2), 128–142 (2000)

52. Wu, B., Yu, B., Wu, Q., Yao, S., Zhao, F., Mao, W., Wu, J.: A graph-based
approach for 3d building model reconstruction from airborne lidar point clouds.
Remote Sensing 9(1), 92 (2017)

53. Yan, J., Zlatanova, S., Aleksandrov, M., Diakite, A., Pettit, C.: Integration of 3d
objects and terrain for 3d modelling supporting the digital twin. ISPRS Annals of
Photogrammetry, Remote Sensing & Spatial Information Sciences 4 (2019)

54. Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics:
Science and Systems. vol. 2 (2014)

55. Zhang, S., Teizer, J., Lee, J.K., Eastman, C.M., Venugopal, M.: Building informa-
tion modeling (bim) and safety: Automatic safety checking of construction models
and schedules. Automation in construction 29, 183–195 (2013)

View publication statsView publication stats

https://www.researchgate.net/publication/349646903

	Drone-based AI and 3D Reconstruction for Digital Twin Augmentation



