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1 INTRODUCTION
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We report on the consequences of non-uniform exchange in magnetic systems. The quantum mechanical exchange interaction be-
tween spins is responsible for the phenomenon of magnetic order, and is generally considered to be uniform across bulk magnetic
systems. Partly inspired by the Dzyaloshinskii-Moriya interaction—also known as antisymmetric exchange—we use a linearly varying
exchange interaction along a magnetic strip as a route to spatial inversion symmetry-breaking. We find that, in addition to asym-
metric modes and localization, spatially-varying exchange can be used to design nonreciprocal magnetic signal excitation at frequen-
cies that are tunable. Moreover, our work predicts nonreciprocity to occur across a vast range of frequencies up to hundreds of GHz.
Such spin wave engineering is a key area of ongoing research in the fields of magnonics and spintronics, which are expected to enable
the next generation of wireless communication technology and information processing. Analogous nonreciprocity is expected to occur
in other wave systems with gradient properties.

1 Introduction

Much attention has been paid to the control and manipulation of spin waves in magnetic materials [1].
This is because controlling spin waves is the basis for achieving, for example, multifunctional magnonic
circuits to perform a myriad of tasks and significantly advance the capabilities of computation [2], data
processing, and data storage technologies [3]. In addition to new functionality, spin-wave-based devices
may also have reduced energy requirements [4]. Artificial magnetic materials such as exchange springs
and magnonic crystals have been designed to have spin waves with required properties.
Here, we investigate a magnetic system wherein spatial inversion symmetry is broken by making the ex-
change interaction between spins nonuniform across the system. Monte Carlo simulations have recently
shown that the use of such an exchange gradient can be an effective way to design thermodynamic be-
haviour [5]. Moreover, magnetization [6, 7] and thermal [8] gradients have also been recently used to
modify spin wave dispersion. Beyond magnetic systems, heat gradients have been employed to break
time-reversal symmetry in phonon systems for angular momentum generation [9]. Because of this, the
concepts developed here will apply broadly to waves in other physical systems, such as mechanical, [10]
elastic, [11] phononic [12] and electromagnetic systems, where a similar gradient in physical properties,
such as density or index of refraction, could be used to induce unusual phenomena.
Our idea of using gradient exchange is, in fact, based on a comparison with features found in systems
with Dzyaloshinskii–Moriya interactions (DMI)—or antisymmetric exchange. If one looks, for example,
at a one-dimensional system with the magnetization directed along the z axis and propagation along the
x axis, then the DMI contribution (with symmetry broken in the y direction) to the x component of the
effective field contains a spatial first derivative term such as [13]

Hx
DMI =

D

µ0Ms

∂my

∂x
, (1)
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2 SPIN WAVE MODES

where D is the DMI constant with units of J/m2, Ms is the saturation magnetization, µ0 is the perme-
ability of free space, and m is a unit vector in the direction of the local magnetization. This term ulti-
mately leads to a term in the dispersion relation that scales with wavenumber kx for small wavenumber
(unlike symmetric exchange which contributes a k2

x term) and hence leads to the nonreciprocal propaga-
tion, where ω(+kx) 6= ω(−kx). In a normal ferromagnet, in contrast, such a linear, first derivative term
does not exist. However, if the exchange interaction is nonuniform in the x direction, a similar term ap-
pears in the effective field. For example, the x component of the effective field contains an additional
contribution given by

Hx
new ∼ ∆J

∂mx

∂x
, (2)

where ∆J represents the spatial change in the exchange constant. A nonuniform exchange can be achieved,
for example, by doping [14] or by ion bombardment. We should note that this term does not produce
the chiral groundstates seen in DMI systems but – as we will see – it does lead to spatially nonuniform
modes, nonreciprocity and asymmetric group velocity.
Nonreciprocity is a key feature of spin waves—and waves in other media [15, 16]. This is when the rever-
sal of the direction of propagation leads to different localization of the waves, or even different frequen-
cies [17, 16]. Nonreciprocity is currently the basis of a variety of technological devices, including diodes,
circulators and isolators, that allow unidirectional transmission of signals [18, 19].
While nonreciprocal propagation in magnets is a well-known phenomenon, it is not present in all mag-
netic systems. This can, however, be achieved in many ways, including through engineered dipolar inter-
actions [20]. In the past few years, the interfacial DMI has emerged as a new way to create nonreciprocal
spin waves [13]. In ultrathin ferromagnetic films grown on materials with a strong spin-orbit coupling,
interfacial DMI exists due to inversion-symmetry breaking [21]. This induces a nonreciprocal spin wave
dispersion, [22, 13, 23] and hence exotic effects such as nonreciprocal propagation, [24, 25, 26] energy fo-
cusing [27] and the nonexistence of standing waves [28, 29].
In particular, we explore the following three consequences of gradient exchange on spin waves. Firstly,
we calculate the eigenmodes of the system with nonuniform exchange. These eigenmodes are spatially
asymmetric and cannot be represented by a single k wavevector. In addition, spatial localization of spin
waves is found. Secondly, we investigate the possibility of nonreciprocal excitation of spin waves trav-
elling in opposite directions. An important issue in the development of nonreciprocal devices is the fre-
quency range of operation. For instance, magnetostatic devices based on yttrium iron garnet are limited
to frequencies below 10 GHz for moderate biasing fields, devices based on metallic ferromagnets can op-
erate up to 25 GHz [30], and hexagonal ferrites have an upper limit typically around 50 GHz [31, 32]. In
contrast, the method developed in this work produces nonreciprocal behavior at frequencies extending
into the hundreds of GHz. Finally, we show that spin waves propagating in one direction have a different
group velocity compared to those propagating in the opposite direction.

2 Spin wave modes

Before calculating how signals propagate through a system with nonuniform exchange, we find its spin
wave modes. These can then be used to gain insight into nonreciprocal behavior. We consider a one-
dimensional magnetic strip; a model system of N exchange-coupled spins with a uniform magnetic field
H0 applied in the z direction, as shown in Figure 1(a). The torque equation describing the magnetiza-
tion dynamics of a spin vector mi with unit length at site i is given by

∂mi

∂t
= −|γ|µ0mi ×Heff,i

, (3)

where γ/2π = 29.2 GHz/T is the gyromagnetic ratio, and Heff,i
is the effective field at site i due to

its two neighboring spins and the external applied field. Note that here we have ignored dipolar effects
as the magnet is considered small and because at the high frequencies considered, the excitations are
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2 SPIN WAVE MODES

Figure 1: (a) Schematic of a magnetic strip modelled as a linear chain of exchange-coupled spins indexed by i, each with
unit vector direction mi. A uniform magnetic field H0 is applied along the z direction. The color gradient in the back-
ground represents the linearly-varying exchange from low (left) to high (right). Eigenmodes for N = 4000 spins (a 1 µm
long strip with nonuniform exchange) at eigenfrequencies f equal to (b) 3.0 GHz, (c) 42.5 GHz, and (d) 6.0 THz. In (b),
the different wavelengths at the left and right edge are depicted by λL (≈ 175 nm) and λR (≈ 270 nm), respectively. For
(c), λL ≈ 9 nm and λR ≈ 15 nm, and for (d) λR ≈ 1 nm.

exchange-dominated. Damping is also ignored for now. The effective field is given by

Heff,i
=
Ji,i−1

µ0

mi−1 +
Ji,i+1

µ0

mi+1 +H0ẑ, (4)

where Ji,i±1 denotes the exchange field between a spin at sites i and one at a neighboring site indexed by
i ± 1, in units of Tesla. We consider a 1 µm long strip of iron (N =4000 sites) with the exchange field J
varying linearly from 43.5 T at the left side (i = 1) to 132 T at the right side (i = N − 1) and µ0H0 =
0.1 T. The largest value of J here is based on that of bulk iron 1.

Assuming linear, precessional solutions such that m
x/y
i ∼ e−iωt and mz

i ∼ 1 means that Equation 3 re-
sults in a set of 2N linear, coupled equations. These can be solved numerically to find the resonant fre-
quencies fj (eigenvalues, with j ∈ [1, N ]) and modes ~Aj = {mx

1 ,m
x
2 , · · · ,mx

N} (eigenvectors of length
N) for the N spins. With the absence of dipolar effects, there is a two-fold degeneracy for all the modes.
This process has been applied in the past to study magnets with uniform exchange [34] or with exchange
and anisotropy that changes abruptly at an interface, [35, 36] such as exchange spring [37]. Some rep-
resentative modes are shown in Figure 1 at frequencies (b) 3.0 GHz, (c) 42.5 GHz and (d) 6.0 THz. We

1The largest value of the exchange field used throughout this letter was estimated from the Curie temperature for Fe of TC = 1043 K, as re-
ported by Ref.[33]
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3 NONRECIPROCAL EXCITATION

see that the mode shapes are asymmetric and that at very high frequencies, they can even become con-
fined to the right (high exchange) side of the material. Of particular note for what follows is that the
wavelength of an eigenmode is shorter on the left (λL) versus the right (λR). For instance, at 3 GHz (see
Figure 1(b)) λL ≈ 175 nm while λR ≈ 270 nm. Similarly, at 42.5 GHz (see Figure 1(c)), λL ≈ 9 nm and
λR ≈ 15 nm. Also note that all the eigenmodes are orthonormal, meaning that they can act as a basis
onto which magnetization excitations can be projected in a generalized Fourier decomposition.

3 Nonreciprocal Excitation

The observation of asymmetric modes leads one to believe that nonreciprocal propagation may also be
observed. To test this, we performed Landau-Lifshitz-Gilbert simulations on the atomistic model of N
spins described above. We developed Fortran codes, based on Equation 3 with the addition of a damp-
ing term:

−|γ|µ0α[mi × (mi ×Heff,i
)], (5)

with the Gilbert damping parameter α = 10−4, as that of ultralow-damping materials, such as metallic
FexCo1−x alloys [38]. We also added an oscillatory driving field – spatially localized on one side of the
strip or the other (left or right) – to the effective field in Equation 4 with a driving frequency fd. This
field is denoted h(x, t) = g(x) cos(2πfdt)x̂, where g(x) is taken to be a square driving profile which turns
on at time t = 0.
Numerical integration was performed using a second-order Runge-Kutta scheme, with timesteps of 10−7 ns.
The chain of N spins was driven uniformly along a block of 200 spins (d = 50 nm) on either left or right
side of the magnet, so g(x) is a square step function in both cases, and the resulting dynamics were recorded.
This resembles a typical spin-wave device comprising antennas placed at either ends of a thin magnetic
stripe [39, 40] generating a driving excitation [see Figure 2(a)].
Typical results illustrating the nonreciprocal behavior are shown in Figure 2(b)-(c) and animation of the
full time evolution are given in the Supporting Information. Two snapshots of the magnetization com-
ponent mx as a function of position x are presented after the system is driven for t = 0.7 ns. The mag-
net is driven from the left and the right, as depicted by the white shaded regions on Figure 2(b)-(c). At
the chosen driving frequency fR = 42.5 GHz and for this particular driving block width d, one sees a
strong transmission of signal from the right (c), but not from the left (b). This is precisely the behavior
that is desired for nonreciprocal devices such as isolators and filters. (Interestingly, in panel (b) one sees
a higher amplitude at the leading edge of the propagating excitation near x = 0.7 µm, although the driv-
ing has been applied continuously since t = 0.)
Although the nonreciprocity is clear in this example, and perhaps not surprising given the strong asym-
metry in the system exemplified by the modes shown in Figure 1(c), its origin is not at first apparent.
To explain it – and indeed predict at which frequencies it will occur – we calculate the overlap Oj be-

tween the driving field profile g(x) (given as a discrete vector ~g) and each normalized eigenmode ~Aj,
namely

Oj = ~g · ~Aj =
N∑
i=1

giAj,i, (6)

where i is the site index and the ith component of the driving field profile gi is taken from either the
vector

gleft(x)→ ~gleft = {1, 1, · · · , 1︸ ︷︷ ︸
200 terms

, 0, 0, 0, 0, · · · , 0︸ ︷︷ ︸
N-200 terms

}, (7)

or
gright(x)→ ~gright = {0, 0, 0, 0, · · · , 0︸ ︷︷ ︸

N-200 terms

, 1, 1, · · · , 1︸ ︷︷ ︸
200 terms

}. (8)

Note that the overlap value is also a coefficient in the discrete, generalized Fourier decomposition [41]

of the driving profile given by ~g =
∑N

j=1 Oj
~Aj. Since each eigenmode has a unique frequency fj, one
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3 NONRECIPROCAL EXCITATION

Figure 2: (a) Schematics of a typical system for spin wave generation in a magnetic strip (gray) with a field applied from
an antenna (yellow bar) of width d at either the leftmost end, or the rightmost end of the strip. Propagation of a signal
from the (b) left and (c) right sides of a magnetic strip with varying exchange, at a snapshot in time t = 0.7 ns. The driv-
ing profile g(x) is a square pulse with width d = 50 nm corresponding to 200 spins on either the left or right, the driving
frequency is fR = 42.5 GHz, and the driving field amplitude is 3 mT.
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3 NONRECIPROCAL EXCITATION

Figure 3: Illustration of the mechanism for nonreciprocal excitation in a system with asymmetric eigenmodes.

can plot the overlap value or Fourier coefficient as a function of frequency. A large value of Oj indicates
strong coupling to a particular driving field profile. Driving at the eigen-frequency corresponding to an
eigenmode with strong coupling will then result in efficient signal generation and propagation, while choos-
ing frequencies corresponding to weak coupling results in little excitation in the magnet.
Now the significance of the eigenmode asymmetry becomes apparent: driving with a pulse that is d wide
may couple strongly with an eigenmode when applied to the left, but does not necessarily couple strongly
with that same eigenmode when applied to the right. This is because the eigenmode has a very differ-
ent wavelength – and net moment across a distance d – on the left compared to on the right. If a whole
wavelength λL fits into a distance d on one side, as shown on the left side of Figure 3, then there is zero
net dynamic magnetic moment to couple with the driving field, as depicted by the red arrows. Because
of the spatially varying exchange, on the right side a half-wavelength, λR/2, may fit within the excita-
tion width d meaning the driving field can instead couple efficiently to the magnetization dynamics. While
this is a possible configuration, any number of combinations can yield non-reciprocal generation; so long
as there is a net dynamic magnetic moment on one side, but none on the other.
In Figure 4(a) we plot the generalized Fourier coefficients Oj for right- (green, solid balls) and left- (blue,
open balls) driven systems, versus the eigenfrequencies. The magnetic parameters are all the same as
used in Figure 2, and once again d = 50 nm. One sees that the overlap values oscillate in size. Large
amplitudes mean an efficient excitation at that frequency. In particular, we have marked two frequencies
of interest at fR = 42.5 GHz (used to make Figure 2) and fL = 62.8 GHz. We predict using the argu-
ment just detailed that driving the system with frequency fR should result in efficient excitation on the
right, but not on the left, due to its large overlap with the driving profile ~gright and small overlap with

~gleft, as demonstrated by the size of the Oj values. This is indeed what we found when performing the
numerical LLG experiment, as was discussed in Figure 2(b)-(c).
Similarly, Figure 4(a) explains that there should be a far more efficient excitation at fL = 62.8 GHz
when the driving occurs on the left (blue, open circles) rather than on the right (green, solid circles).
This again is supported through our numerical experiments, as shown in Figure 4(b)-(c). Two snapshots
of the magnetization component mx at time t = 0.7 ns are plotted along the magnetic strip’s length.
The end of the strip has been driven at fL since time t = 0 from the left (b) and from the right (c), over
regions that are 50 nm long (note that the region under d has an oscillating behaviour which is seem-
ingly different from that of the remainder of the spin chain, that is because only those spins are directly
affected by the oscillating field). This time, as predicted by the overlap values Oj, driving from the left
produces a larger propagating excitation. Hence, by changing the frequency one can find intermittent
windows where signals can be excited from the left but not the right, and vice-versa.
For comparison, in Figure 4(d) we show the generalized Fourier coefficient Oj versus the eigenfrequencies
for a system with uniform exchange. The magnetic parameters and frequency range are all the same as
used in Figure 4(a)—including d = 50 nm—except that J = 132 T everywhere. While the overlap values
still oscillate in size, much like those shown in part (a), the behavior of right- or left-driven systems now
do not differ.
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3 NONRECIPROCAL EXCITATION

Figure 4: (a) Generalized Fourier coefficients (overlap values Oj) as a function of mode frequency for right- (green, solid
circles) and left- (blue, open circles) driven systems with varying exchange. The frequencies marked are fR = 42.5 GHz
and fL = 62.8 GHz . The mx component along the strip is shown at a snapshot in time t = 0.7 ns for signal driven from
the (b) left and (c) right. The strip is driven with a square pulse with width d = 50 nm corresponding to 200 spins, at
frequency fL, and the driving field amplitude is 3 mT. (d) Generalized Fourier coefficient as a function of mode frequency
for either right- or left-driven systems with uniform exchange.
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5 IMPLICATIONS ON GROUP VELOCITY

Figure 5: Oj for right- (green, solid circles) and left- (blue, open circles) driven systems with nonuniform exchange at high
frequencies. The parameters used to calculate these are the same as those in Figure 4. Lines mark frequencies fA = 257,
fB = 304, and fC = 353 GHz, where nonreciprocal excitation should take place.

4 Nonreciprociprocity at high frequencies

What is particularly exciting is the fact that the nonreciprocal frequencies can be tuned to occur any-
where across the spin wave Brillouin zone, with frequencies ranging from the low GHz to the THz. As
Figure 2 and 4 showed, nonreciprocity occurs, for example, around 40-60 GHz, and without the need to
apply a large magnetic field. Typically, such frequencies are too high for ferromagnetic materials with
small applied fields. However, such frequencies are important because they lie in a band which is be-
coming important as the low GHz microwave bands become increasingly full [42]. Nonreciprocal driving
is also seen at much higher frequencies, in the hundreds of GHz. In Figure 5 we show the generalized
Fourier coefficients Oj for a system with nonuniform exchange at frequencies between 240 and 400 GHz,
using the same material parameters as so far have been used throughout this work. The vertical lines at
frequencies fA = 257, fB = 304, and fC = 353 GHz indicate regions where maximum nonreciprocity
should be observed, where efficient driving occurs only at the right, left, and right respectively. Notice
that the Oj are plotted on a logarithmic scale so the efficiency of exciting from the right or the left is
predicted to be very different at these points. It is also important to mention that while the highest pos-
sible spin wave frequency is that of the edge of the Brillouin zone using the high exchange value— in our
case approximately 15 THz—in these systems there exists a ‘cut-off’ frequency for spin wave excitation.
This is the frequency above which no spin wave generation can take place from the low exchange edge.
This cut-off should correspond to the frequency at the edge of the Brillouin zone using the low exchange
value, which we estimate to be approximately 5 THz for the exchange values quoted above.
Note that the driving field profile g(x) is assumed uniform across a region of length d in the situations
described above, and is zero elsewhere. Such a step function for the driving field is not realistic in an
experiment. However, the generalized Fourier decomposition into spin wave eigenmodes is completely
general and a more realistic profile g(x) can be inserted into Equation 6 to find the special frequencies
at which a signal will propagate from one end and not the other. The calculation of the coefficients or
overlap values Oj is extremely fast as two N -dimensional vectors are multiplied together. We do note,
however, that the calculation of the eigenmodes Aj can be computationally demanding as N becomes in-
creasingly large. We also point out that this calculation must be done atomistically in order to recover
correct results at high frequencies.

5 Implications on Group Velocity

Having examined how non-uniform exchange leads to nonreciprocal behavior—a phenomena which, as
mentioned in the introduction, is also a distinct feature of DMI systems—we now turn to another anal-
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6 CONCLUSION

ogy between these two systems: the group velocity of spin waves. The group velocity is defined as

~vg =
dω

d~k
. (9)

An intriguing aspect of interfacial DMI is that it can generate asymmetric vg [13]. For instance, recent
experimental work by Wang and co-worker [43] demonstrated that spin waves in ultrathin YIG films
propagating in opposite directions but with the same wavenumber (+k and −k) have different group ve-
locities.
This is a direct consequence of the term linear in k (for small wavenumbers) appearing in the spin wave
dispersion of DMI systems. Our system produces an analagous effect. In the small k, exchange-dominated
limit, one can relate vg to frequency using ω = Dk2 and Equation 9 which gives

vg ≈ 2
√
ωD , (10)

with D being the exchange stiffness [44]. From this, we see that a large D leads to large vg, whereas small
exchange would induce slower wave propagation. In a material with a gradient in the exchange, this means
that spin waves moving left from an excitation point will have a different group velocity than those mov-
ing right from that same point.
In order to test this, we have revised our numerical experiments discussed in relation to Figure 2-4. The
geometry is changed slightly so that the exciting region with width d is now at the center of the chain
of dipoles, as depicted in Figure 6(a). Numerical integration results are shown in Figure 6(b) and 6(c)
at 0.28 ns and 0.36 ns, respectively (see Supporting Information for an animation of the full time evo-
lution). Much like the previous figures, the chain is 4000 spins long (approximatly 1 µm) and is driven
uniformly along a block of 200 spins (d = 50 nm) at its center. At 0.28 ns, one can already see that the
excitation moving rightward is closer to the edge than the wave going leftward, this becomes even more
evident at 0.36 ns when the wave going right has reached the edge and the wave moving left has not.
This is in agreement with our predictions from Equation 10 that high exchange regions (right) will gen-
erate faster propagating waves than lower exchange regions (left). To quantify this, we take the example
shown in Figure 6(c) and calculate the velocity of the excitation propagating in both directions. We find
that v− ≈ 1000 m/s and v+ ≈ 1250 m/s, yielding δv = v+ − v− ≈ 250 m/s. This is somewhat higher
than the reported drift group velocity in YIG system of δvg ≈ 40.8 m/s induced by the DMI interaction
[43].
It is then tempting to speculate that because of the control of the group velocity, a structure with a nonuni-
form exchange could be used to structure spin wave pulses. We must note that although there is an asym-
metric propagation from the center, this is not true “nonreciprocal propagation” as seen in DMI sys-
tems. In DMI systems, there is a different velocity moving left versus right at the same position in space.
In the example just described here and illustrated by Figure 6, this is not the case and it is only because
the left- and right-moving excitations enter different spatial regions with different values of the exchange
that their propagation speeds are different. In the same sense, the quoted velocities above are simple av-
erages over a time span and these will change with the distance travelled, i.e. change in the relative ex-
change gradient.

6 Conclusion

This article details a way to introduce space inversion symmetry-breaking in magnetic systems through
nonuniform exchange interaction. Using material parameters based on iron, we show that the spin wave
modes in such a system are highly asymmetric and can become localized at large frequencies in the low
THz range. Our theoretical approach provides evidence of nonreciprocal excitation of spin waves as well
as predicts at what frequencies this nonreciprocity occurs. Of particular note is the way that driving
fields can be chosen to generate nonreciprocal excitation at desired frequencies ranging from low to high
GHz.

9



6 CONCLUSION

Figure 6: (a) Schematics of a typical system for spin wave generation in a magnetic strip (gray) with a field applied from
an antenna (yellow bar) of width d placed at the centre of the strip. Propagation of a signal from the centre of a magnetic
strip with varying exchange, at a snapshot in times (b) t = 0.28 ns and (c) t = 0.36 ns. The driving profile g(x) is a square
pulse with width d = 50 nm corresponding to 200 spins, the driving frequency is fd = 52.7 GHz, and the driving field
amplitude is 3 mT. At the center, the wavelength of the spin wave is approx. 11.2 nm

Furthermore, the similarities and differences in excitation propagation between nonuniform exchange
systems and systems with DMI are discussed—by examining the group velocity of spin waves we have
found that left and right propagation from a region are markedly different.
In addition, our system can also be used to circumvent multiple problems associated with signal process-
ing in magnetic systems. In these systems, one occasionally needs to transition a magnetic strip from
one ferromagnetic material to another. This can cause significant reflections at a sharp interface. When
instead, our graded exchange material is used the reflections disappear (see a comparison between propa-
gation in our system and in a system with a sharp interface in the Supplemental Material).
These observations have implications on magnonic and signal processing applications where spin wave
propagation must be controlled. Our findings also have consequences in the field of ‘spin caloritronics’
which is concerned with heat propagation across magnetic systems for applications such as unidirectional
spin wave heat conveyers [45].
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Supporting Information is available from the Wiley Online Library or from the author.
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[32] Y.-Y. Song, C. L. Ordóñez-Romero, M. Wu, Appl. Phys. Lett. 2009, 95, 14 142506.

[33] R. Kirby, E. Kisker, F. King, E. Garwin, Solid State Commun. 1985, 56, 5 425 .

[34] T. Moore, R. Camley, K. Livesey, J. Magn. Magn. Mater. 2014, 372 107.

[35] R. Stamps, R. Camley, Phys. Rev. B 1996, 54, 21 15200.

[36] M. Krawczyk, J.-C. Levy, D. Mercier, H. Puszkarski, Phys. Lett. A 2001, 282, 3 186.

[37] K. L. Livesey, D. C. Crew, R. L. Stamps, Phys. Rev. B 2006, 73 184432.

[38] M. A. Schoen, D. Thonig, M. L. Schneider, T. Silva, H. T. Nembach, O. Eriksson, O. Karis, J. M.
Shaw, Nat. Phys. 2016, 12, 9 839.
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