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ABSTRACT 

Synchronization refers to the adjustment of rhythms of two nonidentical oscillators due to interaction. 

In this study, we report for the first time on the ability of computational fluid dynamics (CFD) to 

simulate the synchronization of self-sustained acoustic oscillations in two coupled thermoacoustic 

oscillators that interfere with each other through acoustic radiation. A bifurcation diagram containing 

both asynchronous and synchronous states is first mapped out by changing the end-to-end distance and 

the resonator length difference. It is found that the two thermoacoustic oscillators are analogous to 

mutually coupled Van der Pol oscillators with reactive coupling. Then, the dynamic characteristics of 

beating and periodic oscillations in asynchronous and synchronous states are analysed separately to 

facilitate the comprehension of the synchronization process. This research demonstrates that the CFD 

methodology provides a valuable numerical tool for studying the synchronization of thermally-induced 

acoustic oscillations in thermoacoustic systems. 

Keywords: Synchronization; Thermoacoustic engine; Computational fluid dynamics; Bifurcation 

diagram; Beating; 

1. Introduction 

Thermoacoustic engines (TAEs) are essentially the acoustic equivalents of traditional gas-cycle engines 

[1]. They rely on the thermoacoustic effect to convert low-grade heat such as industrial waste heat, solar 

energy, geothermal energy, etc, into high-amplitude acoustic oscillations using no/few moving 

components and environmentally friendly working fluids [2]. The study of thermoacoustic effect is 

multi-disciplinary since it involves fundamentals of heat transfer, thermodynamics, fluidic mechanics, 

acoustics, and nonlinear dynamics, to name a few [3]. This allows researchers from various 

backgrounds to participate in the thermoacoustic research and study thermoacoustics from different 

aspects [4-6]. 
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Most of the previous research on TAEs focused on the reduction of onset temperature or improvement 

of thermoacoustic power generation for practical use [7-9]. The linear thermoacoustic theory developed 

by Rott [10] and Swift [11] is often used in those studies to predict the stability limit and optimize the 

energy conversion. However, nonlinearity arises as the acoustic pressure amplitude becomes high (e.g., 

greater than 10% of the mean pressure [12]). In this situation, the linear theory is less accurate, and 

nonlinear theoretical or numerical methodologies should be adopted [13]. Common nonlinear effects 

encountered in TAEs include shock waves [14], minor losses [15], mass streaming [16], onset of 

turbulence [17], onset of chaos [18-20], etc. Recently, there is a growing interest in studying the 

nonlinear dynamic behaviour of thermoacoustic devices. For example, Chen [21] investigated the bi-

stable nature of a standing-wave TAE and triggering of thermoacoustic instability via an external 

disturbance. Biwa [22] and Hyodo [23] attempted to introduce oscillation death in coupled TAEs by 

using a needle valve and/or hollow tubes. 

Synchronization is another nonlinear dynamic behaviour reported in TAEs. It refers to the process in 

which the TAE oscillates not at its own natural frequency, but at the frequency of a periodic external 

force or another TAE. Synchronization of a TAE by an external force has been reported by Penelet [24] 

and Sato [25]. In Ref. [24], the TAE exhibited periodic oscillations and was synchronized by a 

loudspeaker. Synchronization regions called Arnold tongues were measured as functions of the 

loudspeaker voltage and frequency. In Ref. [25], synchronization of quasiperiodic oscillations by a 

piston was investigated. Bifurcation diagrams were mapped out by changing the forcing strength and 

frequency. Mutual synchronization of TAEs has been explored by Spoor and Swift [26, 27] who adopted 

a duct to connect the two TAEs and enforced mode locking for vibration cancellation. Inspired by their 

research, Delage [28] investigated the coupling of two chaotic TAEs by a plate with an orifice. It is 

found that the coupled chaotic TAEs experienced on-off intermittency when the complete 

synchronization broke down by decreasing the orifice size.  

Despite being reported in a few studies, synchronization of acoustic oscillations in TAEs received little 

attention. One major reason is that most researchers studied thermoacoustics from the aspects of 

thermodynamics and heat transfer. From a nonlinear dynamic perspective, synchronization offers a 

viable approach to control the behaviour of self-oscillating systems by means of inexpensive 

perturbations [29]. However, research on the synchronization of self-sustained thermoacoustic 

oscillations is still lacking. In this study, we numerically investigated the mutual synchronization of 

thermally-induced acoustic oscillations in coupled TAEs. Computational fluid dynamics (CFD) is 

employed to study the synchronization process. To the best of our knowledge, there has been no CFD 

modelling of synchronization in TAEs in the literature. The CFD method in this study provides a 

powerful tool to investigate synchronization of acoustic oscillations initiated by heat. The rest of this 

paper is organized as follows. Section 2 introduces the coupled TAEs under investigation. Section 3 
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describes the CFD methodology. Section 4 discusses the synchronization phenomenon. Finally, the 

concluding remarks are presented in Section 5. 

2. Model description 

Figure 1 displays the coupled thermoacoustic oscillators under investigation. Two quarter-wavelength 

standing-wave thermoacoustic engines (TAEs) are placed coaxially with their open ends facing each 

other. Each TAE is composed of a hot buffer, a parallel-plate stack sandwiched between a pair of hot 

(red lines) and ambient (blue lines) heat exchangers, and an acoustic resonator. The heat exchangers 

create a temperature gradient across the stack. As the temperature gradient reaches a critical (or onset) 

value, the working fluid inside the TAE oscillates spontaneously due to the thermoacoustic effect. In 

this sense, a TAE can be called a thermoacoustic (TA) oscillator. In Fig. 1, the two TA oscillators (TA 

oscillator 1 and TA oscillator 2) are interfering with each other via acoustic radiation in the space 

between the open ends. 

 

Figure 1. Schematic of the coupled thermoacoustic oscillators. The red and blue lines at the stack ends 

represent the hot and cold heat exchangers.  

In this study, atmospheric air is chosen as the working fluid. The hot buffer and hot heat exchanger have 

a surface temperature of Th = 900 K, while the ambient heat exchanger and resonator have a surface 

temperature of Tc = 300 K. The surface temperature decreases linearly from Th to Tc in the stack. Table 

1 lists the key geometrical parameters of the baseline thermoacoustic oscillator. In the following 

research, the end-to-end distance d and the resonator length LR2 of oscillator 2 will be adjusted, and their 

influence on the dynamic behaviour of the coupled thermoacoustic oscillators will be investigated. 

Table 1. Key geometrical parameters of the baseline thermoacoustic oscillator. 

Parameters Values 

Diameter D 0.013 m 

Hot buffer length LH 0.1 m 

Stack length LS 0.03 m 

Resonator length LR 0.12 m 

Stack plate thickness tS 1×10-3 m 

Gap between stack plates dS 1×10-3 m 

D

1HL

Hot buffer Stack Resonator Hot bufferStackResonator

1SL 1RL d
2RL 2SL 2HL

TA oscillator 1 TA oscillator 2
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3. CFD modelling 

Computational fluid dynamics (CFD) simulations are conducted to study the spontaneous acoustic 

oscillations in the coupled thermoacoustic oscillators.  

3.1 Model configuration 

Figure 2 shows mesh configuration of the 2-D (two-dimensional) computational model established for 

the proposed coupled thermoacoustic oscillators. High-resolution structured quad grids are adopted in 

the meshing process. In the figure, the grids belonging to the TAEs and outfield (whose size is 0.05 

m×0.05 m) are marked in black and blue, respectively. To save computational cost, the pair of heat 

exchangers and the solid stack plates are omitted. Instead, only 6 fluid channels between the stack plates 

are meshed for each TAE. The grids inside one fluid channel and in the vicinity of the open ends are 

shown in the enlarged views. Note that, to capture the thermoacoustic effect accurately, the maximum 

grid size in transverse direction in the stack channels should be no larger than 1×10-4 m, which is the 

order of the magnitude of thermal penetration depth at ambient temperature and natural frequency. 

 

Figure 2. Mesh configuration of the coupled thermoacoustic oscillators. The black grids belong to 

fluid domain of the thermoacoustic oscillators. The blue grids belong to the outfield. 

In the CFD modelling, non-slip boundary conditions are imposed on the wall surfaces. As shown in Fig. 

2, isothermal boundary conditions are applied on the wall surfaces of the hot buffer and resonator. A 

user-defined function (UDF) is adopted to realize the linear temperature distribution along the stack. A 

pressure outlet (p = 0) is imposed on the edges of the outfield. The working fluid (i.e., air) is assumed 

to be a compressible ideal gas. It follows the Navier-Stokes equations and the equation of state, which 

are [30] 
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g

p = R T   (4) 

where the overbars “~” and “−” denote the density-weighted time averaging (Favre averaging) and 

classical time averaging (Reynolds averaging), respectively. p, ρ and T are pressure, density and 

temperature, ui or uj stands for the velocity component in corresponding direction, etot = e + uiui / 2 is 

the total energy with e being the specific internal energy, 
tot

ij  is the total stress tensor, 
tot

jq is the heat 

flux, δij is the Kronecker delta, and Rg is the specific gas constant. 

Equations (1) to (4) are resolved numerically using the commercial CFD package FLUENT 18.1 [31] 

that adopts a pressure-based finite volume method. In the simulations, the PISO (Pressure-Implicit 

Splitting Operators) scheme is used for pressure-velocity coupling, the second order upwind approach 

is employed for spatial discretization, and the second-order implicit algorithm is adopted for temporal 

discretization. The standard k-ε turbulence model, that contains two transport equations for the 

turbulence kinetic energy k and rate of dissipation ε, is adopted to account for the turbulence effects 

[32]. Note that the standard k-ε model has been successfully implemented to simulate thermoacoustic 

oscillations in previous studies [33-35].  

In this study, we follow two steps to obtain spontaneous thermoacoustic oscillations via CFD. First, 

pressure inlets (gauge pressure 1 Pa) at x1 = 0 and x2 = 0 are enabled, and a steady calculation is 

performed. Once convergence is achieved, the pressure inlets are replaced by rigid walls. Then, a 

transient calculation is conducted, and the acoustic pressure p1 at x1 = 0 and p2 at x2 = 0 are monitored. 

3.2 Sensitivity study 

Sensitivity studies are conducted to investigate the dependence of CFD results on the grid and timestep 

sizes. In the grid size independence study, the grid size in the stack region varies while it is fixed at 0.5 

mm for the rest of the fluid domain. It is found that the amplitude of p1 in the transient calculation 

decreases and asymptotes as the maximum grid size decreases. The optimal grid size in the stack region 

is chosen at 0.02 mm as further decreasing the grid size causes negligible (less than 0.1%) changes of 

the pressure amplitude but increases the computational cost significantly. The optimal grid size is 

adopted in the meshing of coupled thermoacoustic oscillators with different d and LR2. In the timestep 

size independence study, the timestep size is decreased from a large value to a small value. Results 

show that the pressure amplitude increases and levels off as the timestep size decreases. It is found that 

10 μs is small enough to accurately capture thermoacoustic effect while minimizing the computational 

cost simultaneously. Therefore, the optimal timestep size is chosen at 10 μs, and is used in the transient 

calculations of acoustic pressure oscillations in the coupled thermoacoustic oscillators meshed above. 
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4. Results and discussion 

In this section, we investigate the dynamic characteristics of coupled thermoacoustic oscillators by 

means of bifurcation diagram, Fast Fourier Transform, wavelet transform, phase space plots, etc. 

4.1 Single TA oscillator 

Prior to the investigation of coupled TA oscillators, the dynamic behaviour of a single TA oscillator is 

explored. When simulating a single TA oscillator, we remove the TA oscillator 2 in Fig. 2 but keep the 

outfield; Th and Tc are maintained at 900 K and 300 K, respectively. Figure 3(a) displays the time history 

of acoustic pressure at x1 = 0 for the baseline TA oscillator (LR = 120 mm). The acoustic pressure 

undergoes exponential growth and nonlinear saturation before reaching the steady state where periodic 

oscillations occur. The frequency f and amplitude pA of the steady-state limit-cycle oscillations can be 

decided by the time difference between two adjacent peaks and the peak value. At LR = 120 mm, f = 

375.9 Hz and pA = 5,104 Pa. Figure 3(b) shows the dependence of pA and f on LR. As LR changes from 

90 mm to 150 mm, f decreases from 425.5 Hz to 335.6 Hz. This is because the acoustic wavelength 

increases as LR increases, thus reducing the natural frequency of thermoacoustic system. Meanwhile, pA 

decreases from 6,002 Pa to 3,581 Pa as LR increases. Two reasons may account for this feature. First, 

the stack is relatively closer to the velocity node (rigid end) as LR increases, resulting in smaller acoustic 

power generation. Secondly, the increase of LR causes larger viscous losses in the acoustic resonator. 

 

Figure 3. Performance of single TA oscillators. (a) Time series of closed-end pressure oscillations of 

the baseline TA oscillator. (b) Dependence of limit-cycle frequency f and amplitude pA on LR. Th = 

900 K and Tc = 300 K. 

4.2 Coupled TA oscillators 

4.2.1 Bifurcation diagram 

The dynamic behaviour of a single TA oscillator changes when coupling with another oscillator. Figure 

4 first gives examples of two different states (asynchronous and synchronous) observed in the CFD 

1/ f

(b)

(a)

Ap
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simulations. Figure 4(a) depicts the time series of closed-end acoustic pressure (p1 of oscillator 1) at d 

= 9 mm, LR1 = 120 mm, LR2 = 105 mm (also point B in Fig. 5). In this case, the state is asynchronous, 

and the steady-state response is beating. Figures 4(b) and 4(c) display the corresponding continuous 

wavelet transforms [36] and the steady-state phase-space trajectories, in which the time delay ζ is chosen 

as 10-3 s [37-39]. Intermittency is clearly visible in the time-frequency image in Fig. 4(b) as a result of 

the beating effect. Accordingly, the phase-space trajectory exhibits a round pie in Fig. 4(c). Figure 4(d) 

depicts the time series of closed-end acoustic pressure (p1 of oscillator 1) at d = 9 mm, LR1 = 120 mm, 

LR2 = 110 mm (also point C in Fig. 5). In this case, the state is synchronous, and the steady-state response 

is periodic oscillations that have a single frequency that is invariant with time (Fig. 4(e)). Accordingly, 

the phase-space trajectory becomes a single loop as seen in Fig. 4(f). Further examination of p2 of 

oscillator 2 (not shown) reveals that both p1 and p2 oscillate at 390.6 Hz which is close to the natural 

frequency (389.1 Hz) of a single oscillator at LR = 110 mm. 

 

Figure 4. Dynamic characteristics of asynchronous and synchronous states. (a)-(c): asynchronous 

state; d = 9 mm, LR1 = 120 mm and LR2 = 105 mm. (d)-(f): synchronous state; d = 9 mm, LR1 = 120 

mm and LR2 = 110 mm. (a) and (d): time histories. (b) and (e): corresponding wavelet transforms. (c) 

and (f): corresponding steady-state phase space portraits. Th = 900 K and Tc = 300 K. 

Figure 5 depicts the two-parameter bifurcation diagram of steady-state responses of the coupled TA 

oscillators. To map out the bifurcation diagram, d changes from 5 mm to 15 mm with an increment of 

1 mm; LR1 is fixed at 120 mm while LR2 changes from 90 mm to 120 mm with an increment of 5 mm. 

As a result, 

 2 1R R RL L L = −   ( 5) 

varies from -30 mm to 30 mm. The computational cost of making Fig. 5 is high: it takes around 8×106 

CPUhs (1 CPUh = 1 CPU×1 hour) to finish all (11×13 = 143) computational tasks. In Fig. 5, region I 

(composed of ×) represents asynchronous states while region II (composed of •) denotes synchronous 
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states. The boundaries (solid lines) distinguishing them correspond to the saddle-node bifurcation [40]. 

We can see from the figure that, the smaller d is, the larger |∆LR| can be used to achieve synchronous 

states.  

It is worth mentioning that the bifurcation diagram in Fig. 5 resembles the 1:1 synchronization tongue 

(Fig. 4.5 in Ref. [29]) for the mutually coupled Van der Pol oscillators. Like many other complex 

systems, the dynamic behaviour of coupled TA oscillators can be qualitatively described by [29] 

 
( ) ( ) ( )

( ) ( ) ( )

2 2

1 1 1 1 1 1 1 2 1 2

2 2
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where X1 and X2 stand for the displacements of the oscillators, λ1 and λ2 are non-linearity parameters, 

ω1 and ω2 are eigenfrequencies, and BR and BD represent the strength of reactive and dissipative 

couplings, respectively. In this study, the coupling between TA oscillators is more reactive than 

dissipative, i.e., BR ?  BD, mainly due to the following three reasons. First, the two TA oscillators 

interfere with each other via acoustic radiation, whose impedance contains an inductive acoustic 

reactance and an acoustic resistance [41]. The velocity antinode at the open ends intensifies the 

reactance component. Secondly, a distinctive feature of dissipative coupling is the existence of 

amplitude death (Fig. 4.1 in Ref. [29]), which is not observed in Fig. 5. Finally, for the dissipative 

coupling, the oscillation frequency at synchronous states is settled in a value in between the natural 

frequencies of two subsystems (Fig. 4.2 in Ref. [29]). However, when the coupling is reactive, the two 

oscillators compete, pull each other and the final frequency at which both subsystems settle at 

synchronous states is larger than their natural frequencies (Fig. 4.7 in Ref. [29]). In this study, the 

situation of reactive coupling is substantiated by the numerical results in Fig. 9(b), which will be 

discussed later in Section 4.2.3. 

 

Figure 5. Two-parameter bifurcation diagram. Region I: asynchronous states. Region II: synchronous 

states. Points A to E are highlighted in shaded circles. Th = 900 K and Tc = 300 K. 
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4.2.2 Asynchronous states 

To interpret the synchronous states in region II properly, the dynamic characteristics of asynchronous 

states in region I are first analysed. 

Take the asynchronous state at point B in Fig. 5 as an example. As shown in Fig. 6(a), since the two 

oscillators are not synchronized, the beating effect persists after t = 0.2 s for both p1 and p2. There are 

amplitude modulations of p1 and p2 with their maximum values denoted by p1A,max and p2A,max, 

respectively. Also denoted in the figure is the time difference 1/fbeat between two adjacent amplitude 

maxima with fbeat representing the beating frequency. Figure 6(b) presents the FFT (Fast Fourier 

Transform) of the time-domain signals. For both p1 and p2, two slightly different frequencies fosc1 and 

fosc2 are observed. The values of fosc1 and fosc2 are close to the natural frequencies of single oscillators in 

Fig. 3. According to linear acoustics, the superposition of two sine waves with close frequencies 

contributes to beats, the frequency of which is the difference between the wave frequencies. This 

conclusion is verified in this study due to the fact that fbeat in Fig. 6(a) equals |fosc1 − fosc2| in Fig. 6(b). 

Figure 6(b) also indicates that the acoustic energy levels of fosc1 and fosc2 are comparable in p1 whereas 

fosc2 dominates in p2. This explains why the envelopes of beating waveforms in Fig. 6(a) are significantly 

different.  

Figure 7 further displays the contours of p1A,max, p2A,max and their difference ∆pA,max = p2A,max − p1A,max in 

region I. In the figure, the arrows point to the descending direction. We can see from the figure that 

when ∆LR [-30, -10], p1A,max increases with increasing d while p2A,max decreases with decreasing ∆LR. 

As a result, ∆pA,max decreases along the upper-left direction. Similarly, when ∆LR  [10, 30], p1A,max 

increases with decreasing ∆LR while p2A,max decreases with decreasing d. As a result, ∆pA,max decreases 

along the down-left direction. It can be also seen in Fig. 7(c) that, ∆pA,max > 0 when ∆LR  [-30, -10], 

but ∆pA,max < 0 when ∆LR [10, 30]. We further examine the time series (not shown) of p1 and p2 at 

point D in Fig. 5. It is found that the waveforms of p1 and p2 at point D are similar to those in Fig. 6(a), 

however, p1A,max is larger. 

 

Figure 6. Dynamic behaviours of p1 and p2 at point B in Fig. 5. (a) Time histories. (b) FFT analyses. 
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Figure 7. Contours of p1A,max, p2A,max and ∆pA,max = p2A,max − p1A,max in region I. The arrows point to the 

descending direction. 

It is also of interest to investigate how p1 and p2 in region I change as |∆LR| becomes smaller (or moves 

towards region II). Figure 8 displays the dynamic behaviours of p1 and p2 at point A in Fig. 5. In Fig. 

8(a), p1A,max and p2A,max are close, and ∆pA,max approaches zero. The time difference 1/fbeat in Fig. 8(a) is 

smaller than that in Fig. 6(a) since a larger |∆LR| leads to a larger fbeat. In Fig. 8(b), components of fosc1 

and fosc2 are observed in both p1 and p2. By comparing Fig. 8(b) with Fig. 6(b), it is found that, from 

point A to point B, the energy level of fosc2 increases but the energy level fosc1 decreases. In particular, 

fosc2 is subordinate at point A but becomes dominant in p1 at point B. This can be viewed as the precursor 

of oscillator 1 being locked to fosc2 in region II when ∆LR < 0 (see Fig. 11). Similar conclusions can be 

obtained by comparing p1 and p2 (not shown) at point D and point E. It is found that, from point E to 

point D, the energy level of fosc1 increases but the energy level fosc2 decreases. fosc1 is always dominant 

in p1, whereas the dominant component of p2 changes from fosc2 at point D to fosc1 at point E, which is a 

precursor of oscillator 2 being locked to fosc1 in region II when ∆LR > 0 (see Fig. 11). 

 

Figure 8. Dynamic behaviours of p1 and p2 at point A in Fig. 5. (a) Time histories. (b) FFT analyses. 
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The dynamic characteristics of the synchronous states in region II are discussed in detail in this section. 

Take the synchronous state at point C in Fig. 5 as an example. Figure 9 shows that in this condition, the 

two TA oscillators are locked to each other in both frequency and phase. In Fig. 9(a), as t increases, p1 

and p2 develop from beating into constant-amplitude periodic oscillations whose amplitudes are denoted 
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by p1A and p2A, respectively. The dependence of oscillation frequencies fosc1 and fosc2 calculated by the 

reciprocal of peak-to-peak time difference on the number of acoustic cycles (denoted as N) is displayed 

in Fig. 9(b). It is found that fosc1 and fosc2 fluctuate along with the beats before locking at the same 

constant value flock at steady state. Note that flock is 390.6 Hz in the figure which is slightly larger than 

the natural frequencies (389.1 Hz and 375.9 Hz) of oscillator 2 and oscillator 1. The increasing trend of 

fosc1 and fosc2 from the beginning to the locked state coincides with the situation of reactively coupled 

Van der Pol oscillators. We further calculate the phase difference ∆ϕ by dividing the time difference of 

pressure peaks between p1 and p2 by the time difference of two adjacent pressure peaks of p1, as shown 

in Fig. 9(c). At t = 0, p1 and p2 are in phase. However, as the beating effect occurs, ∆ϕ fluctuates around 

zero initially, decreases to -220° afterwards, and finally locks at a constant value ∆ϕlock (= -214° or 

identically 146°) at steady state. 

 

Figure 9. Dynamic behaviours of p1 and p2 at point C in Fig. 5. (a) Time histories. (b) Oscillation 

frequencies. (c) Phase difference ∆ϕ. 

The contours of p1A, p2A and their difference ∆pA = p2A − p1A at locked state in region II are displayed in 

Fig. 10. In the figure, the arrows point to the descending direction. In Figs. 10(a) and 10(b), it is found 

that the values of p1A and p2A at the outer edges of regions I are close to p1A,max and p2A,max of regions II 

in Fig. 7. Within region II, both p1A and p2A decrease as |∆LR| increases. Interestingly, it is found that 

when ∆LR is small, pA of locked oscillators is much larger than that of a single uncoupled oscillator. For 

example, at d = 5 mm and ∆LR = 0 mm, p1A = p2A = 8,928 Pa while pA = 5,104 Pa of a single oscillator. 

The increase of pA is primarily attributed to the fact that the radiation load between the open ends is 

driven by oscillators 1 and 2 in a “push and pull” manner [42]. This phenomenon implies that, under 

certain circumstances, mode locking is favourable for improving intensity of thermoacoustic 

(a)

(b)

(c)

osc2f

2p

1p

1Ap

2 Ap

lockf

lock

osc1f



12 

 

oscillations. In Fig. 10(c), within region II, ∆pA decreases linearly as ∆LR increases. Specifically, ∆pA > 

0 when ∆LR < 0, and ∆pA < 0 when ∆LR > 0. This feature agrees with the numerical results of single 

oscillators in Fig. 3: a smaller LR has a larger pA. 

We also find that the value of ∆pA has great impact on flock and ∆ϕlock. As shown in Fig. 11(a), when ∆LR 

< 0, p2A > p1A. In this case, oscillator 2 acts as the leading external force for oscillator 1. Hence, flock ≈ 

fosc2. The smaller ∆LR is, the higher flock will be. Likewise, when ∆LR > 0, p2A < p1A. In this case, oscillator 

1 is the leading external force, and flock ≈ fosc1. Since fosc1 changes little (because LR1 is invariant), flock 

remains the same as ∆LR increases above zero. Figure 11(b) shows the contour of ∆ϕlock in region II. 

∆ϕlock < 180° when ∆LR < 0, ∆ϕlock ≈ 180° when ∆LR = 0, and ∆ϕlock > 180° when ∆LR > 0. This indicates 

anti-phase synchronization of the two coupled TA oscillators. Such anti-phase synchronization 

phenomenon was also observed by Spoor and Swift [27] who utilized a narrow duct to couple two TAEs 

nearly the same in natural frequency. 

 

Figure 10. Contours of p1A, p2A and their difference ∆pA at steady state. The arrows point to the 

descending direction. 

 

Figure 11. Contours of flock and ∆ϕlock in region II. The arrows point to the descending direction. 

5. Conclusions 

This paper numerically investigated the mutual synchronization of two thermoacoustic (TA) oscillators 

that are coupled with each other via acoustic radiation at the open ends. Computational fluid dynamics 

(CFD) simulations were performed to reproduce the mode locking effect that was reported in previous 

experiments but not interpreted in a numerical way. This work also endeavoured to depict a clear picture 
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of the synchronization process by studying the dynamic characteristics of single, coupled asynchronous, 

and coupled synchronous TA oscillators. The key findings of this research are summarized as follows. 

(1) The dynamic behaviour of the coupled TA oscillators is highly affected by d and ∆LR. Two different 

states, asynchronous and synchronous, are identified in the two-parameter bifurcation diagram. The 

steady-state responses of the asynchronous and synchronous states are beating and periodic 

oscillations, respectively. A smaller |∆LR| is required to achieve the synchronous state at a larger d. 

(2) Study on the asynchronous states in region I shows that both p1 of oscillator 1 and p2 oscillator 2 

exhibit beats. The beating effect results from the superposition of acoustic waves from two TA 

oscillators. As |∆LR| moves towards region II, the energy levels of fosc1 and fosc2 in p1 and p2 vary. 

The dominant component changes from fosc1 to fosc2 in p1 as ∆LR (< 0) approaches region II while 

the dominant component changes from fosc2 to fosc1 in p2 as ∆LR (> 0) approaches region II. 

(3) Research on the synchronous states in region II indicates that when two TA oscillators are locked 

to each other, the frequency and phase difference at steady state remain invariant. The locked phase 

difference ∆ϕlock is around 180°, indicating anti-phase synchronization. The value of amplitude 

difference ∆pA has great impact on locked frequency flock. When ∆LR < 0, ∆pA > 0 and p2A > p1A. In 

this case, oscillator 2 is the leading external force, leading to flock ≈ fosc2. When ∆LR > 0, ∆pA < 0 and 

p2A < p1A. In this case, oscillator 1 becomes the leading external force, and flock ≈ fosc1. 

This study shows that the CFD methodology offers an effective approach to study synchronization in 

TAEs. Prospective research will involve the simulation of other nonlinear dynamics phenomena, such 

as amplitude death or quenching, reported in coupled TA oscillators. 
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