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Abstract 

An optimal steering law for sails that exploit both solar and infrared planetary radiation pressure is presented in 

this paper. The optimal steering law maximises the orbit raise over one revolution of the sail around the planet. An 

indirect analytical approach, that uses Pontryagin Minimum Principle, is used to develop specialised steering laws for 

the sunlit and eclipse cases in a planar motion scenario. The law for the sunlit case uses both the solar and infrared 

radiation emitted from the planet, while the law for the eclipse case finds the optimal sail attitude that maximises the 

raise of the orbit using only the planetary radiation. Numerical results show that these laws lead to better performance 

in terms of orbit raising against other sub-optimal and optimal strategies exploiting the solar radiation pressure only. 

A numerical study is also carried out to show the effects of the reflectivity coefficient in the infrared band on the 

orbital motion of the sail. 

Keywords:  Solar Sail; Optimal Control; Pontryagin Minimum Principle; Solar Radiation; Planetary Infrared 

Radiation; Orbital Dynamics 

 

1. Introduction 

 Most of the spacecraft propulsion systems are based on Newton’s law of action-reaction: a reaction mass is 

accelerated in a high-velocity jet and produces thrust. However, since the beginning of space propulsion during the 
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1920s, the father of astronautics Konstantin Tsiolkovsky and his co-worker Fridrickh Tsander wrote about the idea 

that the pressure of sunlight could be used to attain high velocities thanks to ‘tremendous mirrors of very thin sheets’ 

[1]. It was not until the 1950s that this concept was reinvented by Carl Wiley: he highlighted the benefits of using 

solar sails, especially for interplanetary travels [1]. Indeed, space exploration has been highly limited by the reaction 

mass that has to be carried on board.  

Solar sailing is a form of propulsion which is not subject to propellant mass limitations. Thus, the acceleration 

provided by solar sails is only limited by the lifetime of the sail film in the space environment. Indeed, sunlight is 

composed of photons that carry momentum, which can be transferred to the spacecraft through the use of solar sails 

to generate thrust.  

However, due to the small amount of momentum carried by an individual photon, solar sails must have a large 

surface to maximise the number of photons that are reflected [1]. 

For a long time, solar sailing has remained theoretical and lots of different missions have been studied. Indeed, the 

acceleration of the sailcraft can be both reduced and increased by changing the orientation of the solar sail. Moreover, 

because of the unlimited and continuous acceleration provided, it enables a vast range of missions, as presented by 

Gong and Macdonald [2], both planetocentric and interplanetary. Focusing on the former, Macdonald and McInnes 

[3] highlighted that solar sailing could enable, or significantly improve, typical missions such as in non-inertially-

fixed orbits: in the GeoSail mission concept [4], a near-continuous observation of the magnetosphere is made possible 

by a continuous drift of the orbit which maintains the payload alignment within the Earth’s geomagnetic tail. 

Nevertheless, most studies only consider the force due to SRP. However, planets emit radiation and partially reflect 

the one that is coming from the Sun. Indeed, due to the thermodynamic equilibrium with its environment, the planet 

emits black-body radiation [5]. Moreover, the reflection of the radiation coming from the Sun is known as the albedo. 

This radiation varies both with the geological composition of the soil and seasons. Photons both emitted and reflected 

by planets hit the solar sail and can contribute to its acceleration, when the sail is in a planetary orbit. 

A recent study by De Iuliis et al. [6] considered the contribution of both SRP and Planetary Radiation Pressure 

(PRP) to increase the semi-major axis. The work showed that the effect of the PRP on the acceleration of a planetary 

sail can be significant when performing an increase of the semi-major axis with a suboptimal control law. The aim of 

this paper is to extend previous work by searching for optimal laws that maximise the exploitation of both SRP and 

PRP for performing orbit-raising manoeuvres. 



The PRP can be considered to be composed of two parts, the Albedo Radiation Pressure (ARP) and the Black-

Body Radiation Pressure (BBRP). The main difference between these terms is that BBRP is the infrared radiation 

isotropically emitted by the planet, while the ARP is the sun-radiation reflected by the planet and, for this reason it 

depends on the relative geometry between the Sun, the planet and the sail. The aim of this work is to derive an optimal 

steering law to increase the semi-major axis of a solar sail exploiting both SRP and BBRP.. This work shows that the 

inclusion of the BBRP within the sail control law increases the performance of the sail especially when it is close to 

the planet.  

The optimisation of planet-centered solar sails has been addressed in several works. Fieseler [7] proposed a sail 

configuration that allows operation in high-inclination Earth orbits from low inclination, despite the atmospheric drag. 

Macdonald and McInnes [8,9] blended locally-optimal control laws to perform planet-centred transfers and 

stationkeeping. Mengali and Quarta developed optimal laws to use a solar sail to raise low Earth orbit [10] and escape 

[11]. Stolbunov et al. [12] combined the effects of solar radiation pressure and atmospheric drag to determine an 

optimal control law for inclination change. Felicetti et al. [13] proposed raising an Earth orbit using a variable-

geometry pyramid sail. 

In this study, an indirect approach is adopted by using Pontryagin’s Minimum Principle [14, 15], as it provides a 

semi-analytical control law by determining sufficient conditions for optimality. This method has been previously used, 

for example, by Mengali and Quarta [10] to determine an optimal control law for orbit raising from low Earth orbit. 

The same approach is applied in this study but with also the inclusion of the radial force due to the BBRP. This will 

result in a significant change in the optimal steering law of the sail, with an increase of the orbit raise performance.   

This article is organised as follows: Section 2 presents the dynamical model of the sail in a planar case as well as 

the expressions of the acceleration due to both SRP and BBRP. In Section 3, optimal steering laws are derived to 

maximise the semi-major axis of the sail. Two different optimisation regimes are considered, related to different 

regions on the orbit: the sunlit region, where both SRP and BBRP are acting on the sail and the eclipse region, where 

only the BBRP is present. The numerical results in Section IV assess the performance of the optimal steering laws by 

comparison against other classical sub-optimal laws during one revolution, starting from a circular orbit, at different 

altitudes, and for two planets: Earth and Venus. The choice of Venus is due to its intense BBRP, as shown in Ref. [6]. 

Further, parametric studies quantify the sail’s performance against its characteristic acceleration and optical properties 



of the sail, showing that the reflectivity coefficient of both the sunlight and infrared radiation affects the performance 

of the sail. Final considerations and remarks are discussed in the Conclusion.  

2. Solar and Planetary Sail Modelling 

This section aims to describe the dynamics of the sail as well as define the forces exerted by the solar radiation 

pressure and the black-body radiation pressure. 

2.1. Dynamical model 

A flat solar sail orbiting in a circular orbit around a planet in a two-dimensional case is shown in Fig. 1. The x-

axis of the planet-centred reference frame points towards the Sun and the y-axis is normal to x in the ecliptic plane. 

The motion of the sail is subject to three different forcing terms: gravity, SRP and BBRP. The position of the sail is 

determined by the state vector 𝒙 = [𝑟 𝑢 𝑣 𝜃]𝑇 ; the equations of motion are written in a polar form as: 

𝑟̇ = 𝑢 (1) 

𝑢̇ =
𝑣2

𝑟
−
𝜇𝑝

𝑟2
+ 𝑎𝑢,𝑆𝑅𝑃 + 𝑎𝑢,𝐵𝐵𝑅𝑃 (2) 

𝑣̇ = −
𝑢𝑣

𝑟
+ 𝑎𝑣,𝑆𝑅𝑃 + 𝑎𝑣 ,𝐵𝐵𝑅𝑃 (3) 

𝜃̇ =
𝑣

𝑟
 (4) 

where 𝑟 is the distance between the centre of the planet and the sail, 𝑢 and 𝑣 are the radial and transversal velocities 

and 𝜃 is the angular coordinate of the sail along the orbit, measured from a reference direction. 𝑎𝑢 ,𝑆𝑅𝑃 and 𝑎𝑣 ,𝑆𝑅𝑃  are 

the components of the acceleration due to SRP along the radial and the transversal directions and 𝑎𝑢,𝐵𝐵𝑅𝑃  and 𝑎𝑣 ,𝐵𝐵𝑅𝑃 

are those due to BBRP. 

Fig. 1 also shows a sail-centred reference frame, where 𝒖̂𝒑 is the unit vector representing the direction of the 

photons coming from the planet and  𝒖̂𝒕 is the in-plane direction perpendicular to 𝒖̂𝒑. The unit vector  𝒏̂ defines the 

normal of the sail. The unit vector 𝒖̂𝒔 corresponds to the direction of the incident photons from the Sun. It is assumed 

that the solar rays are parallel due to the large distance from the Sun. The attitude of the sail is determined by the angle 

𝛼 which is the angle between the direction of the incident photons from the Sun 𝒖̂𝒔 and the normal of the sail 𝒏̂. It is 

measured clockwise and 𝛼 ∈ [−
𝜋

2
,
𝜋

2
]. Attitude changes of the sail are considered to be instantaneous. 



Two other angles are defined: 𝛼𝑠𝑢𝑛 which is the angle between 𝒖̂𝒑 and 𝒖̂𝒔 while 𝛼𝑁 is the angle between 𝒖̂𝒑 and 

the normal of the sail 𝒏̂. Therefore, the vector components of 𝒏̂ and 𝒖̂𝒔 are defined in the (𝒖̂𝒑, 𝒖̂𝒕) reference frame as 

follows:  

𝒏̂ = [
cos𝛼𝑁
sin 𝛼𝑁

]          𝒖̂𝒔 = [
cos 𝛼𝑠𝑢𝑛
sin 𝛼𝑠𝑢𝑛

] (5) 

 

 

Fig. 1 Sail geometry and reference frames  

 

2.2. Solar Radiation Pressure 

The photon radiation pressure exerts a force on the sail which depends on three main parameters: the solar sail 

performance and both the direction and intensity of the incident photons. Indeed, as defined by McInnes [1], the 

acceleration on an ideal sail exerted along the normal 𝒏̂ by the incident and reflected photons is written as: 

𝒂𝑺𝑹𝑷 =
2𝑃𝑠𝑢𝑛𝜂𝑆𝑅𝑃

𝜎
(𝒖̂𝒔. 𝒏̂)

2𝒏̂ = 𝑎0(𝒖̂𝒔. 𝒏̂)
𝟐𝒏̂ 

(6) 

where 𝑃𝑠𝑢𝑛 is the pressure locally exerted by the photons on the surface of the sail, 𝜂𝑆𝑅𝑃 is the efficiency of the sail 

with respect to solar radiation pressure, 𝜎 = 𝑚/𝐴 is the solar sail loading which represents the sail mass 𝑚 per unit 

area 𝐴 and 𝑎0 =
2𝑃𝑠𝑢𝑛𝜂𝑆𝑅𝑃

𝜎
 is the characteristic acceleration. 

 Eclipses are modelled considering a cylindrical shadow model (no penumbra). Therefore, the eclipse volume is 

represented as a cylinder with a radius equal to the planet and an axis opposite to the sun direction. In this volume, the 

SRP is not acting on the sail. 



 Finally, by substituting the expressions of 𝒖̂𝒔 and 𝒏̂ in Eq. (5) into Eq. (6) and by considering that 𝛼𝑁 = 𝛼𝑠𝑢𝑛 − 𝛼, 

the expression of the acceleration due to the solar radiation pressure in the (𝒖̂𝒑, 𝒖̂𝒕) reference frame is: 

𝒂𝑺𝑹𝑷 = 𝑎0 cos
2 𝛼 [

cos𝛼𝑁
sin𝛼𝑁

] = 𝑎0 cos
2 𝛼 [

cos𝛼𝑠𝑢𝑛cos𝛼 + sin𝛼𝑠𝑢𝑛sin𝛼
sin𝛼𝑠𝑢𝑛cos𝛼 − cos𝛼𝑠𝑢𝑛sin𝛼

] 
(7) 

 

2.3. Black-Body Radiation Pressure 

Planets can be considered as black bodies in equilibrium with their environment. Therefore, they are emitting the 

so-called black body radiation according to the Stefan-Boltzmann law [6]: 

𝐿𝑃,𝐵𝐵𝑅𝑃 = 4𝜋𝑅𝑃
2𝜎𝑇𝑃

4 
(8) 

where 𝐿𝑃 ,𝐵𝐵𝑅𝑃 is the luminosity,  𝜎 = 5.670370 × 10−8 W/(m2K4) is the Stefan-Boltzmann constant, 𝑇𝑃 is the 

planet mean surface temperature and 𝑅𝑃 its radius. Such radiation is assumed to be emitted radially from the planet.  

Moreover, as defined by McInnes [1] and De Iuliis et al. [6], by considering planets as finite angular-sized discs 

with uniform brightness, the BBRP can be defined as: 

𝑃𝐵𝐵𝑅𝑃(𝑟) =
𝐿𝑃,𝐵𝐵𝑅𝑃

3𝑐𝜋𝑅𝑃
2 {1 − [1 − (

𝑅𝑃
𝑟
)
2

]

3
2

} 
(9) 

where 𝐿𝑃,𝐵𝐵𝑅𝑃 is the planetary luminosity and 𝑐 is the speed of light. 

 The sail acceleration due to BBRP can be expressed as: 

𝒂𝑩𝑩𝑹𝑷 = 𝑎𝐵(𝒖̂𝒑 ∙ 𝒏̂)
𝟐
𝒏̂ 

where 𝑎𝐵 =
2𝑃𝐵𝐵𝑅𝑃𝜂𝐵𝐵𝑅𝑃

𝜎
. 

 Finally, by substituting the expressions of 𝒖̂𝒔 and 𝒏̂ in Eq. (5) into Eq. (6) and by considering that 𝛼𝑁 = 𝛼𝑠𝑢𝑛 − 𝛼, 

the full expression for the sail acceleration due to BBRP is: 

𝒂𝑩𝑩𝑹𝑷 = 𝑎𝐵 cos
2 𝛼𝑁 [

cosα𝑁
sin𝛼𝑁

]

= 𝑎𝐵 [
(cos𝛼𝑠𝑢𝑛cos𝛼 + sin𝛼𝑠𝑢𝑛sin𝛼)

3

(cos𝛼𝑠𝑢𝑛cos𝛼 + sin𝛼𝑠𝑢𝑛𝑠𝑖𝑛𝛼)
2(sin𝛼𝑠𝑢𝑛cos𝛼 − cos𝛼𝑠𝑢𝑛sin𝛼)

] (10) 

3. Optimal Steering Law 

The aim of this section is to determine the optimal steering law that maximises the increase of the semi-major axis 

by considering both SRP and BBRP. As a result, an optimal attitude of the sail, defined by the angle 𝛼, can be obtained 

for each position of the sail along its orbit. 



The motion of the sail is studied in order to maximise the semi-major axis 𝑎𝑓 = 𝑎(𝑡𝑓) at the final given time 𝑡𝑓 . 

Therefore, following the Pontryagin’s Minimum Principle [14], this corresponds to minimising the cost function 𝐽 =

−𝑎𝑓 . 

The problem is strictly dependent on the illumination conditions that the sail has along its orbit and two main 

regions can be identified: the sunlit and the eclipse regimes. 

3.1. Dynamical model 

3.1.1. Sunlit regime 

In order to find the optimal steering law that maximises the semi-major axis raise by using both the SRP and 

BBRP, the Hamiltonian of the problem 𝐻 as well as the Lagrange-multipliers 𝜆𝑟 , 𝜆𝑢 , 𝜆𝑣 and 𝜆𝜃 are introduced. The 

Hamiltonian is defined as [14]: 

𝐻 = 𝜆𝑟𝑢 + 𝜆𝑢 (
𝑣2

𝑟
 −
𝜇𝑝

𝑟2
+) + 𝜆𝑣 (−

𝑢𝑣

𝑟
) + 𝜆𝜃

𝑣

𝑟
+ (cos2 𝛼 ((𝐴 + 𝐶)cos𝛼 + (𝐵 + 𝐷)sin𝛼)

+ sin2 𝛼 (𝐸cos𝛼 + 𝐹sin𝛼) 

(11) 

where: 

𝐴 = 𝜆𝑢𝑎0cos𝛼𝑠𝑢𝑛 + 𝜆𝑣𝑎0sin𝛼𝑠𝑢𝑛 , 

𝐵 = 𝜆𝑢𝑎0sin𝛼𝑠𝑢𝑛 − 𝜆𝑣𝑎0cos𝛼𝑠𝑢𝑛 , 

𝐶 = 𝜆𝑢𝑎𝐵 cos
3 𝛼𝑠𝑢𝑛 + 𝜆𝑣𝑎𝐵 cos

2 𝛼𝑠𝑢𝑛 sin𝛼𝑠𝑢𝑛,  

𝐷 = 3𝜆𝑢𝑎𝐵 cos
2 𝛼𝑠𝑢𝑛 sin𝛼𝑠𝑢𝑛 − 𝜆𝑣𝑎𝐵 cos

3 𝛼𝑠𝑢𝑛 + 2𝜆𝑣𝑎𝐵 sin
2 𝛼𝑠𝑢𝑛 cos𝛼𝑠𝑢𝑛 , 

𝐸 = 3𝜆𝑢𝑎𝐵 sin
2 𝛼𝑠𝑢𝑛cos𝛼 + 𝜆𝑣𝑎𝐵 sin

3 𝛼𝑠𝑢𝑛 − 2𝜆𝑣𝑎𝐵 cos
2 𝛼𝑠𝑢𝑛 sin𝛼𝑠𝑢𝑛, 

𝐹 = 𝜆𝑢𝑎𝐵 sin
3 𝛼 − 𝜆𝑣𝑎𝐵 sin

2 𝛼𝑠𝑢𝑛 cos𝛼𝑠𝑢𝑛. 

By applying the Euler-Lagrange theorem [14], the optimal control can be found by solving the following equation 

involving the first-order derivative of the Hamiltonian 𝐻 with respect to the control angle 𝛼: 

𝜕𝐻

𝜕𝛼
= 0 (12) 

 By substituting Eq. (11) into Eq. (12), the following equation is obtained:  

−𝐸tan𝛼 + (−2(𝐵 + 𝐷) + 3𝐹) tan2 𝛼 + (−3(𝐴 + 𝐶) + 2𝐸)tan𝛼 + (𝐵 + 𝐷) = 0 (13) 

Solving this equation gives three different values of the control angle 𝛼, and the Minimum Principle can be numerically 

applied in order to determine which angle minimises the Hamiltonian defined by Eq. (11). 



 Furthermore, as 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 depend on the Lagrange multipliers, the costate equations must be determined. 

Starting from the boundary conditions at the final time, the costate equations are solved backwards in time to obtain 

the initial values which maximise the final semi-major axis. These equations are defined as follows: 

𝝀̇ = −
𝜕𝐻

𝜕𝒙
 (14) 

 Using Eq. (11), one can obtain: 

𝜆𝑟̇ = 𝜆𝑢 (
𝑣2

𝑟2
−
2𝜇𝑝

𝑟3
−
2𝐿𝑃 ,𝐵𝐵𝑅𝑃 𝜂𝐵𝐵𝑅𝑃

𝜎𝑐𝜋𝑟3
cos3(𝛼 + 𝜃) (1 −

𝑅𝑃
2

𝑟2
)

1
2

)

− 𝜆𝑣 (
𝑢𝑣

𝑟2
−
2𝐿𝑃 ,𝐵𝐵𝑅𝑃 𝜂𝐵𝐵𝑅𝑃

𝜎𝑐𝜋𝑟3
(cos2(𝛼 + 𝜃) sin (α + θ ) (1 −

𝑅𝑃
2

𝑟2
)

1
2

) + 𝜆𝜃
𝑣

𝑟2
 

(15) 

𝜆𝑢̇ =
𝜆𝑣𝑣

𝑟
− 𝜆𝑟 (16) 

𝜆𝑣̇ = −
𝜆𝜃 − 𝜆𝑣𝑢 + 2𝜆𝑢𝑣

𝑟
 (17) 

𝜆𝜃̇ = −𝜆𝑣 cos(𝛼 + 𝜃)

(

 (
𝑃𝑠𝑢𝑛
2
(cos(2𝛼) + 1)

−
2𝐿𝑃 ,𝐵𝐵𝑅𝑃 𝜂𝐵𝐵𝑅𝑃

3𝑅𝑃
3𝜎𝑐𝜋

((1 −
𝑅𝑃

2

𝑟2
)

3
2

− 1) (cos2(𝛼 + 𝜃) + 2 sin2(𝛼 + 𝜃))

)

 

− 𝜆𝑢 sin(𝛼 + 𝜃)

(

 (
𝑃𝑠𝑢𝑛
2
(cos(2𝛼 + 𝜃) + 1))

−
2𝐿𝑃 ,𝐵𝐵𝑅𝑃 𝜂𝐵𝐵𝑅𝑃

𝑅𝑃
2𝜎𝑐𝜋

((1 −
𝑅𝑃

2

𝑟2
)

3
2

− 1) cos2(𝛼 + 𝜃)

)

  

(18) 

 

3.1.2. Eclipse regime 

When the sail is in eclipse, only the BBRP acts on the sailcraft. Hence, forces acting on the sail are different from 

the sunlit case and a new steering law must be calculated. The same method as the one developed in Subsection 3.1.1 



has been followed. The Hamiltonian defined in Eq. (11) is modified by setting the coefficients A and B (which 

represent the contribution of SRP) equal to zero: 

𝐻 = 𝜆𝑟𝑢 + 𝜆𝑢 (
𝑣2

𝑟
−
𝜇𝑝

𝑟2
+) + 𝜆𝑣 (−

𝑢𝑣

𝑟
) + 𝜆𝜃

𝑣

𝑟
+ (cos2 𝛼 (𝐶cos𝛼 + 𝐷sin𝛼)

+ sin2 𝛼 (𝐸cos𝛼 + 𝐹sin𝛼) 

(19) 

Similarly, Eq. (13) is modified, and the optimal control angle can be found by applying the Minimum Principle to 

the following equation: 

−𝐸tan𝛼 + (−2𝐷 + 3𝐹) tan2 𝛼 + (−3𝐶 + 2𝐸)tan𝛼 + 𝐷 = 0 (20) 

As the contribution of the SRP on the sail does not depend on 𝑟, 𝑢 and 𝑣, the costate equations linked to these 

variables, Eqs. (15), (16) and (17) respectively, remain unchanged for the eclipse regime. The costate equation linked 

to 𝜃 is determined from Eq. (14) and is written as: 

𝜆𝜃̇ =
2𝐿𝑃 ,𝐵𝐵𝑅𝑃 𝜂𝐵𝐵𝑅𝑃

3𝑅𝑃
2𝜎𝑐𝜋

((1 −
𝑅𝑃

2

𝑟2
)

3
2

− 1)(3𝜆𝑣 cos
3(𝛼 + 𝜃) − 2𝜆𝑣 cos(𝛼 + 𝜃)

+ 3𝜆𝑢 cos
2(𝛼 + 𝜃) sin(𝛼 + 𝜃)) 

(21) 

3.2. Boundary Conditions  

Boundary conditions are needed to complete the two-point boundary value problem. Five initial conditions are 

already known: 𝑟0, 𝑢0, 𝑣0, 𝜃0 and 𝑡0. Moreover, the problem is formulated in such a way that the final time 𝑡𝑓 is known. 

The four remaining boundary conditions associated with 𝑟𝑓 , 𝑢𝑓 , 𝑣𝑓 and 𝜃𝑓 are found using the Euler-Lagrange theorem, 

from the transversality condition [14]: 

−𝜆𝑟𝑓 −

2
𝑟𝑓
2

(

 
√𝑢𝑓

2 + 𝑣𝑓
2

𝜇𝑃
−
2
𝑟𝑓
)

 

2 = 0 

(22) 

−𝜆𝑢𝑓 −

𝑢𝑓

𝜇𝑝√𝑢𝑓
2 + 𝑣𝑓

2

(

 
√𝑢𝑓

2 + 𝑣𝑓
2

𝜇𝑃
−
2
𝑟𝑓
)

 

2 = 0 
(23) 



−𝜆𝑣𝑓 −

𝑣𝑓

𝜇𝑝√𝑢𝑓
2 + 𝑣𝑓

2

(

 
√𝑢𝑓

2 + 𝑣𝑓
2

𝜇𝑃
−
2
𝑟𝑓
)

 

2 = 0 
(24) 

𝜆𝜃𝑓 = 0  (25) 

Finally, the state and costate functions of both the sunlit regime and the eclipse regime provide a complete two-

point boundary value problem (BVP) which can be solved numerically. In this study, the BVP is solved numerically 

using the bvp4c function in MATLAB®. 

4. Numerical Results 

Numerical simulations have been carried out in order to assess the performance of the new steering law, that will 

be called optimal steering law SRP+BBRP in this section. In order to estimate the efficiency of this law, a comparison 

with two other steering laws has been made: 

- optimal steering law SRP only: an optimal steering law that only considers the effect of the SRP to increase 

the final semi-major axis, based on Pontryagin’s principle when the sail is in sunlit conditionsThe same law 

is then used in the eclipse region even though SRP is not considered in the propagation of the trajectory of the 

sail. 

- on-off switching law: as defined by McInnes [1], where the sail is perpendicular to the solar rays for half of 

the orbit and parallel to it for the other half of the orbit. 

It is important to note that all the simulations include both SRP and BBRP in the propagation of the trajectory of 

the sail, regardless of the steering law applied to the system. Table 1 summarises the radiation pressure sources  

considered in the three steering laws. 

Table 1 Summary of the steering laws and radiation pressure sources considered 

 Optimal law Non-optimal law 

 
Optimal steering 

law SRP+BBRP 

Optimal steering 

law SRP only 

On-off switching 

law 

Propagation of the sail in sun light SRP + BBRP SRP + BBRP SRP + BBRP 

Propagation of the sail in eclipse BBRP BBRP BBRP 

Optimisation of the steering law SRP + BBRP SRP No optimisation 

 



The initial conditions applied to Eqs. (1), (2), (3) and (4) are: 𝒙0(𝑡0) = [𝑅𝑃 + ℎ0 0 √
𝜇𝑝

𝑟0
0]
𝑇

, where 𝑅𝑃 is the 

planetary radius and ℎ0 is the initial altitude of the sail. 

The performance of the four different steering laws is evaluated by the percentage increase in semi-major axis 

after one revolution, following the formula: 

Δ𝑎 = 100 (
𝑎𝑓

𝑅𝑃 + ℎ0
− 1) (26) 

where 𝑎𝑓 is final semi-major axis of the orbit. 

 Moreover, the performance of the optimal steering law SRP+BBRP is also evaluated in terms of percentage gain 

in semi-major axis increase compared to the optimal steering law SRP only as: 

Δ𝑔 = 100(
Δ𝑎𝑆𝑅𝑃+𝐵𝐵𝑅𝑃
Δ𝑎𝑆𝑅𝑃 𝑜𝑛𝑙𝑦

− 1) (27) 

 

Analyses have been conducted considering a double-sided reflective coating such that both front side and back 

side of the sail have the same optical properties. An optical efficiencies are set 𝜂𝑆𝑅𝑃 = 𝜂𝐵𝐵𝑅𝑃 = 0.85 for both the solar 

and black-body radiation. These values approximate the behavior of Aluminum, whose reflectivity varies by only 12% 

in the range of wavelengths between 300 nm (sunlight) and 2500 nm (infraread)[16]. A parametric analysis showing 

the performance of the sail with different optical properties will be then shown in Section 4.3. 

Analyses have been performed for Earth and Venus. The main parameters for these two planets are summarised 

in Table 2. 

Table 2 Parameters for the Earth and Venus scenarios 

 𝑃𝑠𝑢𝑛 , N/m² 𝑅𝑃, m 𝑇𝑃 , K 𝐿𝑃 ,𝐵𝐵𝑅𝑃 ,W 𝜇𝑝 , m
3/s2 

Earth 4.56 × 10−6 6371 × 103 279.00 1.756 × 1017 398604.3 × 109 
Venus 8.72 ×  10−6 6070 × 103 735.15 7.668 × 1018 324859 × 109 

Different initial altitudes ℎ0 have been considered for Earth and Venus. Moreover, different values for the solar 

sail loading 𝜎 have been analysed, 𝜎 = 77.5 g/m², 31 g/m², 15.5 g/m², 7.8 g/m2 and 5.2 g/m², which correspond 

to the following characteristic accelerations respectively: 𝑎0 = 0.1 mm/s², 0.25 mm/s², 0.5 mm/s², 1 mm/

s2 and 1.5 mm/s². For reference, the recent NASA mission study Sunjammer† used 𝑎0 = 0.06 𝑚𝑚/𝑠
2, therefore it 

 
† https://www.nasa.gov/mission_pages/tdm/solarsail/index.html  

 

https://www.nasa.gov/mission_pages/tdm/solarsail/index.html


is reasonable to consider a modest development in technology leading to 𝑎0 = 0.1 𝑚𝑚/𝑠
2, and up to 2 𝑚𝑚/𝑠2 for 

far-term solar sails 

4.1. Performance evaluation of optimal steering law 

4.1.1. Earth 

The evaluation of the performance of the optimal steering law SRP+BBRP around the Earth is presented in this 

section. Fig. 2 represents the evolution of the semi-major axis for a sail characterised by 𝜎 = 7.8 𝑔/𝑚2, orbiting 

around the Earth for a starting altitude ℎ0 = 800 𝑘𝑚, for the three steering laws taken into account in this study. The 

area in between the two vertical lines represents the period in which the sail is in eclipse.  

 

Fig. 2 Evolution of the semi-major axis over one revolution for a sail orbiting around the Earth, starting at 

𝒉𝟎 = 𝟖𝟎𝟎 𝐤𝐦, for different control laws 



 

 

Fig. 3 Evolution of the control angle 𝜶 over one revolution for a sail orbiting around the Earth, starting at 

𝒉𝟎 = 𝟖𝟎𝟎 𝐤𝐦, for different control laws 

 

Fig. 4 Trajectory and orientation of the sail around the Earth for different steering laws 



 

 Fig. 2 shows a sensible improvement of the performance of the sail when BBRP is considered. Indeed, the 

comparison between the optimal steering law SRP only (red line) and the optimal steering law SRP+BBRP (blue line) 

shows that a higher final semi-major axis is achieved with the optimal steering law SRP+BBRP. As expected, the 

main difference is observed during the eclipse: the optimal steering law SRP+BBRP succeeds in producing a higher 

increase of altitude by optimising the energy received from the BBRP, while the optimal steering law SRP only, shows 

a lower efficiency in this phase. This leads to a gain in semi-major axis increase of 7.17% compared to the optimal 

steering law SRP only, as shown in Table 3. 

 The evolution of the control angle 𝛼 during one orbit is shown in Fig. 3 and Fig. 4. It is to note that the switch in 

sign for 𝛼 from -90° to +90° in Fig. 3 is only due to the definition of its bound in Sec. 2.1; it does not involve any 

attitude change as shown in Fig. 4 (as the optical properties of the sail are the same on both sides, a flip of 180° is 

irrelevant). As for the behaviour of the semi-major axis mentioned above, the main difference in the evolution of the 

control angle between the optimal steering law SRP only and the optimal steering law SRP+BBRP appears during the 

eclipse. While 𝛼 varies in a smooth and similar way for the optimal steering law SRP only and the optimal steering 

law SRP+BBRP before the sail enters into eclipse, the optimal steering law SRP+BBRP reorients the sail during the 

eclipse, in order to maximise the acceleration due to BBRP. When the sail leaves the eclipse and moves towards the 

Sun, the optimal steering law SRP+BBRP orients the sail in a such way to gain momentum from the BBRP while 

minimising the one obtained by SRP. 

 The same profile of control angle is also obtained with other starting altitudes. Table 2 summarises the obtained 

results for ℎ0 = 800, 1000, 5000 and 30000 km. 

The optimal steering law SRP+BBRP and the optimal steering law SRP only, enable larger increases in semi-major 

axis compared to the sub-optimal law shown in the first column of Table 3. The percentage gain in semi-major axis 

of the optimal steering law SRP+BBRP compared to the optimal steering law SRP only (Δ𝑔) is shown in the last 

column of Table 3. It is worth noting that the effects of the BBRP are greater when the sail is closer to the Earth, while 

starting from the altitude ℎ0 = 5000 km such a gain becomes negligible. 

 



Table 3 Performance of steering laws for the Earth case 

Initial 

altitude, km 

Increase in semi-major axis after one orbit (𝚫𝒂) 
Gain in semi-

major axis 

increase of 

SRP+BBRP 

compared to 

SRP (𝚫𝒈) 

On-off 

switching law 

Optimal 

steering law 

SRP only 

Optimal 

steering law 

SRP+BBRP 

800 3.74 × 10−2% 4.74 × 10−2% 5.08 × 10−2% 7.17% 

1000 4.07 × 10−2% 5.13 × 10−2% 5.47 × 10−2% 6.63% 

5000 1.18 × 10−1% 1.48 × 10−1% 1.50 × 10−1% 1.35% 

30000 1.33% 1.78% 1.78% 0% 

 

4.1.2. Venus 

A similar analysis has been conducted for a sail orbiting around Venus where the BBRP might have comparable 

magnitudes as the SRP in a certain range of altitudes. Indeed, Fig. 5 shows the magnitudes of the ARP, BBRP and 

SRP with respect to different altitudes for the Earth and Venus cases. It is worth noting that ARP remains limited in 

both cases, but BBRP is the dominant radiation for altitudes below 15000 𝑘𝑚 in the Venus case. 

 

   a)                  b) 

Fig. 5 Magnitude of radiation pressures in a) Earth and b) Venus case depending on the altitude 

 

Fig. 6 shows the evolution of the semi-major axis for a sail orbiting around Venus, starting at ℎ0 = 800 𝑘𝑚, for 

the different steering laws. It clearly appears that the optimal steering law SRP+BBRP guarantees better performances 

in terms of the increase of the semi-major axis over one revolution compared to the other two steering laws. Fig. 7 

shows the evolution of the control angle 𝛼 for a sail orbiting around Venus, starting from ℎ0 = 800 km, for the three 



different steering laws. In contrast with the Earth case, during the sunlit regime, the control angle 𝛼 of the optimal 

steering law SRP+BBRP varies in a similar way to the one used during the eclipse regime. Indeed, apart from a 

reorientation of the sail by a few degrees, the attitude of the sail does not change between the sunlit region and the 

eclipse region. 

Table 4 summarises the obtained results for both different altitudes and different steering laws. Despite the 

intensity of BBRP decreases when the sail is farther from the planet, the gain in semi-major axis increase due to BBRP 

is substantial for a large range of starting altitudes and can be up to 853% for ℎ0 = 800 km. 

 

Fig. 6 Evolution of the semi-major axis over one revolution for a sail orbiting around Venus, starting at 𝒉𝟎 =
𝟖𝟎𝟎 𝐤𝐦, for different control laws 

 
 

Fig. 7 Evolution of the control angle 𝜶 over one revolution for a sail orbiting around Venus, starting at 𝒉𝟎 =
𝟖𝟎𝟎 𝐤𝐦, for different control laws. 



 

Table 4 Steering laws performances for the Venus case 

Initial 

altitude, km 

Increase in semi-major axis (𝚫𝒂) 
Gain in semi-

major axis 

increase of 

SRP+BBRP 

compared to 

SRP (𝚫𝒈) 

On-off 

switching law  

Optimal 

steering law 

SRP only 

Optimal 

steering law 

SRP+BBRP 

800 8.29 × 10−2% 1.04 × 10−1% 9.91 × 10−1% 853% 

1000 9.04 × 10−2% 1.12 × 10−1% 1.01% 802% 

5000 2.67 × 10−1% 3.31 × 10−1% 1.19% 261% 

30000 3.16% 4.20% 4.38% 4.29% 

 

4.2. Effect of the solar sail loading 

The effect of varying the sail loading 𝜎 is now investigated. Fig. 8 and Fig. 9 report the percentage gain in semi-major 

axis increase Δ𝑔 per orbit of the optimal steering law SRP+BBRP compared to the optimal steering law SRP only, for 

different solar sail loadings and different starting altitudes ℎ0, in both Earth and Venus orbits. 

 

Fig. 8 Percentage gain in semi-major axis increase for different solar sail loading 𝝈, at different starting 

altitude 𝒉𝟎, in Earth orbit. 

 

Fig. 9 Percentage gain in semi-major axis increase for different solar sail loading 𝝈, at different starting 

altitude 𝒉𝟎, in Venus orbit. 

 



As expected, for both Earth and Venus cases and for all starting altitudes, the smaller the solar sail loading, the larger 

the gain in semi-major axis increase. It is worth noting that, in Earth orbit, for ℎ0 = 30000 𝑘𝑚, the gain in semi-major 

increase is slightly negative. However, the difference in percentage between the two steering laws is very small and 

falls within the uncertainty of the model. Therefore, it can be concluded that the two steering laws (both the optimal 

steering law SRP+BBRP and the optimal steering law SRP only) give the same results in such regions where the main 

contribution is given by SRP. 

4.3. Effect of the reflectivity coefficient 

The reflectivity of each material varies depending on the wavelength of the emitted source. The aim of this 

subsection is to study the effect of the coating on the performance of the sail. Three different materials are studied, 

i.e., aluminium, vaporized deposited gold and white paint S13G-LO. Table 5 summarises the optical properties of 

each material [5]. The second and the third column of the table show the values of the absorbivity in the visible region 

of the spectrum (380𝑛𝑚 to 700𝑛𝑚) , 𝐴𝑆𝑅𝑃, and emissivity in the infrared part of the spectrum (from 10𝜇𝑚 to 1𝑚𝑚 

wavelength), 𝐸𝐵𝐵𝑅𝑃 , that are used to calculate the reflectivity of the sail for the SRP and BBRP, respectively. In 

accordance with the Wien’s law [5], the major energy contributions from the sun and the planet are in the visible and 

infrared parts of the spectrum, respectively. The SRP reflectivity, 𝜂𝑆𝑅𝑃, accounts for the part of the visible spectrum 

that is not absorbed by the material. Consequently, it can be calculated as: 

𝜂𝑆𝑅𝑃 = 1 − 𝐴𝑆𝑅𝑃 (28) 

The BBRP reflectivity, 𝜂𝐵𝐵𝑅𝑃 , can be defined as the part of the infrared radiation that is not absorbed by the 

material. In accordance with Kirchhoff’s law of thermal radiation [17], the absorbivity and emissivity of materials 

have same values at the same part of the spectrum, so that 𝐴𝐵𝐵𝑅𝑃 = 𝐸𝐵𝐵𝑅𝑃  at the infrared wavelength. Therefore, the 

reflectivity of the BBRP can be calculated as follows: 

𝜂𝐵𝐵𝑅𝑃 = 1 − 𝐴𝐵𝐵𝑅𝑃 = 1 − 𝐸𝐵𝐵𝑅𝑃 (29) 

The values obtained from Eqs. (28) and (29) are reported in the last two columns of Table 5 and will be used to 

perform the parametric analyses in this section. 

  



Table 5 Optical properties of materials [5] 

Material 
SRP absorptivity* 

(𝑨𝑺𝑹𝑷) 

BBRP 

emissivity** 

(𝑬𝑩𝑩𝑹𝑷) 

SRP 

reflectivity 

(𝜼𝑺𝑹𝑷) 

BBRP 

reflectivity 

(𝜼𝑩𝑩𝑹𝑷) 

Aluminum 0.15 0.15 0.85 0.85 

Vaporized Deposited Gold 0.3 0.03 0.7 0.97 

White paint S13G-LO 0.25 0.85 0.75 0.15 
* visible spectrum (380𝑛𝑚 to 700𝑛𝑚) 
** infrared spectrum(from 10𝜇𝑚 to 1𝑚𝑚 wavelength) 

Fig. 10, Fig. 11 and Fig. 12 show the evolution of the semi-major axis over one revolution of a solar sail 

characterised by 𝜎 = 7.8 g/m², on Earth and Venus orbits, for ℎ0 = 800 km, ℎ0 = 5000 km and ℎ0 =

30000 km respectively and for the three different materials. 

  

(a)                  (b) 

Fig. 10 Evolution of the semi-major axis for a sail orbiting around Earth (a) and Venus (b) over one 

revolution, depending on the coating of the sail, at 𝒉𝟎 = 𝟖𝟎𝟎 𝐤𝐦. 



  

(a)                 (b) 

Fig. 11 Evolution of the semi-major axis for a sail orbiting around Earth (a) and Venus (b) over one 

revolution, depending on the coating of the sail, at 𝒉𝟎 = 𝟓𝟎𝟎𝟎 𝐤𝐦. 

  
(a)                 (b) 

 

Fig. 12 Evolution of the semi-major axis for a sail orbiting around Earth (a) and Venus (b) over one 

revolution, depending on the coating of the sail, at 𝒉𝟎 = 𝟑𝟎𝟎𝟎𝟎 𝐤𝐦. 

 

In Earth orbit, above ℎ0 = 800 𝑘𝑚, even if the sail allows a greater reflectivity for BBRP than SRP by using Vaporized 

Deposited Gold, the final semi-major axis is smaller than that obtained with White paint S13G-LO which gives a 

greater reflectivity for SRP than for BBRP. This is not the case when the sail is orbiting around Venus. Indeed, for 

ℎ0 = 800 km and ℎ0 = 5000 km, increasing the reflectance of BBRP compared to SRP allows the sail to reach a 

larger final semi-major axis, as shown in Fig. 10 and Fig. 11. However, for higher altitudes, such as ℎ0 = 30000 km 

for the Venus case shown in Fig. 12, the SRP becomes the dominant contribution and therefore the performance of 



the sail will be mostly affected by the values of reflectance of SRP. This confirms that each planet has its own limit 

zone where the contribution of BBRP is dominant compared to solar radiation as shown in Fig. 5. For planets where 

the BBRP is significant, considering a solar sail’s reflectivity greater for BBRP than for SRP still gives better results 

in low orbits. 

4.4. Long Term Orbit Raising  

Analyses have been conducted with a sail orbiting around Earth and Venus for 24 hours, covered with Aluminum 

such that 𝜂𝑆𝑅𝑃 = 𝜂𝐵𝐵𝑅𝑃 = 0.85 and with a solar sail loading 𝜎 = 7.8 g/m². Fig. 13 shows the evolution of the semi-

major axis for a sail orbiting around Earth and Venus for one day, starting at ℎ0 = 800 km. 

  

(a)                  (b) 

Fig. 13 Evolution of the semi-major axis of a sail orbiting around Earth (a) and Venus (b), for 24 hours, at 

starting altitude 𝒉𝟎 = 𝟖𝟎𝟎 𝒌𝒎 

 

 The evolution of the semi-major axis is quasi-linear for a sail orbiting around Venus and leads to an increase of 

the semi-major axis of 918.6 km. Fig. 14 summarises the results obtained in semi-major axis increase for different 

starting altitudes for both Earth and Venus. In Earth orbit, the higher the initial altitude, the larger the semi-major axis 

increase. This is not the case for Venus where the increase in semi-major axis at ℎ0 = 800 km is higher than for ℎ0 =

5000 km but is lower than for ℎ0 = 30000 km. The altitudes ℎ0 = 500 km and ℎ0 = 5000 km belong to the zone 

where BBRP is the dominant force. Moreover, this force is inversely proportional to the distance from the planet. 

Hence, the increase in semi-major axis is decreasing when the attitude is increasing. When SRP becomes the dominant 

contribution, the increase in semi-major axis is increasing with initial altitudes. It is worth to note that due to the 



simulation time set to 24 hours,  the increase in semi-major axis is not continuously increasing with respect to the 

starting altitude. Indeed, depending on the orbit period, the trajectory ends in a favourable or in a less favourable part 

of the revolution. 

  

a)                 b) 

Fig. 14 Semi-major axis increase over one day for Earth (a) and Venus (b) depending on the starting altitude 

 

5. Conclusion 

This work proposed an optimal steering law for orbit raising of sails exploiting both Solar Radiation Pressure 

(SRP) and Black-Body Radiation Pressure (BBRP). As the force induced by the sail varies with its position relative 

to the planet, the steering law is optimised for the sunlit and the eclipse regimes, using an indirect approach. The 

algorithm switches between the two different control laws during the integration of the equations of motion. Numerical 

analyses have been performed around Earth and Venus in two-dimensional scenarios. Results are compared to steering 

laws which consider SRP only. In the Earth case, results show that there is no substantial difference with an optimal 

law considering SRP only to increase semi-major axis. However, when the sail is orbiting around Venus, BBRP 

becomes the dominant force and allows for a sensible orbit raising. For a sail with loading of 7.8 g/m², starting at an 

altitude of 800 km, in Earth orbit, the percentual increase in semi-major axis after one revolution is 1.35 times higher 

using an optimized steering law considering both SRP and BBRP compared to an optimized steering considering only 

SRP and it is up to 9.52 times higher in Venus orbit. The difference between Earth and Venus is mainly due to the 



difference in surface temperature between the two planets, which leads to a BBRP up to 48 times higher in Venus 

orbit than in the Earth’s. Moreover, this study highlights that the choice of both solar sail loading and sail coating 

material can lead to an improvement of the performance in orbit raising for both Earth and Venus. 
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