Do simple intransitive finger movements consistently activate frontoparietal mirror neuron areas in humans?

Jonas, M., Siebner, H.R., Biermann-Ruben, K., Kessler, K., Baumer, T., Buchel, C., Schnitzler, A. and Munchau, A. (2007) Do simple intransitive finger movements consistently activate frontoparietal mirror neuron areas in humans? NeuroImage, 36(S2), T44-T53. (doi: 10.1016/j.neuroimage.2007.03.028)

Full text not currently available from Enlighten.

Abstract

The posterior inferior frontal gyrus (pIFG) and anterior inferior parietal lobule (aIPL) form the core regions of the human “mirror neuron system” that matches an observed movement onto its internal motor representation. We used event-related functional MRI to examine whether simple intransitive finger movements evoke “mirror activity” in the pIFG and aIPL. In separate sessions, participants either merely observed visuospatial stimuli or responded to them as quickly as possible with a spatially compatible finger movement. A picture of a relaxed hand with static dots on the tip of the index and little finger was continuously presented as high-level baseline. Four types of stimuli were presented in a pseudorandom order: a color change of a dot, a moving finger, a moving dot, or a simultaneous finger-dot movement. Dot movements were spatially and kinematically matched to finger movements. Participants were faster at imitating a finger movement than performing the same movement in response to a moving dot or a color change of a dot. Though imitative responses were facilitated, fMRI revealed no additional “mirror activity” in the pIFG and aIPL during the observation or imitation of finger movements as opposed to observing or responding to a moving dot. Mere observation of a finger movement alone failed to induce significant activation of the pIFG and aIPL. The lack of a signature of “mirror neuron activity” in the inferior frontoparietal cortex is presumably due to specific features of the task which may have favored stimulus–response mapping based on common spatial coding. We propose that the responsiveness of human frontoparietal mirror neuron areas to simple intransitive movements critically depends on the experimental context.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Kessler, Dr Klaus
Authors: Jonas, M., Siebner, H.R., Biermann-Ruben, K., Kessler, K., Baumer, T., Buchel, C., Schnitzler, A., and Munchau, A.
College/School:College of Medical Veterinary and Life Sciences > School of Psychology & Neuroscience
College of Science and Engineering > School of Psychology
Journal Name:NeuroImage
Publisher:Elsevier
ISSN:1053-8119
ISSN (Online):1095-9572
Published Online:30 March 2007

University Staff: Request a correction | Enlighten Editors: Update this record