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Simple Summary: Pancreatic cancer is among the most lethal cancers. The expression of PLEXIND1, a
receptor, is upregulated in many cancers (including pancreatic cancer). Traditionally, PLEXIND1 is known
to be involved in neuron development and mediate semaphorin signaling. However, its role and signaling
in cancer is not fully understood. In our study, we present a new mechanism through which PLEXIND1
mediates its roles in cancer. For the first time, we demonstrate that it can function as a transforming growth
factor beta coreceptor and modulate SMAD3 signaling. Around 90% of pancreatic cancer patients have
mutant KRAS. Our work suggests that PLEXIND1 functions differently in pancreatic cancer cell lines,
and the difference correlates with KRAS mutational status. Additionally, we demonstrate a novel peptide
based therapeutic approach to target PLEXIND1 in cancer cells. Our work is valuable to both neuroscience
and cancer fields, as it demonstrates an association between two previously unrelated signaling pathways.

Abstract: PLEXIND1 is upregulated in several cancers, including pancreatic ductal adenocarcinoma
(PDAC). It is an established mediator of semaphorin signaling, and neuropilins are its known corecep-
tors. Herein, we report data to support the proposal that PLEXIND1 acts as a transforming growth
factor beta (TGFβ) coreceptor, modulating cell growth through SMAD3 signaling. Our findings
demonstrate that PLEXIND1 plays a pro-tumorigenic role in PDAC cells with oncogenic KRAS
(KRASmut). We show in KRASmut PDAC cell lines (PANC-1, AsPC-1,4535) PLEXIND1 downregu-
lation results in decreased cell viability (in vitro) and reduced tumor growth (in vivo). Conversely,
PLEXIND1 acts as a tumor suppressor in the PDAC cell line (BxPC-3) with wild-type KRAS (KRASwt),
as its reduced expression results in higher cell viability (in-vitro) and tumor growth (in vivo). Addi-
tionally, we demonstrate that PLEXIND1-mediated interactions can be selectively disrupted using
a peptide based on its C-terminal sequence (a PDZ domain-binding motif), an outcome that may
possess significant therapeutic implications. To our knowledge, this is the first report showing that
(1) PLEXIND1 acts as a TGFβ coreceptor and mediates SMAD3 signaling, and (2) differential roles of
PLEXIND1 in PDAC cell lines correlate with KRASmut and KRASwt status.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-
related deaths [1]. The five-year survival rate is only 5–7%, and fewer than 20% of patients
achieve one-year survival. One of the contributing factors for this is the heterogeneity in the
tumor that facilitates the deregulation of several signaling pathways and renders therapies
targeting cancer ineffective [2]. It is therefore crucial that new signaling pathways be
identified and characterized so that new molecular therapeutic targets can be discovered.

One such potential target is PLEXIND1. Typically, the expression of PLEXIND1 is
low in adult tissues [3] and is thought to be limited to a subset of activated fibroblasts
and macrophages [4]. However, in several types of cancers (including pancreatic cancer),
PLEXIND1 is overexpressed in both tumor cells and their vasculature [5]. Consequently,
PLEXIND1 is gaining prominence in cancer research.

PLEXIND1 can act as both a tumor promoter and tumor suppressor [6]. Some of the
potential reasons for these opposing roles of PLEXIND1 in cancer are paracrine versus
autocrine signaling [7]; differences in signaling response stimulated by various ligands and
their different isoforms [8]; variances in the cell and tissue type [9]; and association with
different proteins that can alter the signaling outcome [10].

TGFβ signaling is often deregulated in PDAC, and it can both suppress and promote
tumor growth [11]. In prior publications, we and others have demonstrated that Neuropilin
1 (NRP1) can function as a TGFβ coreceptor [12,13]. As NRP1 is an established coreceptor
for PLEXINs [14,15], this prompted us to examine whether PLEXIND1 could also function
as a TGFβ coreceptor. Herein, we report a novel finding that in KRASmut PDAC cell lines
PLEXIND1 is pro-tumorigenic and mediates SMAD3 signaling. Conversely, in a KRASwt PDAC
cell line, BxPC-3, PLEXIND1 is anti-tumorigenic. To our knowledge, this is the first study that
has shown that the role of PLEXIND1 in cancer correlates with the mutational status of KRAS.
These findings elucidate a previously unknown PLEXIND1-mediated signaling pathway and a
novel cause for the dual role PLEXIND1 in at least some forms of cancer growth.

2. Results
2.1. Expression Pattern and Functional Role of PLEXIND1 in PDAC

In evaluating the clinical relevance of PLEXIND1 expression in PDAC patients, we
found that the higher expression of PLEXIND1 correlated with lower survival probability
compared to tumors with lower expression levels (Figure 1A). The median expression value
of PLEXIND1 was used to stratify samples (n-94) into high and low expression groups,
with the 50% of samples with PLEXIND1 expression values above the median assigned
to the high group and the 50% of samples with PLEXIND1 expression values below the
median assigned to the low group. Next, we examined the expression of PLEXIND1 in
three commercial and five patient-derived PDAC cell lines. Seven of these eight cell lines
expressed PLEXIND1, albeit at different levels (Figure 1B). Our findings corroborate a
published report where the majority of the PDAC cells evaluated expressed PLEXIND1 [5].

To study the effect of reduced PLEXIND1 expression in PDAC cell lines, we employed
shRNA-mediated knockdown in PANC-1 and AsPC-1 cell lines (Figure 1C,E). On assessing
the cell viability 72 h post-PLEXIND1 knockdown, we observed that it was notably lower in
cells with reduced PLEXIND1 levels compared to their controls (Figure 1D,F). These results
suggest that PLEXIND1 plays a role in maintaining cell viability in in vitro models for PANC-
1 and AsPC-1 cell lines. Next, we used a Tet-Inducible CRISPR/CAS9 (sgRNA)-mediated
PLEXIND1 knockdown system in PANC-1 cells and obtained similar results (Supplementary
Materials Figure S1A,B). However, an interesting finding in the sgRNA- system was that
many of the housekeeping proteins (including GAPDH, beta-actin, alpha-tubulin, vinculin,
and 18S rRNA) were downregulated (data not shown; two different sgRNAs were tested).

To understand how cell viability was reduced, we examined the expression of p21,
a mediator of cell cycle arrest [16]. We found that it was downregulated in cells with
reduced PLEXIND1expression (Supplementary Materials Figure S1C). Some studies have
reported that p21 can function as an oncogene [17,18], and this seems to be a possibility
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in our model. We then studied the expression of E-cadherin (E-cad), a tumor suppressor
protein involved in cell–cell adhesion [19], and found its expression to be upregulated
in cells with PLEXIND1 knockdown relative to control cells (Supplementary Materials
Figure S1D). This is in line with published literature suggesting that the loss of E-cad
in PDAC patients is associated with a worsened median survival, compared to patients
with normal E-cad expression [20]. Interestingly, it has been demonstrated in a prostate
cancer model that PLEXIND1 enhances cell migration and downregulates E-cad expression
in a slug-mediated manner [3]. These data support our contention that PLEXIND1 is
pro-tumorigenic in PANC-1 cells and its expression influences E-cad expression.

Figure 1. Expression pattern and functional role of PLEXIND1 in PDAC. (A): Survival probability analysis of pancreatic
ductal adenocarcinoma (PDAC) patients with high and low levels of PLEXIND1 expression. (B): Western blot analysis
of PLEXIND1 expression in commercial and patient-derived PDAC cell lines. (C,E): Western blot analysis of PLEXIND1
expression in PDAC cell line PANC-1 and AsPC-1 after shRNA treatment, respectively. (D,F): Cell viability assay for
PANC-1 and AsPC-1 cells with and without PLEXIND1 knockdown grown in 2D cell culture for 72 h. Data are plotted as
percentage of control cells. Statistical significance: ** p < 0.01 vs. control. Error bars represent standard error of the mean.
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2.2. Role of PLEXIND1 in PDAC Progression

We next investigated the effect of reduced PLEXIND1 expression using orthotopic
mice models. Tumors derived from mice implanted with cells treated with PLEXIND1
shRNA (Figure 2A; Supplementary Materials Figure S2A) had lower volumes (Figure 2B;
Supplementary Materials Figure S2B) and weight (Figure 2C) than their respective controls.
We observed the same trend in tumors obtained from mice injected with cells treated
with control or PLEXIND1 sgRNA (Supplementary Materials Figure S2C,D). Similarly, the
number of cells that stained positive for Ki-67 were lower in tissues derived from tumors
harvested from mice implanted with cells with reduced PLEXIND1 expression, relative to
their control counterparts (Figure 2D). These findings corroborate our in vitro results that
PLEXIND1 is involved in for tumor growth.

NRP1, a PLEXIND1 coreceptor [21], can function as a TGFβ coreceptor [12,22]. Fur-
thermore, while the canonical ligand of PLEXIND1 is Semaphorin 3E (Sema 3E) [23], a
study reported that in human melanoma, PLEXIND1 aided the invasive and metastatic na-
ture of cancer and Sema 3E was not the activating ligand [24]. A recent study reported that
microRNA-27b positively promoted TGFβ-mediated endothelial–mesenchymal transition
and regulated PlexinD1 expression in mouse pancreatic microvascular endothelial cells [25].
These led us to investigate whether PLEXIND1 could function as a TGFβ coreceptor.

To explore this possibility, we performed co-immunoprecipitation assays with TGFβ
induction. We observed that PLEXIND1 and TGFβRII were present in the same im-
munocomplex in PANC-1 cell lysates. Additionally, PLEXIND1 protein expression levels
increased after 10 and 30 min of TGFβ stimulation (Figure 3A–C). To our knowledge, this
is the first reported study in which PLEXIND1 is present in the same immunocomplex as
TGFβRII, and that TGFβ influences PLEXIND1 protein expression.

We then conducted modeling analysis to determine whether PLEXIND1 could bind
TGFβ and TGFβRII in the absence of NRP1. The model is shown (Figure 3D) using the
PIPER program within the Schrödinger software suite. These results show that the proteins
PLEXIND1, TGFβRII, and TGFβ associate at a common region on PLEXIND1, which acts
as the host for the proteins to form a coordinated complex that is stabilized as a ternary
complex.

Next, we wanted to probe whether PLEXIND1 expression influenced NRP1 expression,
and found that, in PANC-1 cells, NRP1 protein expression did not change immediately
(within a week). However, when the cells were maintained in culture for an extended time
period (over a few weeks, with partial PLEXIND1 knockdown), the protein expression of
NRP1 was upregulated (Supplementary Materials Figure S3A).

Our data thus far have demonstrated that the absence of PLEXIND1 inhibits tumor
growth and PLEXIND1 downregulation in PANC-1 cells causes an increase in NRP1 protein
expression. We previously reported that NRP1 acted as a tumor suppressor in PANC-1
cells [26], in accordance with our current findings.

2.3. PLEXIND1 Modulates SMAD3 Signaling and, Eventually, PDAC Growth

To gain a better understanding of how PLEXIND1 could function as a TGFβ coreceptor,
we studied the involvement of SMADs in our model. PANC-1, AsPC-1, and 4535 (a patient-
derived PDAC cell line) cells with shRNA-mediated (Figure 4A–C) and sgRNA-mediated
(Supplementary Materials Figure S3B,C) PLEXIND1 knockdown were found to reduce
protein levels of phosphorylated and total SMAD3. Some PDAC cells are difficult to
transfect, and in AsPC-1 cells, the PLEXIND1 shRNA1 yielded minimal knockdown.
Additionally, TGFβ stimulation partially restored the expression of total SMAD3 in PANC-
1 cells with PLEXIND1 knockdown (Figure 4A). A report demonstrated that SMAD3
facilitates tumor growth in pancreatic cancer [27]. Our finding thus appears to support the
paradigm that SMAD3 is pro-tumorigenic.
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Figure 2. Role of PLEXIND1 in PDAC progression. (A): Western blot analysis of PLEXIND1 expression in tissues derived
from mice implanted with PANC-1 cells treated with control and PLEXIND1 shRNA 1. (B,C): Log2 values of tumor volumes
and weights from orthotropic mice models implanted with PANC-1 cells with PLEXIND1 knockdown. (D): Representative
images and quantification of immunohistochemical analysis of Ki-67 in tissues derived from the above mice. Statistical
significance * p < 0.05 vs control, ** p < 0.01 vs control, *** p < 0.001 vs control, **** p < 0.0001 vs control 2.3. PLEXIND1 and
TGFβRII Can Form an Immunocomplex in PDAC.
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Figure 3. PLEXIND1 and TGFβRII can form an immuno-complex in PDAC. (A): Western blot analysis showing the
input samples. (B,C): Co-immunoprecipitation assays showing that PLEXIND1 and TGFBRII are present in the same
immunocomplex in PANC-1 cells. (D): Computational modeling analysis showing that PLEXIND1 and TGFBRII can form a
complex in the presence of TGFβ.
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Figure 4. PLEXIND1 modulates SMAD3 signaling and, eventually, PDAC growth. (A): Western blot analysis showing levels
of phosphorylated and total SMAD3 in PANC-1 cells with reduced PLEXIND1 expression at basal levels and upon TGFβ
induction. (B,C): Western blot analysis showing levels of phosphorylated and total SMAD3 in AsPC-1 and 4535 cell lines.
(D,E): Western blot analysis showing PLEXIND1 expression in PANC-1 andAsPC-1 cells with reduced SMAD3 levels. (F,G):
Log2 values of the tumor volume and weight from orthotropic mice models implanted with PANC-1 cells with SMAD3
knockdown. (H): Western blot analysis showing PLEXIND1 expression in PANC-1 cells with SMAD2 knockdown. Error
bars represent standard error of the mean. Statistical significance * p < 0.05 vs. control, ** p < 0.01 vs. control.

PANC-1 and AsPC-1 cells with SMAD3 knockdown were then generated. Notably,
in these cells, the protein levels of PLEXIND1 were reduced as well (Figure 4D,E). We
observed no change in PLEXIND1 protein expression in 4535 cells with SMAD3 knock-
down (Supplementary Materials Figure S3D). To further examine the role of SMAD3 in
our tumor model, we implanted PANC-1 cells with SMAD3 knockdown in orthotropic
mice models. The tumors derived from mice that were injected with PANC-1 cells with
SMAD3 knockdown had lower volumes and weights compared with those derived from
corresponding control mice (Figure 4F,G). Furthermore, immunohistochemical analysis
on tissues showed that tumors derived from PANC-1 cells with SMAD3 knockdown had
fewer Ki-67 positive cells as compared to their controls, suggesting reduced proliferation
(Supplementary Materials Figure S3E). These findings indicate that SMAD3 likely plays
a role in PLEXIND1-mediated tumor development, and fits with our model; namely, in
PANC-1 cells, PLEXIND1 knockdown leads to SMAD3 downregulation, and the lack of
both PLEXIND1 and SMAD3 individually impair tumor growth and development.
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We have previously published that PANC-1 cells with SMAD2 knockdown have in-
creased cell viability and tumor growth [26]. To this we now add that in these cells, PLEXIND1
expression is increased (Figure 4H). This supports our current hypothesis that PLEXIND1
is pro-tumorigenic in PANC-1 cells. Equally, when PANC-1 cells with partial PLEXIND1
knockdown were maintained in culture for over a few weeks, the protein expression of both
phosphorylated and total SMAD2 were upregulated (Supplementary Materials Figure S3F).

Taken together, our data point to a connection between the expression of PLEXIND1
and SMADs2/3 and the involvement of SMAD3 in PLEXIND1-mediated tumor growth in
the PANC-1 cell line. An important next step is to validate this in additional cancer types.

2.4. Decreased PLEXIND1 Expression Reduces RAC-1 Expression in PDAC Cells

We next looked at TGFβ/SMAD3 targets and observed a decrease in the mRNA
levels of SMAD7 and Serpine [28,29] in PANC-1 cells with reduced PLEXIND1 that had
been in culture for about two weeks (Figure 5A,B). Han et al. [30] reported that, in mouse
keratinocytes, Smad7 increased the expression and activity of Rac-1, a Rho GTPase [31]
that is upregulated in several cancers, including PDAC [32,33].

Figure 5. Decreased PLEXIND1 expression results in reduced RAC1 expression in PANC-1 cells. (A,B): Real-time quan-
tifications of Serpine and SMAD7 expression in PANC-1 cell with PLEXIND1 knockdown. (C,D): Western blot analysis
showing expression of RAC-1 in PANC-1 and 4535 cells with reduced PLEXIND1 levels. (E,F): Western blot evaluation of
KRAS expression in PANC-1 and 4535 cells with PLEXIND1 knockdown. Statistical significance * p < 0.05 vs. control, ** p <
0.01 vs. control. Error bars represent standard error of the mean.
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Examining the effect of PLEXIND1 downregulation on RAC-1 levels, we observed
that in PANC-1 and 4535 cells with PLEXIND1 knockdown, there was a slight decrease
in the RAC-1 protein expression relative to control cells (Figure 5C,D; Supplementary
Materials Figure S4A). Of note, we also saw a reduction in RAC-1 expression in PANC-1
and 4535 cells with SMAD3 knockdown (Supplementary Materials Figure S4B,C). This data
suggest that RAC-1 may be involved in the PLEXIND1/SMAD3-mediated tumor growth
in PANC-1 and 4535 cells.

Several studies in various models have reported that RAC proteins facilitate KRASmut

mediated oncogenic transformation [33–35]. Over 90% of pancreatic cancers harbor
KRASmut [26]. Our interest piqued, we looked at KRAS expression and found it de-
creased in PANC-1 and 4535 cells upon PLEXIND1 knockdown (Figure 5E,F). Similarly,
there was reduced KRAS expression in PANC-1 and 4535 cells with SMAD3 knockdown
(Supplementary Materials Figure S4D,E). Another important observation was that the
levels of RAC-1 and KRAS were also partially restored in PANC-1 cells with PLEXIND1
knockdown upon TGFβ stimulation (data not shown).

2.5. PLEXIND1 Acts as a Tumor Suppressor in KRASwt PDAC Cell Line BxPC-3

We have previously published that the genetic status of KRAS modulates the role of
NRP1 in tumorigenesis [26]. This finding made us curious to learn whether the genetic
status of KRAS would influence PLEXIND1-mediated tumor development. Indeed, we
found that in PDAC patients, higher PLEXIND1 expression correlated with lower survival
probability in tumors with KRASmut but with slightly better survival probability in tumors
with KRASwt (Figure 6A). KRASmut samples were defined based on the presence of a non-
silent KRAS SNV or loss of function structural variant. Samples without a KRAS variant
were defined as wildtype. As with the PDAC survival analysis, the median expression
values of PLEXIND1 in the KRASmut cohort (n-83) and KRASwt cohort (n-11) were used to
stratify samples into high and low expression groups.

The PDAC cell line BxPC-3 with KRASwt was chosen for this part of the study. We
generated BxPC-3 cells with PLEXIND1 knockdown (Figure 6B) and found that in contrast
to its effect in KRASmut cells, reduced PLEXIND1 expression enhanced the cell viability of
BxPC-3 cells (Figure 6C). Furthermore, these cells had a different phenotype as compared
to their control counterparts. The control cells were small, round, and grew in clusters,
while post-PLEXIND1 knockdown cells became elongated, spindle-shaped, and grew
relatively more dispersed (Figure 6D). A recent study described that PLEXIND1 regulated
the morphologic changes in newborn neurons [36]. However, we are not aware of such
findings for cancer cells.

Another significant finding was that the level β-actin (a housekeeping gene) was
down-regulated in BxPC-3 cells with PLEXIND1 knockdown (data not shown). Using
GAPDH as our loading control, we measured the expression levels of p21 and E-cad and
found that, in contrast to PANC-1 cells, the level of p21 was increased in BxPC-3 cells
with PLEXIND1 knockdown, while that of E-cad was decreased (Supplementary Materials
Figure S5A,B). These data suggest that p21 might be adopting a pro-tumorigenic role in
our model.

We proceeded to inject BxPC-3 cells with decreased PLEXIND1 into mice (female, 6–8
weeks, SCID). Our in vivo results corroborated our in vitro data. We found that tumors from
mice implanted with BxPC-3 cells with PLEXIND1 knockdown had larger tumor volumes
and weights compared to their respective controls (Figure 6E,F). Additionally, immunohis-
tochemical analysis on tissues revealed that tumors derived from BxPC-3 cells with lower
PLEXIND1 expression had twice the number of Ki-67 positive cells as compared to their
controls, supporting a higher proliferation rate (Supplementary Materials Figure S5C).
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Figure 6. PLEXIND1 acts as a tumor suppressor in KRASwt PDAC cell line BxPC-3. (A): Survival probability analysis of
pancreatic ductal adenocarcinoma (PDAC) patients with mutant and wild-type KRAS with respect to PLEXIND1 expression.
(B): Western blot analysis showing reduced expression of PLEXIND1 upon shRNA treatment. (C): Cell viability assay
for BxPC-3 cells with reduced PLEXIND1 expression grown for 72 h. Data are plotted as a percentage of control cells
(transfected with control shRNA). (D): Representative images showing the morphological changes in BxPC-3 cells on
PLEXIND1 knockdown. (E,F): Log2 values of tumor volumes and weights from orthotropic mice models implanted with
BxPC-3 cells with PLEXIND1 knockdown (G): Quantification of digital images for pSMAD3 at 20X magnification (n = 3).
Significant differences: * p < 0.05 vs control, ** p < 0.01 vs control, *** p < 0.001 vs control, **** p < 0.0001 vs control. Error
bars represent standard error of the mean.
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Next, we examined and found an increase in the levels of phosphorylated SMAD3
in the tissues from mice injected with BxPC-3 PLEXIND1 knockdown cells compared to
their controls (Figure 6G). Additionally, we observed an increase in the number of ducts in
these tissues compared to the tumor tissues from the control mice, and the cells positive
for phosphorylated SMAD3 were mainly clustered around these ducts. Nevertheless, one
discrepancy is that we did not observe a change in the protein expression of phosphorylated
and total SMAD3 in BxPC-3 cells with PLEXIND1 knockdown compared to their controls
(data not shown). A possible explanation is that the cells were not maintained in culture
for as long as they were in the in vivo experiments.

Following this, we studied the expression of phosphorylated and total SMAD2 in BxPC-3
cells with reduced PLEXIND1 and found no change compared to controls (Supplementary
Materials Figure S5D). We next studied the PLEXIND1 protein expression levels upon TGFβ
stimulation. In contrast to our findings in KRASmut PANC-1 cells, here the expression was
downregulated after 10 and 30 min of TGFβ stimulation (Supplementary Materials Figure S5E).

The expression of NRP1 was then measured and found to be upregulated in BxPC-3
cells with PLEXIND1 knockdown (Supplementary Materials Figure S5F). This supports
our earlier work, where we demonstrated that NRP1 downregulation in BxPC-3 cells leads
to decreased cell viability and tumor growth [26]. After NRP1, we assessed the protein
levels of RAC-1 and KRASwt; to our surprise, we found that they were downregulated
in BxPC-3 cells with PLEXIND1 knockdown (Supplementary Materials Figure S5F). One
tentative explanation for this downregulation of KRASwt is that it could be acting as a
tumor suppressor. There have been reports in which wild-type KRAS proteins have been
demonstrated to be anti-tumorigenic [37,38]. These results suggest that PLEXIND1 may be
utilizing a different downstream mechanism to facilitate tumor growth in BxPC-3 cells.

We then considered the proliferation marker ERKp44/42. A study in endometrioid
ovarian cancer reported that ERK/MAPK and PI3K activation enhanced Sema 3E/PLEXIND1-
induced EMT through nuclear localization of Snail1 [39]. We observed that, while the phospho-
rylated form was upregulated (in line with tumor growth), the total form was unexpectedly
downregulated (Supplementary Materials Figure S5G).

Collectively, this set of data indicates that PLEXIND1 acts as a tumor suppressor in
BxPC-3 cells. In the absence of PLEXIND1, there is a morphological change in the BxPC-3
cells, and these cells have a more aggressive phenotype compared to their control cells.
Furthermore, while PLEXIND1 potentially engages SMAD3 and NRP1 to mediate tumor
growth in BxPC-3 cells, the involvement of RAC-1 and KRAS is unclear.

2.6. Therapeutic Potential of Peptide-Mediated Targeting of PLEXIND1

Selected reports within the published literature suggest that PLEXIND1 or the signal-
ing pathways it mediates could serve as therapeutic targets [3,4,7]. Our results also suggest
that therapeutically targeting PLEXIND1-mediated interactions, specifically in KRASmut

cancer cells, could impair tumor growth and development. As a starting point towards a
targeted approach, we sought to develop a molecular agent that could specifically disrupt
or inhibit PLEXIND1-mediated interactions.

We used computational modeling studies to understand how peptide sequences would
potentially bind PLEXIND1 and gauge their binding efficiency. Two sequences, the N-
myr-YECYSEA (native sequence; Supp Figure S6A–A”’) and N-myr-AEYCESY (scrambled
sequence; Supp Figure S6B–B”’) were docked with the PLEXIND1 structure. Multiple
dockings were completed using a winner-take-all approach (survival) to achieve the fit
docking poses from a pool of multiple sites and docking poses. The top docking pose for
N-myr-YECYSEA was −10.17 kcal/mol*Å2 and N-myr-AEYCESY was −6.74 kcal/mol*Å2

(Figure 7A,B). Although we recognize that docking energetics often do not accurately
correlate to those obtained from empirical binding assays, these simulations suggest the
YECYSEA sequence to be about 103 times better PLEXIND1 binder, given the logarithmic
nature of the docking values. All peptides were amidated with myristic acid at their amino
termini, a modification intended to enhance cell permeability and serum stability, and this
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seemed to produce some steric hindrance for adjacent molecules. This may well affect
TGFβ binding despite not having any direct interactions with PLEXIND1.

Figure 7. Therapeutic potential of peptide-mediated targeting of PLEXIND1. (A,B): Computational modeling showing
YECYSEA and AEYCESY sequences interacting with PLEXIND1- TFGBRII-TGFβ complex. The peptide is shown in orange
carbon “sticks”, and the nearby PLEXIND1 residues are shown in gray carbons (but residues of type Ala or Asp are shown in
purple carbon). (C,D): Cell viability assays for PANC-1 cells treated with either scramble or PLEXIND1 targeting peptide. (E):
Tumor volume from NSG mice models in which first tumors were grown until about 250 mm3 and then were treated with
either vehicle (control) or AP1134. (F): Western blot analysis confirming the reduced expression of PLEXIND1 upon AP1134
peptide treatment. (G,H): Log 2 values of tumor volumes and weights from NSG mice treated with either vehicle (control) or
AP1134 at the termination of the experiment. * p < 0.05 vs. control. Error bars represent standard error of the mean.
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To evaluate the biologic relevance of these peptides, we performed in vitro toxicity
assays in PANC-1 cells. Cells treated with the PLEXIND1 C-terminal mimetic peptide, N-
myr-YECYSEA, had an IC50 value of 42.2 µM, significantly lower than that for the control
(scrambled) peptide (IC50 > 400 µM) (Figure 7C,D). Next, we developed PANC-1 sub-
cutaneous tumors in SCID mice. After the tumor volumes reached 250–300 mm3, the mice
were randomly divided into two groups. The control group was treated with vehicle (75%
DMSO in water), while the treatment group received 500 µg/mice of PLEXIND1 peptide
(AP1134 dissolved in 75% DMSO in water) 5d/wk for three weeks. The tumor volumes
were monitored every week. From the start, tumor volumes in mice in the treatment group
were lower than the tumor volumes measured in the control group mice (Figure 7E). After
three weeks, the mice were sacrificed. The tumors were checked to confirm PLEXIND1
knockdown (Figure 7F). As anticipated, the volumes and weights of the tumors obtained
from mice in the treatment group were significantly lower than those of the corresponding
controls (Figure 7G,H).

3. Discussion

The role of PLEXIND1 in cancer is an emerging field, with published literature sup-
porting its role as both a tumor promoter and a tumor suppressor. The pro-tumor role of
PLEXIND1 has been reported to be mediated by p61-Sema 3E/PLEXIND1 in colon can-
cer [7] and Sema 3E/PLEXIND1 signaling in ovarian endometrioid cancer [39]; in prostate
cancer PLEXIND1 has been shown to act as a transcriptional target stimulated by the Notch
signaling that helped in Slug- mediated E-cadherin downregulation [3]. PLEXIND1, on the
other hand, has been reported to promote apoptosis in association with orphan nuclear
receptor NR4A1 in the absence of Sema 3E in a breast cancer mouse model [40].

Mouse pancreatic microvascular endothelial cell microRNA-27b was shown to act as a
positive mediator of TGFβ facilitated endothelial –mesenchymal transition, and regulated
plexinD1 expression [25]. In our study we examined the role of PLEXIND1 in a pancreatic
cancer model. Our combined data support a new mechanism involving PLEXIND1/TGFβ
signaling outlined in our working model (Supplementary Materials Figure S7). PLEXIND1
plays a pro-tumorigenic role in KRASmut cells, while it acts as a tumor suppressor in
KRASwt cells, suggesting a correlation between the genetic status of KRAS and role of
PLEXIND1 in the PDAC cells.

We have demonstrated a connection between PLEXIND1 and SMADs. In PANC-
1 cells, PLEXIND1 downregulation results in a decrease in protein expression of the
SMAD3 and mRNA levels of SMAD7 and Serpine1, potentially abetting tumor suppression.
Furthermore, the protein levels of SMAD2 and SMAD3 impact PLEXIND1 protein levels in
PANC-1 cells. There is conceivably a feedback loop that connects all these proteins, their
expressions, and potentially their activities. Another possibility is that the expression of
one or more of these proteins might be linked to the expression of one or more proteins
that might be key regulators of (or contribute to) protein stability.

Nevertheless, while all of these findings support a close association between PLEXIND1
and TGFβ signaling, further studies are required to completely understand the links and
decipher the mechanism(s) involved. It is intriguing as to how the downregulation of
PLEXIND1 results in the reduced expression of many other proteins, including those with
housekeeping functions. These results suggest that PLEXIND1 is likely crucial for cell
viability. Additionally, we find it fascinating as to how the expression of some proteins
changes within seventy-two hours, while for others it requires over two weeks. We think it
is imperative to extend these findings to other cell lines and cancer types.

Our data show that PLEXIND1 knockdown downregulates tumor growth and that
there is upregulation of NRP1 in KRASmut cells (Figures 1 and 2 and Supplementary
Materials Figure S3A). Furthermore, we observed an increase in the PLEXIND1 protein
expression upon TGFβ stimulation in PANC-1 cells. Significantly, we previously published
that NRP1 acts as a tumor suppressor in PANC-1 cells, and TGFβ induction downregulates
its expression [26]. Conversely, in BxPC-3 cells, PLEXIND1 reduction enhances tumor
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growth, and there is upregulation of NRP1; we have earlier published that NRP1 facilitates
tumor growth in BxPC-3 cells [26].

All this may indicate a new interface for PLEXIND1 and NRP1: TGFβ signaling. If
correct, this novel finding of an association between PLEXIND1 and TGFβRII leads to two
central questions: What cellular processes besides axonal guidance is PLEXIND1 involved
in, and can it bind other TGFβ receptors? Further in-depth studies will be required to
validate that PLEXIND1 is a TGFβ coreceptor.

PLEXIND1 has a serine–glutamate–alanine (SEA) sequence (part of a PDZ domain-
binding motif [23]) at its carboxyl terminus that promotes binding to selected PDZ domains
such as GIPC [21,41]. We previously developed a strategy of preparing lipidated peptides
based on the C-terminal sequences of protein binding partners of GIPC [42]. One of the
identified sequences shown to bind to GIPC was that of PLEXIND1 [23], and amongst the
peptides ligands we prepared was an N-myristoylated peptide based on the C-terminal
sequence of PLEXIND1. The use of designed peptides demonstrated a notable level of
activity in a pancreatic tumor model in mice. These results provide preliminary evidence
for a novel and effective targeted lipopeptide approach towards the development of new
therapeutic agents in the treatment of certain pancreatic cancers.

4. Conclusions

Our study, to our knowledge, for the first time shows a novel finding that PLEXIND1
could act as a TGFβ receptor and modulate SMAD3 signaling in PDAC cells. Our results
demonstrate that in KRASmut PDAC cells, PLEXIND1 promotes tumor growth via SMAD3
signaling. Conversely, in KRASwt PDAC cell line BxPC-3, it acts as a tumor suppressor.
These data indicate a connection between the role of PLEXIND1 in PDAC cells and the
mutational status of KRAS. It would be interesting to investigate this link further to
completely understand this circuit and important to extend these findings to additional
cancer models. Furthermore, we present an innovative strategy of disrupting PLEXIND1-
mediated interactions via lipidated peptides, A few publications have disclosed that lack
of PLEXIND1 results in severe defects, including lethality, in mice models [43,44]. Thus, it
is essential that signaling pathways utilized by PLEXIND1 to mediate its effects in cancer
be fully elucidated, as this could reveal new potential therapeutic targets. We anticipate
our study will have a broad impact on cancer biology, as well as within neuroscience.

5. Materials and Methods
5.1. Survival Curves

Bulk tumor PDAC samples from the Australian Pancreatic Cancer Genome Initiative
(APGI; part of International Cancer Genome Consortium) were used for all survival analy-
ses. All data with respect to patients have been described previously and are available in an
earlier publication [45]. Survival analyses were performed using the R and Bioconductor
packages ‘survminer’ and ‘survcomp’ [46] with disease-specific survival as the primary
endpoint.

5.2. Cell Culture

All commercial cell lines were purchased from ATCC. The human PC cell line PANC-1
was cultured in Dulbecco’s Modified Eagle Medium; BxPC-3 and AsPC-1 were cultured in
and RPMI 1640 and the patient-derived cell line 4666 was maintained in DMEM F12 media,
respectively, with each media containing 10% FBS, 1% antibiotic–antimycotic (anti–anti;
Gibco, Carlsbad, CA USA), and 0.02% plasmocin (Invivogen, San Diego, CA USA). Cells
were serum starved in raw media for 18 h before stimulation with TGFβ (Biolegend, San
Diego, CA, USA).

5.3. shRNA and Tet Inducible CRISPR/CAS9 System (sgRNA) Mediated Transfections

All of the RNA and CRISPR system reagents were purchased from Dharmacon
(Lafayette, CO, USA).
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5.4. shRNA Transfection

Lentiviruses for PLEXIND1 shRNA and control shRNA were prepared as described
earlier [47]. The protocol followed for transfection in target cells: Day 1, plate the cells; Day
2, add the virus along with polybrene; Day 3, change the media; Day 4, serum starvation
and addition 2 µg/mL of puromycin to the medium for selecting transfected cells; and Day
5, lysate collection. In PANC-1 cells, reduced PLEXIND1 expression decreased cell viability,
and the cells were not passaged or kept in culture. In contrast, PLEXIND1 knockdown
enhanced the cell growth in BxPC-3 cell line and the cells were cultured. Control cell lines
for each were cultured exactly like the corresponding PLEXIND1 shRNA-transfected cell
lines. The plasmids for the PLEXIND1 and SMAD3 shRNA were purchased from the Mayo
Clinic Core Facility (Jacksonville, FL, USA) and the control shRNA plasmid was bought
from Open Biosystems (Lafayette, CO, USA).

The sequences of the shRNA used were:
PLEXIND1 shRNA1: 5′-TGCTGTTGACAGTGAGCGACCCATGACAGTCATGGTCT

ATTAGTGAAGCCACAGATGTAATAGACCATGACTGTCATGGGCTGCCTACTGCCTCG
GA-3′

PLEXIND1 shRNA2: 5′-TGCTGTTGACAGTGAGCGAGCCAGTGGACTTCTTCATCA
ATAGTGAAGCCACAGATGTATTGAT AAGAAGTCCACTGGCGTGCCTACTGCCTCGG
A-3′

SMAD3 shRNA1:
5′-CCGGCATCTCCTACTACGAGCTGAACTCGAGTTCAGCTCGTAGTAGGAGATG

TTTTT-3′

SMAD3 shRNA2:
5′-CCGGGAGCCTGGTCAAGAAACTCAACTCGAGTTGAGTTTCTTGACCAGGCT

CTTTTT-3′

5.5. Control shRNA: 5′-GGATAATGGTATTGAGATGG-3′ Tet Inducible CRISPR/CAS9
(sgRNA) System

Edit-R Lentiviral Cas9 Nuclease Expression vectors containing a human codon-
optimized version of the S. pyogenes Cas9 (csn1) gene and sgRNAs that were provided as
plasmid DNA with blasticidin resistance marker were purchased from Horizon Inspired
Cell Solutions, Dharmacon, USA (Lafayette, CO).

We synthesized the plasmid for both sgRNA and Cas9 as described by the manu-
facturer’s protocol, followed by lentiviral packaging using the standard protocol in the
provider’s manual. Briefly, 4 µg of the target plasmid, 1ug of VsVg, and 3ug of Pax2
packaging vectors were used for viral packaging using 293T cells.

The PANC-1 and AsPC-1 cells were infected with the viral particles using the trans-
fection protocols provided by the manufacturers. The cells were first infected with Cas9
expressing viral particles for 72 h followed by blasticidin clonal selection. The selected
clones were seeded in 60 mm dishes. Cells at 60–70% confluence were infected with
PLEXIND1 sgRNA expressing viral particle for 72 h and selected for puromycin resistance
(1 µg/mL). The puromycin-resistant cells were similarly propagated and used for the gene
editing experiments. The PLEXIND1 knockout was achieved by doxycycline treatment
(1 µg/mL).

5.6. Cell Proliferation Assays

We seeded 3000 cells per well in the 96-well plates, which were grown for 72 h in
complete medium. Post 72 h, the MTS cell proliferation assay (Cell Titer 96 Aqueous One
Solution Cell Proliferation Assay [MTS] Promega, Madison, WI, USA) was performed.

5.7. Antibodies

Western blot antibodies for Ki-67, TGFBRII, KRAS, and horseradish peroxidase-
conjugated secondary antibodies were purchased from Santa Cruz Biotechnology (Dallas,
TX, USA); antibody against PLEXIND1 from R&D Biosciences (Minneapolis, MN, USA)
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and Abcam (Cambridge, MA, USA); antibodies against GAPDH and total Smad3 from
Cell Signaling Technology Inc. (Danvers, MA, USA), and antibody against pSmad3 from
Abcam.

5.8. Whole-Cell Extract Preparation

Procedure described in detail in the Supplementary Materials section.

5.9. Western Blot Analysis

We used the protocol described in a previous study [48]. All the raw blots have been
included in manuscript as Supplementary Figure S8.

5.10. RT-PCR

We used the RNAeasy kit (QIAGEN) and IScript RT-PCR kit (BioRad, Hercules,
California, USA) to extract the total RNA and prepare the cDNA, respectively. The qPCR
was performed using SYBR® Premix Ex Taq II (Applied biosystem and Life technology,
Waltham, MA, USA) and set up in a 7500 Fast Real-Time PCR system (Applied Biosystems,
Foster City, CA, USA). The primers were purchased from Integrated DNA technologies
(IDT, Coralville, IA, USA).

SMAD7
Forward primer: 5′-CTTCTCCTCCCAGTATGCCA-3′

Reverse primer: 5′GAACGAATTATCTGGCCCCT-3′

Serpine 7 (PAI-1)
Forward primer:5′- CAGCATGTTCATTGCTGCCC-3′

Reverse primer: 5′GGAGAGGCTCTTGGTCTGAAA-3′

PLEXIND1
Forward primer: 5′-GCTGGCCCATTCAAGATCC-3′

Reverse primer: 5′-GCACCAAATGGAAATACTTCTCTGT-3′

5.11. Design and Synthesis of Peptides

Described in the Supplementary Materials section.

5.12. In Vivo Tumor Models

For all animal studies, we used 6–8-week-old female SCID mice that were purchased
from the National Cancer Institute Animal Production Program (MD, USA). Tumor vol-
umes were calculated using the formula V = 0.5 × a × b2, where ‘a’ is the longest tumor
axis, and ‘b’ is the shortest tumor axis.

5.13. Tumor Growth Studies

Protocols for all the in vivo studies are described in the Supplementary Materials
section.

5.14. Immunohistochemical Staining

Procedure described in detail in the Supplementary Materials section.

5.15. Structural Modeling

Procedure described in detail in the Supplementary Materials section.

5.16. Statistical Analysis

We performed the log2 transformation of all tumor volume and weight data to form a
normally distributed data and used unpaired t-tests. Statistical significance was defined as
p < 0.05, and a high level of statistical significance was defined as p < 0.01.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13164048/s1, Figure S1: Functional role of PLEXIND1 expression in different PDAC cell

https://www.mdpi.com/article/10.3390/cancers13164048/s1
https://www.mdpi.com/article/10.3390/cancers13164048/s1
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lines, Figure S2: Role of PLEXIND1 in PDAC progression, Figure S3: Reduced PLEXIND1 expression
in PDAC modulates tumor growth through SMAD3 signaling, Figure S4: Decreased PLEXIND1
expression reduces RAC-1 expression in PDAC cell lines, Figure S5: PLEXIND1 acts as a Tumor
Suppressor in KRASwt PDAC cell line, Figure S6: Therapeutic potential of peptide-mediated targeting
of PLEXIND1, Figure S7: Working model, Figure S8: Original Western Blots.
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