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ABSTRACT
When users are undertaking mentally demanding visuals tasks, it
can be beneficial to convey information through the auditory or
tactile modality instead. A fundamental problem when mapping
information to sound or vibration is establishing which polarity
the mapping should use. Magnitude estimation is a popular method
of establishing polarity preferences, however the effectiveness of
this approach remains unclear, especially in more ecologically valid
contexts. We investigate what impact the polarity of a data-sound
or data-vibration mapping has on how well users can interpret
these mappings, under two different levels of mental workload. Our
results show that polarity does not affect error rate or cognitive
workload, although may affect response time. We also found that
induced cognitive load may influence usability. An implication of
this is that commonly used methods of establishing data mappings
need to be revisited, with cognitive load in mind, to help designers
create more usable auditory and vibrotactile displays.
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1 INTRODUCTION
When users are engaged in visually-demanding tasks, it can be
beneficial to present information through non-visual modalities
instead. This can be achieved by mapping information onto other
sensory modalities, e.g., as audio or vibration. This can make infor-
mation more noticeable whilst driving [35, 36, 41], during complex
tasks like air-traffic control [1, 8, 9, 37], when users have limited vi-
sion [21], or when using devices with little screen space [4, 17, 18]. A
fundamental design challenge when doing this is choosing suitable
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parameter mappings for each dimension of information. A poorly
designed mapping may not only reduce information accuracy [47],
but may have severe consequences. This can be seen from many
documented cases of aircraft pilots, nuclear power system opera-
tors, and military personnel turning off auditory alarms which are
unpleasant, obstructive, or inaccurate [40].

A widely used method for informing the design of a data-sound
or data-vibration mapping is magnitude estimation [2, 14, 15, 44,
45, 47]. This technique scales the relationship between an audio
or vibrotactile stimulus and an information dimension (e.g., speed,
temperature), helping designers establish the polarity and scale
of the mapping. Polarity is the direction of the relationship and
scale determines how much the perceived value changes as the
actual stimulus parameter changes [44]. User consensus for polarity
helps establish which mapping design is most ‘intuitive’. These
studies have shown the importance of polarity in perception of a
parameter mapping; however, it is unclear if this technique also
leads to designs that are usable in their intended usage context.

Designing a mapping with an appropriate and usable polarity is
critical in high-stakes safety-critical contexts where users are under
high cognitive load (e.g., use of data-sound or data-vibration map-
pings in process monitoring, aircraft cockpits, in cars, etc). Usability
is vital because users may need to react quickly and instinctively.
Conversely, in low-stakes contexts with low-cognitive load, the ap-
propriateness of the mapping polarity is less critical, because users
have time to process and learn a mapping, and understand that
the information being conveyed is not safety-critical. Conducting a
magnitude estimation experiment to establish polarity consensus is
costly; if designers understand how the usability of a system may
be affected by mappings created using this method, then they can
decide if gathering this data is worth the time and cost.

We investigate the effect of polarity on usability in data-sound
and data-vibration mappings, under varying levels of cognitive load.
Our goal is to establish if polarity mappings based on consensus
from magnitude estimation studies lead to increased performance,
versus seemingly unintuitive polarity designs, and to see how these
perform under cognitive load. We conducted an experiment with
the N -back task to induce controlled levels of mental workload [32].
This was used alongside a secondary task where users responded to
acoustic or vibrotactile stimuli with opposing polarities. Our results
have implications for the design and evaluation of data-sound and
data-vibration mappings, which are increasingly being used in
safety-critical usage contexts where good usability is crucial.
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2 BACKGROUND
2.1 Data-Sound Mappings
Walker and Kramer’s early studies [46, 47] of data-sound mappings
found that those that were predicted to perform well (e.g., mapping
temperature to pitch) were not always better than those that were
predicted to perform poorly, or even mappings that were randomly
designed. They posited the explanation that a listener’s mental
models of data-sound relationships had a large effect on their results.
For example, slow acoustic changes, like slow tempos and onsets,
were perceived to be representative of larger objects, as would be
the case with larger objects in the physical world, e.g., as larger
objects move more slowly due to inertia.

Continuing this, Walker [44, 45] proposed magnitude estimation
as a method for evaluating data-sound mappings. This is a standard
method of psychophysical scaling, which maps the relationship
between the magnitude of a sensory stimulus and its associated
perceived intensity [43], resulting in a power function between the
actual stimulus magnitude and the perceived magnitude.

Magnitude estimation is now often used when studying the
perception of auditory stimuli in a wide array of contexts, e.g.,
ergonomics [27] and medicine [29]. Walker’s results showed that
magnitude estimation provides reliable measurement of both the
scaling function and polarity of a given data-soundmapping.Walker
suggested that consensus over polarity will indicate how ‘natural’
or ‘intuitive’ a mapping is.

Recent research [14] has further investigated the importance of
mental models in listener preference of polarity in data-sound map-
pings. In that work, a study was conducted using the same approach
as Walker [44, 45], but instead focused on data-sound mappings
where the data dimension had a negative valence (error, danger,
and stress) and the acoustic parameters were ‘undesirable’ in terms
of western musical tradition (roughness/disharmony and noise).
Polarity preference results showed that the majority of participants
perceived these mappings in a positive polarity, meaning that as the
‘undesirable’ acoustic parameter increased, participants perceived
an increase in the negative valence information parameter.

These works give insight into how data-sound mappings are
interpreted and hint at the role of polarity in their perception. If
mental models are consistent, then magnitude estimation studies
will likely lead to consensus about the ‘best’ mapping of scale and
polarity. It seems reasonable to expect such mappings to be more
usable if they are inherently ‘intuitive’, but this is not known.

2.2 Data-Vibration Mappings
Vibration is often used to attract attention, e.g., for notifications, or
to give confirmatory feedback about interactions. However, vibra-
tion also can be used to encode information. Structured vibrations
can manipulate properties like frequency, amplitude and rhythm to
encode and convey a variety of data dimensions [5, 6, 19, 20, 24, 25],
including multidimensional mappings [7].

Such data-vibration mappings are often abstract, mapping prop-
erties of vibration to arbitrary categories, e.g., types of fruit [11]
and notification categories [6]. Vibration can effectively convey
affective qualities and emotions [6, 35, 36, 39, 49, 51], suggesting
that users have mental models to aide their understanding vibration
cues, similar to data-sound mappings. For example, rough or strong

vibrations were perceived as more alarming or urgent [6, 36, 39]
(analogous to rougher or more intense tactile sensations being in-
dicative of dangers in the physical world) and increasingly intense
vibrations were associated with unpleasantness [49, 51].

Research has shown that the magnitude estimation approach
used in auditory research [44, 45] can provide similar insights into
how a data-vibration mapping is perceived [15], informing the
selection of scale and polarity. Again, the assumption is that mental
models will drive consensus towards an ‘intuitive’ mapping.

2.3 Data Mapping Polarity and Usability
How the polarity of a mapping between a data and sensory di-
mension is perceived is a significant design problem. For example,
individual differences in how sounds are perceived are a persistent
challenge in selecting polarities for data-sound mappings [33]. In a
visual display, up representsmore in most cases, but in the auditory
or tactile modality, this is less clear; humans have less metaphors
in the auditory or tactile modalities.

Similarly, the context in which a mapping is situated can impact
how it is perceived. Consider a Geiger counter, a simplemetaphor of-
ten used in data-sound and data-vibration mapping designs, where
the repetition rate of a signal is used to convey information. This can
be perceived differently in different contexts, with both positive or
negative valence. For example, in a Geiger counter, faster ‘clicking’
means the user is getting closer to a source of ionising radiation;
as something inherently dangerous, this would be considered to
have negative valence. Conversely, the Geiger counter metaphor is
used successfully in human-computer interaction contexts like ges-
ture interaction [18], navigation [26, 42], and reaching [48], where
faster auditory or vibrotactile ‘clicking’ means the user is doing the
correct action (e.g., interacting correctly [18] or moving towards a
target [26, 42, 48]); here, correctness implies positive valence. Thus
it is important to consider the context in which a data-sound or
data-vibration will be used, as this will impact how ‘intuitive’ it is.

There is limited research investigating the effect of polarity on
the usability of a data-sound or data-vibration mapping. One study
suggested that for a basic auditory display task, polarity did not
affect task performance in simple circumstances [12]. Auditory
and vibrotactile displays are being increasingly used in more de-
manding contexts, where non-visual data mappings can reduce
visual demand. We address this gap in the literature by investigat-
ing the relationship between polarity and usability in a cognitively
demanding context, to see how this affects perception and usability.

3 EXPERIMENT
3.1 Aims
We ran an experiment to investigate the impact the polarity of a
data-sound and data-vibration mapping has on its ability to convey
information, when the user is under different degrees of cognitive
load. We used a simple working memory task with two difficulties,
to induce low and high levels of cognitive load. At the same time,
participants were asked to classify auditory and vibrotactile alarms.
These alarms were simple parameter mappings where the sensory
parameter (e.g., acoustic noise) was mapped to four levels of danger;
when participants are presented with an alarm, they must respond
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with the danger level it represents. This dual task design allows us
to investigate the mapping usability in a demanding context.

We chose danger as the information parameter for auditory
and vibrotactile stimuli for two reasons. First, there are numerous
potential use cases where ‘danger’ could conceivably be represented
through an auditory or vibrotactile alarm, e.g., in hospitals, surgery,
in-car, in-aircraft and process monitoring. Second, the results from
the previous works that our mappings were based on [14, 15] also
used danger as the information parameter, with polarity data for
several data-sound and data-vibration mappings.

3.2 Manipulating Cognitive Load
To induce cognitive load, we used a visual N -back task [32] with
two levels of difficulty (N=0 and N=2). This is a common protocol
for inducing cognitive load in neuroimaging [34] and has been used
successfully in human-computer interaction studies [22, 30]. In the
N -back task, participants are presented with a series of symbols
(usually numbers), one at a time. On each presentation, they must
respond with whether the current stimulus matches a stimulus that
they saw N presentations back in the sequence.

For the 2-back task, participants must indicate if the current
number they see matches the one they saw two trials ago. For the
0-back task, participants need to compare each stimulus with the
one that they saw first in the sequence; this is a matching task,
unlike the 2-back task where working memory is being constantly
updated. The advantage of the N -back task is that the perceptual
and motor demand remains constant across difficulty levels.

3.3 Design
We used a within-subjects design with three independent variables:
(1) the audio or vibration parameter (acoustic roughness, acoustic
noise, vibration pulse tempo and vibration duration); (2) polarity
of the data-sound or data-vibration mapping (aligned or inverted);
and (3) the level of the N -back task (0-back or 2-back). This gave
16 conditions (4 parameters × 2 polarities × 2 N -back levels).

There was one block of trials for each condition. Participants
completed both levels of the N -back task before continuing to the
next combination. For example, if the current combination was
{roughness × aligned polarity}, the participant would complete the
0-back and 2-back tasks for that combination together. There were
eight trials in each block: two each for the four danger levels.

The N -back order was randomised. The order in which polarities
were presented could have a confounding effect, as participants may
be biased towards whichever they experienced first. Therefore, the
order of each polarity × parameter pairing was counterbalanced.

3.4 Procedure
At the beginning of each block, participants were given an expla-
nation of the acoustic or vibrotactile parameter for that block, and
were told how it mapped to danger level. They could press buttons
to hear/feel the cues for each level. They needed to hear/feel each
level at least once before moving to the next step, but could repeat
the cues as many times as they wished. They were also told which
N -back level they were about to undertake. Finally, there were
separate practice trials for the N -back task and classification task,
followed by a combined practice task.

Figure 1: Audio/vibration alarms were presented within a
10 s window (a); there was at least 1 s gap at the start and
at least 5 s gap at the end, leaving a 4 s window (b) in which
the stimuli would be presented.

For each trial, participants carried out the N -back task whilst
classifying auditory or vibrotactile stimuli in terms of the ‘danger’
they represent. Each task started after participants indicated they
were ready. We measured accuracy of classification response, ac-
curacy of N -back task response, and reaction times. Immediately
after the final task in each condition, participants completed the
NASA Task-Load Index (TLX) survey [23], as a subjective measure
of perceived workload.

3.4.1 N-back Task. Numbers from 1–9 were presented in random
order for the symbol sequence. Each number was displayed in the
centre of the screen for one second, then the screen went blank
for three seconds before the next number appeared (as per [22]).
Participants indicated if a given number on-screen was a match
or non-match via a keypress. Each N -back task sequence had 21
numbers, with the constraint that one third of these were matches.

3.4.2 Audio/Vibration Classification Task. Concurrently with the
N -back task, the audio or vibration alarms were presented every
ten seconds. The time at which they were presented within that
ten second window was randomised, so participants would not
anticipate them. There was at least one second gap at the start, and
at least five seconds after the onset so there was sufficient time
to respond. Thus, there was a four second interval in which the
stimulus could be randomly presented. When an alarm stimulus
was presented, participants responded with the appropriate number
key to indicate what level they believed the alarm to represent.

3.5 Stimuli
Our acoustic and vibrotactile stimuli were based on magnitude es-
timation studies that obtained polarity preferences for a number of
data-sound [14] and data-vibration [15] mappings. Each parameter
had four levels for the four ‘danger’ levels. The mappings as taken
from prior were used as the aligned polarities. We also inverted
these, giving the other dimension of the polarity variable.

For example, in work by Ferguson et al. [14], the most popular
polarity choice for a mapping between acoustic noise and danger
was a positive polarity, meaning the more noise present in an audio
signal, the higher the perceived value of danger. The inverse of
this polarity would be the less noise present in an audio signal, the
higher the perceived value of danger. The reason we investigated
the inverse polarity was to see how a ‘badly designed’ parameter
mapping (in terms of the magnitude estimation method) affects
its usability – i.e., how well it can be understood and used in a
demanding task context.
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Figure 2: Example waveforms for the roughness (a), noise
(b), tempo (c) and duration (d) stimuli, for one stimuli level
each. All stimuli can be found the supplementary material.

Roughness and noise were chosen as acoustic parameters, based
on results from Ferguson et al. [14], who evaluated the use of these
parameters in an auditory display. Roughness is the subjective per-
ception of rapid amplitude modulation, ranging from modulation
frequencies of 15 Hz to 300 Hz, with peak perceived roughness
around 70 Hz [52]. More commonly, acoustic roughness is related
to the sensation of dissonance, or a sound being ‘out of tune’ [28].

Vibration duration and vibration pulse tempo were chosen as
vibrotactile parameters, based on results from another study by
Ferguson et al [15]. We adapted their three vibration cues to give
four levels for this experiment.

Stimuli were two seconds long. All had an amplitude envelope
with a 0.2 second linear onset (attack) and offset (release). All stimuli
were created using SuperCollider1 as follows (Figure ?? shows an
example waveform for each condition):

3.5.1 Audio Roughness. Stimuli were 1 kHz sine tones, amplitude
modulated at 0, 7, 23 and 70 Hz. These frequencies were chosen
based on results from [13] that established ten levels of roughness
for use in an auditory display. Here the first, fourth, seventh and
tenth levels of that range were used to ensure a maximum difference
between cues. It is worth noting again that the roughness levels
which have been used in all experiments so far are based on Zwicker
& Fastl’s work [52] where they established a range of perceptually
equally distributed levels for roughness. So, even though 0, 7, 23
and 70 Hz are unevenly distributed numerically, they are equally
distributed in terms of listener perception of roughness.

3.5.2 Audio Noise. Stimuli consisted of a 1 kHz sine tone and
white noise combined to varying degrees. These waveforms were
combined as {100% sine, 0% noise} (level 1), {60% sine, 30% noise},
{30% sine, 60% noise}, and {0% sine, 100% noise} (level 4). Like the
auditory roughness stimuli, these were extracted from the range of
ten evaluated in [13].

3.5.3 Vibration Duration. Stimuli were 200 Hz waveforms that
were 100, 500, 1000 and 2000 ms in duration.

3.5.4 Vibration Tempo. Stimuli were 200 Hz waveforms which
pulsed at varying intervals. The on period for all cues was 50 ms
and the off periods were: 15, 150, 400 and 800 ms.

1SuperCollider: https://supercollider.github.io/
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Figure 3: Mean classification error rates.

3.6 Apparatus
Audio stimuli were presented using a pair of wired Beyerdynamic
DT-100 headphones. Vibrotactile stimuli were presented using a
Tactile Labs Haptuator MkII2, attached to the wrist (in a similar
position to a watch). The Haptuator MkII response time is less than
1ms [10] so hardware latency is negligible, orders of magnitude
lower than our mean response times. The N -Back task stimuli were
shown on a monitor placed on a table in front of the participant.

3.7 Participants
Sixteen participants took part in the study (8 female, 7 male and
1 non-binary; mean = 28.4 years, SD = 5 years. Fifteen were right-
handed and one was left-handed, but all indicated they used their
right hand for input, so we presented stimuli to their left hand and
they provided input with their right hand. All participants reported
no uncorrected vision impairment and no hearing impairment.

4 RESULTS
4.1 Classification Error Rate
Mean classification error rate was 25.3% (SD 35.8%). Figure 3 shows
the mean classification error rate for each level of each parameter
mapping. Results are aggregated across N -back level for the plot.
Colour shows polarity and error bars show 95% CIs.

We applied the Aligned-Rank Transform [50] before analysis.
We used a repeated-measures ANOVA to investigate the effect of
parameter, polarity, and N -back level on error rate. Table 1 shows
the ANOVA results.

There was a significant effect of parameter on error rate (p <.001).
Post hoc comparisons of estimated marginal means found higher
error rates for roughness than all others (t ≥ 4.40, p <.001). No other
comparisons were significantly different (p ≥ .78).

2Haptuator: http://tactilelabs.com/products/haptics/haptuator-mark-ii-v2
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Table 1: ANOVA results for error rate.

Effect F p

Parameter 12.25 <.001
Polarity 1.78 .18
N-Back 2.89 .09
Parameter:Polarity 4.80 .003
Parameter:N.Back 2.85 .04
Polarity:N.Back 1.33 .25
Parameter:Polarity:N.Back .46 .71
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Figure 4: Mean classification response time.

There was a significant interaction effect between parameter
and polarity (p = .003). Post hoc comparisons only found previously
known differences between parameters (e.g., roughness vs tempo).
There were no significant differences between polarities within
individual parameters: roughness (t = 1.48, p = .82), noise (t = 1.05,
p = .97), duration (t = .66, p = .99), and tempo (t = .4, p = .99).

There was a significant interaction effect between parameter
and N -back task level (p = .04). Post hoc comparisons only revealed
previously found differences between parameters (e.g., roughness
vs noise), with higher error rates in the 2-back task.

4.2 Classification Response Time
Mean response time in the classification task was 2.15s (SD .83s).
Figure 4 shows the mean response time for each level of each
parameter mapping. Results are aggregated across N -back level for
the plot. Colour shows polarity and error bars show 95% CIs.

Times were not normally distributed (Shapiro-Wilk W = .92, p
<.001) so we applied the aligned-rank transform [50] to the time
data. We used a repeated-measures ANOVA to investigate the effect
of parameter, polarity, and N -back level on the response time time.
Table 2 shows the ANOVA results.

Table 2: ANOVA results for response time.

Effect F p

Parameter 5.11 .002
Polarity 15.85 <.001
N.Back 17.80 <.001
Parameter:Polarity 2.64 .05
Parameter:N.Back 0.79 .50
Polarity:N.Back 0.62 .43
Parameter:Polarity:N.Back 1.37 .25

0 20 40 60 80 100
Task-Load Index

aligned

inverted

Roughness Noise Duration Tempo

Figure 5: TLX scores for each parameter and polarity.

There was a significant effect of parameter on time (p = .002).
Post hoc comparisons of estimated marginal means found one sig.
difference: noise was faster than tempo (2.08s vs 2.27s, t = 3.84, p
<.001). No other comparisons were significant (p ≥ .06).

There was a significant effect of polarity on time (p <.001). The
post hoc comparison found that aligned stimuli were classified
more quickly (2.07s vs 2.24s, t = 3.98, p <.001).

There was a significant effect of N -back task level on time (p
<.001). The post hoc comparison found lower times for the 0-back
task (2.04s vs 2.27s, t = 4.22, p <.001).

4.3 Task-Load Index
Task-Load Index (TLX) survey responses were aggregated into ‘raw’
task workload scores [23]. Mean task workload score was 49.6 out
of 100 (SD 19.3). Figure 5 shows the mean scores for each parameter
and polarity. Error bars show 95% CIs.

We applied the aligned-rank transform [50] to workload scores.
We then used a repeated-measures ANOVA to investigate the effect
of parameter, polarity, and N -back level on workload. Table 3 shows
the ANOVA results.

There was a significant main effect of N -back level on workload
(p <.001). A post hoc comparison found lower workload scores for
the 0-back task than the 2-back task (41.9 vs 57.3, t = 9.82, p <.001).

5 DISCUSSION
Our aim was to investigate the effect of polarity on the usability of
data-sound and data-vibration mappings. It is reasonably assumed
that the most ‘intuitive’ mapping will also be the most usable, but
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Table 3: ANOVA results for TLX workload scores.

Effect F p

Parameter 2.15 .09
Polarity .07 .79
N.Back 96.4 <.001
Parameter:Polarity .72 .54
Parameter:N.Back .24 .87
Polarity:N.Back <.001 .98
Parameter:Polarity:N.Back .70 .55

this was not the case in this experiment. Even under two levels of
cognitive demand (induced via the N -back task), we did not find
much difference between the polarities.

Polarity had a significant effect on response time, which was
lower for the aligned mappings. However, there was no difference
in error rates between the polarities. There was also no effect of
polarity on perceived task workload, which was unexpected. Our
aligned mappings were taken from prior magnitude estimation
studies that identified these as the most ‘natural’ polarities for
these parameters based on user consensus. We expected the aligned
polarity to achieve lower error rates and lower cognitive workload,
since the inverted polarities were supposedly less intuitive. This
was not the case, however.

Mapping parameter had a significant effect on response accuracy
and time. Roughness had the highest error rate (37.9%) and unlike
the other mappings, this was fairly constant across all stimuli levels.
In contrast, noise and duration had n-shaped curves, showing better
performance at the lower and highest magnitude values (i.e., stimuli
levels 1 and 4 in Figure 3). This suggests that intermediate values
(i.e., levels 2 and 3) were more ambiguous in these conditions, but
the extreme values were easily identified (e.g., pure tones and pure
white noise for the noise parameter).

Response times also had slightly n-shaped curves for the rough-
ness, noise and tempo parameters, again suggesting that it was eas-
ier to interpret the lowest and highest magnitude values. Note that
the {duration × aligned} and {duration × inverted} curves change
in opposite directions; this reflects the impact of stimuli duration
on response time, since users can respond more quickly after the
shortest vibrations (aligned level 1, inverted level 4), etc.

Based on our findings, we recommend that designers evaluate
their cues under induced cognitive load (e.g., via the N -back task
or another ecologically valid task), as this can affect usability. We
found no evidence that polarity affects usability, although parameter
choice itself might. From our four parameters, auditory noise and
vibrotactile tempo are most promising, with especially fast and
accurate response to the lowest and highest magnitude values.

We used the N -back task protocol to induce cognitive load, since
data-sound and data-vibration mappings like these are often used
in cognitively demanding scenarios, e.g., driving [35, 36, 41], air
traffic control [1, 8, 9, 37], and in hospitals [3, 16, 31, 38]. The N -
back task level had an effect on TLX scores and response time; both
values were higher in the 2-back task than the 0-back task. Higher
TLX scores show the N -back task working as intended. The higher
response time shows the importance of evaluating data-sound and
data-vibration mappings in more ecologically valid circumstances,

under cognitive load, as this may impact cue usability, since users
need to divide attention between two tasks.

5.1 Design Implications
The findings from this research have implications relevant to both
methodological and design:

For methodology, we questioned the use of consensus-based
methods for establishing parameter mappings and found that whilst
the so-called ‘intuitive’ mapping has faster reaction times, there
was little effect on cognitive load or response accuracy. We also
found that induced cognitive load can influence perception. These
findings imply that time and/or resources would be better spent
evaluating new audio/vibrotactile cues in cognitively demanding
contexts, rather than conducting magnitude estimation studies that
establish mappings via end users instead of designers.

For design, our results can be used to inform the selection of
audio/vibrotactile mappings, especially in safety or reaction critical
usage scenarios. Our error rate and time results can inform the
choice of both parameter selection (e.g., auditory roughness vs
auditory noise?) and polarity selection (e.g., aligned vs inverted?).
Whilst our aim was not to establish a ‘best’ mapping, our results
show the promising performance of the auditory noise mapping,
regardless of polarity.

6 CONCLUSION
When mapping information to audio or vibration, designers need to
identify an appropriate scale (the rate of change) and polarity (the
direction of change) between a design parameter and data range.
Consensus-based methods like magnitude estimation can inform
design, on the assumption that the most ‘intuitive’ mapping will
also be the most usable. There is a cost associated with running
consensus-based studies like magnitude estimation, so our work
investigated if such studies actually do result in more effective and
usable mappings, especially in mentally demanding scenarios.

We selected four mappings from prior magnitude estimation
studies, evaluating their original and opposite polarities (i.e., aligned
and inverted). We induced cognitive load via the N -back task, to
evaluate cue usability in a demanding scenario. Our results suggest
that the most intuitive polarity (i.e., aligned with consensus) can
lead to faster classification, although error rates and workload were
not significantly different. This was unexpected as we anticipated
best performance from the aligned mapping. An implication of this
is that choosing polarity through consensus may not necessarily
yield a more usable polarity mapping.

Our results also characterise the effects of cognitive load on the
usability of non-visual information mappings. Designers need to
consider cognitive load when creating and evaluating mappings
for challenging usage contexts. Induced cognitive load is necessary
for reliable insight into cue usability and performance and this
can be achieved, e.g., through ecologically valid tasks or standard
protocols like the N -back task.
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