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Abstract: Using the Baum–Connes conjecture with coefficients, we develop aK-theory
formula for reduced C*-algebras of strongly 0-E-unitary inverse semigroups, or equiv-
alently, for a class of reduced partial crossed products. This generalizes and gives a new
proof of previous K-theory results of Cuntz, Echterhoff and the author. Our K-theory
formula applies to a rich class of C*-algebras which are generated by partial isometries.
For instance, as new applications which could not be treated using previous results, we
discuss semigroup C*-algebras of Artin monoids, Baumslag-Solitar monoids and one-
relator monoids, as well as C*-algebras generated by right regular representations of
semigroups of number-theoretic origin, and C*-algebras attached to tilings.

1. Introduction

Many prominent classes of C*-algebras, which played an important role in the devel-
opment of the subject, are generated by partial isometries, for example AF algebras
[5,20], Cuntz-Krieger algebras [16], graph algebras [47], tiling C*-algebras [26] or
semigroup C*-algebras [15], to mention just a few. The notions of inverse semigroups
and inverse semigroup C*-algebras [21,46] provide a natural and powerful framework
to study these C*-algebras and their properties. Another very general and powerful con-
cept is given by partial dynamical systems and the corresponding partial crossed product
construction (see [22]), which highlights the underlying dynamics at the heart of many
C*-algebra constructions, including the ones mentioned above. A connection between
inverse semigroups and partial dynamical systems, in particular in view of the corre-
sponding C*-algebra constructions, is provided by the notion of strongly 0-E-unitary
inverse semigroups, also called strongly E∗-unitary inverse semigroups (see [9,31,40]).

The goal of this paper is to compute K-theory for reduced C*-algebras of strongly 0-
E-unitary inverse semigroups, i.e., C*-algebras generated by left regular representations
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of these inverse semigroups. This is a very natural task, given the important role K-
theoryplays in classificationofC*-algebras [48] and in extracting interesting information
from C*-algebra constructions. In many cases, this task is challenging, but at the same
time also rewarding as computing K-theory often reveals much of the inner structure
of the C*-algebras in question. Our main theorem generalizes the K-theory result in
[43], which applied to inverse semigroups which are not only strongly 0-E-unitary but
satisfy the stronger property that they are 0-F-inverse semigroups and admit a partial
homomorphism to a groupwhich is injective onmaximal elements. Asmentioned above,
the class of C*-algebras arising from strongly 0-E-unitary inverse semigroups is very
rich, and therefore, our generalization allows us to treat many new classes of examples.
For instance, our K-theory formula applies to C*-algebras of tilings and their inverse
semigroups (see for instance [27–30]), which are interesting from the point of view of
dynamics as well as physics. While the main K-theoretic result in [43] did not apply to
all inverse semigroups attached to tilings, we can now compute K-theory for the reduced
C*-algebras of all tiling inverse semigroups.

The main result of this paper can also be reformulated in terms of partial dynamical
systems. In this context, it provides a K-theory formula for reduced crossed products of
partial dynamical systemswhich admit an invariant regular basis of compact open sets, in
the sense of Definition 2.12. This is the analogue of the corresponding notion for global
dynamical systems, as introduced in [13, § 6] and [14, § 2]. Thus the K-theory formula
derived in this paper generalizes the results in [13,14] from global dynamical systems to
partial dynamical systems. The original result in [13,14] leads for instance to a K-theory
formula for crossed products attached to topological full shifts, the topological version
of Bernoulli shifts (see [14,36]), while our generalization applies to partial dynamical
systems arising for instance from tilings where the original result was not applicable.

The main motivation for the work in [13,14] was to compute K-theory for semi-
group C*-algebras, i.e., C*-algebras generated by left regular representations of left-
cancellative semigroups. This class of C*-algebras also provides the main motivation
for this work. The K-theory formula developed in this paper applies to all semigroups
which satisfy the independence condition from [32] (see Definition 2.7) and embed into
a group which satisfies the Baum–Connes conjecture with coefficients [2,52]. In other
words, the reversibiliby condition (which is part of the Ore condition) in [13] and—
even better—the Toeplitz condition in [14] are no longer needed. As mentioned in [15,
§ 5.11], such a more general formula would be interesting as it opens the way for new
applications. For example, we can now computeK-theory for the semigroupC*-algebras
of all Baumslag-Solitar monoids, while the Baumslag-Solitar monoids given by presen-
tations of the form

〈
a, b | a = blabk

〉+
with k > 1 were not accessible previously as

they do not satisfy the Toeplitz condition, no matter which group embedding we choose.
Other examples where the Toeplitz condition has not been verified but where we can
now nevertheless compute K-theory include semigroup C*-algebras of Artin monoids
and certain one-relator monoids as well as C*-algebras generated by right regular rep-
resentations of ax + b-type semigroups of number-theoretic origin. As an application,
we present a complete classification result for semigroup C*-algebras of a class of one-
relator monoids. The novelty here is that this new classification result for the first time
covers a class of semigroups which can be characterized by abstract properties.

Let us now present the main results of this paper.

Theorem 1.1. Let S be a countable inverse semigroup with semilattice of idempotents
E. Assume that S admits an idempotent pure partial homomorphism to a group which
satisfies the Baum–Connes conjecture with coefficients. Then the K-theory of the reduced
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C*-algebra of S is given by

K∗(C∗
λ(S)) ∼=

⊕

[d]∈S\E×
K∗(C∗

λ(Sd)).

Here S\E× denotes the set of orbits under the natural action of S on the non-zero
elements E× of E , and Sd = {s ∈ S: s−1s = ss−1 = d

}
. Note that Sd is a group with

identity d. It is worth mentioning that we are free to choose an idempotent pure partial
homomorphism, in particular the target group; it does not have to be the universal one.
This degree of flexibility turns out to be very useful in order to check the hypothesis of
Theorem 1.1, as we will see in concrete examples.

An alternative reformulation of Theorem 1.1 in terms of partial dynamical systems
reads as follows: Let G be a countable discrete group, X a second countable totally
disconnected locally compact Hausdorff space, and G � X a partial dynamical system,
given by Ug−1 → Ug, x �→ g.x . A family V of compact open subsets of X is called a
G-invariant regular basis for the compact open subsets of X if for all g ∈ G, Vg−1 :={
V ∈ V: V ⊆ Ug−1

}
is a regular basis for the compact open subsets of Ug−1 , and we

have g.Vg−1 = Vg for all g ∈ G. For instance, as mentioned above, topological full
shifts always admit such a basis (see [14, Example 3.1]). Furthermore, partial dynamical
systems arising from tilings (as in Sect. 4.5) or left regular representations of semigroups
(as in Sects. 4.1–4.4) also admit such bases.

Theorem 1.2. Assume that G � X admits aG-invariant regular basisV for the compact
open subsets of X and that G satisfies the Baum–Connes conjecture with coefficients.
Then the K-theory of the reduced partial crossed product of G � X is given by

K∗(C0(X) �r G) ∼=
⊕

[V ]∈G\V×
K∗(C∗

λ(GV )).

Here G\V× denotes the set of orbits under the G-action on the non-empty elements
V× of V , and GV = {g ∈ G: g.V = V }.

Applied to the case of semigroup C*-algebras, we obtain the following corollary of
Theorem 1.1:

Corollary 1.3. Let P be a countable subsemigroup of a group which satisfies the Baum–
Connes conjecture with coefficients. Assume that P satisfies the independence condition.
Then the K-theory of the semigroup C*-algebra of P is given by

K∗(C∗
λ(P)) ∼=

⊕

[X ]∈P\J ×
P

K∗(C∗
λ(PX )).

Here J ×
P is the set of non-empty constructible right ideals of P , as introduced in

[32], P\J ×
P is basically the set of orbits for the natural P-action on J ×

P and more
precisely the set of equivalence classes of the equivalence relation on J ×

P generated by
X ∼ pX = {px : x ∈ X} for all X ∈ J ×

P and p ∈ P , and PX is the group of bijections
X → X which can be expressed as compositions of finitely many maps, each of which
given by left multiplication by a fixed semigroup element or the (set-theoretical) inverse
of such a left multiplication map.

Note that for every countable subsemigroup of a group which satisfies the Baum–
Connes conjecture with coefficients, Theorem 1.1 always gives us—no matter whether
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P satisfies the independence condition or not—a K-theory formula for the reduced C*-
algebra of the left inverse hull Il(P) of P , i.e., the inverse semigroup of partial bijections
of P generated by the left multiplication maps P → pP, x �→ px , for p ∈ P .

In the particular case of right LCM monoids (monoids for which all constructible
right ideals are principal), the K-theory formula in Corollary 3.21 specializes as follows:

Corollary 1.4. Let P be a countable right LCM monoid, and assume that P embeds
into a group which satisfies the Baum–Connes conjecture with coefficients. Then the
K-theory of the semigroup C*-algebra of P is given by

K∗(C∗
λ(P)) ∼= K∗(C∗

λ(P∗)).

Here P∗ is the group of invertible elements in P .
In all the above-mentioned results, the K-theory isomorphisms are implemented by

concrete homomorphisms. If the groups in question satisfy the strong Baum–Connes
conjecture in the sense of [15, Definition 3.4.17], then we can actually replace K-theory
isomorphism by KK-equivalence. Moreover, it is worth pointing out that the Baum–
Connes conjecture is not really needed for all coefficients, but only for particular coef-
ficients, as we will see. In addition, it is possible to add a coefficient algebra together
with an automorphic action as in [14].

As for the proofs of the main results, the main innovation is to utilize the Morita
enveloping action [1,22], which allows us to identify up to Morita equivalence—and
hence in K-theory—a partial crossed product with an associated global crossed product.
However, even ifwe start with a partial dynamical systemon a locally compactHausdorff
space, i.e., on a commutative C*-algebra, the Morita enveloping action will not be on a
commutative C*-algebra anymore. Thismeans that theK-theory results in [13,14] do not
apply. Nevertheless, it turns out that using theBaum–Connes conjecturewith coefficients
in the form of the Going-Down principle [10,17,18,39], it is possible to compute K-
theory for the crossed product of the Morita enveloping action by comparing it to a
discrete version. This part of the proof is in spirit very similar to the strategy in [13,14].
However, even in the setting of [13,14], i.e., for global dynamical systems admitting an
invariant regular basis of compact open sets, the proof in the present paper differs from
the one in [13,14] because theMorita enveloping action is always (except in trivial cases)
defined on a noncommutative C*-algebra. For global dynamical systems, the route in
[13,14] is more direct as it is not necessary to pass over to the Morita enveloping action.
But for partial dynamical systems which do not admit a globalization in the topological
setting, i.e., for which the underlying space of the (topological) enveloping action is not
Hausdorff (see [1, § 1] for examples), the passage to the Morita enveloping action is
absolutely crucial as it allows us to apply the Going-Down principle.

The paper is structured as follows: We start with a preliminary section (Sect. 2) on
strongly 0-E-unitary inverse semigroups, partial dynamical systems, Morita enveloping
actions and the Going-Down principle. In the main section, Sect. 3, we introduce the
discrete version of the crossed product of the Morita enveloping action, construct a KK-
element (both in Sect. 3.1) and show that this element implements a KK-equivalence
between the crossed product of the Morita enveloping action and its discrete version.
This uses theGoing-Down principle as well as inductive limit decompositions (Sect. 3.2)
and a careful analysis of the finite-dimensional case, where our KK-element can be de-
scribed by a finite-dimensional matrix, and showing invertibility boils down to decom-
posing this matrix into the sum of the identity matrix and a nilpotent matrix (Sect. 3.3).
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In Sect. 3.4, we construct explicit homomorphisms which induce the K-theory isomor-
phisms in Theorems 1.1, 1.2 and Corollaries 1.3, 1.4. We complete the proof of our
main theorems in Sect. 3.5. Finally, we present applications in Sect. 4. We compute
K-theory for semigroup C*-algebras of Artin monoids, Baumslag-Solitar monoids and
one-relator monoids. In the latter case, our K-theory formula leads to a classification
result for semigroup C*-algebras. Moreover, we compute K-theory for the C*-algebras
generated by right regular representations of ax+b-type semigroups of number-theoretic
origin. As a consequence, we deduce that for this class of semigroups, the C*-algebras
generated by their left and right regular representations are KK-equivalent. This is an
interesting phenomenon which already appeared in [14, § 6] and [34, § 4] (see also the
discussion in [15, § 5.11]). Finally, we compute K-theory for reduced C*-algebras of
tiling and point-set inverse semigroups as well as of another class of closely related
inverse semigroups.

I would like to thank C.F. Sehnem for pointing out that the classification result in
Corollary 4.1 covers the examples in [25, Corollaries 5.4 and 5.5].

2. Preliminaries

Let us first recall some basic structures and constructions which will play an important
role in this paper.

2.1. Inverse semigroups. The interested reader may consult [15,21,22,46] for more
details and references concerning the contents of this subsection.

Definition 2.1. An inverse semigroup is a semigroup S with the property that for every
s ∈ S, there exists a unique element in S, denoted by s−1, such that s = ss−1s and
s−1 = s−1ss−1.

An inverse semigroup with zero is an inverse semigroup S together with a distin-
guished element 0 ∈ S such that 0 · s = 0 = s · 0 for all s ∈ S.

One way to think about inverse semigroups is to view them as semigroups of partial
bijections on a given set. The multiplication is then given by composition of partial
bijections (where the domains and ranges have to be adjusted accordingly).

Note that, given an inverse semigroup S, we can always construct an inverse semi-
group with zero by adding 0: As the underlying set, consider S ∪ {0}, keep the multi-
plication on S, and define 0 · s := 0 and s · 0 := 0 for all s ∈ S as well as 0 · 0 := 0.
Therefore, in this paper, we will only consider inverse semigroups with zero. For the
sake of brevity, we will simply write “inverse semigroup” instead of “inverse semigroup
with zero”.

For the study of semigroup C*-algebras, the following examples of inverse semi-
groups are important: Let P be a left cancellative semigroup. Let Il(P) be the smallest
inverse semigroup of partial bijections on P containing all partial bijections of the form
P → pP, x �→ px which are given by left multiplication by a semigroup element
p ∈ P as well as the partial bijection ∅ → ∅. The later element is denoted by 0 and is
the zero element in Il(P). We call Il(P) the left inverse hull of P .

The following is an important piece of structure in inverse semigroups:

Definition 2.2. The semilattice of idempotents of an inverse semigroup S is given by
E := {s−1s: s ∈ S

} = {ss−1: s ∈ S
} = {e ∈ S: e = e2

}
.

Given d, e ∈ E , we write d ≤ e if d = d · e.
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If we view inverse semigroups as sets of partial bijections, then the semilattice of
idempotents can be identified with the domains and ranges of the partial bijections.
For example, if our inverse semigroup is given by the left inverse hull Il(P) as above,
then its semilattice of idempotents can be identified with the semilattice of subsets of P
which can be obtained from P by finitely many operations, each of which is given by
left multiplication by a fixed semigroup element of P or by taking the pre-image under
left multiplication by a fixed semigroup element. These subsets are called constructible
right ideals of P , and we write JP := E(Il(P)).

Let us now recall the notion of strongly 0-E-unitary inverse semigroups from [9,31].
Given an inverse semigroup S with zero 0, set S× := S \ {0} and E× := E \ {0}. Let G
be a group with identity 1.

Definition 2.3. A map σ : S× → G is called a partial homomorphism if σ(st) =
σ(s)σ (t) for all s, t ∈ S× with st ∈ S×.

A map σ : S× → G is called idempotent pure if σ−1(1) = E×.
We call S strongly 0-E-unitary if it admits an idempotent pure partial homomorphism

to a group.

We recall the following useful observation.

Lemma 2.4 (Lemma 5.5.7 in [15]). Let S be an inverse semigroup with an idempotent
pure partial homomorphism σ : S× → G. Let s, t be elements of S×. If s−1s = t−1t
and σ(s) = σ(t), then s = t .

For example, suppose P is a subsemigroup of a group G. Then for every partial
bijection s ∈ Il(P)×, there is a unique element σ(s) ∈ G such that s(x) = σ(s) · x
for all x in the domain of s. This allows us to define a map σ : Il(P)× → G by
sending s ∈ Il(P)× to σ(s), and it is easy to see that this is an idempotent pure partial
homomorphism.

Let us now construct reduced C*-algebras of inverse semigroups. We start with left
regular representations. Let S be an inverse semigroup. For s ∈ S, define λs : �2S× →
�2S× by λs(δx ) := δsx if s−1s ≥ xx−1 and λs(δx ) := 0 otherwise. Here δx is the
element of �2S× given by δx (y) = 1 if x = y and δx (y) = 0 if x �= y. Now we consider
the C*-algebra generated by the left regular representation λ.

Definition 2.5. The reduced C*-algebra of S is given by C∗
λ(S) := C∗({λs : s ∈ S}) ⊆

L(�2S×).

Note that C∗
λ(S) contains C∗(E) := C∗({λe: e ∈ E}) as a commutative sub-C*-

algebra.
If we start with an inverse semigroup and adjoin a zero as we did above, then it is

easy to see that the reduced C*-algebra of the original inverse semigroup (as defined in
[46]) coincides with our reduced C*-algebra of the new inverse semigroup with zero.

Moreover, it is worth pointing out that there is a full version as well, i.e., the C*-
algebra which is universal for all representations of our inverse semigroup as partial
isometries. We will not need the full version in this paper. For semilattices, however, the
reduced and full versions always coincide, which is why we simply write C∗(E). For
simplicity, given e ∈ E , we write e for the element λe ∈ C∗(E). Furthermore, there are
tight versions of the reduced and full C*-algebras attached to inverse semigroups, which
are given by natural quotients.

Let us now recall the construction of reduced semigroup C*-algebras, i.e., C*-
algebras generated by left regular representations of left-cancellative semigroups. Given
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such a semigroup P , define for every p ∈ P the isometry Vp : �2P → �2P by
Vp(δx ) := δpx .

Definition 2.6. The reduced semigroup C*-algebra of P is given by C∗
λ(P) := C∗

(
{
Vp: p ∈ P

}
) ⊆ L(�2P).

Let us now compareC∗
λ(P)withC∗

λ(Il(P)).We denote by p the partial bijection P ∼=
pP, x �→ px , which lies in Il(P). As explained in [42, § 3.2] or [15, Lemma 5.6.11],
there always exists a surjective homomorphism

C∗
λ(Il(P)) � C∗

λ(P) sending λp to Vp. (1)

To explain when this homomorphism is an isomorphism, we need the independence
condition from [32].

Definition 2.7. A left cancellative semigroup P is said to satisfy the independence con-
dition if for every X ∈ JP and all X1, . . . , Xn ∈ JP , X =⋃n

i=1 Xi implies that X = Xi
for some 1 ≤ i ≤ n.

The following result has been observed in [42] (see also [15, Proposition 5.6.37]):

Proposition 2.8. Let P be a subsemigroup of a group. Then the map in (1) is an isomor-
phism if and only if P satisfies the independence condition.

2.2. Partial dynamical systems. Let us now recall the notion of partial dynamical sys-
tems and explain the connection to inverse semigroups. We refer to [1,15,21,22,38] for
more details and references concerning the contents of this subsection.

All the groups in this paper are discrete (but see the beginning of Sect. 3 for a
discussion about this). Let G be a group with identity 1 and X a topological space
(which for us will always be locally compact and Hausdorff).

Definition 2.9. A partial dynamical system G � X is given by homeomorphisms αg :
Ug−1 → Ug, x �→ g.x for all g ∈ G, whereUg are open subsets of X , such thatα1 = idX
(in particular, U1 = X ) and for all g, h ∈ G, we have h.(U(gh)−1 ∩Uh−1) = Uh ∩Ug−1

and (gh).x = g.(h.x) for all x ∈ U(gh)−1 ∩Uh−1 .

The dual partial action of α is given by α∗
g : C0(Ug−1) → C0(Ug), f �→ f (g−1.�).

α∗ is a partial action of G on C0(X) in the sense of [38]. Now recall that the reduced
crossed product C0(X) �α∗,r G (or just C0(X) �r G if α∗ is understood) is given

by the completion of C0(X) �
alg G :=

{∑
g fgδg ∈ Cc(G,C0(X)): fg ∈ C0(Ug)

}
or

C0(X) �
�1 G :=

{∑
g fgδg ∈ �1(G,C0(X)): fg ∈ C0(Ug)

}
under a norm induced

by a concrete representation generalizing the construction of reduced crossed prod-
ucts for global dynamical systems. Here the *-algebra structure on C0(X) �

alg G :={∑
g fgδg ∈ Cc(G,C0(X)): fg ∈ C0(Ug)

}
or C0(X) �

�1

G :=
{∑

g fgδg ∈ �1(G,C0(X)): fg ∈ C0(Ug)
}
is givenby

(∑
g fgδg

)
·(∑h f ′

hδh
) :=

∑
g,h α∗

g(α
∗
g−1( fg) f

′
h)δgh as multiplication and

(∑
g fgδg

)∗ := ∑g α∗
g( f

∗
g−1)δg as in-

volution. We refer for more details to [38] or [15, § 5.5.2]. Again, there is also a notion
of full crossed products for partial dynamical systems, which we will not need.
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Example 2.10. Suppose that S is an inverse semigroup with an idempotent pure partial
homomorphism σ : S× → G to a group G. Let E be the semilattice of idempotents of
S. Define Ê to be the space of non-zero homomorphisms E → {0, 1} sending 0 ∈ E to
0. We equip Ê with the topology of pointwise convergence. It is easy to see that Ê is
canonically homeomorphic to Spec (C∗(E)). Let us now construct a partial dynamical
system G � Ê as follows: The dual partial action α∗ of G on D := C∗(E) ∼= C0(Ê)

is given by Dg−1 := span(
{
s−1s: s ∈ S×, σ (s) = g

}
) and α∗

g : Dg−1 → Dg, s−1s �→
ss−1. To describe the partial action α ofG on Ê , setUg := Spec (Dg) ⊆ Spec (D) ∼= Ê .
It is easy to check that Ug−1 = {χ ∈ Ê : ∃ s ∈ S×, σ (s) = g such that χ(s−1s) = 1

}
.

Given χ ∈ Ug−1 and s ∈ S× with σ(s) = g and χ(s−1s) = 1, we then have αg(χ)(e) =
χ(s−1es) for all e ∈ E .

As observed in [35] (see also [15,Corollary 5.5.23]),wehave an explicit isomorphism

C∗
λ(S) ∼= D �r G, λs �→ (ss−1)δσ(s) for s ∈ S×. (2)

Note that the partial dynamical systemG � D restricts to a partial dynamical system
G � E . To see this, we need the following observation:

Lemma 2.11. E× ∩ Dg−1 = {s−1s: s ∈ S×, σ (s) = g
}
.

Proof. “⊇” is clear. To prove “⊆”, take e ∈ E× with e ∈ Dg−1 . Since Dg−1 :=
span(

{
s−1s: s ∈ S×, σ (s) = g

}
), there must exist d1, . . . , dn ∈ {

s−1s: s ∈ S×,
}

σ(s) = g and α1, . . . , αn ∈ C such that
∥∥e −∑i αi di

∥∥ < 1
4 . Without loss of generality

we may assume that {d1, . . . , dn} is multiplicatively closed. Then, by functional calcu-
lus, we deduce that e ∈ C∗({d1, . . . , dn}) = span({d1, . . . , dn}). Hence it follows that
e =∨i edi . But then [42, Proposition 3.4] implies that e = edi for some 1 ≤ i ≤ n (see
also [14, Definition 2.6 and Remark 2.7]). Thus e = edi ∈ {s−1s: s ∈ S×, σ (s) = g

}
.

��
As a consequence, it follows that G � D restricts to the partial dynamical system
G � E given by Eg−1 := E ∩ Dg−1 = {s−1s: s ∈ S×, σ (s) = g

}
and g.(s−1s) =

ss−1 ∈ Eg .
We have thus seen that given an inverse semigroup with an idempotent pure partial

homomorphism to a group, we can construct a partial dynamical system of that group
such that its reduced crossed product is canonically isomorphic to the reducedC*-algebra
of the original inverse semigroup. But which partial dynamical systems arise in this way
from inverse semigroups? This question leads to the following generalized notion of
invariant regular basis of compact open subsets. The corresponding notion for global
dynamical systems has been introduced in [13,14]. For the convenience of the reader,
we recall the notion of regular basis from [14, Definition 2.9]: A family V of non-empty
compact open subsets of a totally disconnected locally compact Hausdorff space U is
called a regular basis for the compact open subsets of U if V ∪ {∅} is closed under
finite intersections, V generates the compact open subsets of U , and V is independent
in the sense that whenever V, V1, . . . , Vk ∈ V satisfy V =⋃k

i=1 Vi , then we must have
V = Vi for some 1 ≤ i ≤ k.

Definition 2.12. Let G � X be a partial dynamical system. A family V of compact
open subsets of X is called a G-invariant regular basis of compact open subsets of X
if for all g ∈ G, Vg−1 := {V ∈ V: V ⊆ Ug−1

}
is a regular basis for the compact open

subsets of Ug−1 , in the sense of [14, Definition 2.9], and g.Vg−1 = Vg (i.e., g.V lies in
Vg for all V ∈ Vg−1 ).
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Note that V = V1, so that V is a regular basis for the compact open subsets of X in
the sense of [14, Definition 2.9]. In particular, X must be locally compact Hausdorff and
totally disconnected.

Let us now explain why the partial dynamical systems appearing in Definition 2.12
are precisely those which arise from inverse semigroups as in Example 2.10. More
precisely, the following constructions are—up to isomorphism—inverse to each other:

(∗) Given an inverse semigroup S with an idempotent pure partial homomorphism
σ : S× → G to a group G, let G � X := Ê be as in Example 2.10. Define
V := {supp(e): e ∈ E}, where we make use of the canonical isomorphism D :=
C∗(E) ∼= C0(X) under which e is identified with the characteristic function 1supp(e)
on supp(e).

(∗∗) Given a partial dynamical system G � X and a G-invariant regular basis V for
the compact open subsets of X , construct an inverse semigroup S by setting S :={
(g, V ): g ∈ G, ∅ �= V ∈ Vg−1

} ∪ {0} and by defining multiplication as (h,W )

(g, V ) := (hg, g−1(W ∩ g.V )) if W ∩ g.V �= ∅ and (h,W )(g, V ) := 0 otherwise.
Moreover, define σ : S× → G, (g, V ) �→ g.

It is easy to check that these constructions are well-defined. For instance, that Vg−1 gen-
erates Ug−1 in (∗) follows from Dg−1 = span(Eg−1) and Vg−1 = {supp(e): e ∈ Eg−1

}
.

Moreover, it is easy to see that S as defined in (∗∗) is a well-defined inverse semigroup
with (g, V )−1 = (g−1, g.V ) and semilattice of idempotents given by {(1, V ): ∅ �= V ∈}
V ∪ {0}, and that σ is an idempotent pure partial homomorphism.

Lemma 2.13. The constructions in (∗) and (∗∗) are inverse to each other.More precisely,
the following are true:

(i) If we start with an inverse semigroup S and an idempotent pure partial homomor-
phism σ : S× → G to a group G, construct G � V and V as in (∗), and then the
inverse semigroup S̃ with idempotent pure partial homomorphism σ̃ as in (∗∗), then
we have an isomorphism ρ : S ∼= S̃, S× � s �→ (σ (s), supp(s−1s)), 0 �→ 0 such
that σ̃ ◦ ρ = σ .

(ii) If we start with a partial dynamical system α : G � X and a G-invariant regular
basisV for the compact open subsets of X, construct S with semilattice of idempotents
E as in (∗∗) and then construct a partial dynamical system α̃ : G � X̃ and a G-
invariant regular basis Ṽ for the compact open subsets of X̃ as in (∗), then there
is a homeomorphism ϕ : X̃ ∼= X sending χ ∈ X̃ to the unique point x ∈ X with
the property that for all V ∈ V , x lies in V if and only if χ(1, V ) = 1, and this
homeomorphism ϕ gives rise to a conjugacy between α̃ and α sending V to Ṽ .

Proof. (i) To see that ρ is a semigroup homomorphism, observe that (σ (s), supp(s−1s))
(σ (t), supp(t−1t)) = (σ (s)σ (t), σ (t)−1.(supp(s−1s)∩σ(t).supp(t−1t))). So it suf-
fices to show that σ(t)−1.(supp(s−1s) ∩ σ(t).supp(t−1t)) = supp((st)−1(st)). We
have χ ∈ supp((st)−1(st)) if and only if χ(t−1t) = 1 and (σ (t).χ)(s−1s) = 1 if
and only if χ ∈ σ(t)−1.(supp(s−1s) ∩ σ(t).supp(t−1t)). The inverse S̃ → S of ρ is
given as follows: Given (g, V ) ∈ S̃×, write V = supp(e) for some e ∈ E×. Then
V ⊆ Ug−1 implies e ∈ Dg−1 , which by Lemma 2.11 yields that there exists s ∈ S×
with σ(s) = g and e = s−1s. This element s is uniquely determined by Lemma 2.4.
Now define S̃× → S by sending (g, V ) to this element s and 0 to 0. By construction,
this is the inverse of ρ. It is clear that σ̃ ◦ ρ = σ .
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(ii) By construction, we have an isomorphism E ∼= V sending (1, V ) to V and 0 to ∅.
Thus we obtain X̃ = Ê ∼= V̂ ∼= X , where the first equality is by construction (see
(∗)), the first homeomorphism is obtained by dualizing the isomorphism E ∼= V , and
the third homeomorphism is given by the composite V̂ ∼= SpecC∗({1V : V ∈ V}) =
SpecC0(X) ∼= X , where we used that V is a regular basis for the compact open
subsets of X . Following the definitions, it is easy to check that we indeed get the
homeomorphism ϕ as defined in (ii). Clearly, ϕ(supp(e, V )) = V for all V ∈ V , so
that ϕ sends Ṽ to V . Moreover, if ϕ(χ) = x , then we have χ ∈ Ũg−1 if and only if
there exists V ∈ Vg−1 with χ(1, V ) = 1 if and only if there exists V ∈ Vg−1 with
x ∈ V if and only if x ∈ Ug−1 , where g ∈ G is arbitrary. This shows that ϕ sends

Ũg−1 toUg . Finally, suppose we have ϕ(χ) = x for some χ ∈ Ũg−1 , i.e., there exists
V ∈ Vg−1 with χ(1, V ) = 1. Then α̃g(χ)(1,W ) = χ((g, V )−1(1,W )(g, V )) =
χ(1, αg−1(W ) ∩ V ) = 1 if and only if x ∈ αg−1(W ) ∩ V if and only if αg(x) ∈ W .
This implies ϕ(α̃g(χ)) = αg(x). So this shows that ϕ ◦ α̃g = αg ◦ ϕ for all g ∈ G,
as desired.

��
Remark 2.14. Under the correspondence in Lemma 2.13, countability of S corresponds
to second countability of the base space X of the partial dynamical system G � X .

2.3. The Morita enveloping action. This subsection is based on [1]. We follow the
exposition in [22, § 26–§ 28]. Let G � D be a partial dynamical system on a C*-
algebra D given by isomorphisms Dg−1 ∼= Dg, d �→ g.d. We start by defining A as a
sub-C*-algebra of (D �r G) ⊗ K(�2G) by setting

A := span(
{
dδζ−1η ⊗ εζ,η: ζ, η ∈ G, d ∈ Dζ−1η

}
) ⊆ (D �r G) ⊗ K(�2G).

Here εζ,η is the canonical partial isometry fromCδη toCδζ . A is called the smash product
in [22, § 26]. Next, we define A as a sub-C*-algebra of (D �r G) ⊗K(�2G) by setting

A := span(
{
dδζ−1d ′δη ⊗ εζ,η: ζ, η ∈ G, d ∈ Dζ−1 , d ′ ∈ Dη

}
) ⊆ (D �r G) ⊗ K(�2G).

A is called the restricted smash product in [22, § 26]. By construction, A is a sub-C*-
algebra of A. A comes with a G-action, where g ∈ G acts via Ad (1 ⊗ λg). Here λ

is the left regular representation of G on �2G. This G-action G � A is called the
Morita enveloping action of G � D. It restricts to a partial action G � A. The natural
embedding A ↪→ A extends to an embedding A �r G ↪→ A �r G, and it is shown in
[22, Theorem 28.8] that we can identify A �r G with a full corner in A �r G via this
embedding. Hence we obtain a Morita equivalence A �r G ∼M A �r G.

Furthermore, it is shown in [22, Theorem 28.5] that G � D is Morita equivalent
to G � A, in a G-equivariant way. Since we will need the particular form of the
imprimitivity bimodule constructed in [22, § 28], let us recall it now. Let M be the
subspace M := span(

{
Dηδη ⊗ ε1,η: η ∈ G

}
) of A. Then upon identifying D = D1

with D1δ1 ⊗ ε1,1, we obtain a D-valued inner product by setting D〈x, y〉 := xy∗.
We obtain an A-valued inner product by setting 〈x, y〉A := x∗y. In this way, together
with the canonical module structures, M becomes a D-A-imprimitivity bimodule. To
define a partial G-action on M , define Mg := span(

{
DgDg−1Dηδη ⊗ ε1,η: η ∈ G

}
)

and Mg−1 → Mg by setting g.(dδh ⊗ ε1,η) := (g.d)δgη ⊗ ε1,gη. It is shown in [22,
Theorem 28.7] thatM gives rise to aMorita equivalence D�r G ∼M A�r G. Following
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the proof of [22, Theorem 28.7], we obtain a concrete (D�r G)-(A�r G)-imprimitivity

bimodule as follows: First form the linking algebra L =
(

D M
M∗ A

)
of M . The partial

G-actions on the components of L give rise to a partial dynamical systemG � L . Then

M �r G :=
(
D 0
0 0

)
(L �r G)

(
0 0
0 A

)
(3)

gives rise to the desired (D �r G)-(A �r G)-imprimitivity bimodule. If we denote by
�g , g ∈ G, the canonical unitaries in (the multiplier algebra of) A �r G, A �r G and
L �r G implementing the G-actions, then M �r G can be alternatively described as
M �r G = span(

{
x�g: x ∈ M, g ∈ G

}
) (where we identify x with

(
0 x
0 0

)
), with left

D �r G-module structure given by (dδg) · (x�h) = g.((g−1.d)x)�gh , D �r G-valued
inner product given by D�r G

〈
x�g, y�h

〉 = g.(D
〈
g−1.x, h−1.y

〉
)δgh−1 , right A �r G-

module structure given by (x�g) · (a�h) = g.((g−1.x)a)�gh andA�r G-valued inner
product given by

〈
x�g, y�h

〉
A�r G

= g−1.(〈x, y〉A)�g−1h .
All in all, we obtain that D �r G ∼M A �r G ∼M A �r G, so that K∗(D �r G) ∼=

K∗(A �r G). Hence it suffices to compute the K-theory for A �r G.

2.4. The Going-Down principle. Let us recall the Going-Down principle from [10,17,
18,39] (see also [15, § 3.5]). It will play a crucial role in the proofs of our main results.

Let us focus on the version of the Going-Down principle for discrete groups. (There
is also a general version for locally compact groups.) Let G be a discrete group and A
and A be G-algebras. Let x ∈ KKG(A, A). Given a subgroup F of G, we denote by
resGF (x) ∈ KK F (A, A) the restriction of x. We write jG(x) ∈ KK (A �r G, A �r G)

for the descent of x.

Proposition 2.15. (1) If G satisfies the Baum–Connes conjecture for A and A, and for
every finite subgroup F of G, the Kasparov product with jF (resGF (x)) induces an
isomorphism � ⊗ jF (resGF (x)) : K∗(A �r F) ∼= K∗(A �r F), then the Kasparov
productwith jG(x) induces an isomorphism�⊗ jG(x) : K∗(A�r G) ∼= K∗(A�r G).

(2) If G satisfies the strongBaum–Connes conjecture in the senseof [15,Definition3.4.17],
and for every finite subgroup F of G, jF (resGF (x)) is a KK-equivalence between
A�r F and A�r F, then jG(x) is a KK-equivalence betweenA�r G and A�r G.

3. K-Theory for Crossed Products of Morita Enveloping Actions

Let us now prove the main results of this paper. We first explain the setting. Let us keep
the convention that all our groups are discrete. Thinking about inverse semigroups, which
are often viewed as discrete objects, this is a natural assumption. And aswewill see, in all
our examples, the groups will be discrete. However, the work in [1] on partial dynamical
systems and their Morita enveloping actions applies to all locally compact groups, and
from that point of view, it is reasonable to expect that our results should extend to the
setting of locally compact groups. Let S be a countable inverse semigroup, G a group,
and σ : S× → G an idempotent pure partial homomorphism. By restricting to the group
generated by the image of σ if necessary, wemay always assume thatG is countable. Let
E be the semilattice of idempotents in S. As in Example 2.10, we construct the partial
dynamical system G � D = C∗(E), denoted by Dg−1 → Dg, d �→ g.d, and its
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restriction G � E (introduced after Example 2.10), denoted by Eg−1 → Eg, e �→ g.e.
The smash product A ⊆ (D �r G)⊗K(�2G) and the Morita enveloping action G � A
are defined as in Sect. 2.3.

3.1. The discrete version. We first define discrete versions of A and G � A.

Definition 3.1. Let A ⊆ K(�2(E × G)) be given by

A := span(
{
ε(d,ζ ), (η−1ζ.d,η): ζ, η ∈ G, d ∈ Eζ−1η

}
).

To define a G-action G � A, we let an element g ∈ G act on A by Ad (1 ⊗ λg) under
the canonical identification �2(E × G) ∼= �2E ⊗ �2G.

Note that both G-actions G � A and G � A are given by conjugation with the
same unitaries.

To compare G � A to G � A, we construct the following homomorphism.

Definition 3.2. We define

� : A → K(�2E) ⊗ A, ε(d,ζ ), (η−1ζ.d,η) �→ εd, η−1ζ.d ⊗ (dδζ−1η ⊗ εζ,η).

It is easy to see that � is a well-defined homomorphism. For instance, to see that
it is multiplicative, first note that ε(d,ζ ), (η−1ζ.d,η) · ε(e,η′), (θ−1η′.e,θ) = 0 if and only if
η−1ζ.d �= e orη �= η′ if andonly if

(
εd, η−1ζ.d ⊗ (dδζ−1η ⊗ εζ,η)

)·(εe, θ−1η′.e ⊗ (eδ(η′)−1θ

)

⊗εη′,θ ) = 0. If η−1ζ.d = e and η = η′, then
(
εd, η−1ζ.d ⊗ (dδζ−1η ⊗ εζ,η)

) ·
(
εη−1ζ.d, θ−1ζ.d ⊗ ((η−1ζ.d)δη−1θ ⊗ εη,θ )

)

= εd,θ−1η.d ⊗ (dδζ−1θ ⊗ εζ,θ ).

This shows that� is multiplicative.Moreover, if we equipK(�2E)⊗Awith theG-action
given by the tensor product of the trivial G-action onK(�2E) and the Morita enveloping
action G � A, then it is easy to see that � is G-equivariant. Hence � gives rise to the
element

x := [�] ∈ KKG(A, K(�2E) ⊗ A).

3.2. Inductive limit decompositions. Our goal is to apply the Going-Down principle to
the element x we constructed. For that purpose, we have to show that for every finite
subgroup F of G, � ⊗ jF (resGF (x)) : K∗(A �r F) → K∗((K(�2E) ⊗ A) �r F) is an
isomorphism. In order to reduce to finite-dimensional subalgebras, we develop inductive
limit decompositions in this subsection.

Let us fix a finite subgroup F of G. Let us also fix a finite F-invariant subset � of
G. We show the following three lemmas:

Suppose that we are given a family
{
Eζ,η

}
ζ,η∈�

of finite subsetsEζ,η of Eζ−1η. Let us

construct a family
{
Eζ,η

}
ζ,η∈�

as follows: Divide � × � into pairwise disjoint subsets
of the form {(γ ζ, γ η): γ ∈ F}∪ {(γ η, γ ζ ): γ ∈ F}. Start with a pair (ζ, η) from one of
these subsets. If η−1ζ is of finite order, let Eζ,η be the smallest sub-semilattice of Eζ−1η

generated by
〈
η−1ζ

〉
.Eζ,η, and set Eη,ζ := Eζ,η. If η−1ζ is not of finite order, let Eζ,η be

the smallest sub-semilattice of Eζ−1η generated by Eζ,η, and set Eη,ζ := η−1ζ.Eζ,η. In
either case, let Eγ ζ,γ η := Eζ,η, Eγ η,γ ζ := Eη,ζ for all γ ∈ F . Continue in this way for
all the finite subsets whose union is � × �.
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Lemma 3.3. The procedure above gives rise to a well-defined family
{
Eζ,η

}
ζ,η∈�

of
finite subsemilattices Eζ,η of Eζ−1η containing Eζ,η which satisfies

(a) Eγ ζ,γ η = Eζ,η for all γ ∈ F and ζ, η ∈ �;
(b) Eη,ζ = η−1ζ.Eζ,η for all ζ, η ∈ �.

To explain the next construction, we introduce the following notation: Given α, β ∈
G, e ∈ Eα−1 and f ∈ Eβ−1 , define e•(α−1 f ) := α−1((α.e) f ) ∈ E(βα)−1 . Now suppose
that we are given a family

{
Eζ,η

}
ζ,η∈�

of finite subsemilattices Eζ,η of Eζ−1η satisfying
a) and b) from Lemma 3.3. Let Eζ,θ be the smallest sub-semilattice of Eζ−1θ generated
by

{
e0 • (ζ−1η1e1) • . . . • (ζ−1ηl−1el−1) : η0 = ζ, η1, . . . , ηl−1 ∈ �,

ηl = θ, ek ∈ Eηk ,ηk+1 ∀ 0 ≤ k ≤ l − 1
}

Note that we should have written (. . . (e0 • (ζ−1η1e1))• . . . )• (ζ−1ηl−1el−1) to be more
precise, but we leave out the parentheses for the sake of readability.

Lemma 3.4. The construction above yields a family
{
Eζ,η

}
ζ,η∈�

of finite subsemilattices
Eζ,η of Eζ−1η containing Eζ,η which satisfies a) and b) from Lemma 3.3 as well as

c) Eζ,η • (ζ−1ηEη,θ ) ⊆ Eζ,θ for all ζ, η, θ ∈ �.

Lemma 3.5. If
{
Eζ,η

}
ζ,η∈�

is a family of finite subsemilattices Eζ,η of Eζ−1η satisfying
a), b) from Lemma 3.3 and c) from Lemma 3.4, then

span(
{
dδζ−1η ⊗ εζ,η: d ∈ Eζ,η, ζ, η ∈ �

}
) (4)

is an F-invariant finite-dimensional sub-C*-algebra of A.

Proof of Lemma 3.3. If η−1ζ is of finite order, then all Eγ ζ,γ η coincide and are η−1ζ -
invariant. This is clearly well-defined, and a) and b) are satisfied. If η−1ζ is not of finite
order, then we claim that we have (γ ζ, γ η) �= (γ ′η, γ ′ζ ) for all γ, γ ′ ∈ F with γ �= γ ′.
Indeed, suppose that γ ζ = γ ′η and γ η = γ ′ζ . Then ζ = γ −1γ ′η = γ −1γ ′γ −1γ ′g and
thus η−1ζ = η−1γ −1γ ′η, and (γ −1γ ′)(γ −1γ ′) = 1, in contradiction to our assumption
that η−1ζ is not of finite order. This shows that we can define Eγ ζ,γ η := Eζ,η, Eγ η,γ ζ :=
Eη,ζ for all γ ∈ F . Thus

{
Eζ,η

}
ζ,η∈�

is well-defined. Properties a) and b) are satisfied
by construction. ��
Proof of Lemma 3.4. We first show that for all ζ, η ∈ �, the semilattice Eζ,η we con-
structed is finite. For that purpose, we set

� :=
{
e0 • (ζ−1η1e1) • . . . • (ζ−1ηl−1el−1) : η0 = ζ,

η1, . . . , ηl−1 ∈ �, ηl = θ, ek ∈ Eηk ,ηk+1 ∀ 0 ≤ k ≤ l − 1
}
.

In order to show that � is finite, we need the following observation.
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Lemma 3.6. If in a product

e0 • (ζ−1η1e1) • . . . • (ζ−1ηl−1el−1)

two of the factors coincide, i.e., ηk = ηk̄ and ek = ek̄ for k �= k̄, then we can leave out
the k̄th factor without changing the product, i.e.,

e0 • (ζ−1η1e1) • . . . • (ζ−1ηl−1el−1)

= e0 • (ζ−1η1e1) • . . . • (ζ−1ηk̄−1ek̄−1) • (ζ−1ηk̄+1ek̄+1) • . . . • (ζ−1ηl−1el−1).

Proof of Lemma 3.6. Suppose that k < k̄. Let us write ě := e0 • (ζ−1η1e1) • . . . •
(ζ−1ηk−1ek−1). We want to show that

ě • (ζ−1ηkek) • . . . • (ζ−1ηk̄−1ek̄−1) • (ζ−1ηk̄ ek̄)

= ě • (ζ−1ηkek) • . . . • (ζ−1ηk̄−1ek̄−1).

First, let us show that

ě • (ζ−1ηkek) • . . . • (ζ−1ηk̄−1ek̄−1) ≤ ě • (ζ−1ηkek)

by induction on k̄ − k. The initial step k̄ − k = 1 is obvious. Now we have

ě• (ζ−1ηkek) • . . . • (ζ−1ηk̄−1ek̄−1)

≤ ě • (ζ−1ηkek) • . . . • (ζ−1ηk̄−2ek̄−2) ≤ ě • (ζ−1ηkek)

where we used the induction hypothesis in the second inequality. Hence we have

η−1
k̄

ζ.(ě • (ζ−1ηkek) • . . . • (ζ−1ηk̄−1ek̄−1)) ≤ η−1
k̄

ζ.(ě • (ζ−1ηkek))

= (η−1
k̄

ζ.ě)ek ≤ ek = ek̄

and thus

ě • (ζ−1ηkek) • . . . • (ζ−1ηk̄−1ek̄−1) • (ζ−1ηk̄ ek̄)

= ζ−1ηk̄ .(η
−1
k̄

ζ.(ě • (ζ−1ηkek) • . . . • (ζ−1ηk̄−1ek̄−1))ek̄)

= ζ−1ηk̄ .(η
−1
k̄

ζ.(ě • (ζ−1ηkek) • . . . • (ζ−1ηk̄−1ek̄−1)))

= ě • (ζ−1ηkek) • . . . • (ζ−1ηk̄−1ek̄−1).

��
Therefore, #� ≤ 2(#�)2·# (�ζ,η∈� Eζ,η), so that � is finite, and hence also Eζ,η.

It remains to check a), b) and c). For a), take γ ∈ F . Given η0 = ζ , η1, . . . , ηl−1 ∈ �,
ηl = θ and ek ∈ Eηk ,ηk+1 for all 0 ≤ k ≤ l − 1, we have ek ∈ Eγ ηk ,γ ηk+1 for all
0 ≤ k ≤ l − 1 because we have property a) for the family

{
Eζ,η

}
ζ,η∈�

, and

e0 • (ζ−1η1e1) • . . . • (ζ−1ηl−1el−1)

= e0 • ((γ ζ )−1(γ η1)e1) • . . . • ((γ ζ )−1(γ ηl−1)el−1)

which lies in Eγ ζ,γ θ . Hence Eζ,θ ⊆ Eγ ζ,γ θ , and by symmetry, a) follows.
Next, we prove c). We need another observation.
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Lemma 3.7. For all ě ∈ Eθ−1ζ , f ∈ Eμ−1θ and f ′ ∈ E, we have

ě • (ζ−1θ( f • (θ−1μ f ′))) = (ě • (ζ−1θ f )) • (ζ−1μ f ′).

Proof of Lemma 3.7. We have

ě • (ζ−1θ( f • (θ−1μ f ′))) = ζ−1θ.((θ−1ζ.ě)( f • (θ−1μ f ′)))
= ζ−1θ.(((θ−1ζ.ě) f )(θ−1μ.((μ−1θ. f ) f ′)))
= ζ−1μ.(μ−1θ.(((θ−1ζ.ě) f )(θ−1μ.((μ−1θ. f ) f ′)))
= ζ−1μ.(μ−1θ.((θ−1ζ.ě) f )(μ−1θ. f ) f ′)
= ζ−1μ.(μ−1θ.((θ−1ζ.ě) f ) f ′) = ζ−1μ.(μ−1ζ.(ζ−1θ.((θ−1ζ.ě) f )) f ′)
= ζ−1μ.(μ−1ζ.(ě • (ζ−1θ f )) f ′)
= (ě • (ζ−1θ f )) • (ζ−1μ f ′).

��
Now, to prove c), take e0 • (ζ−1η1e1)• . . .• (ζ−1ηl−1el−1) ∈ Eζ,θ and f0 • (θ−1μ1 f1)•
. . . • (θ−1μn−1 fn−1) ∈ Eθ,ν . Then we have

(e0 • (ζ−1η1e1) • . . . • (ζ−1ηl−1el−1))

• (ζ−1θ( f0 • (θ−1μ1 f1) • . . . • (θ−1μn−1 fn−1))

= e0 • (ζ−1η1e1) • . . . • (ζ−1ηl−1el−1) • (ζ−1θ( f0 • (θ−1μ1 f1)

• . . . • (θ−1μn−2 fn−2)) • (ζ−1μn−1 fn−1)

= . . . = e0 • (ζ−1η1e1) • . . . • (ζ−1ηl−1el−1)

• (ζ−1θ f0) • (ζ−1μ1 f1) • . . . • (ζ−1μn−1 fn−1)

which lies in Eζ,ν , as desired. Here we used Lemma 3.7.
Finally, let us prove b). Take e0 • (ζ−1η1e1) • . . . • (ζ−1ηl−1el−1) ∈ Eζ,θ , and

proceeding inductively on l (the case l = 1 being covered by property b) for Eζ,θ ), we
have

θ−1ζ.(e0 • (ζ−1η1e1) • . . . • (ζ−1ηl−1el−1))

= θ−1ζ.(ζ−1ηl−1.(el−1(η
−1
l−1ζ.(e0 • (ζ−1η1e1) • . . . ))))

= θ−1ηl−1.(el−1(η
−1
l−1ζ.(e0 • (ζ−1η1e1) • . . . )))

= θ−1ηl−1.(η
−1
l−1θ.θ−1ηl−1.el−1(η

−1
l−1ζ.(e0 • (ζ−1η1e1) • . . . )))

= (θ−1ηl−1.el−1) • (θ−1ηl−1(η
−1
l−1ζ.(e0 • (ζ−1η1e1) • . . . ))). (5)

By induction hypothesis, η−1
l−1ζ.(e0 • (ζ−1η1e1) • . . . ) lies in Eηl−1,ζ , so that the term

in (5) lies in Eθ,ζ by property c), which we have already established. Hence we have
shown θ−1ζ.Eζ,θ ⊆ Eθ,ζ , as desired. This completes the proof of Lemma 3.4. ��
Proof of Lemma 3.5. It is clear that a) implies that (4) defines an F-invariant subspace.
It is *-invariant because

(dδζ−1η ⊗ εζ,η)
∗ = (δη−1ζdδζ−1η)δη−1ζ ⊗ εη,ζ = (η−1ζ.d) δη−1ζ ⊗ εη,ζ ,
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and η−1ζ.d lies in Eη,ζ by b). To see that (4) defines a subalgebra, we compute

(dδζ−1η ⊗ εζ,η)(eδη−1θ ⊗ εη,θ ) = (dδζ−1ηeδη−1θ ) ⊗ εζ,θ = (dδζ−1ηeδη−1ζ δζ−1θ ) ⊗ εζ,θ

= (δζ−1η(δη−1ζdδζ−1η)eδη−1ζ )δζ−1θ ) ⊗ εζ,θ = ((d • (ζ−1ηe))δζ−1θ ) ⊗ εζ,θ .

Here we used properties (1), (2) and (3) of covariant representations of partial dynamical
systems from [38, Definition of covariant representations in § 2]. By c), we know that
d • (ζ−1ηe) lies in Eζ,θ . This shows that (4) defines a multiplicatively closed subspace,
as desired. ��

With these lemmas, we are now ready to construct inductive limit decompositions
of A and A. Recall that F is a fixed finite subgroup of G. Let �i , i = 1, 2, 3, . . . , be
an increasing family of finite F-invariant subsets of G such that G = ⋃i �i . For each

i , choose a family
{
E

(i)
ζ,η

}
ζ,η∈�i

of finite subsets E(i)
ζ,η of Eζ−1η which is increasing in i

such that Eζ−1η = ⋃i E
(i)
ζ,η for all ζ, η ∈ G. First follow the procedure described right

before Lemma 3.3 to construct families
{
E (i)

ζ,η

}
ζ,η∈�

of finite subsemilattices E (i)
ζ,η of

Eζ−1η containing E(i)
ζ,η. Then follow the procedure described right before Lemma 3.4 to

construct families
{
E (i)

ζ,η

}
ζ,η∈�

of finite subsemilattices E (i)
ζ,η of Eζ−1η containing E (i)

ζ,η.
Finally, set

Ai := span(
{
dδζ−1η ⊗ εζ,η : d ∈ E (i)

ζ,η, ζ, η ∈ �i
}
).

By Lemma 3.5, Ai are finite-dimensional sub-C*-algebras of A. By construction, Ai

form an increasing sequence such that A = lim−→i
Ai , or more precisely A = ⋃i Ai .

Moreover, define

Ai := span(
{
ε(d,ζ ),(η−1ζ.d,η) : ζ, η ∈ �i , d ∈ E (i)

ζ,η

}
).

By construction, Ai are finite-dimensional sub-C*-algebras of A, which form an in-
creasing sequence such that A = lim−→i

Ai , or more precisely A =⋃i Ai .
What is more, these inductive limit decompositions are F-equivariant, so that we

obtain A � F = lim−→i
Ai � F andA� F = lim−→i

Ai � F . Since Ai � F andAi � F are
finite-dimensional for all i , we obtain

Lemma 3.8. For every finite subgroup F of G, A � F and A � F are AF-algebras.

Next, we define

�i : Ai → K(�2E) ⊗ Ai , ε(d,ζ ), (η−1ζ.d,η) �→ εd, η−1ζ.d ⊗ (dδζ−1η ⊗ εζ,η).

It is clear that �i is F-equivariant, so that xi := [�i ] defines an element in KK F

(Ai ,K(�2E) ⊗ Ai ). By construction, we have a commutative diagram

Ai K(�2E) ⊗ Ai

A K(�2E) ⊗ A

�i

�
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where the vertical arrows are the canonical inclusions. Forming crossed products by F ,
we obtain the commutative diagram

Ai � F K(�2E) ⊗ (Ai � F)

A � F K(�2E) ⊗ (A � F)

�i�F

��F

Here we used the observation that F acts trivially on the tensor factor K(�2E), so that
we can pull it out. So we see that � � F = lim−→i

�i � F . By continuity of K-theory, this
means that if �i � F induce isomorphisms in K-theory, then so does � � F , i.e., taking
Kasparov product with jF (resGF (x)) is an isomorphism. So in summary, we obtain

Proposition 3.9. If xi = [�i ] is invertible in K K F (Ai ,K(�2E) ⊗ Ai ) for all i , then
taking Kasparov product with jF (resGF (x)) induces an isomorphism � ⊗ jF (resGF (x)) :
K∗(A � F) ∼= K∗((K(�2E) ⊗ A) � F).

3.3. KK-equivalences for finite subgroups. In the previous subsection, we have ex-
plained why it suffices to show that the KK F -elements xi = [�i ] are invertible in
KK F (Ai ,K(�2E) ⊗ Ai ). Our goal now is to show precisely this.

We start with the following observation, which is straightforward to check.

Lemma 3.10. We have an F-equivariant isomorphism

�i : Ai → Ai , ε(d,ζ ),(η−1ζ.d,η) �→
(
d −

∨

e∈E (i)
ζ,η, e�d

e
)

δζ−1η ⊗ εζ,η.

Its inverse is given by

Ai → Ai , dδζ−1η ⊗ εζ,η �→
∑

e∈E (i)
ζ,η, e≤d

ε(e,ζ ),(η−1ζ.e,η).

Therefore, to show that xi = [�i ] is invertible it suffices to show that the following
composite

Ai K(�2E) ⊗ Ai K(�2E) ⊗ Ai

ε(d,ζ ),(η−1ζ.d,η) εd,η−1ζ.d ⊗ (dδζ−1η ⊗ εζ,η) εd,η−1ζ.d ⊗∑
e∈E(i)

ζ,η
, e≤d

ε(e,ζ ),(η−1ζ.e,η)

�i id⊗�i

yields a KK F -equivalence. Consider

I : Ai → K(�2E) ⊗ Ai , ε(d,ζ ),(η−1ζ.d,η) �→ εd,η−1ζ.d ⊗ ε(d,ζ ),(η−1ζ.d,η)

ρ : Ai → K(�2E) ⊗ Ai , ε(d,ζ ),(η−1ζ.d,η) �→ εd,η−1ζ.d ⊗
∑

e∈E (i)
ζ,η, e�d

ε(e,ζ ),(η−1ζ.e,η)

I and ρ are F-equivariant homomorphisms, and they are orthogonal because
ε(d,ζ ),(η−1ζ.d,η) ε(e,ζ ),(η−1ζ.e,η) = 0 for all e � d. Moreover, it is clear that (id ⊗ �i ) ◦
�i = I + ρ.

Fix f ∈ E×. Then ε f, f ⊗ id : Ai → K(�2E) ⊗ Ai , a �→ ε f, f ⊗ a is an invertible
element in KK F (Ai ,K(�2E)⊗Ai ). This gives us away to identify KK F (Ai ,K(�2E)⊗
Ai ) with KK F (Ai ,Ai ).
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Lemma 3.11. Upon identifying K K F (Ai ,K(�2E)⊗Ai )with K K F (Ai ,Ai ) as above,
we have that [I ] = 1 in K K F .

Proof. Consider

V :=
∑

ζ∈�i , f ∈E (i)
ζ,ζ

ε f, f ⊗ ε( f,ζ ),( f,ζ ) +
∑

ζ∈�i , d∈E (i)
ζ,ζ , d �= f

ε f,d ⊗ ε(d,ζ ),(d,ζ )

+
∑

ζ∈�i , d∈E (i)
ζ,ζ , d �= f

εd, f ⊗ ε(d,ζ ),(d,ζ ).

V is a self-adjoint partial isometry. Set U := W + (1 − W 2) ∈ U(M(K(�2E) ⊗ Ai )).
Then U is a self-adjoint unitary. We claim that U IU = ε f, f ⊗ idAi . Indeed, we have

U I (ε(d,ζ ),(η−1ζ.d,η))U = U (εd,η−1ζ.d ⊗ ε(d,ζ ),(η−1ζ.d,η))U

= U (εd,η−1ζ.d ⊗ ε(d,ζ ),(η−1ζ.d,η))(εη−1ζ.d, f ⊗ ε(η−1ζ.d,η),(η−1ζ.d,η))

= U (εd, f ⊗ ε(d,ζ ),(η−1ζ.d,η))

= (ε f,d ⊗ ε(d,ζ ),(d,ζ ))(εd, f ⊗ ε(d,ζ ),(η−1ζ.d,η))

= ε f, f ⊗ ε(d,ζ ),(η−1ζ.d,η) = (ε f, f ⊗ id)(ε(d,ζ ),(η−1ζ.d,η)).

��
Let L be the longest proper chain d1 � d2 � . . . � dL−1 � dL in

⋃
ζ,η∈�i

E (i)
ζ,η.

Lemma 3.12. Upon identifying K K F (Ai ,K(�2E)⊗Ai )with K K F (Ai ,Ai ) as above,
we have that [ρ]L = 0 in K K F .

Proof. It suffices to show that

(id⊗(L−1) ⊗ ρ) ◦ . . . ◦ (id⊗2 ⊗ ρ) ◦ (id ⊗ ρ) ◦ ρ = 0

as a homomorphism Ai → K(�2E)⊗L ⊗ Ai . The reason is that, writing K := K(�2E)

and ε := ε f, f , we have the following commutative diagram

Ai K ⊗ Ai K ⊗ K ⊗ Ai . . . K⊗L ⊗ Ai

Ai K ⊗ Ai . . . K⊗(L−1) ⊗ Ai

. . . . . . . . .

Ai K ⊗ Ai

Ai

ρ id⊗ρ id⊗id⊗ρ id⊗(L−1)⊗ρ

ρ

ε⊗id
id⊗ρ

ε⊗id
id⊗(L−2)⊗ρ

ε⊗id

ρ

ε⊗id

It shows that [ρ]L and the KK F -class givenby (id⊗(L−1)⊗ρ)◦. . .◦(id⊗2⊗ρ)◦(id⊗ρ)◦ρ

differ only by a KK F -equivalence.
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We compute

ρ(ε(d1,ζ ),(η−1ζ.d1,η)) = εd1,η−1ζ.d1 ⊗
∑

d2�d1

ε(d2,ζ ),(η−1ζ.d2,η)

((id ⊗ ρ) ◦ ρ)(ε(d1,ζ ),(η−1ζ.d1,η))

=
∑

d3�d2�d1

εd1,η−1ζ.d1 ⊗ ε(d2,ζ ),(η−1ζ.d2,η) ⊗ ε(d3,ζ ),(η−1ζ.d3,η)

. . .

((id⊗(L−1) ⊗ ρ) ◦ . . . ◦ ρ)(ε(d1,ζ ),(η−1ζ.d1,η))

=
∑

dL+1�dL�...�d2�d1

εd1,η−1ζ.d1 ⊗ ε(d2,ζ ),(η−1ζ.d2,η) ⊗ . . . ⊗ ε(dL ,ζ ),(η−1ζ.dL ,η)

⊗ε(dL+1,ζ ),(η−1ζ.dL+1,η)

= 0

because there are no proper chains of length greater than L . ��
Corollary 3.13. Forall i , the element xi = [�i ] is invertible in K K F (Ai ,K(�2E)⊗Ai ).

Proof. As explained above, it suffices to show that [id ⊗ �i ] ⊗ [�i ] is invertible in
KK F (Ai ,K(�2E) ⊗ Ai ). We have [id⊗ �i ] ⊗ [�i ] = [I ] + [ρ] which by Lemma 3.11
is given by 1 + [ρ] (upon identifying KK F (Ai ,K(�2E) ⊗ Ai ) with KK F (Ai ,Ai )),
which then by Lemma 3.12 is invertible with inverse

∑L−1
l=0 (−1)l [ρ]l . ��

3.4. Homomorphisms inducing KK-equivalence. Let us first analyse A �r G. We first
need some notation. Given d ∈ E×, let G(d) := {

γ ∈ G: d ∈ Eγ −1
}
and Gd :=

{γ ∈ G(d): γ.d = d}. Choose a set of representatives D for G\E×, i.e., a subset D ⊆
E× such that for every e ∈ E×, there exists a unique d ∈ D and some γ ∈ G with e =
γ.d. Ford ∈ D, define a subalgebraAd ofAbyAd := span(

{
ε(e,ζ ),(η−1ζ.e,η): ζ, η ∈ G,

}

e ∈ G(d).d ∩ Eζ−1η). We viewAd as a subalgebra ofK(�2(G(d).d ×G)). Clearly, we
haveA =⊕d∈DAd . Moreover, recall thatG acts onA by Ad (1⊗λ). By construction,
Ad is G-invariant for all d ∈ D. Thus we will focus on one summand Ad for a fixed
d ∈ D.

Let R ⊆ G be a set of representatives for G/Gd , and let r : G/Gd → R be a split
for the canonical map R ↪→ G � G/Gd (i.e., we have [r[γ ]] = [γ ] for all γ ∈ G).
Now consider the map

G(d).d × G → G(d)/Gd × G/Gd × Gd , (γ.d, ζ ) �→ ([γ ], [ζγ ], (r[ζγ ])−1ζ r[γ ]).
It is a bijection with inverse

G(d)/Gd × G/Gd × Gd → G(d).d × G, ([γ ], [τ ], μ) �→ (r[γ ].d, r[τ ]μr[γ ]−1).

This bijection induces a unitary

�2(G(d).d × G) ∼= �2(G(d)/Gd × G/Gd × Gd)

∼= �2(G(d)/Gd) ⊗ �2(G/Gd) ⊗ �2Gd .



20 X. Li

Conjugation by this unitary yields an isomorphism

�d : Ad ∼= K(�2(G(d)/Gd)) ⊗ C0(G/Gd) ⊗ K(�2Gd)

with

�d(ε(e,ζ ),(η−1ζ.e,η)) = ε[γ ],[η−1ζγ ] ⊗ ε[ζγ ],[ζγ ] ⊗ ε(r[ζγ ])−1ζr[γ ],(r[ζγ ])−1ηr[η−1ζγ ]

where e = γ.d.
Now let l denote the G-action on C0(G/Gd) given by left translation.

Lemma 3.14. The G-actions Ad (1 ⊗ λ) : G � Ad and id ⊗ l ⊗ id : G �

K(�2(G(d)/Gd)) ⊗ C0(G/Gd) ⊗ K(�2Gd) are cocycle conjugate.

Proof. For g ∈ G, let wg be the unitary �2(G(d)/Gd) ⊗ �2(G/Gd) ⊗ �2Gd ∼=
�2(G(d)/Gd) ⊗ �2(G/Gd) ⊗ �2Gd induced by the bijection

G(d)/Gd × G/Gd × Gd → G(d)/Gd × G/Gd × Gd , ([γ ], [τ ], μ)

�→ ([γ ], [τ ], (r[τ ])−1gr[g−1τ ]μ).

Let us show that

�d ◦ Ad (1 ⊗ λg) ◦ �−1
d = wg(id ⊗ lg ⊗ id)w∗

g.

�d ◦ Ad (1 ⊗ λg) ◦ �−1
d is given by conjugation with the unitary which corresponds to

the following bijection:

G(d)/Gd × G/Gd × Gd G(d).d × G G(d).d × G G(d)/Gd × G/Gd × Gd

([γ ], [τ ], μ) (r[γ ].d, r[τ ]μ(r[γ ])−1) (r[γ ].d, gr[τ ]μ(r[γ ])−1) ([γ ], [gτ ], (r[gτ ])−1gr[τ ]μ)

wg(id ⊗ lg ⊗ id)w∗
g is given by conjugation with the unitary which corresponds to the

following bijection:

G(d)/Gd × G/Gd × Gd G(d)/Gd × G/Gd × Gd G(d)/Gd × G/Gd × Gd

([γ ], [τ ], μ) ([γ ], [gτ ], μ) ([γ ], [gτ ], (r[gτ ])−1gr[τ ]μ)

This shows �d ◦ Ad (1 ⊗ λg) ◦ �−1
d = wg(id ⊗ lg ⊗ id)w∗

g , as desired.
It remains to show that g �→ wg is an (id⊗ l⊗ id)-cocycle. For that purpose, observe

that wg(id ⊗ lg ⊗ id)(wh) is the unitary induced by the bijection

G(d)/Gd × G/Gd × Gd G(d)/Gd × G/Gd × Gd G(d)/Gd × G/Gd × Gd

([γ ], [τ ], μ) ([γ ], [τ ], (r[g−1τ ])−1hr[h−1g−1τ ]μ) ([γ ], [τ ], (r[τ ])−1ghr[h−1g−1τ ]μ)

which is precisely the bijection corresponding to wgh . Hence wgh = wg(id ⊗ lg ⊗
id)(wh), as desired. ��

Let us denote the canonical unitaries in (the multiplier algebra of) A �r G im-
plementing the G-action by �g , g ∈ G. For d ∈ D, define the homomorphism
κd : C∗

λ(Gd) → A �r G, λg �→ ε(d,1),(d,g)�g .
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Proposition 3.15.
(∑

d∈D
κd

)
:
(⊕

d∈D
C∗

λ(Gd)
)

→ A �r G

induces a Morita equivalence between
⊕

d∈D C∗
λ(Gd) and A �r G.

Proof. Consider the composition

⊕

d∈D
C∗

λ(Gd) →
⊕

d∈D

(
K(�2(G(d)/Gd)) ⊗ C0(G/Gd)

⊗K(�2Gd)
)

�id⊗l⊗id, r G
∼=−→
⊕

d∈D
Ad �r G ∼= A �r G, (6)

where the first map sends λg ∈ C∗
λ(Gd) to (ε[1],[1] ⊗ ε[1],[1] ⊗ ε1,1)�g , the second

map is given by the isomorphism sending a�g ∈ (K(�2(G(d)/Gd)) ⊗ C0(G/Gd) ⊗
K(�2Gd)

)
�id⊗l⊗id, r G to �−1

d (a)w−1
g �g , and the third map is the canonical isomor-

phism. Now it is clear that the composition in (6) induces a Morita equivalence between⊕
d∈D C∗

λ(Gd) and A �r G (this is as in [14, § 3]). In addition, it is easy to check that
the composition in (6) coincides with

∑
d∈D κd . ��

If we now define the homomorphisms kd : C∗
λ(Gd) → K(�2E) ⊗ A �r G, λg �→

(dδg ⊗ ε1,g)�g , then the following is easy to check:

Lemma 3.16. We have a commutative diagram

⊕
d∈D C∗

λ(Gd) K(�2E) ⊗ A �r G

A �r G K(�2E) ⊗ A �r G

∑
d εd,d⊗ kd

∑
d κd

��r G

where the right vertical arrow is given by the canonical inclusion.

Given d ∈ D, define the homomorphism ιd : C∗
λ(Gd) → D �r G, λg �→ dδg . Let

[M �r G] be the element in KK (D�r G,A�r G) induced by the (D�r G)-(A�r G)-
imprimitivity bimodule M �r G introduced in (3) in Sect. 2.3.

Proposition 3.17. For everyd ∈ D, wehave [ιd ]⊗[M�rG] = [kd ] in K K (C∗
λ(Gd),A�r

G).

Proof. TheKasparov product [ιd ]⊗[M�r G] is represented by the right HilbertA�r G-
moduleD�rG⊗D�r GM�rG ∼= M�rG,with rightHilbertA�rG-module as described
in Sect. 2.3 and left C∗

λ(Gd)-action given by λg((eδη ⊗ ε1,η)�h) = (g.(de)δgη ⊗
ε1,gη)�gh . The KK-element [kd ] is represented by A �r G, viewed as a right Hilbert
A �r G in the obvious way, with left C∗

λ(Gd)-action given by

λg ((eδζ−1η ⊗ εζ,η)�h) = (dδg ⊗ ε1,g)(eδζ−1η ⊗ εgζ,gη)�gh

=
{
0 if ζ �= 1,
((g.(de))δgη ⊗ ε1,gη)�gh if ζ = 1.



22 X. Li

Without changing the classes in KK (C∗
λ(Gd),A �r G), we can replace the Hilbert

modules M �r G by C∗
λ(Gd) · (M �r G) and A �r G by C∗

λ(Gd) · (A �r G). Then it
is straightforward to check that

C∗
λ(Gd) · (M �r G) → C∗

λ(Gd) · (A �r G), (eδη ⊗ ε1,η)�g �→ (eδη ⊗ ε1,η)�g

gives rise to an isomorphism of right HilbertA�r G-modules which intertwines the left
C∗

λ(Gd)-actions. ��

3.5. Proofs of main theorems. Let us now prove Theorems 1.1, 1.2 and Corollaries 1.3,
1.4. We actually prove more precise statements. Let us keep the same notations as
in previous subsections of Sect. 3. For d ∈ D, let id : C∗

λ(Sd) → C∗
λ(S) be the

homomorphism induced by the canonical embedding Sd ↪→ S.

Theorem 3.18. (I) If G satisfies the Baum–Connes conjecture for A and A, then∑
d∈D id induces a K-theory isomorphism

⊕
d∈D K∗(C∗

λ(Sd)) ∼= K∗(C∗
λ(S)).

(II) If G satisfies the strong Baum–Connes conjecture in the sense of [15, Defini-
tion 3.4.17], then

∑
d∈D id induces a KK-equivalence between

⊕
d∈D C∗

λ(Sd) and
C∗

λ(S).

Proof. For every d ∈ D, σ induces an isomorphism Sd ∼= Gd and hence a C*-
isomorphismC∗

λ(Sd) ∼= C∗
λ(Gd). Moreover, it is easy to check that this C*-isomorphism

fits into the following commutative diagram:

C∗
λ(Sd) C∗

λ(S)

C∗
λ(Gd) D �r G

id

∼= ∼=
ιd

where the right vertical isomorphism is provided by (2). Hence it suffices to show that∑
d∈D ιd induces a K-theory isomorphism

⊕
d∈D K∗(C∗

λ(Gd)) ∼= K∗(D �r G) in case
(I) and a KK-equivalence between

⊕
d∈D C∗

λ(Gd) and D �r G in case (II).
Let x := [�] ∈ KKG(A,K(�2E) ⊗ A) be as in Sect. 3.1. Corollary 3.13 and

Proposition 3.9 imply that taking Kasparov product with jF (resGF (x)) induces an iso-
morphism � ⊗ jF (resGF (x)) : K∗(A � F) ∼= K∗((K(�2E) ⊗ A) � F). Since A � F
and (K(�2E) ⊗ A) � F ∼= K(�2E) ⊗ (A � F) are AF-algebras by Lemma 3.8, they
satisfy the UCT, so that we actually obtain that jF (resGF (x)) is a KK-equivalence be-
tween A � F and (K(�2E) ⊗ A) � F . Therefore, by the Going-Down principle as in
Proposition 2.15, we obtain that taking Kasparov product with jG(x) induces an iso-
morphism � ⊗ jG(x) : K∗(A �r G) ∼= K∗((K(�2E) ⊗ A) �r G) in case (I) and that
jG(x) is a KK-equivalence betweenA�r G and (K(�2E) ⊗ A) �r G in case (II). Now
Lemma 3.16 and Proposition 3.17 imply that the following diagram in KK commutes:

K(�2E) ⊗ D �r G

⊕
d∈D C∗

λ(Gd) K(�2E) ⊗ A �r G

A �r G K(�2E) ⊗ A �r G

1⊗[M�r G]

[∑
d εd,d⊗ kd

]
[∑

d κd

]

[∑
d εd,d⊗ ιd

]

jG (x) =[��r G]
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where the lower right vertical arrow is given by the canonical inclusion. Since
[∑

d κd
]

is a KK-equivalence by Proposition 3.15, and because the two right vertical arrows are
KK-equivalences by the discussion in Sect. 2.3, we deduce that

∑
d εd,d ⊗ ιd must

induce a K-theory isomorphism in case (I) and a KK-equivalence in case (II). Since for
every d ∈ D, the KK-elements [ιd ] and [εd,d ⊗ ιd

]
coincide upon identifying—up to

KK-equivalence—D �r G withK(�2E)⊗ D �r G, we obtain the desired statement for∑
d∈D ιd and hence for

∑
d∈D id . ��

Clearly, Theorem 3.18 implies Theorem 1.1, once we observe that G\E× = S\E×.
Now let us come to partial dynamical systems and their reduced crossed products.

Let G be a countable discrete group, X a second countable totally disconnected locally
compact Hausdorff space, and G � X a partial dynamical system, given by Ug−1 →
Ug, x �→ g.x . Suppose that V is a G-invariant regular basis for the compact open
subsets of X . For V ∈ V , set iV : C∗

λ(GV ) → C0(X) �r G, λg �→ 1V δg . Here
GV = {g ∈ G: g.V = V } and 1V denotes the characteristic function on V . Moreover,
let G\V× denote the set of orbits under the G-action on the non-empty elements V× of
V . Apply construction (∗∗) from Sect. 2.2 to construct the inverse semigroup S, together
with an idempotent pure partial homomorphism σ : S× → G, attached to G � X and
V , and let A and A be the C*-algebras constructed in § 2.3 and Sect. 3.1, respectively.

Theorem 3.19. (I) If G satisfies the Baum–Connes conjecture for A and A, then∑
[V ]∈G\V× iV induces a K-theory isomorphism

⊕
[V ]∈G\V× K∗(C∗

λ(GV ))
∼= K∗(C0(X) �r G).

(II) If G satisfies the strong Baum–Connes conjecture in the sense of [15, Defini-
tion3.4.17], then

∑
[V ]∈G\V× iV induces aKK-equivalencebetween

⊕
[V ]∈G\V× C∗

λ

(GV ) and C0(X) �r G.

Proof. It is easy to check that for S (with its semilattice E), σ obtained by construction
(∗∗) fromG � X and V , we get a semilattice isomorphism E ∼= V respecting the partial
G-actions. Now the theorem follows from the isomorphism in (2) and Theorem 3.18. ��

Beforewe turn to semigroupC*-algebras, let us record aK-theory formula for reduced
C*-algebras of left inverse hulls. Let P be a subsemigroup of a countable group G. Let
Il(P) be the left inverse hull of P , as introduced in Sect. 2.1. Let A and A be the C*-
algebras constructed for S = Il(P) in Sects. 2.3 and 3.1. For X ∈ J ×

P = E(Il(P))×,
let iX : C∗

λ((Il(P))X ) → C∗
λ(Il(P)) be the homomorphism induced by the canonical

embedding (Il(P))X ↪→ Il(P).

Corollary 3.20. (I) If G satisfies the Baum–Connes conjecture for A and A, then∑
[X ]∈Il (P)\J ×

P
iX induces a K-theory isomorphism

⊕
[X ]∈Il (P)\J ×

P
K∗(C∗

λ

((Il(P))X )) ∼= K∗(C∗
λ(Il(P))).

(II) If G satisfies the strong Baum–Connes conjecture in the sense of [15, Defini-
tion 3.4.17], then

∑
[X ]∈Il (P)\J ×

P
iX induces a KK-equivalence between

⊕
[X ]∈Il

(P)\J ×
P C∗

λ((Il(P))X ) and C∗
λ(Il(P)).

Proof. Just apply Theorem 3.18 to S = Il(P). ��
The case of semigroup C*-algebras can now be treated as a special case. Let P be

a left-cancellative semigroup, J ×
P the set of non-empty constructible right ideals of

P , as introduced in Sect. 2.1, P\J ×
P the set of equivalence classes of the equivalence

relation on J ×
P generated by X ∼ pX = {px : x ∈ X} for all X ∈ J ×

P and p ∈ P ,
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and, for X ∈ J ×
P , let PX be the group of bijections X → X which can be expressed

as compositions of finitely many maps, each of which given by left multiplication by a
fixed semigroup element or the set-theoretical inverse of such a left multiplication map.
For X ∈ J ×

P , set iX : C∗
λ(PX ) → C∗

λ(P), λg �→ Vg . As in Sects. 2.3 and 3.1, construct
C*-algebras A and A for the left inverse hull S := Il(P) of P (see Sect. 2.1).

Corollary 3.21. Suppose that P satisfies the independence condition fromDefinition 2.7.

(I) If P embeds into a countable group which satisfies the Baum–Connes conjecture
for A and A, then

∑
[X ]∈P\J ×

P
iX induces a K-theory isomorphism

⊕
[X ]∈P\J ×

P
K∗(C∗

λ(PX )) ∼= K∗(C∗
λ(P)).

(II) If P embeds into a countable group which satisfies the strong Baum–Connes con-
jecture in the sense of [15, Definition 3.4.17], then

∑
[X ]∈P\J ×

P
iX induces a KK-

equivalence between
⊕

[X ]∈P\J ×
P
C∗

λ(PX ) and C∗
λ(P).

Proof. This follows from Proposition 2.8 and Corollary 3.20, once we observe that
P\J ×

P = S\E× and PX = (Il(P))X = SX for all X ∈ J ×
P . ��

Let us further specialize to the case of right LCMmonoids, i.e., monoids P for which
J ×
P = {pP: p ∈ P}. Let us keep the same notations as in Corollary 3.21, and denote

by P∗ the group of invertible elements in P .

Corollary 3.22. Let P be a right LCM monoid.

(I) If P embeds into a countable group which satisfies the Baum–Connes conjecture
forA and A, then iP induces a K-theory isomorphism K∗(C∗

λ(P∗)) ∼= K∗(C∗
λ(P)).

(II) If P embeds into a countable group which satisfies the strong Baum–Connes con-
jecture in the sense of [15, Definition 3.4.17], then iP induces a KK-equivalence
between C∗

λ(P∗) and C∗
λ(P).

Proof. Left-cancellative right LCMmonoids satisfy the independence condition by [15,
Lemma 5.6.31]. Hence Corollary 3.21 applies and we obtain the desired statement once
we identify PP in the notation of Corollary 3.21 with P∗. If we identify elements u ∈ P∗
with the left multiplication maps P → P, x �→ ux , then it is clear that P∗ ⊆ PP . To
prove the reverse inclusion, take s ∈ PP . Let 1 denote the identity element of P , and let
u := s(1). Then, by [15, Equation (5.11)], we must have that s(x) = ux for all x ∈ P .
Thus u must lie in P∗, and we obtain PP ⊆ P∗, as desired. ��

4. Applications

We start with applications of Corollary 3.22 to semigroup C*-algebras of Artin monoids,
Baumslag-Solitar monoids and one-relator monoids. We then discuss C*-algebras gen-
erated by right regular representations of ax + b-type semigroups of number-theoretic
origin. Finally, we compute K-theory for reduced C*-algebras of inverse semigroups
arising in the context of tilings.

4.1. Semigroup C*-algebras of Artin monoids. First of all, let us discuss Artin monoids
(sometimes also calledArtin-Titsmonoids). LetS be a countable set. For every a, b ∈ S,
let ma,b ∈ {2, 3, . . .} ∪ {∞} such that ma,b = mb,a . The Artin group AM of M =
(ma,b)a,b∈S is the group given by the presentation

AM := 〈S | 〈ab〉ma,b = 〈ba〉mb,a ∀ a, b ∈ S
〉
.
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Here 〈ab〉ma,b denotes the alternating word abab · · · of length ma,b in a and b, starting
with a. If ma,b = mb,a = ∞, then the relation 〈ab〉ma,b = 〈ba〉mb,a means that there is
no relation involving a and b. The Artin monoid A+

M of M is the monoid given by the
same presentation

A+
M := 〈S | 〈ab〉ma,b = 〈ba〉mb,a ∀ a, b ∈ S

〉+
.

The semigroup C*-algebras attached to Artin monoids have been studied in [11,12,37].
It is easy to see that (A+

M )∗ = {1}. Moreover, it is shown in [6] that A+
M is right LCM.

The main result in [45] says that A+
M embeds into AM via the canonical map. However,

it is not clear whether A+
M ⊆ AM satisfies the Toeplitz condition in the sense of [33], or

in other words, whether A+
M ⊆ AM is quasi-lattice ordered in the sense of [41]. Hence

we cannot apply the K-theory formula from [14]. Nevertheless, Corollary 3.22 applies
and yields the following (with A and A as in Corollary 3.22):

(I) If AM satisfies the Baum–Connes conjecture for A and A, then K0(C∗
λ(A+

M )) =
Z[1]0 and K1(C∗

λ(A+
M )) ∼= {0}.

(II) If AM satisfies the strong Baum–Connes conjecture in the sense of [15, Defini-
tion 3.4.17], then the unital embedding C ↪→ C∗

λ(A+
M ) induces a KK-equivalence

between C and C∗
λ(A+

M ).

4.2. Semigroup C*-algebras of Baumslag-Solitar monoids. Our second example con-
cerns Baumslag-Solitar monoids. Let k, l ∈ Z be non-zero integers. The Baumslag-
Solitar group BS(k, l) (see [3]) is given by the presentation

BS(k, l) :=
〈
a, b | abk = bla

〉
.

Baumslag-Solitar monoids are defined in an analogous fashion, but we have to adjust
the defining relation in order to avoid inverses. We define the following monoids by
presentations:

BS(k, l)+ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈
a, b | abk = bla

〉+
if k, l > 0.〈

a, b | a = blab−k
〉+

if k < 0, l > 0.〈
a, b | b−labk = a

〉+
if k > 0, l < 0.〈

a, b | b−la = ab−k
〉+

if k, l < 0.

The semigroup C*-algebras of BS(k, l)+ have been studied in [50]. It is easy to see
that (BS(k, l)+)∗ = {1}. Using normal forms (see for instance [49]), it follows that
BS(k, l)+ embeds into BS(k, l) via the canonical map. Since BS(k, l) has the Haagerup
property by [23], [24] yields that BS(k, l) satisfies the strong Baum–Connes conjecture.
Moreover, it is shown in [50] that BS(k, l)+ is right LCM.

However, for k < −1, l > 0 (or k > 1, l < 0), BS(k, l)+ does not embed into
a group G such that BS(k, l)+ ⊆ G satisfies the Toeplitz condition. To show this, it
suffices to show that BS(k, l)+ ⊆ BS(k, l) does not satisfy the Toeplitz condition (see
[15, Corollary 5.8.9]). The latter claim follows essentially from computations in [50].
Indeed, suppose that BS(k, l)+ ⊆ BS(k, l) satisfies the Toeplitz condition. Let us write
P := BS(k, l)+ and G := BS(k, l). Consider the element g = aba−1 ∈ G. Since P
is right LCM, and because we assume that P ⊆ G satisfies the Toeplitz condition, [33,
Lemma 4.2] implies that gP ∩ P = pP for some p ∈ P . Let #a count the number of as
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in elements of P . If #a(p) = 0, then p = bm for somem ≥ 0. So bm = p ∈ gP implies
that bm = aba−1x for some x ∈ P . Looking at normal forms, we conclude that x = ay
for some y ∈ P . But then bm = aby. Comparing #a leads to a contradiction. Now it is
easy to see that abn ∈ gP ∩ P for all n ∈ Z as abn−1 ∈ P . In particular, a ∈ pP , which
implies that #a(p) ≤ 1 and thus #a(p) = 1. So p = biab j for some j ∈ Z. We can
always arrange 0 ≤ i < l. Hence, for every n ∈ Z, there exists xn ∈ P with pxn = abn .
Comparing #a , we obtain that xn = bkn for some kn ≥ 0. So we have for all n ∈ Z that
biab j+kn = abn , which implies i = 0 and j ≤ j + kn = n for all n ∈ Z. But this is a
contradiction.

Even worse, it turns out that BS(k, l)+ ⊆ BS(k, l) does not even satisfy the weak
Toeplitz condition from [14, Definition 4.5]. This is because the argument above shows
that gP ∩ P cannot be written as a finite union of the form

⋃n
i=1 pi P for some pi ∈ P .

This means that we cannot apply the K-theory formula from [14]. Nevertheless,
Corollary 3.22 allows us to compute K-theory, and we obtain that, for all k, l ∈ Z \ {0},
the unital embedding C ↪→ C∗

λ(BS(k, l)+) induces a KK-equivalence between C and
C∗

λ(BS(k, l)+).

4.3. Semigroup C*-algebras of one-relator monoids. Our third example is about more
classes of one-relator monoids, i.e., monoids of the form P = 〈S | u = v〉+, where S is
a countable set and u, v are finite words in S. In the following, ≡ stands for equality as
finite words, whereas = stands for equality as elements of P . We make the following
assumptions: First, we always assume that u �≡ ε �≡ v, where ε is the empty word. This
will imply that the identity is the only invertible element of P . Secondly, we assume
that no a ∈ S is redundant, i.e., that a �= w for every a ∈ S and every finite word w on
S \ {a}. Thirdly, we always assume that u �≡ v, and even more, that the first letter of u
does not coincide with the first letter of v. In this case, if we define the corresponding
one-relator group by G = 〈S | u = v〉, then P embeds into G via the canonical map.
The semigroup C*-algebras of such one-relator monoids have been studied in [37]. As
observed in [37, § 2.1.4], P is right LCM if �∗(u) = �∗(v) or if �∗(u) < �∗(v) and
there exists a ∈ S with �a(u) > �a(v). Here �∗ stands for word-length and �a counts
how many times a appears. It has been shown in [4,44,51] that the one-relator group
G satisfies the strong Baum–Connes conjecture. Again, although it is not clear whether
P ⊆ G satisfies the Toeplitz condition (or equivalently in this case, whether P ⊆ G is
quasi-lattice ordered), Corollary 3.22 nevertheless applies and yields that if P is right
LCM, then the unital embedding C ↪→ C∗

λ(P) induces a KK-equivalence between C

and C∗
λ(P).

Now assume that |S| ≥ 3. Then by [37, Corollar 3.5], the boundary quotient ∂C∗
λ(P)

(see for instance [15, § 5.7] for an introduction) is purely infinite simple, and there
is an exact sequence 0 → K(�2P) → C∗

λ(P) → ∂C∗
λ(P) → 0 if 3 ≤ |S| < ∞

whereas C∗
λ(P) = ∂C∗

λ(P) if |S| = ∞. As explained in [37, Remark 3.6], our K-theory
computation for C∗

λ(P) then yields the following K-theory formula for ∂C∗
λ(P):

(K0(∂C
∗
λ(P)), [1]0, K1(∂C

∗
λ(P))) ∼=

{
(Z/(|S| − 2)Z, 1, {0}) if 3 ≤ |S| < ∞;
(Z, 1, {0}) if |S| = ∞.

Moreover, [37, Corollary 3.5] implies that ∂C∗
λ(P) is nuclear if and only if C∗

λ(P) is
nuclear. If that is the case, then ourK-theory computations, together with [48, Chapter 8],
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imply that

∂C∗
λ(P) ∼=

{
O|S|−1 if 3 ≤ |S| < ∞;
O∞ if |S| = ∞.

In addition, using the notation Ek
n to denote extension algebras of the form 0 → K →

Ek
n → On → 0 as in [19, Definition 3.2], [19, Theorem 3.1] implies the following

result:

Corollary 4.1. If C∗
λ(P) is nuclear, then

C∗
λ(P) ∼=

{
E−1

|S|−1 if 3 ≤ |S| < ∞;
O∞ if |S| = ∞.

In particular, given twoone-relatormonoids P1 = 〈S1 | u1 = v1〉+ and P2 = 〈S2 | u2 =〉
v2

+ as above such that their semigroup C*-algebras C∗
λ(P1) and C∗

λ(P2) are nuclear,
we have C∗

λ(P1) ∼= C∗
λ(P2) if and only if |S1| = |S2|.

Sufficient conditions for nuclearity of C∗
λ(P) are given in [37, § 3] (i.e., conditions (1),

(2) and (3) by [37, Theorem 3.9]). Concrete examples where Corollary 4.1 applies are
given in [37, Example 3.11] and look as follows: Let A and B be countable sets with
|A| + |B| ≥ 3 and set S := A � B. Choose an arbitrary finite word u on A and a finite
word v on B with the property that a finite word x on S for which there exist finite
words ε �≡ w, y on S with v ≡ xy ≡ wx must be the empty word, i.e., x ≡ ε. Then
Corollary 4.1 applies to monoids of the form 〈A � B | u = v〉+. Other examples where
Corollary 4.1 applies include certain HNN extensions as in [25, Corollaries 5.4 and 5.5].
We thank C.F. Sehnem for pointing this out.

4.4. C*-algebras generated by right regular representations of ax + b-type semigroups
attached to congruencemonoids. Our fourth example class is given byC*-algebras gen-
erated by right regular representations of ax +b-type semigroups attached to congruence
monoids. Let us first introduce the setting. Let K be a number field with ring of algebraic
integers R. Each fractional ideal a of K can be uniquely written as a = ∏p∈PK

pvp(a),
where the product runs over the set PK of non-zero prime ideals of R and vp(a) ∈ Z

is zero for all but finitely many p. Let m = m∞m0 be a pair consisting of a non-zero
ideal m0 of R and a collection m∞ of real places of K . For a real place w of K , we
write w | m∞ for w ∈ m∞. Set Rm := {a ∈ R×: vp(a) = 0 for all p | m0

}
. More-

over, define (R/m)∗ :=
(∏

w|m∞ 〈±1〉
)

× (R/m0)
∗, and for a ∈ Rm, let [a]m :=

((sign(w(a)))w|m∞, a + m0) ∈ (R/m)∗. Then Rm → (R/m)∗, a �→ [a]m, is a semi-
group homomorphism. If� is a subgroup of (R/m)∗, then Rm,� := {a ∈ Rm: [a]m ∈ �}
is called a congruence monoid. Let R � Rm,� be the semi-direct product with respect
to the action of Rm,� on R by multiplication. The semigroup C*-algebra of R � Rm,� ,
more precisely the C*-algebra C∗

λ(R � Rm,�) generated by the left regular represen-
tation of R � Rm,� , has been studied in [7] and [8]. In particular, in [8, § 4.1], the
K-theory of C∗

λ(R � Rm,�) has been computed. Let us now compute K-theory for the
C*-algebra C∗

ρ(R � Rm,�) generated by the right regular representation of R � Rm,� .
Since we can identify C∗

ρ(R � Rm,�) with the C*-algebra C∗
λ((R � Rm,�)op) generated
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by the left regular representation of the opposite semigroup (R� Rm,�)op, we can apply
Corollary 3.21 to (R � Rm,�)op.

Let Km,� := {x ∈ Km: [x]m ∈ �}. By [7, Proposition 3.3], the semigroup R� Rm,�

is left Ore with group of left quotients equal to G(R� Rm,�) = (R−1
m R)�Km,� , where

R−1
m R = {a/b: a ∈ R, b ∈ Rm} ⊆ K× is the localization of R at Rm. Hence P :=

(R � Rm,�)op also embeds into G := (R−1
m R) � Km,� . The group G is solvable, hence

amenable, so that it satisfies the strong Baum–Connes conjecture by [24]. For a non-zero
ideal a of R, set am,� := a ∩ Rm,� . Now it follows from [14, Proposition 6.1] and [7,
Proposition 3.9] thatJ ×

P = {R × am,�: (0) �= a � R
}
. Furthermore, [7, Proposition 3.9]

implies that P satisfies the independence condition. While it is in general not clear
whether P ⊆ G satisfies the Toeplitz condition, we can nevertheless compute K-theory
of C∗

ρ(R � Rm,�) ∼= C∗
λ(P) by applying Corollary 3.21. Note that in general, P is

no longer right LCM. In order to present the K-theory formula, let C �̄
m := Im/Km,�

be the quotient of the group Im of fractional ideals of K coprime to m0 under the
multiplication action of Km,� , and given a fractional ideal a of K , set (R : a) :=
{x ∈ K : xa ⊆ R}. Moreover, given k = [ak] ∈ C �̄

m, set ik : C∗
ρ((R : ak) � R∗

m,�) →
C∗

ρ(R � Rm,�), ρg �→ 1R×(ak)m,�
ρ(g), where g �→ ρg and p �→ ρ(p) are the right

regular (anti-)representations of (R : ak) � R∗
m,� and R � Rm,� , respectively, and

1R×(ak)m,�
is the characteristic function on R × (ak)m,� (which lies in C∗

ρ(R � Rm,�)).
We now obtain the following K-theory formula:

Corollary 4.2.
∑

k∈C �̄
m
ik induces a KK-equivalence between

⊕
k∈C �̄

m
C∗

ρ((R : ak) �

R∗
m,�) and C∗

ρ(R � Rm,�).
We have C∗

λ(R � Rm,�) ∼KK C∗
ρ(R � Rm,�).

Proof. For the first claim, it suffices to show that the stabilizer group GR×am,� ={
g ∈ G: (R × am,�) · g = R � am,�

}
is given by GR×am,� = (R : a) � R∗

m,� , for all
non-zero ideals a of R coprime tom0. “⊇” is clear. To prove “⊆”, take (b, a) ∈ GR×am,� .
Looking at themultiplicative component, we see that am,� ·a = am,� . As am,� generates
a as an ideal in R by [7, Lemma 3.8], it follows that a · a = a. Thus a ∈ R∗ ∩ Km,� =
R∗
m,� . Now looking at the additive component, (R � am,�) · (b, a) = R � am,� implies

that R + am,� · b = R, which is equivalent to am,� · b ⊆ R, which in turn is equivalent
to a ·b ⊆ R because am,� generates a as an ideal in R by [7, Lemma 3.8]. Hence bmust
lie in (R : a), as desired.

For the second claim, just observe that, since C �̄
m is a group under multiplication of

ideals, the map [a] �→ [(R : a)] defines a bijection on C �̄
m because it coincides with the

map sending a group element of C �̄
m to its inverse. Now our second claim follows from

the first claim and [8, Theorem 4.1]. ��
In [14, § 6] and [34, § 4], classes of semigroupswere foundwith the property that their

left and right semigroup C*-algebras have the same K-theory, or are even KK-equivalent
(see also the discussion in [15, § 5.11]). Corollary 4.2 identifies more examples with this
phenomenon.

4.5. C*-algebras of inverse semigroups from tilings and point-sets. As a last class of
examples, let us discuss tiling inverse semigroups, point-set inverse semigroups and
other related constructions. We refer the reader to [27–30] for more details. For our K-
theory computations for the reduced C*-algebras of the inverse semigroups, it turns out
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that it is very helpful to have flexibility in choosing the target group of the idempotent
pure partial homomorphism on our inverse semigroup. There is always a universal group
(see [30]), but this group can be difficult to determine, so that it is not so easy to check
that this group satisfies the Baum–Connes conjecture with the coefficients of interest.
However, all we need in order to apply Theorem 3.18 is to find some idempotent pure
partial homomorphismwhose target group has the desired properties. This ismuch easier
to achieve, as we will see in the examples below.

Let us start with tiling inverse semigroups. A tile is a subset of R
n which is home-

omorphic to a closed ball in R
n . A partial tiling is a collection of tiles with pairwise

disjoint interiors. The support of a partial tiling is the union of its tiles. A tiling is a partial
tiling whose support is all of R

n . A patch is a finite partial tiling. Let T be a tiling. Let
P be the set of subpatches of T . Define an equivalence relation on triples of the form
(a, P, b)with P ∈ P , a, b ∈ P by setting (a, P, b) ∼ (c, Q, d) if and only if there exists
x ∈ R

n such that a + x = c, b+ x = d and P + x = Q. Let [·] denote equivalence classes
with respect to∼. Then�(T ) := {[a, P, b]: P ∈ P, a, b ∈ P}∪{0} becomes an inverse
semigroup under themultiplication [a, P, b]·[c, Q, d] := [a+x, (P+x)∪(Q+y), d+y]
if there exist x, y ∈ R

n such that P + x and Q + y are subpatches of T and b+ x = c+ y;
otherwise define [a, P, b] · [c, Q, d] := 0. It is easy to see that [a, P, b]−1 = [b, P, a].
We call �(T ) the tiling inverse semigroup of T . If we replace P by the set Pconn of
subpatches of T with connected support and perform the above construction, then we
obtain the connected tiling inverse semigroup S(T ).

For each tile t ∈ T , let us choose a point p(t) in the interior of t (p(t) is called the
puncture of t) such that if for x ∈ R

n , both t and t+x are tiles inT , then p(t+x) = p(t)+x .
Now letG := 〈{p(t) − p(t ′): t, t ′ ∈ T

}〉 ⊆ R
n be the additive subgroup ofRn generated

by p(t) − p(t ′) for t, t ′ ∈ T . Since T is countable, G is a countable group. It is
straightforward to check that σ : �(T )× → G, [a, P, b] �→ p(a) − p(b) defines an
idempotent pure partial homomorphism. Similarly, the restriction of σ to S(T )× defines
an idempotent pure partial homomorphism on S(T )×. The group G is abelian, hence
satisfies the strong Baum–Connes conjecture by [24]. Thus we can apply Theorem 3.18
to compute K-theory forC∗

λ(�(T )) andC∗
λ(S(T )). To present the K-theory formula, we

introduce the equivalence relation ≈ on P and Pconn by setting P ≈ Q if and only if
there exists x ∈ R

n with Q = P + x . Given P ∈ P , choose a ∈ P and denote by iP the
homomorphism C → C∗

λ(�(T )) (or C → C∗
λ(S(T ))) sending 1 ∈ C to [a, P, a]. [43,

Lemmas 6.1 and 6.2] together with Theorem 3.18 now yield the following:
Corollary 4.3.

∑
[P]∈P/≈ iP induces a KK-equivalence between

⊕
[P]∈P/≈ C and C∗

λ(�(T )).∑
[P]∈Pconn/≈ iP induces a KK-equivalence between

⊕
[P]∈Pconn/≈ C and C∗

λ(S(T )).

This generalizes [43, Proposition 6.3]. The reason we can now cover all tiling in-
verse semigroups is that we no longer need the (much) stronger condition in [43] that
our inverse semigroups have to be 0-F-inverse semigroups and must admit a partial
homomorphism to a group which is injective on maximal elements.

Let us now discuss point-set inverse semigroups. We start with a countable subset
D ⊆ R

n . LetP be the set of finite subsets ofD. Define an equivalence relation on triples
of the form (a, P, b) with P ∈ P , a, b ∈ P by setting (a, P, b) ∼ (c, Q, d) if and only
if there exists x ∈ R

n such that a + x = c, b + x = d and P + x = Q. Let [·] denote
equivalence classeswith respect to∼. Then�(D) := {[a, P, b]: P ∈ P, a, b ∈ P}∪{0}
becomes an inverse semigroup under the multiplication [a, P, b] · [c, Q, d] := [a +
x, (P + x) ∪ (Q + y), d + y] if there exist x, y ∈ R

n such that P + x and Q + y are finite
subsets ofD and b+ x = c+ y; otherwise define [a, P, b] · [c, Q, d] := 0. We call �(D)

the point-set inverse semigroup of D.
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Now let G := 〈{d − d ′: d, d ′ ∈ D
}〉 ⊆ R

n be the additive subgroup of R
n generated

by differences of elements ofD. SinceD is countable,G is a countable group.Moreover,
σ : �(D)× → G, [a, P, b] �→ a−b defines an idempotent pure partial homomorphism.
As G is abelian, it satisfies the strong Baum–Connes conjecture by [24]. Thus we can
apply Theorem 3.18 to compute K-theory for C∗

λ(�(D)). As above, we introduce the
equivalence relation ≈ on P by setting P ≈ Q if and only if there exists x ∈ R

n

with Q = P + x . Given P ∈ P , choose a ∈ P and denote by iP the homomorphism
C → C∗

λ(�(D)) sending 1 ∈ C to [a, P, a]. The analogues of [43, Lemmas 6.1 and
6.2] together with Theorem 3.18 now yield the following:

Corollary 4.4.
∑

[P]∈P/≈ iP induces a KK-equivalence between
⊕

[P]∈P/≈ C and C∗
λ(�(D)).

Finally, let us discuss inverse semigroups of the form �(X,G, H) from [30, Exam-
ple 2.1.1 (iii)], which are constructed as follows: Let H be a group, G a subgroup of H
and X a subset of H with 1 ∈ X . Let P be the set of finite intersections of subsets of H
of the form {gX : g ∈ G, 1 ∈ gX}. Define an equivalence relation on triples of the form
(a, P, b) with P ∈ P , a, b ∈ P by setting (a, P, b) ∼ (c, Q, d) if and only if there
exists g ∈ G such that g · a = c, g · b = d and g · P = Q. Let [·] denote equivalence
classes with respect to ∼. Then �(X,G, H) := {[a, P, b]: P ∈ P, a, b ∈ P} ∪ {0} be-
comes an inverse semigroup under the multiplication [a, P, b] · [c, Q, d] := [g · a, (g ·
P) ∩ (h · Q), h · d] if there exist g, h ∈ G such that g · P, h · Q ∈ P and g · b = h · c;
otherwise define [a, P, b] · [c, Q, d] := 0.

It is straightforward to check that σ : �(X,G, H)× → G, [a, P, b] �→ ab−1 defines
an idempotent pure partial homomorphism. So we can apply Theorem 3.18 if G is a
countable group satisfying the Baum–Connes conjecture with the relevant coefficients
or in its strong form. As above, we introduce the equivalence relation ≈ on P by setting
P ≈ Q if and only if there exists g ∈ G with Q = g ·P . Given P ∈ P , choose a ∈ P and
denote by iP the homomorphismC → C∗

λ(�(X,G, H)) sending 1 ∈ C to [a, P, a]. Let
A and A be the C*-algebras constructed in Sects. 2.3 and 3.1 for the inverse semigroup
�(X,G, H). The analogues of [43, Lemmas 6.1 and 6.2] together with Theorem 3.18
now yield the following:

Corollary 4.5. (I) If G is countable and satisfies the Baum–Connes conjecture for A
and A, then

∑
[P]∈P/≈ iP induces a K-theory isomorphism

⊕
[P]∈P/≈ K∗(C) ∼=

K∗(C∗
λ(�(X,G, H))).

(II) If G is countable and satisfies the strong Baum–Connes conjecture in the sense
of [15, Definition 3.4.17], then

∑
[P]∈P/≈ iP induces a KK-equivalence between⊕

[P]∈P/≈ C and C∗
λ(�(X,G, H)).
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