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Abstract

Wave overtopping endangers pedestrians on a seawall’s crest area, but quantitative assessment of the risk

is still a challenge. In this study, a circular cylinder is taken as a schematisation of human body. Physical

model tests and numerical simulations were conducted to investigate the inline force on the cylinder due

to overtopping flow at a vertical seawall. It is found that the overtopping flow is well reproduced by the

numerical model. When the overtopping flow encounters the cylinder, a high pressure zone is developed on

the front surface of the cylinder due to the local flow stagnation, while a shallow wake flow occurs behind

the cylinder due to the blockage e↵ect. The asymmetric pressure distribution produces the inline force on

the cylinder. When the cylinder is further moved inland, the depth of the local overtopping flow it faces

is smaller. However, the inline force does not decay accordingly, which is due to the variation of the flow

velocity along the seawall’s crest. Finally, a predictor is developed for desktop computation of the maximum

inline force. A prototype-scale numerical case study is carried out to demonstrate the capability of this

predictor.

Keywords: Vertical seawall; Wave overtopping; Inline force; Flow-cylinder interaction.

1. Introduction

Seawalls are key elements for coastal protection, especially for highly urbanized coastal area (e.g., the

island state of Singapore). The seawalls’ crest areas often attract many pedestrians. Their safety may be

threatened by wave overtopping, which occurs when the crest level of the seawall is lower than the possible

wave runup. A strong overtopping flow can knock down the pedestrians standing on the seawall. It was

reported by Allsop et al. (2003) that at least 12 people died due to wave overtopping in UK between 1999

and 2002. EurOtop (2018) also reported that 11 people were killed in UK in 2005 through wave action,

mainly on seawalls and other similar coastal structures. Hereby it is of vital importance to ensure that

the seawalls are well designed to protect pedestrians from being threatened by the overtopping flow. The
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existing guidelines such as EurOtop (2018) have introduced indicative tolerable overtopping conditions for

people on seawalls’ crest, but these conditions are empirically determined and therefore relatively crude.

A thorough study is needed for enhancing our knowledge on the hydrodynamic process and refining the

guideline in the future.

A substantial amount of research works have been carried out towards understanding the hydrodynamics

of wave overtopping process, of which a majority are targeted at sloped structures such as revetments and

rubble-mound breakwaters (Romano et al., 2015; Jensen et al., 2014; Schüttrumpf and Oumeraci, 2005;

Van der Meer et al., 2011; Mares-Nasarre et al., 2019; Van Bergeijk et al., 2019; Guo et al., 2013). Vertical

seawalls are also common coastal protection structures, but there are fewer studies on this type of structures.

For the assessment of overtopping at vertical structures, it is generally required to identify the regime of

the waves arriving at the seawall. When wave height is large in relation to the local water depth, e.g.,

when the seawall sits on a shallow foreshore, they may break in front of the seawall, and the breaking

waves strike violently onto the wall, producing a short-duration impulsive load (Cuomo et al., 2010; Cooker

and Peregrine, 1992; Bullock et al., 2007; Bredmose et al., 2009, 2015). Alternatively, lying in a narrow

band between non-impulsive and impulsive conditions are near-breaking conditions, also known as the flip-

through conditions (Bredmose et al., 2010; Lugni et al., 2006). The overtopping flow under these conditions

is characterised by a violent up-rushing jet of probably highly aerated water, and the overtopping discharge

rate can be described by a power law formulation (EurOtop, 2018).

Some of the vertical seawalls or breakwaters are concrete caissons, which are placed in deep water. In

the present paper, we shall focus on the overtopping forces on human body under such condition. Fig. 1

shows an example of the vertical seawall at a marina in Singapore, which is open to public. In this case,

the foreshore has little e↵ects on wave propagation and waves simply arrive at the vertical seawall without

breaking. The incident waves are largely reflected back by the seawall, and a green water overtopping is

produced. The functional form of the overtopping discharge rate under this condition is well described by a

Weibull-type formula, which is the same formulation as for steep sloping structures (EurOtop, 2018; Van der

Meer and Bruce, 2014). The existing literature of the overtopping research works in this regime primarily

target at reducing the overtopping discharging rate, by using recurved parapets (Martinelli et al., 2018;

Castellino et al., 2018) or still wave basin (Kisacik et al., 2019).

With regard to overtopping forces on structures, recently several papers have been published, which

are primarily focused on the overtopping forces on 2-dimensional walls. Large-scale laboratory tests were

performed by De Rouck et al. (2012) for breaking wave overtopping and impact on a storm wall. A so-called

church-roof profile was reported for the recorded pressure and force on the wall, which shows a double-peaked

force shape for a single impact event. Chen et al. (2015) further developed empirical formulas to predict

the second peak of the church-roof profile force, which was called the quasi-steady force on the vertical wall.

The derivation of the formula is based on the concept of depth-integrated momentum flux, and it is limited
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Figure 1: A vertical seawall at a marina in Singapore where the first author is standing.

to regular waves. Chen et al. (2016) conducted experiments under irregular wave conditions to estimate the

maximum overtopping forces on the wall with a very shallow foreshore. An empirical Generalised Pareto

distribution was verified as the best distribution for the extreme overtopping forces.

The human instability problem is considerably more complex than the common structural instability

problems, which has been investigated by e.g. Arrighi et al. (2017); Endoh and Takahashi (1995); Mart́ınez-

Gomariz et al. (2016); Milanesi et al. (2015). It is commonly accepted that friction and moment instability

are the major failure modes leading to human instability. Friction instability occurs when the driving flow

force exceeds the stabilising force due to ground friction, while moment instability occurs if the overturning

moment (with respect to a pivot point, i.e., the heel) is larger than the stabilising moment produced mainly

by the body’s weight. However, for overtopping force on human body, it is believed that the friction

instability is the dominant failure mode as the overtopping flow has very small thickness and high speed

(Jonkman and Penning-Rowsell, 2008). Therefore, the inline force, defined as the force in-line with the flow

direction, is of interest in the present paper.

There are many factors that potentially a↵ect the human stability in flooding water or overtopping flow,

e.g., uncertainties in ground friction and pedestrian’s response to incoming flow. These factors are not

straightforward to be considered in a physical or numerical model. Instead, the human body is usually

schematised as a fixed circular cylinder, of which the diameter is the representative width of human body.

Such simplified representation of human body has been widely adopted in e.g. Lind et al. (2004), though

many other factors such as the detailed geometry and the gaps between the feet are not considered. Partic-

ularly, in Endoh and Takahashi (1995), experiments were conduced to study the movement of human body
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subjected to overtopping waves at a vertical breakwater, which is mostly related to the present work in the

published literature. Based on the critical water depth at the leading edge of the caisson and e↵ects of other

factors (e.g., hand railings), they proposed a set of empirical formulas to calculate the critical wave heights

for splash, overtopping, a person to be knocked down and a person to be swept to the sea.

In the present paper, as described above, we are limited to investigate the non-impulsive wave overtopping

forces on human body at a deep vertical seawall. The human body is schematised as a circular cylinder,

and both physical and numerical models are used to investigate the non-breaking wave overtopping and its

interaction process with the cylinder. Unlike a storm wall which can completely block the overtopping flow,

in this case the overtopping flow is only locally deflected by the cylinder, and a wake is formed behind the

cylinder. The physical quantities of most interest to us are the inline force on the cylinder, the overtopping

flow depth and depth-averaged flow velocities, which are directly associated with the inline force. Meanwhile,

the cylinder’s location is also an important variable in this study, as overtopping flow thickness will decay

as it transports landward due to friction force of the seawall crest.

The remaining of the paper is organised as follows. Section 2 presents a dimensional analysis for the

maximum inline force on the cylinder, which can be used to justify the test conditions in the laboratory

experiments. The physical and numerical models are described briefly in Section 3 and Section 4, respectively.

The overtopping flow and the inline force from the numerical and experimental results are compared, and

the e↵ects of the cylinder’s location are discussed in Section 5. Finally, an empirical predictor is developed

in Section 6 for quick estimation of the maximum inline force on the cylinder at di↵erent locations, followed

by the conclusions given in Section 7.

2. Dimensional Analysis

This section presents a dimensional analysis for the maximum inline force on a cylinder located at the

leading edge of the seawall, F0m, which is the key physical parameter for risk assessment. We must point

out that in this study the F0m is measured at 1.5D from the actual leading edge, where D is the diameter of

the cylinder. This is because the exact leading edge is always unsafe (people can easily fall into the water),

regardless of the overtopping flow, and usually some protective barrier is set to prevent people from reaching

the exact leading edge. To account for the fact that F0m increases with the cylinder’s diameter D, the

maximum inline force F
⇤ defined as F

⇤ = F0m/D is further introduced as the target variable. Apparently,

F
⇤ depends on a set of variables as shown below

⇢, ⌫, g, H, T, Rc, D

Here the wave condition is simply represented by the wave height H and wave period T . The freeboard

Rc is the only variable for seawall design. The property of the fluid is described by the fluid density ⇢ and
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Figure 2: Definition of the physical quantities related to the maximum overtopping force.

the fluid kinematic viscosity ⌫. The size of the cylinder is characterised by its diameter D. Finally, the

gravitational acceleration g, is also a relevant variable. Fig. 2 provides a definition sketch for some of the

variables.

This system has three fundamental dimensions, i.e., length, time and mass. Thus, the behaviour of

the system is determined by five dimensionless terms. Here three variables (H, g, ⇢) are chosen as the

dimensionally independent subset. The remaining independent variables and F
⇤ are converted into the

following five dimensionless parameters:

⇧1 =
F

⇤

⇢gH2
⇧2 =

gT
2

H
⇧3 =

Rc

H
⇧4 =

p
gH3

⌫
⇧5 =

D

H
(1)

⇧4 is a Reynolds number, which describes the role of viscous e↵ect in the system. As will be discussed

in section 5, the inline force is due to a thin layer of high-speed flow striking on the cylinder, which is an

inertia-dominant process. When the overtopping flow passes around the cylinder, the free surface elevation

is decreased rapidly in the back side of the cylinder, which results in a very small immersed area in the

back side of the cylinder. As ⇧4 mainly controls the flow behaviour in the wake, it is expected that ⇧4

should have an insignificant contribution to the total inline force on the cylinder. ⇧5 compares the diameter

of the cylinder to the incident wave height. For the background problem of overtopping flow striking on a

human body, we are interested in the wave heights between 0.5 m and 1.5 m, because this is a range with

relatively large uncertainty. For very large waves, e.g., wave height exceeding 2 m combined with a mean

overtopping discharge rate larger than 1 l/s, it is not recommended for pedestrians to access seawalls’ crest

areas, as concluded in EurOtop (2018). Meanwhile, for wave heights smaller than 0.5 m, the overtopping

flow can hardly threaten pedestrians’ safety. The equivalent diameter of the human body is within 20 ⇠ 40

cm. Thus, the variability of ⇧5 is limited and it is assumed that ⇧5 does not a↵ect the system’s behaviour.
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Figure 3: Sketch of the experimental setup in side view.

Hereby the dimensional analysis is reduced to

F
⇤

⇢gH2
= f

✓
H

L0
,
Rc

H

◆
(2)

which implicates that the maximum inline force depends on the wave steepness H/L0, where L0 = gT
2
/2⇡,

and the relative freeboard Rc/H. This dimensional analysis also suggests that a geometrically-scaled labo-

ratory experiments can be conducted to understand how F
⇤ varies with flow-seawall conditions.

3. Experiments

3.1. Setup of the experiments

Experiments were conducted in a wave flume in the Hydraulic Laboratory at National University of

Singapore. The setup of the experiments is shown in Fig. 3. This wave flume is 36 m long, 1.3 m high and

2 m wide. A piston type wave-maker supplied by HR Wallingford is located at the left end of the flume,

which can generate waves with a wave height of less than 20 cm in a water depth of 65 ⇠ 95 cm. The

target prototype wave height in this study is about 0.5 ⇠ 1.5 m (See Section 2). Thus, we set a geometrical

scale of around 1:5. Near the right end of the flume, the side walls are made of glass, which ensures a clear

observation of the flow from the side view. A vertical seawall model was installed at the right end of the

flume at a distance of 26.57 m downstream from the wave-maker. A photo for the seawall model is presented

in Fig. 4. The model was made by placing an aluminium vertical plate in front of the seawall crest, which

was 1 m long and 1 m high.

A cylinder, as shown in Fig. 5, was placed on the model seawall crest as a surrogate of human body.

The cylinder model was made of a plastic pipe with an outer diameter of 6 cm, representing a human body

width around 30 cm (assuming 1:5 scaling) at prototype scale. The upper end of the pipe was mounted to

a three-axis force sensor, which was then fixed onto a rigid bar sitting on top of the side walls of the flume.
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Figure 4: A photo of the vertical seawall model.

The cylinder was suspended by about 2 mm from the seawall surface. This tiny gap ensures that the cylinder

did not touch the seawall surface during an experiment. Meanwhile, the bottom of the pipe was sealed to

prevent overtopping flow from entering the pipe. The distance of the cylinder from the leading edge of the

seawall’s crest was varied to investigate the e↵ect of the cylinder’s location on the overtopping-flow-induced

force.

3.2. Measurement instruments

The physical quantities measured in the experiments were: (a) free surface elevation in the flume; (b)

depth of the overtopping flow on the seawall crest; (c) overtopping flow velocity; (d) inline force on the

cylinder. For measurement of the surface elevation in the wave tank, three capacitance type wave gauges

were installed at selected locations. These wave gauges were capable to measure a maximum wave height of

40 cm with an uncertainty of about 1 mm. One gauge (named as CG1) was installed at 7.446 m downstream

from the wave paddle to monitor the generated waves. Meanwhile, the incident wave height is obtained by

conducting wave reflection analysis, based on the measurements of two wave gauges (CG2 and CG3) near

the vertical seawall (24.90 m and 25.33 m downstream of the wave-maker). As the wave-maker cannot

perform active absorption function, we stop the experiment tests before re-reflected waves arrive at the

seawall model.

In order to capture the wave overtopping process, a Sony high-speed camera with up to 100 frame per

second was used, which can produce high-resolution figures of 1920 ⇥ 1080 pixels. Then the overtopping
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Figure 5: The cylinder used in the experiments as a surrogate of human body.

depths on the seawall crest were obtained by digitising the recorded videos. Regarding the overtopping flow

velocity, it was measured using the Particle Image Velocimetry (PIV), which will be described in detail in

Section 3.4. For measurement of the inline force on the cylinder, a three-component load cell (LSM-B-SA1,

KYOWA) was deployed. It has a measuring capacity of 50 N and a natural frequency of 800 Hz, and

the measurement was sampled at a frequency of 200 Hz. An 8-module (4 channels per module) National

Instrument (NI) data acquisition system was used to synchronise the signals of wave gauges, ultrasonic

probes and load cell. The captured videos were synchronised with all the other instruments by identifying

the moment that the overtopping flow crosses the leading edge of the seawall crest for the first time.

3.3. Test conditions

Table 1 presents the key parameters of the current experiments and the corresponding full scale values

assuming a model test scale of 1:5. Furthermore, selection of freeboard Rc concerns the fact that the incident

wave is mostly reflected by the seawall, leading to a standing wave in the wave flume. The seawall’s front

vertical surface is a node of the standing wave, so there is no overtopping flow if the freeboard Rc is larger

than the incident wave height. The wave height ranges between 0.15 m and 0.2 m, so two values of freeboard,

0.1 m and 0.15 m were selected. The wave periods were 2 - 3 seconds, corresponding to a wave period of 4.5

- 6.7 seconds in prototype. Totally five di↵erent cylinder’s locations on the seawall crest were tested in the

experiments to investigate the decay of the force on the cylinder.
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Table 1: Test matrix showing the ranges of the incident wave conditions and dimensions in the model and full scale, assuming

a model test scale of 1:5.

Description Parameter Model scale Full scale

Water depth h 0.85 - 0.90 m 4.25 - 4.50 m

Wave height H 0.15 - 0.20 m 0.75 - 1.00 m

Freeboard Rc 0.10 - 0.15 m 0.50 - 0.75 m

Wave period T 2 - 3 s 4.50 - 6.70 s

Cylinder location xc 0.09 - 0.50 m 0.45 - 2.50 m

Cylinder diameter D 0.06 m 0.30 m

3.4. Particle image velocimetry

The inline force on the cylinder is strongly associated with the flow velocity, which was measured using a

particle image velocimetry (PIV) system in the present experimental study. The PIV system mainly consists

of a high speed camera and a laser, which is illustrated in Fig. 6. Due to the limited Field of View (FOV),

the measurement was only conducted in the area between x = �8.6 cm and x = 13.6 cm, where x = 0

corresponds to the seawall’s leading edge.

The PIV system consists of an 8-W Diode Pumped Solid State (DPSS type) continuous laser with a

wavelength of 532 nm as the light source and a high-speed camera. The beam emitted from the laser source

was expanded by a cylindrical lens to form a 1-mm-thick laser sheet which was then cast downward into the

water from the top of the flume. The flow was seeded with glass hollow spheres. The high-speed camera

(Phantom Miro 340), which has 6 gigabyte memory storage, 2560 ⇥ 1600 pixel resolution, and a maximum

frame rate of 800 Hz, was used to capture images of the seeded flow. A 100 mm focal lens was mounted

on the high-speed camera, which operated at 500 frames per second in the experiments. The velocity fields

were determined by the cross-correlation analysis using a Matlab tool, i.e., PIVlab developed by Thielicke

and Stamhuis (2014). A multigrid processing technique was adopted to enhance the accuracy of the velocity

calculation. This multigrid process, which began and ended with 64 ⇥ 64 and 32 ⇥ 32 pixels, respectively,

used interrogation windows with 50% overlap in the cross-correlation analysis.

4. Numerical Model

4.1. Governing equations

The governing equations of the numerical model include conservation equations of mass and momentum

for an incompressible and immiscible two-phase flow system, where a volume of fluid (VoF) scheme is

incorporated for tracking the free surface (Hirt and Nichols, 1981). In an Eulerian frame of reference, these
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Figure 6: Sketch of the PIV setup for measurement of velocity: (a) top view; (b) side view (unit: m).

equations are given by
@ui

@xi
= 0 (3)

@⇢ui

@t
+

@⇢uiuj

@xj
= � @p

@xi
� gjxj

@⇢

@xi
� @

@xj
(2µSij + ⌧ij) + �

@↵

@xi
(4)

where xi is the Cartesian coordinate system, ui is the Reynolds averaged velocity component, gi is the

gravity acceleration component, ⇢ is the density, p is the pressure in excess, µ is the dynamic viscosity and

� is the surface tension coe�cient. ↵ is the water volume fraction and ↵ 2 [0, 1]. Thus, the volume fraction

of air is given by the complementary fraction 1 � ↵.  is the curvature of the interface which is calculated

as

 = � @

@xj

✓
@↵/@xj

|@↵/@xj |

◆
(5)

The last term on the right hand side of Eq. (4) is used to evaluate the surface tension force based on the

continuum surface force model proposed by Brackbill et al. (1992).

In Eq. (4), the shear strain rate Sij is defined as

Sij =
1

2

✓
@ui

@xj
+

@uj

@xi

◆
(6)
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and the turbulent shear stress ⌧ij is calculated according to the Boussinesq approximation

⌧ij = �⇢u
0
iu

0
j = 2µT Sij +

2

3
k�ij (7)

where the prime superscript denotes the fluctuating components. k is the turbulent kinetic energy, �ij is the

Kronecker delta, and µT is the eddy viscosity. A k � ! SST turbulence model was applied in the numerical

model, which models the turbulent kinetic energy k and the specific dissipation rate !. Then the eddy

viscosity µT is obtained based on the computed k and !.

The instantaneous local density and dynamic viscosity are specified in terms of the water volume fraction

by the following constitutive equations

⇢ = ↵⇢w + ⇢a(1 � ↵)

µ = ↵µw + µa(1 � ↵)
(8)

where the subscript w and a refer to water and air, respectively. The isoAdvector approach proposed

in Roenby et al. (2016) was adopted to advect the free surface, which is essentially an e�cient two-step

geometric VoF solver. In the first step, the free surface was explicitly reconstructed within each cell by

applying the concept of isosurface. Secondly, from the reconstructed surface, the motion of the intersection

lines between the cell face and the free surface was modelled to obtain their time evolution within a time

step. Readers are referred to Roenby et al. (2016) for details of the algorithm.

4.2. Computational domain and mesh

The above introduced numerical model was applied to reproduce the experiments presented in Section 3.

The waves were generated using the waves2Foam toolbox developed by Jacobsen et al. (2012). A relaxation

zone was applied at the left side of the numerical wave tank to drive the waves according to the stream

function wave theory. The relaxation zone was 5 m long, which was equivalent to 0.7L to 1.1L depending

on the incident wave condition, where L is the wave length. At the right side on the seawall crest, a short

relaxation zone was utilized to absorb the overtopped flow. The cylinder was placed at di↵erent positions

on the seawall’s crest.

A structured multi-block mesh was generated using the native blockMesh toolbox, which is distributed

with the OpenFOAM toolbox. In this problem, two distinct scales in the x direction appear to be important.

In the wave-making zone, the grid only needs to properly resolve the large-scale wave propagation, but on

the seawall’s crest, the scale of the local flow around the cylinder is in the order of millimetre. Similarly,

in the lateral direction, the flow is largely 2-dimensional until the overtopping flow encounters the cylinder.

Therefore, the mesh was largely squeezed nearly the cylinder to ensure a su�cient resolution for the complex

local flow around it. Totally 17 blocks were used within the domain and an overview of the computational

mesh is presented in Fig. 7 with the local mesh structures around the cylinder.
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Figure 7: Example of the structured multi-block mesh. Upper: an overview of the mesh, where the cylinder is highlighted by

the red colour. Lower: The mesh in the vicinity of the cylinder. For this illustration, the total mesh number is 0.85 ⇥ 106,

corresponding to the Grid 1 as shown in Table 2.

4.3. Convergence analysis

A convergence test was performed to verify the sensitivity of the inline force on the grid resolutions, since

a relatively high resolution was required to properly resolve the flow near the cylinder. The convergence test

was performed for the case with H = 0.185 m, T = 3 s and Rc = 0.1 m. Four di↵erent grid resolutions were

tested, and the relevant parameters are given in Table 2. These four di↵erent grids are geometrically similar,

and the total number of grid ranges from less than one million to more than four millions. Further analysis

shows that for the grid resolution in the wave-making zone, the resolution ranges between H/�z = 46 ⇠ 80

vertically, and L/�x = 157 ⇠ 272 horizontally. Generally speaking, such resolutions are su�ciently fine for

wave-making problems. Near the cylinder, the maximum overtopping flow depth for this case is about 0.07

m, so the overtopping flow depth is resolved by 17 ⇠ 30 cells vertically. Therefore, the main behaviour of

the overtopping flow is expected to be correctly resolved by these grids.

However, the boundary layer of the overtopping flow on the seawall’s crest and around the cylinder

cannot be correctly resolved by all of the four grids. The boundary layer thickness can be roughly estimated

using the flat plate theory. Given a characteristic velocity of 0.8 m/s for the overtopping flow in this test,

at 0.5 m away from the leading edge of the seawall, the boundary layer has a thickness of 4 mm, i.e.,

similar as the vertical length of the first layer of grid. In the present study, a wall function was applied to

help describe the flow inside the boundary layer. However, it is not guaranteed that the boundary layer is

adequately modelled even with the aid of a wall function. In Section 5, it is shown that the important e↵ects

are gravity and inertia, while viscous e↵ect is secondary. This can also be demonstrated by the results of

the convergence test. Fig. 8 presents one cycle of the inline force using these four di↵erent grids. It is
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Table 2: Mesh parameters for the convergence study. The cell size in the wave-making zone is the averaged size at the free

surface area, as there is a smooth refinement from the far end near the wave-maker boundary to the area near the seawall. The

cell size in the near-cylinder zone is the size of the first layer cell above the seawall’s crest near the cylinder.

Grid NO.
Wave-Making Region Near-Cylinder Region

Mesh NO. [million]
�x [mm] �z [mm] �x [mm] �y [mm] �z [mm]

1 38 4.0 6.0 6.0 4.0 0.85

2 30 3.4 5.0 5.0 3.4 1.81

3 26 2.8 4.2 4.2 2.8 2.64

4 22 2.3 3.5 3.5 2.3 4.60

8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0

Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

F
x

[N
]

Grid 1

Grid 2

Grid 3

Grid 4

Figure 8: Computed inline force on the cylinder during one overtopping event using di↵erent grid resolutions. The relevant

parameters for the grid resolutions are shown in Table 2. The condition for the test is H = 0.185 m, T = 3 s, h = 0.9 m and

Rc = 0.1 m.

found that the four force curves have similar shape with a single peak in each overtopping event. The main

di↵erence is on the magnitude of the peak value. A clear trend is that by increasing the resolution, the

numerical result converges to a smaller peak. The occurrence time of the peak is likely to be earlier with

finer mesh. However, the di↵erence between two consecutive mesh grids reduces and the relative discrepancy

is around 3% between Grid 3 and Grid 4, which can be considered negligible. Hence, Grid 3 is applied for

all the simulations in the following discussions. This also shows that a nearly convergent inline force can be

obtained without fully resolving the boundary layer, indicating the secondary importance of viscous e↵ects

in our applications.
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5. Results and discussion

5.1. Overtopping flow process

Overtopping flow is initialised when the free surface at the vertical seawall boundary is elevated higher

than the height of the seawall. The free surface of the overtopping flow remains very smooth over the

whole process. Therefore, the Particle Image Velocimetry (PIV) measurements were conducted, which are

compared with the 2-dimensional numerical results.

Fig. 9 presents the snapshots since the beginning of an overtopping event. The subfigures in the left

column is the PIV images of the instantaneous flow. The horizontal velocity, u, of the PIV measurements is

shown in the middle column, and the corresponding numerical simulation is provided in the right column.

At the very beginning of the overtopping event, water is spilled onto the seawall’s crest since the water level

in front of the seawall exceeds the crest level. A small rounded jet is formed at the front of the flow, which

plunges directly onto the seawall’s crest. As a consequence, a cavity is formed with air trapped inside and

the scale of the cavity is around 1 ⇠ 2 cm in this test. This behaviour is very similar to the case of green

water on deck, which has been reported in Greco et al. (2005). In the experiments, it is observed that the

cavity is further advected by the overtopping flow, and breaks into smaller bubbles. The horizontal velocity

at the leading edge of the seawall is generally low, since the flow motion is mainly in the vertical direction

in front of the seawall. The depth of the overtopping flow decreases while the velocity increases along the

inland direction. This suggests that the kinetic energy of the overtopping flow mainly comes from the flow’s

potential energy at the leading edge.

From Fig. 9, it is shown that qualitatively the free surface profile and the flow velocity are well reproduced

by the numerical model. In addition, it also successfully predicts the formation of the cavity. Both the

initial size and the location of the cavity are adequately simulated. However, the model fails to simulate the

evolution of the cavity, including its breaking into small bubbles. Actually, one needs to correctly model the

viscous and surface tension e↵ects on the bubble, in order to reproduce its deformation and breakup (Chu

et al., 2019; Liao and Lucas, 2009). However, this cannot be achieved by the present model due to the coarse

resolution in regard to the bubble size. Furthermore, the numerical model is based on the incompressible

fluid flow (see Eqs. (3 - 4)). Hereby the air within the cavity cannot be compressed in the numerical model,

which also leads to the discrepancy. Nevertheless, the evolution of the cavity itself has little e↵ect on the

inline force on the cylinder, which will be demonstrated in Section 5.2. It is the bulk behaviour of the

overtopping flow, e.g., the overtopping flow depth and the depth-averaged velocity that determine the inline

force on the cylinder.

Fig. 10 presents the detailed comparison of the instantaneous inline velocity profile between the PIV

measurements and the numerical simulations. The agreement is generally good except close to the bottom.

The flow is very complex in that small area where the dynamics of the cavity a↵ects the velocity distribution.
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Figure 9: Left: Snapshots of the overtopping flow on the seawall during one overtopping event (the condition is H = 0.185 m,

T = 3 s, h = 0.9 m and Rc = 0.1 m). The reference time of t = 0 s is when the flow is elevated in the same level as the seawall.

From upper to lower, the occurrence time are t = 0.01 s, t = 0.16 s, t = 0.41 s, t = 0.47 s and t = 0.59 s. The cell size for the

grid in the left column of the figures is 4.37⇥ 4.53 mm. Middle: The inline velocity contour at the corresponding time instant

from PIV images. Right: The inline velocity contour at the corresponding time instant from the numerical simulations.
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Negative velocity is observed below the air cavity at e.g., t = 0.41 s, which is primarily due to the cavity

motion. As air-water interaction cannot be fully reproduced by the numerical model, there appear to be

some discrepancies regarding the velocity distribution near the air cavity. However, such discrepancies are

confined within a small area comparing with the scale of the overtopping flow depth, and the deviation of

the velocity distribution within it is trivial to the inline force on the cylinder. Again we emphasise that it

is the depth-averaged flow velocity that is important to the inline force. From the comparison, it is shown

that this can be reasonably estimated by the numerical model.

When overtopping flow further travels inland, it is expected that the flow should decay along its journey.

Fig. 11 presents the comparison of the overtopping flow depth at various locations between the numerical

and experimental data. We observe a slight overestimation of the flow depths by the numerical model at

all the four locations, and the maximum di↵erence occurring at the peak ranges from 4.2% to 9.3%. A

clear decay of the overtopping flow depth is depicted by both the experimental and the numerical results.

Fig. 12 further depicts the decay of the maximum overtopping flow depth along the seawall under a variety

of wave conditions. Here we use the maximum overtopping depth at the seawall’s leading edge, d0m, to

normalise the x coordinate and the local maximum overtopping depth dm. The data were collected from

both numerical simulations and experiments. For nearly all the cases, a dramatic drop of flow depth is found

within the region of x/d0m < 5, where the maximum depth of the overtopping flow reduces to less than

half of the maximum depth at the leading edge of the seawall. As can be seen from the example in Fig. 9,

the flow depth near the seawall’s leading edge indeed drops quickly, since locally the flow’s potential energy

is rapidly converted into its kinetic energy. Beyond x/d0m = 5, the depth reduces much more slowly and

seems to become rather invariant. In this region, the overtopping flow becomes a thin layer of high-speed

flow, which is similar to the overtopping flow over a sloped revetment.

Another important quantity that determines the force on the cylinder is the depth-averaged velocity,

which is primarily obtained from the numerical model. The variation of the depth-averaged velocity is

completely di↵erent from that of the overtopping flow depth. Fig. 13 shows the variation of the normalised

local maximum depth-averaged flow velocity Um/U0m with the normalised x coordinate, x/d0m, where

Um is the local maximum depth-averaged velocity and U0m is the maximum depth-averaged velocity at the

leading edge of the seawall crest. There is a rapid increase of Um/U0m from the leading edge to approximately

x/d0m = 5, where Um/U0m grows to about 2. Within 5 < x/d0m < 12, Um/U0m seems to be unchanged.

The increase of the maximum flow velocity is associated with the conversion of flow’s potential energy to

kinetic energy. From x/d0m > 12, Um/U0m gradually decreases, which mainly because of energy dissipation

due to viscous e↵ect (e.g. bottom friction). Actually, this has a similarity with dam-break flow, which has

been taken as a surrogate of wave overtopping flow (Hu et al., 2015; Zhang et al., 2019; Ryu et al., 2007).
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Figure 10: Comparison of the x component of the velocity profile at three cross sections x = 0.01 m, x = 0.06 m and x = 0.12

m at di↵erent time instants under the same wave condition as in Fig. 9. (a) t = 0.41 s. (b) t = 0.47 s. (c) t = 0.59 s. The

overtopping event starts at t = 0 when the flow at the seawall is elevated at the same level with the seawall height.
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Figure 11: Comparison of the time series of the overtopping flow depth at di↵erent positions on the seawall’s crest under the

same wave condition as in Fig. 9. (a) x = 0 m. (b) x = 0.06 m. (c) x = 0.12 m. (d) x = 0.18 m. The time shown in the x axis

is based on the numerical simulations. The flow depth from the experiments is extracted by digitalising the PIV images.

5.2. Overtopping flow interaction with cylinder

The overtopping flow is largely 2-dimensional before it encounters the vertical cylinder. Then the over-

topping flow is locally deflected and becomes 3-dimensional, and an inline force is induced by the overtopping

flow. Fig. 14 presents the comparison of the inline force between the numerical simulations and the exper-

iments during one overtopping event. The peak magnitude is precisely predicted by the numerical model,

although the occurrence time is slightly shifted. The total inline force on the cylinder is the summation of

the integration of pressure and viscous shear stress. The former one is usually called the form drag while

the latter one is the friction drag. During the interaction between the overtopping flow and the cylinder, it

is found that the form drag is the dominant source of inline force, while the friction drag is less than 2% of

the total force during the whole event. This is also shown in Fig. 14 and it is consistent for all the incident

wave conditions.

The analysis on the detailed interaction process between the overtopping flow and the cylinder is pre-

sented below, which is largely based on the numerical results. Fig. 15 presents snapshots of the local flow and

velocity near the cylinder, and the pressure distribution around the cylinder before and after the occurrence

of the maximum inline force. It is clearly observed that the instantaneous free surface is elevated in the front

of the cylinder. Meanwhile, a local runup jet flow is formed and climbs along the front stagnation line of

the cylinder. Along both sides, the surface elevation is dropped considerably, as demonstrated by the white
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Figure 12: Decay of the nondimensional maximum overtopping flow depth dm/d0m along the seawall’s crest. x = 0 is at the

leading edge of the seawall’s crest. d0m corresponds to the maximum overtopping flow depth at the leading edge.

Figure 13: Variation of the nondimensional maximum depth-averaged velocity Um/Um0 along the seawall’s crest. All the data

are extracted from the numerical simulations. x = 0 is at the leading edge of the seawall’s crest. d0m corresponds to the

maximum overtopping flow depth at the leading edge and U0m corresponds to the maximum depth-averaged velocity at the

leading edge.

lines denoting the free surface in the sub-figures in the second and third columns of Fig. 15. Eventually, at

the back of the cylinder, the flow from both sides merges together, which results in a rear runup flow and a

complex wake behind the cylinder. This runup flow is significantly smaller than the runup in the front of

the cylinder. Such variation of free surface around the cylinder has been reported in other publications e.g.

Kristiansen and Faltinsen (2017), Paulsen et al. (2014).

A further quantitative examination on the pressure distribution around the cylinder is presented in Fig.

16 - 17. Fig. 16 presents the pressure along the front and back stagnation lines of the cylinder. Initially,

when the flow just starts to interact with the cylinder at t = 8.7 s, the pressure distribution is strongly

non-hydrostatic. The pressure is likely to be uniformly distributed between z = 0.01 ⇠ 0.03 m. However, it

rapidly evolves to a nearly hydrostatic distribution later from t = 9.0 s. Along the back stagnation line, due

to the complex wake e↵ects, the pressure looks much smaller and it has a more irregular vertical variation

than the pressure along the front stagnation line. Such a pressure distribution strongly indicates that the
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Figure 14: Comparison between the form drag and the friction drag during one overtopping event. The form drag and friction

drag are extracted from the numerical simulations. The total drag force from the experiments and numerical simulations are

also presented for reference. The incident wave condition is H = 0.185 m, T = 3 s, h = 0.9 m and Rc = 0.1 m.

inline force is due to the di↵erence of the pressure acting on the front and the back sides of the cylinder. This

is further confirmed in Fig. 17, which presents the vertical line integration of the pressure from the bottom

to the instantaneous free surface position. The pressure integration for the front side, i.e., �45� < � < 45�

is considerably larger than that for the back side. It starts to increase when the flow begins to touch the

cylinder and reaches the maximum between t = 8.85 s and t = 9.0 s. Then its magnitude is reduced in the

following time instants until one overtopping event ends. Meanwhile, the pressure integration for the back

side of the cylinder continues to increase between t = 8.70 s and t = 9.15 s, which counteracts the pressure

integration in the front side. As shown in Fig. 17, at t = 9.0 s, the cylinder has a larger pressure integration

on the front side than at t = 8.85 s, but it also has a large pressure integration on the back side. Thus,

these two time instants have almost identical inline force, and the peak inline force occurs between t = 8.85

s and 9.0 s.

When the cylinder moves further inland, the inline force on the cylinder varies with the distance to the

leading edge of the seawall, i.e. xc. Fig. 18 presents an example of the time series of the overtopping flow

depth and the inline force on the cylinder at various xc. There are several characteristics that should be

paid attention to. Firstly, with the increase of xc, both the flow depth and the force become more and more

asymmetric with regard to the maximum value, i.e., a rapid rising followed by a slow decay. This is because

the overtopping flow evolves into a bore-like flow as it moves inland, of which the tip has larger depth and

velocity than the tail. Furthermore, apparently with the increase of xc, the maximum inline force drops

much slower than the maximum depth of the overtopping flow. Comparing Fig. 18 a and Fig. 18 c, it can be

seen that at xc = 0.39 m the maximum force is reduced by about 25% while the maximum flow depth dm is

reduced by 50%. This is primarily because that the flow velocity increases with xc within xc/d0m < 5� 10,

as shown in Fig. 13. The maximum inline force is scaled with dmU
2
m where dm is the local maximum flow
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(a)

(b)

(c)

(d)

Figure 15: Snapshots of the overtopping flow and the pressure distribution around the cylinder at (a) t = 8.7 s; (b) t = 8.85 s;

(c) t = 9.0 s; (d) t = 9.15 s from the numerical simulation. At each time instant, the two figures on the left are the flow and

velocity distribution around the cylinder from the front bird view and back bird view, respectively. The figures in the middle

and right columns show the pressure distribution at the front and back faces of the cylinder. The white line on the cylinder

denotes the instantaneous free surface position.
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Figure 16: Vertical pressure distribution along the front and back stagnation line of the cylinder at the same time instants as

in Fig. 15. The data are extracted from the numerical results. The dashed line is the hydrostatic pressure distribution along

the front stagnation line when z = 0.105 m, z = 0.090 and z = 0.055 m, respectively. The cylinder is located at p/⇢g = 0.

depth and Um is the local maximum depth-averaged flow velocity, so the increase in flow velocity largely

counteracts the reduction of the flow depth, resulting in a slower decay of the inline force on the cylinder.

6. An empirical predictor for the maximum inline force

As presented in Section 5, 3D RANS simulation can reproduce the experiments fairly well. However, the

simulation is computationally expensive. For instance, one needs approximately 24 - 48 hours on 24 cores

in order to assess the inline force on human body under one regular wave condition. For irregular wave

condition, the computation time is in order of weeks to get statistically meaningful results. Meanwhile, if we

consider 2D RANS simulations, which means that only wave breaking and overtopping are resolved while its

interaction with cylinder is not resolved, the computational time is significantly reduced. The overtopping

flow depth can be easily obtained using a desktop even under irregular wave conditions. However, this

requires us to develop a method to evaluate the inline force on the cylinder based on the overtopping flow

depth, which is the objective of this section.

In this section, a predictor is developed based on the dimensional analysis shown in Section 2, which can

be used to quickly estimate F0m given the overtopping flow depth d0m extracted from 2D RANS simulations.

Then we develop an empirical formula, which expresses the maximum inline force at di↵erent locations Fm as

a function of F0m and xc �xc0, where xc0 is 1.5D i.e., the position of the cylinder where F0m was measured.

Finally, we show a preliminary application of the predictor for wave overtopping force on a prototype-scale

cylinder under an irregular wave condition.
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t=9.00 s t=9.15 s

Figure 17: Distribution of the pressure integration in the circumference direction at the same time instants as in Fig. 15. The

pressure is integrated from the bottom to the instantaneous free surface and the plot is scaled. The dots outside the cylinder

represent positive pressure integration i.e., acting into the cylinder, and vice versa. The data are extracted from the numerical

results.

6.1. Derivation of the predictor

The starting point of the derivation is Eq. (2), where the maximum inline force F
⇤ is shown to be

determined by the wave steepness and relative freeboard. This equation can be converted to a scaling law

for F0m

F0m = C1

✓
H

L0
,
Rc

H

◆
⇢gH

2
D (9)

where C1 is a scaling parameter. We propose to replace H with d0m, which is the maximum overtopping

flow depth at the seawall’s leading edge xc = 0. Note that d0m is a function of the six independent variables

H, T, Rc, ⇢, ⌫, g

A dimensional analysis for d0m (also neglect the viscous e↵ect) yields

d0m = C2

✓
H

L0
,
Rc

H

◆
H (10)
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Figure 18: Time series of the inline force (solid line) and the overtopping flow depth (dash line) during one overtopping event.

The data are extracted from the numerical model. The incident wave condition is H = 0.185 m, h = 0.90 m, T = 3 s. The

cylinder centre xc at each sub-figure is equal to (a) xc = 0.09 m; (b) xc = 0.15 m; (c) xc = 0.39 m; (d) xc = 0.53 m; (e)

xc = 0.78 m; (f) xc = 1.03 m. xc = 0 corresponds to the leading edge of the seawall.

where C2 is a parameter which relates the maximum water depth d0m with the wave height H. By substi-

tuting Eq. (10) into Eq. (9), the following scaling law is obtained

F0m = Cd

✓
H

L0
,
Rc

H

◆
⇢gd

2
0mD (11)

where Cd is the scaling parameter when F0m is expressed as a function of d0m.

Based on the dimensional analysis, the scaling parameter Cd depends on the wave steepness H/L0 and

the relative freeboard Rc/H. In our periodic-wave-laboratory experiments, wave overtopping only occurs

when Rc/H < 1. There are only nine tests covering three wave period between 2 - 3 s and two target wave

heights of 15 cm and 20 cm, which are summarized in Table 3. Despite of the small size, the laboratory

dataset can still well illustrate the variations of Cd, which is also presented in Table 3. It is found that

there is no obvious variation of Cd with Rc/H or H/L0. The obtained Cd has a mean value of 0.40 and a

standard deviation of 0.07. Thus, we simply take a constant value of Cd as

Cd = 0.40 (12)

Using a constant value only introduces around 20% inaccuracy, which is acceptable. One possible reason

for such little variation of Cd is that the behaviour of the overtopping flow at vertical seawalls is weakly

controlled by the two parameters, Rc/H and H/L0. The flow is always akin to a dam-break flow, which
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Table 3: Summary of the experimental data for the model tests with vertical seawall.

Rc [m] T [s] H [m] d0m [m] F0m [N] Cd

0.10 2 0.14 0.035 0.31 0.43

0.15 2 0.18 0.039 0.32 0.35

0.10 2 0.18 0.081 1.20 0.31.

0.10 2.5 0.14 0.039 0.32 0.35

0.15 2.5 0.18 0.036 0.42 0.54

0.10 2.5 0.19 0.077 1.29 0.37

0.10 3 0.14 0.047 0.47 0.37

0.15 3 0.18 0.054 0.80 0.46

starts with a large water depth and a low velocity at the leading edge. It should be noted that for calibration

of Cd, only 9 experiments have been conducted. The reason has been explained in Section 2 and Section

3 that we focus on a relatively narrow parameter space with large uncertainty. This is also an important

reason why Cd is constant. However, in our case, it is su�cient to have a Cd for Rc/H = [0.53, 0.83]. As

introduced at the beginning of this section, to complete the chain of prediction, 2D RANS simulations are

required to provide d0m.

In order to further predict the decay of the inline force, the following formula is fitted to the data clouds

that consist of both experiment and numerical data

Fm(x)

F0m
= exp

"
�0.101

✓
xc � xc0

d0m

◆0.555
#

0  xc � xc0

d0m
 20 (13)

As shown in Fig. 19, the red solid line, which represents Eq. (13), nicely goes through the data cloud. In

addition, most of the data points deviate from the fitting less than 20%, which is represented by the two red

dashed line. Therefore, Eq. (13) is expected to reasonably describe the variation of maximum inline force

with the location on the seawall’s crest.

6.2. A preliminary application of the predictor

In order to further validate the applicability of the predictor, a prototype-scale case study with irregular

wave condition was performed. The cylinder has a 24 cm diameter and is located at 1.5D downstream from

the leading edge of the seawall. The incident irregular wave condition is based on the JONSWAP spectrum

with an enhancement factor of 3.3, a significant wave height of 0.6 m and a peak period of 4 s. The water

depth is 3.6 m and the freeboard is 0.4 m.

Numerical simulations have been carried out to generate a time series of both inline force and overtopping

flow depth. With the time series of the computed overtopping flow depths and cylinder diameter, the
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Figure 19: Decay of the nondimensional maximum inline force Fm/F0m on the cylinder against the nondimensional cylinder’s

position (xc � xc0)/d0m. Fm is the dimensional maximum inline force and F0m is the maximum inline force at the leading

edge of the seawall’s crest. d0m is the maximum overtopping flow depth at the leading edge of the seawall’s crest.

corresponding inline force is predicted using Eq. (11). Then the predicted and simulated maximum inline

force are compared, which can be used to test the applicability of the predictor in irregular waves. With

regard to the setup of the numerical model, the computational domain and mesh of the lab-scale simulations

were directly scaled up to the prototype. This is justifiable, since the viscous e↵ect is confirmed secondary,

and the inline force is primarily governed by the inertia and gravity e↵ects. Therefore, the main physics

during the interaction process are still expected to be adequately resolved based on the geometrically upscaled

mesh. For the present case, it took around one to two weeks to run a simulation with 40 - 50 wave cycles.

The simulated time series of the overtopping flow depth and the inline force on the cylinder are given in

Fig. 20. During 180 seconds which corresponds to 45 wave cycles, there are totally 27 overtopping events,

which are used to validate the predictor. Note that some very small overtopping events are not considered.

The maximum overtopping event occurs at t = 132 s, which produces an inline force of nearly 200 N on the

cylinder. Using the simulated maximum overtopping depth as the input, the predictor can also produce a

set of maximum inline force based on Eq. (11). The maximum inline forces produced from the predictor

and the numerical model are compared in Fig. 21. In general, the agreement is reasonably good for all

the overtopping event, though a slight underprediction is found. This is inevitable as we apply a constant

scaling parameter for di↵erent incident wave heights. However, the underprediction is still within the ±20%

bound. The implication of this numerical application is that it is only necessary to predict the overtopping

flow depth (i.e., d0m) using computationally a↵ordable 2D RANS model in order to obtain the maximum

inline force. Hence the high cost of resolving the cylinder using 3D RANS model is bypassed by using the

simple predictor.
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Figure 20: Time series of the simulated overtopping flow depth at the leading edge of the seawall (upper) and its induced force

on the cylinder (lower) under an irregular wave condition at prototype scale. The dots are the selected peaks which are used

to validate the empirical formula. The incident wave condition is the significant wave height Hs = 0.6 m, peak period Tp = 4 s

and water depth h = 3.8 m. The waves were generated based on the JONSWAP spectrum with an enhancement factor of 3.3.

7. Concluding remarks

In the present work, the inline force on a cylinder at a vertical seawall under non-breaking wave overtop-

ping flow is investigated numerically and experimentally. The primary objectives of the present paper are

on the following aspects: (1) evolution of the overtopping flow on the seawall’s crest; (2) interaction between

the overtopping flow and the cylinder; (3) decay of the inline force when the cylinder is moved inland; (4)

development of a predictor for desktop computation of the inline force. The concluding remarks on these

aspects are summarized below.

Wave overtopping on the vertical seawall is formed when the free surface at the seawall’s boundary is

elevated higher than the seawall. A small breaker is formed which entrains an air cavity. With the evolution

of the overtopping flow, the cavity is deformed and further broken into small bubbles. The numerical results

agree well with the experimental data in terms of the overtopping flow depth and the depth-averaged velocity,

which are the most important quantities for the inline force on the cylinder. The initial size and the location

of the air cavity are also adequately captured by the numerical model, but its deformation and breakup is
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Figure 21: Comparison of the maximum inline force from the empirical predictor in Eq. (11 and the numerical simulations.

The incident wave condition is the same as shown in Fig. 20.

missed, as the cavity is simply advected by the overtopping flow in the numerical model.

Regarding the interaction between the overtopping flow and the cylinder, it is observed that the flow

becomes locally 3-dimensional with a significant water pile-up in the front side of the cylinder. Based on

the analysis of the pressure field around the cylinder, it is concluded that the inline force is primarily due

to the di↵erence of the pressure integration in the front and back sides of the cylinder. Viscous e↵ects are

secondary for the inline force on the cylinder. When the cylinder is moved further inland, the encountered

local overtopping flow depth decreases significantly. However, the local depth-averaged velocity is observed

to increase (up to twice of the velocity at the leading edge) within a distance of x/d0m = 5 � 10 and then

decrease. This results in a slow decay of the inline force on the cylinder.

Based on the dimensional analysis, an empirical predictor is developed, which can quickly provide an

estimation of the inline force due to overtopping flow. The predictor requires the maximum overtopping flow

depth at the seawall’s ledge edge as a key input parameter. The scaling constant introduced in the predictor

is calibrated based on the experimental and numerical data. It is applied to estimate the maximum inline

force for a simulated prototype-scale case with irregular wave condition. A good agreement is found despite

a slight underestimation. This demonstrates the applicability of the predictor, which has the potential to

be used in practical engineering applications in the near future.

It should be noted here that the present study is limited to non-impulsive wave overtopping inline force

on a circular cylinder at a deep vertical seawall without an influencing foreshore. It can be a basis for the

risk assessment of the pedestrian in this type of seawall in the future. However, the findings in the present

study may not be directly applicable to other types of seawall, like rubble mound type and impulsive vertical

seawall. It is recommended that further studies be conducted to expand the method developed in the present

paper to other types of seawalls. Also the ranges of test parameters in the present study can be further

28



enlarged to test its validity in larger range of scope.
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