
Kokke, W. and Dardha, O. (2021) Deadlock-Free Session Types in Linear

Haskell. In: 14th ACM SIGPLAN International Symposium on Haskell

(Haskell 2021), 26-27 Aug 2021, ISBN 9781450386159

(doi:10.1145/3471874.3472979)

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

© The Authors 2021. This is the author's version of the work. It is posted

here for your personal use. Not for redistribution. The definitive Version of

Record was published in the Proceedings of the 14th ACM SIGPLAN

International Symposium on Haskell (Haskell 2021), 26-27 Aug 2021,

ISBN 9781450386159 (doi:10.1145/3471874.3472979)

http://eprints.gla.ac.uk/249058/

Deposited on: 06 August 2021

Enlighten – Research publications by members of the University of

Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1145/3471874.3472979
http://dx.doi.org/10.1145/3471874.3472979
http://eprints.gla.ac.uk/249058/
http://eprints.gla.ac.uk/249058/
http://eprints.gla.ac.uk/

Deadlock-Free Session Types in Linear Haskell
Wen Kokke

University of Edinburgh

Edinburgh, Scotland

wen.kokke@ed.ac.uk

Ornela Dardha

University of Glasgow

Glasgow, Scotland

ornela.dardha@glasgow.ac.uk

Abstract
Priority Sesh is a library for session-typed communication in

Linear Haskell which offers strong compile-time correctness

guarantees. Priority Sesh offers two deadlock-free APIs for

session-typed communication. The first guarantees deadlock

freedom by restricting the process structure to trees and

forests. It is simple and composable, but rules out cyclic

structures. The second guarantees deadlock freedom via

priorities, which allows the programmer to safely use cyclic

structures as well.

Our library relies on Linear Haskell to guarantee linear-

ity, which leads to easy-to-write session types and more

idiomatic code, and lets us avoid the complex encodings

of linearity in the Haskell type system that made previous

libraries difficult to use.

CCS Concepts: • Theory of computation→ Linear logic;
Type theory.

Keywords: session types, linear haskell, deadlock freedom

1 Introduction
Session types are a type formalism used to specify and verify

communication protocols [26–28, 62]. They’ve been stud-

ied extensively in the context of the 𝜋-calculus [58], a pro-

cess calculus for communication an concurrency, and in the

context of concurrent _-calculi, such as the GV family of

languages [“Good Variation”, 20, 23, 40, 64].

Session types have been implemented in various program-

ming languages. We give a detailed overview in section 4,

and Orchard and Yoshida [49] provide a complete survey of

session type implementations in Haskell.

The main difficulty when implementing session types in

most programming languages is linearity, i.e., the guarantee
that each channel endpoint is used exactly once. There are
several different approaches to guaranteeing linearity, but

the main distinction is between dynamic [52, 59, 60] and
static [41, 42, 56] usage checks. With dynamic checks, using

a channel endpoint more than once simply throws a runtime

error. With static checks, usage is somehow encoded into the

type system of the host language usually by encoding the

entire linear typing environment into the type system using

a parameterised or graded monad. Such encodings are only

possible if the type system of the host language is expressive

enough. However, such encodings are often quite complex,

and result in a trade-off between easy-to-write session types

and idiomatic programs.

Moreover, these implementations only focus on the most

basic features of session types and often ignore more ad-

vanced ones, such as channel delegation or deadlock freedom:

Neubauer and Thiemann [44] only provide single session

channels; Pucella and Tov [56] provide multiple channels,

but only the building blocks for channel delegation; Imai et al.

[30] extend Pucella and Tov [56] and provide full delegation.

None of these works address deadlock freedom. Lindley and

Morris [41] provide an implementation of GV into Haskell

building on the work of Polakow [55]. To the best of our

knowledge, this is the only work that guarantees deadlock

freedom of session types in Haskell, albeit in a simple form.

In GV, all programs must have tree-shaped process structures.

The process structure of a program is an undirected graph,

where nodes represent processes, and edges represent the

channels connecting them. (We explore this in more detail

in section 2.3.) Therefore, deadlock freedom is guaranteed

by design: session types rule out deadlocks over a single

channel, and the tree-restriction rules out sharing multiple

channels between two processes. While Lindley and Morris

[41] manage to implement more advanced properties, the

tree restriction rules out many interesting programs which

have cyclic process structure, but are deadlock free.

Recent works by Padovani and Novara [53] and Kokke and

Dardha [PGV, 35] integrate priorities [32, 51] into functional

languages. Priorities are natural numbers that abstractly rep-

resent the time at which a communication action happens.

Priority-based type systems check that there are no cycles
in the communication graph. The communication graph is

a directed graph where nodes represent dual communica-

tion actions, and directed edges represent one action must

happen before another. (We explore this in more detail in

section 2.4.) Such type systems are more expressive, as they
allow programs to have cyclic process structure, as long as
they have an acyclic communication graph.

With the above in mind, our research goals are as follows:

Q1 Can we have easy-to-write session types, easy linearity

checks and idiomatic code at the same time?

Q2 Can we address not only the main features of session

types, but also advanced ones, such as full delegation,

recursion, and deadlock freedom of programs with

cyclic process structure?

Our priority-sesh library answers both questions mostly
positively. We sidestep the problems with encoding linearity

Wen Kokke and Ornela Dardha

in Haskell by using Linear Haskell [4], which has native sup-

port for linear types. The resulting session type library pre-

sented in sections 2.2 and 2.3 has both easy-to-write session

types, easy linearity checks, and idiomatic code. Moving to

Q2, the library has full delegation, recursion, and the variant
in section 2.3 guarantees deadlock freedom, albeit by restrict-

ing the process structure to trees and forests. In section 2.4,

we implement another variant which uses priorities to en-

sure deadlock freedom of programs with cyclic processes

structure. The ease-of-writing suffers a little, as the program-

mer has to manually write priorities, though this isn’t a huge

inconvenience. Unfortunately, GHC’s ability to reason about

type-level naturals currently is not as powerful as to allow

the programmer to easily write priority-polymorphic code,

which is required for recursion. Hence, while we address

deadlock freedom for cyclic process structures, we do so only

for the finite setting.

Contributions. In section 2, we present Priority Sesh,

an implementation of deadlock free session types in Linear

Haskell which is:

• the first implementation of session types to take ad-

vantage of Linear Haskell for linearity checking, and

producing easy-to-write session types and more id-

iomatic code;

• the first implementation of session types in Haskell to

guarantee deadlock freedom of programs with cyclic

process structure via priorities; and
• the first embedding of priorities into an existing main-

stream programming language.

In section 3, we:

• present a variant of Priority GV [35]—the calculus

upon which Priority Sesh is based—with asynchro-

nous communication and session cancellation follow-

ing Fowler et al. [20] and explicit lower bounds on the

sequent, rather than lower bounds inferred from the

typing environment; and

• show that Priority Sesh is related to Priority GV via

monadic reflection.

2 What is Priority Sesh?
In this section we introduce Priority Sesh in three steps:

• in section 2.1, we build a small library of linear or

one-shot channels based on MVars [54];

• in section 2.2, we use these one-shot channels to build

a small library of session-typed channels [12]; and
• in section 2.4, we decorate these session types with

priorities to guarantee deadlock-freedom [35].

It is important to notice that the meaning of linearity in

one-shot channels differs from linearity in session channels.
A linear or one-shot channel originates from the linear 𝜋-

calculus [33, 58], where each endpoint of a channel must

be used for exactly one send or receive operation, whereas

linearity in the context of session-typed channels, it means

that each step in the protocol is performed exactly once, but
the channel itself is used multiple times.

Priority Sesh is written in Linear Haskell [4]. The type

⊸ is syntactic sugar for the linear arrow %1->. Familiar

definitions refer to linear variants packaged with linear-
base1 (e.g., IO, Functor , Bifunctor , Monad) or with Priority

Sesh (e.g., MVar).
We colour the Haskell definitions which are a part of Sesh:

red for functions and constructors; blue for types and type

families; and emerald for priorities and type families acting

on priorities.

2.1 One-shot Channels
We start by building a small library of linear or one-shot
channels, i.e., channels that must be use exactly once to send

or receive a value.

The one-shot channels are at the core of our library, and

their efficiency is crucial to the overall efficiency of Prior-

ity Sesh. However, we do not aim to present an efficient

implementation here, rather we aim to present a compact

implementation with the correct behaviour.

Channels. A one-shot channel has two endpoints, Send1
and Recv1, which are two copies of the same MVar .

newtype Send1 a = Send1 (MVar a)
newtype Recv1 a = Recv1 (MVar a)
new1 :: IO (Send1 a, Recv1 a)
new1 = do (mvar𝑠 ,mvar𝑟) ← dup2 ⟨$⟩ newEmptyMVar

return (Send1 (unur mvar𝑠), Recv1 (unur mvar𝑟))

The newEmptyMVar function returns an unrestricted MVar ,
which may be used non-linearly, i.e., as many times as one

wants. The dup2 function creates two (unrestricted) copies

of the MVar . The unur function casts each unrestricted copy

to a linear copy. Thus, we end up with two copies of anMVar ,
each of which must be used exactly once.
We implement send1 and recv1 as aliases for the corre-

sponding MVar operations.

send1 :: Send1 a ⊸ a ⊸ IO ()
send1 (Send1 mvar𝑠) x = putMVar mvar𝑠 x

recv1 :: Recv1 a ⊸ IO a
recv1 (Recv1 mvar𝑟) = takeMVar mvar𝑟

The MVar operations implement the correct blocking be-

haviour for asynchronous one-shot channels: the send1 oper-
ation is non-blocking, and the recv1 operations blocks until
a value becomes available.

Synchronisation. We use Send1 and Recv1 to implement

a construct for one-shot synchronisation between two pro-

cesses, Sync
1
, which consists of two one-shot channels. To

1https://hackage.haskell.org/package/linear-base

https://hackage.haskell.org/package/linear-base

Deadlock-Free Session Types in Linear Haskell

synchronise, each process sends a unit on the one channel,

then waits to receive a unit on the other channel.

data Sync
1
= Sync

1
(Send1 ()) (Recv1 ())

newSync
1
:: IO (Sync

1
, Sync

1
)

newSync
1
= do (chs1, chr1) ← new1

(chs2, chr2) ← new1

return (Sync
1
chs1 chr2, Sync1 chs2 chr1)

sync
1
:: Sync

1
⊸ IO ()

sync
1
(Sync

1
chs chr) = do send1 chs (); recv1 chr

Cancellation. We implement cancellation for one-shot

channels. One-shot channels are created in the linear IO
monad, so forgetting to use a channel results in a complaint

from the type-checker. However, it is possible to explicitly
drop values whose types implement the Consumable class,
using consume :: a ⊸ (). The ability to cancel communica-

tions is important, as it allows us to safely throw an exception

without violating linearity, assuming that we cancel all open

channels before doing so.

One-shot channels implement Consumable by sim-

ply dropping their MVars. The Haskell runtime throws

an exception when a “thread is blocked on an MVar ,
but there are no other references to the MVar so

it can’t ever continue.”
2

Practically, consumeAndRecv
throws a BlockedIndefinitelyOnMVar exception, whereas

consumeAndSend does not:

consumeAndRecv = do
(chs, chr) ← new1

fork $ return (consume chs)
recv1 chr

consumeAndSend = do u
(chs, chr) ← new1

fork $ return (consume chr)
send1 chs ()

Where fork forks off a new thread using a linear forkIO. (In
GV, this operation is called spawn.)

As the BlockedIndefinitelyOnMVar check is performed by

the runtime, it’ll even happen when a channel is dropped for

reasons other than consume, such as a process crashing.

2.2 Session-typed Channels
We use the one-shot channels to build a small library of

session-typed channels based on the continuation-passing style
encoding of session types in linear types by Dardha [9],

Dardha et al. [12] and in line with other libraries for Scala

[59, 60], OCaml [52], and Rust [34].

An Example. Let’s look at a simple example of a session-

typed channel—a multiplication service, which receives two

integers, sends back their product, and then terminates:

type MulServer = Recv Int (Recv Int (Send Int End))
type MulClient = Send Int (Send Int (Recv Int End))

2https://downloads.haskell.org/~ghc/9.0.1/docs/html/libraries/base-
4.15.0.0/Control-Exception.html#t:BlockedIndefinitelyOnMVar

We define mulServer , which acts on a channel of type

MulServer , and mulClient, which acts on a channel of the

dual type:

mulServer (s ::MulServer)
= do (x, s) ← recv s

(y, s) ← recv s
s← send (x ∗ y, s)
close s
return ()

mulClient (s ::MulClient)
= do s← send (32, s)

s← send (41, s)
(z, s) ← recv s
close s
return z

In order to encode the sequence of a session type using

one-shot types, each action on a session-typed channel re-

turns a channel for the continuation of the session—save

for close, which ends the session. Furthermore, mulServer
and mulClient act on endpoints with dual types. Duality is

crucial to session types as it ensures that when one process

sends, the other is ready to receive, and vice versa. This is

the basis for communication safety guaranteed by a session

type system.

Channels. We start by defining the Session type class,

which has an associated type Dual. You may think of Dual
as a type-level function associated with the Session class with
one case for each instance.We encode the various restrictions

on duality as constraints on the type class. Each session

type must have a dual, which must itself be a session type—

Session (Dual s) means the dual of s must also implement

Session. Duality must be injective—the annotation result →
s means result must uniquely determine s and involutive—
Dual (Dual s) ∼ s means Dual (Dual s) must equal s. These
constraints are all captured by the Session class, along with

new for constructing channels:

class (Session (Dual s),Dual (Dual s) ∼ s) ⇒ Session s
where
type Dual s = result | result → s
new :: IO (s,Dual s)

There are three primitive session types: Send , Recv , and End .

newtype Send a s = Send (Send1 (a,Dual s))
newtype Recv a s = Recv (Recv1 (a, s))
newtype End = End Sync

1

By following Dardha et al. [12], a channel Send wraps a one-

shot channel Send1 over which we send some value—which

is the intended value sent by the session channel, and the

channel over which the communicating partner process con-
tinues the session—it’ll make more sense once you read the

definition for send. A channel Recv wraps a one-shot channel

Recv1 over which we receive some value and the channel

over which we continue the session. Finally, an channel End
wraps a synchronisation.

We define duality for each session type—Send is dual to

Recv , Recv is dual to Send , and End is dual to itself:

https://downloads.haskell.org/~ghc/9.0.1/docs/html/libraries/base-4.15.0.0/Control-Exception.html#t:BlockedIndefinitelyOnMVar
https://downloads.haskell.org/~ghc/9.0.1/docs/html/libraries/base-4.15.0.0/Control-Exception.html#t:BlockedIndefinitelyOnMVar

Wen Kokke and Ornela Dardha

instance Session s⇒ Session (Send a s)
where
type Dual (Send a s) = Recv a (Dual s)
new = do (chs, chr) ← new1

return (Send chs, Recv chr)
instance Session s⇒ Session (Recv a s)
where
type Dual (Recv a s) = Send a (Dual s)
new = do (chs, chr) ← new1

return (Recv chr , Send chs)
instance Session End

where
type Dual End = End
new = do (chsync1, chsync2) ← newSync

1

return (End chsync1, End chsync2)

The send operation constructs a channel for the continuation

of the session, then sends one endpoint of that channel, along

with the value, over its one-shot channel, and returns the

other endpoint:

send :: Session s⇒ (a, Send a s)⊸ IO s
send (x, Send chs) = do (here, there) ← new

send1 chs (x, there)
return here

The recv and close operations simply wrap their correspond-

ing one-shot operations:

recv :: Recv a s ⊸ IO (a, s)
recv (Recv chr) = recv1 chr
close :: End ⊸ IO ()
close (End chsync) = sync

1
chsync

Cancellation. We implement session cancellation via the

Consumable class. For convenience, we provide the cancel
function:

cancel :: Session s⇒ s ⊸ IO ()
cancel s = return (consume s)

As with one-shot channels, consume simply drops the chan-

nel, and relies on the BlockedIndefinitelyOnMVar check,

which means that cancelAndRecv throws an exception and

cancelAndSend does not:

cancelAndRecv = do
(chs, chr) ← new
fork $ cancel chs
((), ()) ← recv chr
return ()

cancelAndSend = do u
(chs, chr) ← new
fork $ cancel chr
() ← send chs ()
return ()

These semantics correspond to EGV [20].

Asynchronous Close. We don’t always want session-end
to involve synchronisation. Unfortunately, the close opera-
tion is synchronous.

An advantage of defining session types via a type class

is that its an open class, and we can add new primitives

whenever. Let’s make the unit type, (), a session type:

instance Session s⇒ Session ()
where

type Dual () = ()
new = return ((), ())

Units are naturally affine—they contain zero information,

so dropping them won’t harm—and the linear Monad class

allows you to silently drop unit results of monadic computa-

tions. They’re ideal for asynchronous session end!

Using () allows us to recover the semantics of one-shot

channels while keeping a session-typed language for id-

iomatic protocol specification.

Choice. So far, we’ve only presented sending, receiving,

and synchronisation. It is, however, possible to send and

receive channels as well as values, and we leverage that to

implementmost other session types by using these primitives

only!

For instance, we can implement binary choice by send-

ing/receiving Either of two session continuations:

type Select s1 s2 = Send (Either (Dual s1) (Dual s2)) ()
type Offer s1 s2 = Recv (Either s1 s2) ()
selectLeft :: (Session s1) ⇒ Select s1 s2 ⊸ IO s1
selectLeft s = do (here, there) ← new

send (Left there, s)
return here

offerEither :: Offer s1 s2 ⊸ (Either s1 s2 ⊸ IO a)⊸ IO a
offerEither s match = do (e, ()) ← recv s;match e

Differently from (), we don’t have to implement the Session
class for Select and Offer . They’re already session types!

Recursion. We can write recursive session types by writ-

ing them as recursive Haskell types. Unfortunately, we can-

not write recursive type synonyms, so we have to use a

newtype. For instance, we can write the type for a recursive

summation service, which receives numbers until the client

indicates they’re done, and then sends back the sum. We

specify two newtypes:

newtype SumSrv
= SumSrv (Offer (Recv Int SumSrv) (Send Int End))

newtype SumCnt
= SumCnt (Select (Send Int SumCnt) (Recv Int End))

We implement the summation server as a recursive function:

sumSrv :: Int ⊸ SumSrv · ⊸ IO ()
sumSrv tot (SumSrv s) = offerEither s $ _e. case x of

Deadlock-Free Session Types in Linear Haskell

Left s→ do (x, s) ← recv s; sumSrv (tot + x) s
Right s→ do s← send (tot, s); close s

As SumSrv and SumCnt are new types, we must provide

instances of the Session class for them.

instance Session SumSrv
where
type Dual SumSrv = SumCnt
new = do (chsrv, chcnt) ← new

return (SumSrv chsrv, SumCnt chcnt)

2.3 Deadlock Freedom via Process Structure
The session-typed channels presented in section 2.2 can be

used to write deadlocking programs, e.g., by receiving before
sending:

woops :: IO Void
woops = do (chs1, chr1) ← new

(chs2, chr2) ← new
fork $ do (void, ()) ← recv chr1

send (void, chs2)
(void, ()) ← recv chr2
let (void, voidcopy) = dup2 void
send (void, chs1)
return voidcopy

Counter to what the type says, this program doesn’t actually

produce an inhabitant of the uninhabited type Void. Instead,
it deadlocks! We’d like to help the programmer avoid such

programs.

As discussed in section 1, we can structurally guarantee

deadlock freedom by ensuring that the process structure is
always a tree or forest. The process structure of a program is

an undirected graph, where nodes represent processes, and

edges represent the channels connecting them. For instance,

the process structure of woops is cyclic:

main child

chs1 chr1

chs2chr2

This restriction works by ensuring that between two pro-

cesses there is at most one (series of) channels over which
the two can communicate. As duality rules out deadlocks on

any one channel, such configurations must be deadlock free.

We can rule out cyclic process structures by hiding new,
and only exporting connect, which creates a new channel

and, crucially, immediately passes one endpoint to a new

thread:

connect :: Session s⇒
(s ⊸ IO ())⊸ (Dual s ⊸ IO a)⊸ IO a

connect k1 k2 = do (s1, s2) ← new; fork (k1 s1); k2 s2

You can view connect as the node constructor for a binary
process tree. If the programmer only uses connect, their pro-
cess structure is guaranteed to be a tree. If they also use

standalone fork, their process structure is a forest. Either
way, their programs are guaranteed to be deadlock free.

2.4 Deadlock Freedom via Priorities
The strategy for deadlock freedom presented in section 2.3 is

simple, but very restrictive, since it rules out all cyclic com-

munication structures, even the ones which don’t deadlock:

totallyFine :: IO String
totallyFine = do (chs1, chr1) ← new

(chs2, chr2) ← new
fork $ do (x, ()) ← recv chr1

send (x, chs2)
send ("Hiya!", chs1)
(x, ()) ← recv chr2
return x

This process has exactly the same process structure as woops,
but it’s totally fine, and returns "Hiya!" as you’d expect.

We’d like to enable the programmer to write such programs

while still guaranteeing their programs don’t deadlock.

As discussed in section 1, there is another way to rule out

deadlocks—by using priorities. Priorities are an approxima-

tion of the communication graph of a program. The commu-

nication graph of a program is a directed graph where nodes

represent actions on channels, and directed edges represent

that one action happens before the other. Dual actions are

connected with double undirected edges. (You may consider

the graph contracted along these edges.) If the communica-

tion graph is cyclic, the program deadlocks. The communi-

cation graphs for woops and totallyFine are as follows:

send chs1 recv chr1

send chs2recv chr2

woops

send chs1 recv chr1

send chs2recv chr2

totallyFine
If the communication graph is acyclic, then we can assign

each node a number such that directed edges only ever point

to nodes with bigger numbers. For instance, for totallyFine
we can assign the number 0 to send chs1 and recv chr2 , and 1

to recv chr2 and send chs2 . These numbers are priorities.
In this section, we present a type system in which priorities

are used to ensure deadlock freedom, by tracking the time a

process starts and finishes communicating using a graded

monad [21, 48]. The bind operation registers the order of its

actions in the type, requiring the sequentiality of their duals.

Priorities. The priorities assigned to communication ac-
tions are always natural numbers, which represent, abstractly,

Wen Kokke and Ornela Dardha

at which time the action happens. When tracking the start

and finish times of a program, however, we also use ⊥ and

⊤ for programs which don’t communicate. These are used

as the identities for ⊓ and ⊔ in lower and upper bounds,

respectively. We let o range over natural numbers, p over

lower bounds, and q over upper bounds.

data Priority = ⊥ | Nat | ⊤
We define strict inequality (<), minimum (⊓), and maxi-

mum (⊔) on priorities as usual.

Channels. We define Sendo, Recvo, and Endo, which dec-

orate the raw sessions from section 2.2 with the priority o of
the communication action, i.e., it denoted when the commu-

nication happens. Duality (Dual) preserves these priorities.
These are implemented exactly as in section 2.2.

The Communication Monad. We define a graded

monad Seshqp, which decorates IO with a lower bound p and

an upper bound q on the priorities of its communication

actions, i.e., if you run the monad, it denotes when commu-

nication begins and ends.

newtype Seshqp a = Sesh { runSeshIO :: IO a}

The monad operations for Seshqp merely wrap those for IO,
hence trivially obeys the monad laws.

The ireturn function returns a pure computation—the type

Sesh⊥⊤ guarantees that all communications happen between

⊤ and ⊥, hence there can be no communication at all.

ireturn :: a ⊸ Sesh⊥⊤ a
ireturn x = Sesh $ return x

The >>>= operator sequences two actions with types Seshqp
and Seshq

′

p′ , and requires q < p′, i.e., the first action must

have finished before the second starts. The resulting action

has lower bound p ⊓ p′ and upper bound q ⊔ q′.

(>>>=) :: (q < p′) ⇒ Seshqp a ⊸ (a ⊸ Seshq
′

p′ b)⊸ Seshq⊔q
′

p⊓p′ b
mx>>>=mf = Sesh $ runSeshIO mx >>= _x . runSeshIO (mf x)
In what follows, we implicitly use >>>= with do-notation. This

can be accomplished in Haskell using RebindableSyntax.
We define decorated variants of the concurrency and com-

munication primitives: send, recv, and close each perform

a communication action with some priority o, and return

a computation of type Seshoo, i.e., with exact bounds; new
and cancel don’t perform any communication action, and

so return a pure computation of type Sesh⊥⊤; fork takes a

computation which performs communication actions as an

argument, forks it off into a separate thread, and masks the

upper bound in its return type.

new :: Session s⇒ Sesh⊥⊤ (s,Dual s)
fork :: Seshqp ()⊸ Sesh⊥p ()
cancel :: Session s⇒ s ⊸ Sesh⊥⊤ ()
send :: Session s⇒ (a, Sendo a s)⊸ Seshoo s

recv :: Recvo a s ⊸ Seshoo (a, s)
close :: Endo ⊸ Seshoo ()
From these, we derive decorated choice, as before:

type Selecto s1 s2 = Sendo (Either (Dual s1) (Dual s2)) ()
type Offero s1 s2 = Recvo (Either s1 s2) ()
selectLeft :: (Session s1) ⇒ Selecto s1 s2 ⊸ Seshoo s1
selectRight :: (Session s2) ⇒ Selecto s1 s2 ⊸ Seshoo s2
offerEither :: (o < p) ⇒ Offero s1 s2 ⊸

(Either s1 s2 ⊸ Seshqp a)⊸ Sesho⊔qo⊓p a

Safe IO. We can use a trick from the ST monad [38] to

define a “pure” variant of runSesh, which encapsulates all

use of IO within the Seshqp monad. The idea is to index the

Seshqp and every session type constructor with an extra type

parameter tok, which we’ll call the session token:

send :: Session s⇒ (a, Sendo tok a s)⊸ Seshoo tok s
recv :: Recvo tok a s ⊸ Seshoo tok (a, s)
close :: Endo tok ⊸ Seshoo tok ()
The session token should never be instantiated, except by

runSesh, and every action under the same call to runSesh
should use the same type variable tok as its session token:

runSesh :: (∀tok. Seshqp tok a)⊸ a
runSesh x = unsafePerformIO (runSeshIO x)
This ensures that none of the channels created in the session

can escape out of the scope of runSesh.
We implement this encapsulation in priority-sesh,

though the session token is the first argument, preceding

the priority bounds.

Recursion. We could implement recursive session via

priority-polymorphic types, or via priority-shifting [53]. For

instance, we could give the summation service from sec-

tion 2.2 the following type:

newtype SumSrvo

= SumSrv (Offero (Recvo+1 Int (SumSrvo+2))
(Sendo+1 Int (Endo+2)))

We’d then like to assign sumSrv the following type:

sumSrv : Int ⊸ SumSrvo ⊸ Sesh⊤o ()
sumSrv tot (SumSrv s) = offerEither s $ _e. case x of

Left s→ do (x, s) ← recv s; sumSrv (tot + x) s
Right s→ do s← send (tot, s);weaken (close s)

The upper bound for a recursive call should be ⊤, which en-

sures that recursive calls are only made in tail position [3, 22].
The recursive call naturally has upper bound ⊤. However,
the close operation happens at some concrete priority 𝑜 + 𝑛,
which needs to be raised to⊤, so we’d have to add a primitive

weaken : Seshqp a ⊸ Sesh⊤p a.
Unfortunately, writing such priority-polymorphic code

relies heavily on GHC’s ability to reason about type-level

Deadlock-Free Session Types in Linear Haskell

naturals, and GHC rejects sumSrv complaining that it can-

not verify that o < o + 1, o + 1 < o + 2, etc. There’s several
possible solutions for this:

1. We could embrace the Hasochism [39], and provide

GHC with explicit evidence, though this would make

priority-sesh more difficult to use.

2. We could delegate some of these problems to a GHC

plugin such as type-nat-solver3 or ghc-typelits-
presburger4. Unfortunately, ⊓ and ⊔ are beyond Pres-
burger arithmetic, and type-nat-solver has not been
maintained in recent years.

3. We could attempt to write type families which reduce

in as many cases as possible. Unfortunately, a restric-

tion in closed type families [16, §6.1] prevents us from

checking exactly these cases.

Currently, the prioritised sessions don’t support recursion,

and implementing one of these solutions is future work.

Cyclic Scheduler. Dardha and Gay [10] and Kokke and

Dardha [36] use a finite cyclic scheduler as an example. The

cyclic scheduler has the following process structure, with

the flow of information indicated by the dotted arrows:

sched

main

adder

adder

adder

We start by defining the types of the channels which connect

each client process to the scheduler:

type SRo2o1 a = Sendo1 a (Recvo2 a ())
type RSo2o1 a = Dual (SRo2o1 a)

We then define the scheduler itself, which forwards messages

from one process to the next in a cycle:

sched :: RS7
0
a ⊸ SR2

1
a ⊸ SR4

3
a ⊸ SR6

5
a ⊸ Sesh7

0
()

sched s1 s2 s3 s4 = do
(x, s1) ← recv s1
s2 ← send (x, s2); (x, ()) ← recv s2
s3← send (x, s3); (x, ()) ← recv s3
s4← send (x, s4); (x, ()) ← recv s4
send (x, s1)

Finally, we define the adder and the main processes. The

adder adds one to the value it receives, and themain process

initiates the cycle and receives the result:

3https://github.com/yav/type-nat-solver
4https://hackage.haskell.org/package/ghc-typelits-presburger

adder :: (o1 < o2) ⇒ RSo2o1 Int ⊸ Sesho2o1 ()
adder s = do (x, s) ← recv s; send (x + 1, s)
main :: (o1 < o2) ⇒ Int ⊸ SRo2o1 Int ⊸ Sesho2o1 Int
main x s = do ; s← send (x, s); (x, ()) ← recv s; ireturn x

While the process structure of the cyclic scheduler as pre-
sented isn’t cyclic, nothing prevents the user from adding

communications between the various client processes, or

from removing the scheduler and having the client processes

communicate directly in a ring.

3 Relation to Priority GV
The priority-sesh library is based on a variant of Priority

GV [35], which differs in three ways:

1. it marks lower bounds explicitly on the sequent, rather

than implicitly inferring them from the typing envi-

ronment;

2. it collapses the isomorphic types for session end, end𝑜
!

and end𝑜
?
, into end𝑜 ;

3. it is extended with asynchronous communication and

session cancellation following Fowler et al. [20].

These changes preserve subject reduction and progress prop-

erties, and give us tighter bounds on priorities. To see why,

note that PCP [10] and PGV [35] use the smallest priority in

the typing environment as an approximation for the lower

bound. Unfortunately, this underestimates the lower bound
in the rules T-Var and T-Lam (check fig. 1). These rules type

values, which are pure and could have lower bound ⊤, but
the smallest priority in their typing environment is not nec-

essarily ⊤.

Priority GV. We briefly revisit the syntax and type sys-

tem of PGV, but a full discussion of PGV is out of scope

for this paper. For a discussion of the synchronous seman-

tics for PGV, and the proofs of subject reduction, progress,

and deadlock freedom, please see Kokke and Dardha [35].

For a discussion of the asynchronous semantics and session

cancellation, please see Fowler et al. [20].

As in section 2.4, we let 𝑜 range over priorities, which are

natural numbers, and 𝑝 and 𝑞 over priority bounds, which

are either natural numbers, ⊤, or ⊥.
PGV is based on the standard linear _-calculus with prod-

uct types (· × ·), sum types (· + ·), and their units (1 and 0).
Linear functions (·⊸𝑞

𝑝 ·) are annotated with priority bounds
which tell us–when the function is applied–when communi-

cation begins and ends.

Types and session types are defined as follows:

𝑆 F !
𝑜𝑇 .𝑆 | ?𝑜𝑇 .𝑆 | end𝑜

𝑇,𝑈 F 𝑇 ×𝑈 | 1 | 𝑇 +𝑈 | 0 | 𝑇 ⊸𝑞
𝑝 𝑈 | 𝑆

The types !
𝑜𝑇 .𝑆 and ?𝑜𝑇 .𝑆 mean “send” and “receive”, respec-

tively, and end𝑜 means, well, session end.

https://github.com/yav/type-nat-solver
https://hackage.haskell.org/package/ghc-typelits-presburger

Wen Kokke and Ornela Dardha

The term language is the standard linear _-calculus ex-

tended with concurrency primitives 𝐾 :

𝐿,𝑀, 𝑁

F 𝑥 | 𝐾 | _𝑥.𝑀 | 𝑀 𝑁

| () | 𝑀 ;𝑁

| (𝑀, 𝑁) | let (𝑥,𝑦) =𝑀 in 𝑁
| absurd 𝑀
| inl 𝑀 | inr 𝑀 | case 𝐿 {inl 𝑥 ↦→ 𝑀 ; inr 𝑦 ↦→ 𝑁 }

𝐾 F new | fork | send | recv | close

The concurrency primitives are uninterpreted in the term

language. Rather, they are interpreted in a configuration

language based on the 𝜋-calculus, which we omit from this

paper (see Kokke and Dardha [35]).

We present the typing rules for PGV in fig. 1. A sequent

Γ ⊢𝑞𝑝 𝑀 : 𝑇 should be read as “𝑀 is well-typed PGV program

with type 𝑇 in typing environment Γ, and when run it starts

communicating at time 𝑝 and stops at time 𝑞.”

Monadic Reflection. The graded monad Seshqp arises

from the monadic reflection [17] of the typing rules in fig. 1.

Monadic reflection is a technique for translating programs

in an effectful language to monadic programs in a pure lan-

guage. For instance, Filinski [17] demonstrates the reflection

from programs of type 𝑇 in a language with exceptions and

handlers to programs of type 𝑇 + exn in a pure language

where exn is the type of exceptions.

We translate programs from PGV to Haskell programs in

the Seshqp monad. First, let’s look at the translation of types:

J𝑇 ⊸𝑞
𝑝 𝑈 K = JTK ⊸ Seshqp JU K

J!𝑜𝑇 .𝑆K = Sendo JTK JSK
J?𝑜𝑇 .𝑆K = Recvo JTK JSK
Jend𝑜K = Endo

J1K = ()
J𝑇 ×𝑈 K = (JTK, JU K)
J0K = Void
J𝑇 +𝑈 K = Either JTK JU K

Now, let’s look at the translation of terms. A term of type

𝑇 with lower bound 𝑝 and upper bound 𝑞 is translated to a

Haskell program of type Seshqp JTK:

J𝑥K = ireturn x
J_𝑥 .𝐿K = ireturn (_x . JLK)
J𝐾K = ireturn JKK
J𝐿 𝑀K = JLK>>>=_f . JMK >>= _x . f x
J()K = ireturn ()
Jlet () = 𝐿 in 𝑀K = JLK>>>=_().M
J(𝐿,𝑀)K = JLK>>>=_x . JMK >>= _y. ireturn (x, y)
Jlet (𝑥,𝑦) = 𝐿 in 𝑀K = JLK>>>=_(x, y). JMK
Jabsurd 𝐿K = JLK>>>=_x . absurd x
Jinl 𝐿K = JLK>>>=_x . ireturn (Left x)
Jinr 𝐿K = JLK>>>=_x . ireturn (Right x)
Jcase 𝐿 {inl 𝑥 ↦→ 𝑀 ; inr 𝑦 ↦→ 𝑁 }K =

JLK>>>=_x . case x of {Left x → JMK; Right y → JN K}

We translate the communication primitives from PGV to

those with the same name in priority-sesh, with some

minor changes in the translations of new and fork, where

PGV needs some unit arguments to create thunks in PGV, as

it’s call-by-value, which aren’t needed in Haskell:

Jnew : 1 ⊸⊥
⊤ 𝑆 × 𝑆K

= _(). new :: ()⊸ (JSK, J(Dual S)K)
Jfork : (1 ⊸𝑞

𝑝 1)⊸⊥
⊤ 1K

= _k. fork (k ()) :: (()⊸ Seshqp ())⊸ Sesh⊥⊤ ()
The rest of PGV’s communication primitives line up exactly

with those of priority-sesh:

Jsend : 𝑇×!𝑜𝑇 .𝑆 ⊸𝑜
𝑜 𝑆K

= send :: Session JSK⇒ (JTK, Sendo JTK JSK)⊸ Seshoo JSK
Jrecv : ?

𝑜𝑇 .𝑆 ⊸𝑜
𝑜 𝑇 × 𝑆K

= recv :: Recvo JTK JSK ⊸ Seshoo (JTK, JSK)
Jclose : end𝑜 ⊸𝑜

𝑜 1K
= close :: Endo ⊸ Seshoo ()
Jcancel : 𝑆 ⊸⊥

⊤ 1K
= cancel :: Session JSK⇒ JSK ⊸ Sesh⊥⊤ ()

These two translations, on types and terms, comprise a

monadic reflection from PGV into priority-sesh, which
preserves typing. We state this theorem formally, using

Γ ⊢ x :: a to mean that the Haskell program x has type

a in typing environment Γ:

Theorem 3.1. If Γ ⊢𝑞𝑝 𝑀 : 𝑇 , then JΓK ⊢ JMK :: Seshqp JTK.

Proof. Figure 2 presents the translation from typing deriva-

tions in PGV to abbreviated typing derivations in Haskell

with priority-sesh. □

4 Related Work
Session Types in Haskell. Orchard and Yoshida [49] dis-

cuss various approaches to implementing session types in

Haskell. Their overview is reproduced below:

• Neubauer and Thiemann [44] give an encoding of first-

order single-channel session-types with recursion;

• Using parameterised monads, Pucella and Tov [56] pro-
vide multiple channels, recursion, and some building

blocks for delegation, but require manual manipula-

tion of a session typing environment;

• Sackman and Eisenbach [57] provide an alternate ap-

proach where session types are constructed via a value-

level witnesses;

• Imai et al. [30] extend Pucella and Tov [56] with dele-

gation and a more user-friendly approach to handling

multiple channels;

• Orchard and Yoshida [50] use an embedding of effect

systems into Haskell via graded monads based on a

formal encoding of session-typed π-calculus into PCF

with an effect system;

• Lindley and Morris [41] provide a finally tagless em-

bedding of the GV session-typed functional calculus

into Haskell, building on a linear λ-calculus embedding

due to Polakow [55].

Deadlock-Free Session Types in Linear Haskell

Static Typing Rules. Γ ⊢𝑞𝑝 𝑀 : 𝑇

T-Var

𝑥 : 𝑇 ⊢⊥⊤ 𝑥 : 𝑇

T-Lam

Γ, 𝑥 : 𝑇 ⊢𝑞𝑝 𝑀 : 𝑈

Γ ⊢⊥⊤ _𝑥.𝑀 : 𝑇 ⊸𝑞
𝑝 𝑈

T-Const

∅ ⊢⊥⊤ 𝐾 : 𝑇

T-App

Γ ⊢𝑞𝑝 𝑀 : 𝑇 ⊸𝑞′′

𝑝′′ 𝑈 Δ ⊢𝑞
′

𝑝′ 𝑁 : 𝑇 𝑞 < 𝑝 ′ 𝑞′ < 𝑝 ′′

Γ,Δ ⊢𝑞⊔𝑞
′⊔𝑞′′

𝑝⊓𝑝′⊓𝑝′′ 𝑀 𝑁 : 𝑈

T-Unit

∅ ⊢⊥⊤ () : 1

T-LetUnit

Γ ⊢𝑞𝑝 𝑀 : 1 Δ ⊢𝑞
′

𝑝′ 𝑁 : 𝑇 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ let () =𝑀 in 𝑁 : 𝑇

T-Pair

Γ ⊢𝑞𝑝 𝑀 : 𝑇 Δ ⊢𝑞
′

𝑝′ 𝑁 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ (𝑀, 𝑁) : 𝑇 ×𝑈

T-LetPair

Γ ⊢𝑞𝑝 𝑀 : 𝑇 ×𝑇 ′ Δ, 𝑥 : 𝑇,𝑦 : 𝑇 ′ ⊢𝑞
′

𝑝′ 𝑁 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ let (𝑥,𝑦) =𝑀 in 𝑁 : 𝑈

T-Inl

Γ ⊢𝑞𝑝 𝑀 : 𝑇

Γ ⊢𝑞𝑝 inl 𝑀 : 𝑇 +𝑈

T-Inr

Γ ⊢𝑞𝑝 𝑀 : 𝑇

Γ ⊢𝑞𝑝 inr 𝑀 : 𝑇 +𝑈

T-CaseSum

Γ ⊢𝑞𝑝 𝐿 : 𝑇 +𝑇 ′ Δ, 𝑥 : 𝑇 ⊢𝑞
′

𝑝′ 𝑀 : 𝑈 Δ, 𝑦 : 𝑇 ′ ⊢𝑞
′

𝑝′ 𝑁 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊔𝑝′ case 𝐿 {inl 𝑥 ↦→ 𝑀 ; inr 𝑦 ↦→ 𝑁 } : 𝑈

T-Absurd

Γ ⊢𝑞𝑝 𝑀 : 0

Γ ⊢𝑞𝑝 absurd 𝑀 : 𝑇

Type Schemas for Constants. 𝐾 : 𝑇

new : 1 ⊸⊥
⊤ 𝑆 × 𝑆 fork : (1 ⊸𝑞

𝑝 1)⊸⊥
⊤ 1 cancel : 𝑆 ⊸⊥

⊤ 1

send : 𝑇×!𝑜𝑇 .𝑆 ⊸𝑜
𝑜 𝑆 recv : ?

𝑜𝑇 .𝑆 ⊸𝑜
𝑜 𝑇 × 𝑆 close : end𝑜 ⊸𝑜

𝑜 1

Figure 1. Typing rules for Priority GV.

Table 1. Capabilities of various implementations of session types in Haskell [adapted from 49].

priority-sesh
NT04 PT08 SE08 IYA10 OY16 LM16 section 2.2 section 2.3 section 2.4

Recursion

Delegation

Multiple channels

Idiomatic code

Easy-to-write session types

Deadlock freedom

via process structure
via priorities

With respect to linearity, all works above—except Neubauer

and Thiemann [44]—guarantee linearity by encoding a linear

typing environment in the Haskell type system, which leads

to a trade-off between having easy-to-write session types

and having idiomatic programs. We side-step this trade-off

by relying on Linear Haskell to check linearity. Furthermore,

our implementation supports all relevant features, includ-

ing multiple channels, full delegation, recursion, and more

idiomatic code.

With respect to deadlock freedom, none of the works

above—except Lindley and Morris [41]—guarantee deadlock

freedom. However, Lindley and Morris [41] guarantee dead-

lock freedom structurally, by implementing GV. As discussed

in section 1, structure-based deadlock freedom is more re-

strictive than priority-based deadlock freedom, as it restricts

communication graphs to trees, whereas the priority-based
approach allows programs to have cyclic process structures.
Orchard and Yoshida [49] summarise the capabilities of

the various implementations of session types in Haskell in

a table, which we adapted in table 1 by adding columns

for the various versions of priority-sesh. In general, you

may read as “Kinda” and as a resounding “Yes!” For

instance, Pucella and Tov [56] only provide partial delega-
tion, Neubauer and Thiemann [44], Pucella and Tov [56], and

Lindley and Morris [41] still need to use combinators instead

of standard Haskell application, abstraction, or variables in

Wen Kokke and Ornela Dardha

𝑥 : 𝑇 ⊢⊥⊤ 𝑥 : 𝑇 =

x :: JTK ⊢ x :: JTK

ireturn x :: Sesh⊥⊤ JTK

Γ, 𝑥 : 𝑇 ⊢𝑞𝑝 𝐿 : 𝑈

Γ ⊢⊥⊤ _𝑥 .𝐿 : 𝑇 ⊸𝑞
𝑝 𝑈 =

JΓK, x :: JTK ⊢ JLK :: Seshqp JU K

ireturn (_x . JLK) :: Sesh⊥⊤ (JTK ⊸ Seshqp JU K)

∅ ⊢⊥⊤ 𝐾 : 𝑇 = ireturn JKK :: Sesh⊥⊤ JTK

Γ ⊢𝑞𝑝 𝐿 : 𝑇 ⊸𝑞′′

𝑝′′ 𝑈 Δ ⊢𝑞
′

𝑝′ 𝑀 : 𝑇 𝑞 < 𝑝 ′ 𝑞′ < 𝑝 ′′

Γ,Δ ⊢𝑞⊔𝑞
′⊔𝑞′′

𝑝⊓𝑝′⊓𝑝′′ 𝐿 𝑀 : 𝑈 =

JΓK ⊢ JLK :: Seshqp (JTK ⊸ Seshq
′′

p′′ JU K) JΔK ⊢ JMK :: Seshq
′

p′ JTK

JLK>>>=_f . JMK >>= _x . f x :: (q < p′, q′ < p′′) ⇒ Seshq⊔q
′⊔q′′

p⊓p′⊓p′′ JU K

∅ ⊢⊥⊤ () : 1 = ireturn () :: Sesh⊥⊤ ()

Γ ⊢𝑞𝑝 𝐿 : 1 Δ ⊢𝑞
′

𝑝′ 𝑀 : 𝑇 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ let () = 𝐿 in 𝑀 : 𝑇 =

JΓK ⊢ JLK :: Seshqp () JΔK ⊢ JMK :: Seshq
′

p′ JTK

JLK>>>=_().M :: (p < q′) ⇒ Seshq⊔q
′

p⊓p′ JTK

Γ ⊢𝑞𝑝 𝐿 : 𝑇 Δ ⊢𝑞
′

𝑝′ 𝑀 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ (𝐿,𝑀) : 𝑇 ×𝑈 =

JΓK ⊢ JLK :: Seshqp JTK JΔK ⊢ JMK :: Seshq
′

p′ JU K

JLK>>>=_x . JMK >>= _y. ireturn (x, y) :: (q < p′) ⇒ Seshq⊔q
′

p⊓p′ (JTK, JU K)

Γ ⊢𝑞𝑝 𝐿 : 𝑇 ×𝑇 ′ Δ, 𝑥 : 𝑇,𝑦 : 𝑇 ′ ⊢𝑞
′

𝑝′ 𝑀 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ let (𝑥,𝑦) = 𝐿 in 𝑀 : 𝑈 =

JΓK ⊢ JLK :: Seshqp (JTK, JT ′K) JΔK, x :: JTK, y :: JT ′K ⊢ JMK :: Seshq
′

p′ JU K

JLK>>>=_(x, y). JMK :: (q < p′) ⇒ Seshq⊔q
′

p⊓p′ JU K

Γ ⊢𝑞𝑝 𝐿 : 𝑇

Γ ⊢𝑞𝑝 inl 𝐿 : 𝑇 +𝑈 =

JΓK ⊢ JLK :: Seshqp JTK

JΓK ⊢ JLK>>>=_x . ireturn (Left x) :: Seshqp (Either JTK JU K)

Γ ⊢𝑞𝑝 𝐿 : 𝑇

Γ ⊢𝑞𝑝 inr 𝐿 : 𝑇 +𝑈 =

JΓK ⊢ JLK :: Seshqp JU K

JΓK ⊢ JLK>>>=_x . ireturn (Right x) :: Seshqp (Either JTK JU K)

Γ ⊢𝑞𝑝 𝐿 : 𝑇 +𝑇 ′ Δ, 𝑥 : 𝑇 ⊢𝑞
′

𝑝′ 𝑀 : 𝑈 Δ, 𝑦 : 𝑇 ′ ⊢𝑞
′

𝑝′ 𝑁 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊔𝑝′ case 𝐿 {inl 𝑥 ↦→ 𝑀 ; inr 𝑦 ↦→ 𝑁 } : 𝑈 =

JΓK ⊢ JLK :: Seshqp (Either JTK JT ′K) JΔK ⊢ x :: JTK ⊢ JMK :: Seshq
′

p′ JU K JΔK ⊢ y :: JT ′K ⊢ JN K :: Seshq
′

p′ JU K

JΓK, JΔK ⊢ JLK>>>=_x . case x {Left x → JMK; Right y → JN K} :: Seshq⊔q
′

p⊓p′ JU K

Γ ⊢𝑞𝑝 𝐿 : 0

Γ ⊢𝑞𝑝 absurd 𝐿 : 𝑇 =

JΓK ⊢ JLK :: Seshqp Void

JΓK ⊢ JLK>>>=_x . absurd x :: Seshqp JTK

Figure 2. Translation from Priority GV to Sesh preserves types.

some places, and Neubauer and Thiemann [44] is only dead-

lock free on the technicality that they don’t support multiple

channels.

Session Types in other Programming Languages. Ses-
sion types have been integrated in other programming lan-

guage paradigms. Jespersen et al. [31], Padovani [52], Scalas

and Yoshida [60] integrate binary session types in the na-
tive host language, without language extensions; this to

Deadlock-Free Session Types in Linear Haskell

avoid hindering session types use in practice. To obtain this

integration of session types without extensions Padovani

[52], Scalas and Yoshida [60]) combine static typing of input

and output actions with runtime checking of linearity of

channel usage.

Implementations of multiparty session types (MPST) are

less common than binary implementations. Scalas et al. [59]

integrate MPST in Scala building upon Scalas and Yoshida

[60] and a continuation-passing style encoding of session

types into linear types Dardha et al. [11]. There are several

works on implementations of MPST in Java: Sivaramakr-

ishnan et al. [61] implement MPST leveraging an extension

of Java with session primitives; Hu and Yoshida [29] de-

velops a MPST-based API generation for Java leveraging

CFSMs by Brand and Zafiropulo [7]; and Kouzapas et al.

[37] implement session types in the form of typestates in
Java. Demangeon et al. [13] implement MPST in Python and

Fowler [18], Neykova and Yoshida [46] in Erlang, focusing

on purely dynamic MPST verification via runtime monitor-

ing. Neykova et al. [45], Neykova and Yoshida [47] extend

the work by Demangeon et al. [13] with actors and timed

specifications. Lopez et al. [43] adopt a dependently-typed

MPST theory to verify MPI programs.

Session Types, Linear Logic and Deadlock Freedom.
Themain line of work regarding deadlock freedom in session-

typed systems is that of Curry-Howard correspondences

with linear logic [25]. Caires and Pfenning [8] defined a cor-

respondence between session types and dual intuitionistic

linear logic and Wadler [64] between session types and clas-

sical linear logic. These works guarantee deadlock freedom

by design as the communication structures are restricted

to trees and due to the cut rule, processes share only one

channel between them. Dardha and Gay [10] extend Wadler

[64] with priorities following Kobayashi [32], Padovani [51],

thus allowing processes to share more than one channel in

parallel, while guaranteeing deadlock freedom. Balzer et al.

[2] introduce sharing and guarantee deadlock freedom via

priorities. All the above works deal with deadlock freedom

in a session-typed 𝜋-calculus. With regards to function lan-

guages, the original works on GV [23, 24] did not guarantee

deadlock freedom. This was later addressed by Lindley and

Morris [40], Wadler [65] via syntactic restrictions where

communication once again follows a tree structure. Kokke

and Dardha [35] introduce PGV–Priority GV, by following

Dardha and Gay [10] and allowing for more flexible pro-

gramming in GV. Fowler et al. [19] present Hypersequent

GV (HGV), a core calculus for functional programming with

session types that enjoys deadlock freedom, confluence, and

strong normalisation.

Other works on deadlock freedom in session-typed sys-

tems include the works by Dezani-Ciancaglini et al. [15],

where deadlock freedom is guaranteed by allowing only one

active session at a time and by Dezani-Ciancaglini et al. [14],

where priorities are used for correct interleaving of channels.

Honda et al. [28] guarantee deadlock freedom within a single
session of MPST, but not for session interleaving. Kokke [34]

guarantees deadlock freedom of session types in Rust by

enforcing a tree structure of communication actions.

5 Discussion and Future Work
We presented priority-sesh, an implementation of

deadlock-free session types in Linear Haskell. Using Lin-

ear Haskell allows us to check linearity—or more accurately,

have linearity guaranteed for us—without relying on com-

plex type-level machinery. Consequently, we have easy-to-

write session types and idiomatic code—in fact, probably the
most idiomatic code when compared with previous work,

though in fairness, all previous work predates Linear Haskell.

Unfortunately, there are some drawbacks to using Linear

Haskell. Most importantly, Linear Haskell is not very mature

at this stage. For instance:

• Anonymous functions are assumed to be unrestricted

rather than linear, meaning anonymous functionsmust

be factored out into a let-binding or where-clause with

at least a minimal type signature such as ⊸ .

• There is no integration with base or popular Haskell
packages, and given that LinearTypes is an exten-

sion, there likely won’t be for quite a while. There’s

linear-base, which provides linear variants of many

of the constructs in base. However, linear-base re-
lies heavily on unsafeCoerce, which, ironically, may

affect Haskell’s performance.

• Generally, there is little integration with the Haskell

ecosystem, e.g., one other contributionwemade are the

formatting directives for Linear Haskell in lhs2TEX [1].

However, we believe that many of these drawbacks will

disappear as the Linear Haskell ecosystem matures.

Our work also provides a library which guarantees dead-

lock freedom via priorities, which allows for more flexible

typing than previous work on deadlock freedom via a tree

process structure.

In the future, we plan to address the issue of priority-

polymorphic code and recursion session types in our imple-

mentation. (While the versions of our library in sections 2.2

and 2.3 support recursion, that is not yet the case for the

priority-based version in section 2.4.) This is a challenging

task, as it requires complex reasoning about type-level natu-

rals. We outlined various approaches in section 2.4. However,

an alternative we would like to investigate, would be to im-

plement priority-sesh in Idris2 [5, 6], which supports both

linear types and complex type-level reasoning.

Wen Kokke and Ornela Dardha

Acknowledgments
We thank Simon Fowler and April Gonçalves for comments

on the manuscript. This work is supported by the EU HORI-

ZON 2020 MSCA RISE project 778233 “Behavioural Applica-

tion Program Interfaces” (BehAPI).

References
[1] Accessed: 2021-08-06. lhs2tex: Preprocessor for typesetting Haskell

sources with LaTeX. https://hackage.haskell.org/package/lhs2tex.
[2] Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Man-

ifest Deadlock-Freedom for Shared Session Types. In Proc. of ESOP
(Lecture Notes in Computer Science, Vol. 11423). Springer, 611–639.

[3] Giovanni Bernardi, Ornela Dardha, Simon J. Gay, and Dimitrios Kouza-

pas. 2014. On Duality Relations for Session Types. In Trustwor-
thy Global Computing. Springer Berlin Heidelberg, 51–66. https:
//doi.org/10.1007/978-3-662-45917-1_4

[4] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Si-

mon Peyton Jones, and Arnaud Spiwack. 2018. Linear Haskell: practi-

cal linearity in a higher-order polymorphic language. Proc. of POPL 2

(2018), 1–29. https://doi.org/10.1145/3158093
[5] Edwin Brady. 2013. Idris, a general-purpose dependently typed pro-

gramming language: Design and implementation. Journal of Func-
tional Programming 23, 5 (2013), 552–593. https://doi.org/10.1017/
S095679681300018X

[6] Edwin Brady. 2017. Type-Driven Development of Concurrent Com-

municating Systems. Computer Science 18, 3 (2017), 219. https:
//doi.org/10.7494/csci.2017.18.3.1413

[7] Daniel Brand and Pitro Zafiropulo. 1983. On Communicating Finite-

State Machines. J. ACM 30, 2 (April 1983), 323–342. https://doi.org/
10.1145/322374.322380

[8] Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic

Linear Propositions. In CONCUR (LNCS, Vol. 6269). Springer, 222–236.
https://doi.org/10.1007/978-3-642-15375-4_16

[9] Ornela Dardha. 2016. Type Systems for Distributed Programs: Compo-
nents and Sessions. Atlantis Studies in Computing, Vol. 7. Springer /

Atlantis Press. https://doi.org/10.2991/978-94-6239-204-5
[10] Ornela Dardha and Simon J. Gay. 2018. A New Linear Logic for

Deadlock-Free Session-Typed Processes. In Proc. of FoSSaCS (LNCS,
Vol. 10803). Springer, 91–109.

[11] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session

types revisited. In Proc. of PPDP. ACM, 139–150.

[12] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2017. Session

types revisited. Inf. Comput. 256 (2017), 253–286. https://doi.org/10.
1016/j.ic.2017.06.002 Extended version of [11].

[13] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova,

and Nobuko Yoshida. 2015. Practical Interruptible Conversations:

Distributed Dynamic Verification with Multiparty Session Types and

Python. Formal Methods in System Design (2015). https://doi.org/10.
1007/s10703-014-0218-8

[14] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida.

2009. On Progress for Structured Communications. In Proc. of TGC
(LNCS, Vol. 4912). Springer, 257–275.

[15] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida,

and Sophia Drossopoulou. 2006. Session Types for Object-Oriented

Languages. In Proc. of ECOOP (LNCS, Vol. 4067). Springer, 328–352.
[16] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and

Stephanie Weirich. 2014. Closed type families with overlapping equa-

tions. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM. https://doi.org/10.1145/
2535838.2535856

[17] Andrzej Filinski. 1994. Representing monads. In Proceedings of the
21st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages - POPL '94. ACM Press. https://doi.org/10.1145/174675.

178047
[18] Simon Fowler. 2016. An Erlang Implementation of Multiparty Session

Actors. In ICE. https://doi.org/10.4204/EPTCS.223.3
[19] Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett

Morris. 2021. Separating Sessions Smoothly. CoRR abs/2105.08996

(2021). arXiv:2105.08996 https://arxiv.org/abs/2105.08996
[20] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019.

Exceptional Asynchronous Session Types: Session Types without Tiers.

Proc. of POPL 3, Article 28 (2019), 29 pages. https://doi.org/10.1145/
3290341

[21] Marco Gaboardi, Shin ya Katsumata, Dominic Orchard, Flavien

Breuvart, and Tarmo Uustalu. 2016. Combining effects and coeffects

via grading. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming. ACM. https://doi.org/10.1145/
2951913.2951939

[22] Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. 2020. Duality

of Session Types: The Final Cut. Electronic Proceedings in Theoretical
Computer Science 314 (April 2020), 23–33. https://doi.org/10.4204/
eptcs.314.3

[23] Simon J. Gay and Vasco T. Vasconcelos. 2010. Linear type theory for

asynchronous session types. Journal of Functional Programming 20, 1

(2010), 19–50.

[24] Simon J. Gay and Vasco T. Vasconcelos. 2012. Linear type theory for

asynchronous session types. JFP 20, 1 (2012), 19–50. Extended version

of [23].

[25] Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50
(1987), 1–102.

[26] Kohei Honda. 1993. Types for Dyadic Interaction. In Proc. of CONCUR
(LNCS, Vol. 715). Springer, 509–523.

[27] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo.

1998. Language Primitives and Type Discipline for Structured

Communication-Based Programming. In Proc. of ESOP (LNCS,
Vol. 1381). Springer, 122–138.

[28] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty

asynchronous session types. In Proc. of POPL, Vol. 43(1). ACM, 273–

284.

[29] Raymond Hu and Nobuko Yoshida. 2016. Hybrid Session Verification

Through Endpoint API Generation. In Proc. of FASE. https://doi.org/
10.1007/978-3-662-49665-7_24

[30] Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. 2010. Session Type

Inference in Haskell. In Proc. pf PLACES (EPTCS, Vol. 69). 74–91.
https://doi.org/10.4204/EPTCS.69.6

[31] Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis

Larsen. 2015. Session types for Rust. In Proc. of WGP@ICFP. https:
//doi.org/10.1145/2808098.2808100

[32] Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Pro-

cesses. In Proc. of CONCUR (LNCS, Vol. 4137). Springer, 233–247.
[33] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999.

Linearity and the pi-calculus. ACM Trans. Program. Lang. Syst. 21, 5
(1999), 914–947. https://doi.org/10.1145/330249.330251

[34] Wen Kokke. 2019. Rusty Variation: Deadlock-free Sessions with Failure

in Rust. EPTCS 304 (Sept. 2019), 48–60. https://doi.org/10.4204/eptcs.
304.4 Renamed to Sesh.

[35] Wen Kokke and Ornela Dardha. 2021. Prioritise the Best Variation. In

Proc. of FORTE (Lect. Not. in Comput. Sci., Vol. 12719). Springer, 100–119.
https://doi.org/10.1007/978-3-030-78089-0_6

[36] Wen Kokke and Ornela Dardha. 2021. Prioritise the Best Variation.

CoRR abs/2103.14466 (2021). arXiv:2103.14466 https://arxiv.org/abs/
2103.14466 Extended version of [35].

[37] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay.

2016. Typechecking protocols with Mungo and StMungo. In PPDP.
146–159.

[38] John Launchbury and Simon L. Peyton Jones. 1994. Lazy Functional

State Threads. In Proc. of PLDI (Orlando, Florida, USA). ACM, New

https://hackage.haskell.org/package/lhs2tex
https://doi.org/10.1007/978-3-662-45917-1_4
https://doi.org/10.1007/978-3-662-45917-1_4
https://doi.org/10.1145/3158093
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.7494/csci.2017.18.3.1413
https://doi.org/10.7494/csci.2017.18.3.1413
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.2991/978-94-6239-204-5
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1145/2535838.2535856
https://doi.org/10.1145/2535838.2535856
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/174675.178047
https://doi.org/10.4204/EPTCS.223.3
https://arxiv.org/abs/2105.08996
https://arxiv.org/abs/2105.08996
https://doi.org/10.1145/3290341
https://doi.org/10.1145/3290341
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.4204/eptcs.314.3
https://doi.org/10.4204/eptcs.314.3
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.4204/EPTCS.69.6
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/330249.330251
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.1007/978-3-030-78089-0_6
https://arxiv.org/abs/2103.14466
https://arxiv.org/abs/2103.14466
https://arxiv.org/abs/2103.14466

Deadlock-Free Session Types in Linear Haskell

York, NY, USA, 24–35. https://doi.org/10.1145/178243.178246
[39] Sam Lindley and Conor McBride. 2013. Hasochism. In Proceedings of

the 2013 ACM SIGPLAN symposium on Haskell - Haskell '13. ACM Press.

https://doi.org/10.1145/2503778.2503786
[40] Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions

as Sessions. In Proc. of ESOP. 560–584.
[41] Sam Lindley and J. Garrett Morris. 2016. Embedding session types in

Haskell. In Proc. of Haskell. ACM, 133–145. https://doi.org/10.1145/
2976002.2976018

[42] SamLindley and J GarrettMorris. 2017. Lightweight Functional Session

Types. In Behavioural Types: from Theory to Tools. River Publishers,
265–286.

[43] Hugo A. Lopez, Eduardo R. B. Marques, Francisco Martins, Nicholas

Ng, Casar Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida.

2015. Protocol-Based Verification of Message-Passing Parallel Pro-

grams. In OOPSLA. https://doi.org/10.1145/2814270.2814302
[44] Matthias Neubauer and Peter Thiemann. 2004. An Implementation

of Session Types. In Proc. of PADL (Lecture Notes in Computer Science,
Vol. 3057). Springer, 56–70. https://doi.org/10.1007/978-3-540-24836-
1_5

[45] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2017. Timed

Runtime Monitoring for Multiparty Conversations. Formal Aspects of
Computing (2017). https://doi.org/10.1007/s00165-017-0420-8

[46] Rumyana Neykova and Nobuko Yoshida. 2017. Let It Recover: Mul-

tiparty Protocol-Induced Recovery. In CC. https://doi.org/10.1145/
3033019.3033031

[47] Rumyana Neykova and Nobuko Yoshida. 2017. Multiparty Session

Actors. Logical Methods in Computer Science 13, 1 (March 2017). https:
//doi.org/10.23638/LMCS-13(1:17)2017

[48] Dominic Orchard, Philip Wadler, and Harley Eades. 2020. Unifying

graded and parameterisedmonads. Electronic Proceedings in Theoretical
Computer Science 317 (May 2020), 18–38. https://doi.org/10.4204/eptcs.
317.2

[49] Dominic Orchard and Nobuko Yoshida. 2017. Session types with

linearity in Haskell. Behavioural Types: from Theory to Tools (2017),
219.

[50] Dominic A. Orchard and Nobuko Yoshida. 2016. Effects as sessions,

sessions as effects. In Proc. of POPL. ACM, 568–581. https://doi.org/10.
1145/2837614.2837634

[51] Luca Padovani. 2014. Deadlock and Lock Freedom in the Linear 𝜋-

Calculus. In Proc. of CSL-LICS. ACM, 72:1–72:10.

[52] Luca Padovani. 2017. A simple library implementation of binary

sessions. Journal of Functional Programming 27 (2017). https:
//doi.org/10.1017/S0956796816000289 Website: http://www.di.unito.it/
~padovani/Software/FuSe/FuSe.html.

[53] Luca Padovani and Luca Novara. 2015. Types for Deadlock-Free

Higher-Order Programs. In Proc. of FORTE (LNCS, Vol. 9039). Springer,
3–18.

[54] Simon L. Peyton Jones, Andrew D. Gordon, and Sigbjørn Finne. 1996.

Concurrent Haskell. In Proc. of POPL. ACM, 295–308. https://doi.org/
10.1145/237721.237794

[55] Jeff Polakow. 2015. Embedding a full linear Lambda calculus in Haskell.

In Proc/ of the Symposium on Haskell. ACM. https://doi.org/10.1145/
2804302.2804309

[56] Riccardo Pucella and Jesse A. Tov. 2008. Haskell session types with

(almost) no class. In Proc. of Haskell. ACM. https://doi.org/10.1145/
1411286.1411290

[57] Matthew Sackman and Susan Eisenbach. 2008. Session Types in

Haskell Updating Message Passing for the 21st Century. (01 2008).

[58] Davide Sangiorgi and David Walker. 2001. The 𝜋 -calculus: a Theory of
Mobile Processes. Cambridge University Press.

[59] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida.

2017. A Linear Decomposition of Multiparty Sessions for Safe Dis-

tributed Programming. In Proc. of ECOOP (LIPIcs, Vol. 74). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 24:1–24:31. https://doi.
org/10.4230/LIPIcs.ECOOP.2017.24

[60] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Pro-

gramming in Scala. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.
2016.21

[61] K. C. Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek, and Patrick

Eugster. 2010. Efficient Session Type Guided Distributed Interaction.

In Proc. of COORDINATION, Vol. 6116. https://doi.org/10.1007/978-3-
642-13414-2_11

[62] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An Interaction-

Based Language and its Typing System. In Proc. of PARLE (LNCS,
Vol. 817). Springer, 398–413.

[63] PhilipWadler. 2012. Propositions as sessions. In Proc. of ICFP. 273–286.
[64] Philip Wadler. 2014. Propositions as sessions. Journal of Functional

Programming 24, 2-3 (Jan. 2014), 384–418. Extended version of [63].

[65] Philip Wadler. 2015. Propositions as types. Commun. ACM 58, 12

(2015), 75–84.

https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/2503778.2503786
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2814270.2814302
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1145/3033019.3033031
https://doi.org/10.1145/3033019.3033031
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.4204/eptcs.317.2
https://doi.org/10.4204/eptcs.317.2
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1017/S0956796816000289
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
https://doi.org/10.1145/237721.237794
https://doi.org/10.1145/237721.237794
https://doi.org/10.1145/2804302.2804309
https://doi.org/10.1145/2804302.2804309
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1007/978-3-642-13414-2_11
https://doi.org/10.1007/978-3-642-13414-2_11

	ACM Cover Sheet (AFV)
	249058
	Abstract
	1 Introduction
	2 What is Priority Sesh?
	2.1 One-shot Channels
	2.2 Session-typed Channels
	2.3 Deadlock Freedom via Process Structure
	2.4 Deadlock Freedom via Priorities

	3 Relation to Priority GV
	4 Related Work
	5 Discussion and Future Work
	Acknowledgments
	References

