
1. Introduction
The Central Andes of northern Chile host many large porphyry copper deposits (PCDs)—hydrothermally 
generated, sulfide-bearing orebodies centered on felsic to intermediate igneous intrusions (Richards, 2013). 
Initially formed at depths of ∼1–4 km (Sillitoe, 2010), many PCDs have been exhumed to the (near-)sur-
face following the late Eocene Incaic orogeny (Riquelme et al., 2018). The economic metal concentrations 
of some exhumed PCDs were produced during weathering, via meteoric water-driven “supergene” (from 

Abstract The Atacama Desert, on the western margin of the Central Andes, hosts some of the 
world's largest porphyry copper deposits (PCDs). Despite a hyperarid climate, many of these PCDs have 
undergone secondary “supergene” enrichment, whereby copper has been concentrated via groundwater-
driven leaching and reprecipitation, yielding supergene profiles containing valuable records of weathering 
and landscape evolution. We combine hematite (U-Th-Sm)/He geochronology and oxygen isotope 
analysis to compare the weathering histories of two Andean PCDs and test the relative importance of 
climate and tectonics in controlling both enrichment and water table movement. At Cerro Colorado, 
in the Precordillera, hematite precipitation records prolonged weathering from ∼31 to ∼2 Ma, tracking 
water table descent following aridity-induced canyon incision from the late Miocene onward. By contrast, 
hematite at Spence, within the Central Depression, is mostly younger than ∼10.5 Ma, suggesting 
exhumation ended much later. A heavy oxygen isotopic signature for Spence hematite suggests that 
upwelling formation water has been an important source of groundwater, accounting for a high modern 
water table despite persistent hyperaridity, whereas isotopically light hematite at Cerro Colorado formed 
in the presence of meteoric water. Compared with published paleo-environmental and sedimentological 
records, our data show that weathering can persist beneath appreciable post-exhumation cover, under 
hyperarid conditions unconducive to enrichment. The susceptibility of each deposit to aridity-induced 
water table descent, canyon incision and deep weathering has been controlled by recharge characteristics 
and morphotectonic setting. Erosional exhumation, rather than aridity-induced water table decay, appears 
to be more important for the development of supergene enrichment.

Plain Language Summary Northern Chile hosts many large copper deposits which were 
formed at depths of several kilometers and then brought close to the surface during Andean mountain-
building. Water-driven weathering reactions have upgraded some exhumed deposits by leaching copper 
from sulfide minerals under oxidizing conditions and reprecipitating it within new minerals under 
reducing conditions, in a process called supergene (“from above”) enrichment. Relative water table 
descent is required for these processes to expand into fresh ore, but it is unclear whether climatic or 
tectonic factors have been more important controls on water table movement in different locations. In 
this study, we investigate the age and oxygen isotopic composition of the iron oxide weathering mineral, 
hematite, from the supergene profiles of two Andean copper deposits (Spence and Cerro Colorado) to 
constrain and compare the timing of weathering and sources of weathering fluids. The preserved record 
of weathering begins at ∼31 Ma at Cerro Colorado but the main period of weathering at Spence occurred 
after ∼10.5 Ma. Oxygen isotopes show that differing responses of the water table to increased aridity after 
the late Miocene (descending at Cerro Colorado but remaining shallow at Spence) have depended on 
catchments, groundwater flow, and differences in topography.
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above) enrichment, whereby copper is leached from sulfide minerals undergoing oxidation at, or above, 
the water table and concentrated below the water table via processes of dissolution, solution transport, and 
reprecipitation (Chávez, 2000; Sillitoe, 2005; Sillitoe & McKee, 1996). For weathering and enrichment to 
progress, tectonic or climatic factors must trigger relative water table descent for fresh rock to be exposed 
to oxidation and leaching (Ague & Brimhall,  1989; Alpers & Brimhall,  1988; Anderson,  1982; Brimhall 
et al., 1985). This could be caused by uplift of rock through the water table (Sillitoe, 2005) (hereon referred 
to as “exhumation-driven water table descent,” where the water table is the reference datum), or climate-in-
duced canyon incision or reduction in aquifer recharge (Cooper et al., 2016), lowering the water table (here-
on referred to as “water table decay,” where the surface is the reference datum). Understanding of the rela-
tive contribution of these factors to water table movement during the development of preserved weathering 
profiles is limited (García et al., 2011), and as mineral deposits become harder to find, greater knowledge of 
the controls on paleo-water tables in different settings will be essential for future exploration.

Previous studies have constrained the timing of enrichment of Andean PCDs via K-Ar and 40Ar/39Ar dating 
of supergene alunite group minerals; K-bearing sulfates formed as by-products of sulfide leaching (Alpers 
& Brimhall, 1988; Arancibia et al., 2006; Bouzari & Clark, 2002; Sillitoe & McKee, 1996). A major limitation 
on the usefulness of alunite is that it can form under oxidising conditions above the water table (Sillitoe & 
McKee, 1996) and under reducing conditions beneath it (Alpers & Brimhall, 1988), implying that samples 
separated by hundreds of meters within a weathering profile may have formed “anytime from several mil-
lion years apart to synchronously” (Sillitoe, 2005). Therefore, a more redox-sensitive indicator mineral is 
required to understand the relationship between water tables, enrichment, and the development of PCD 
weathering profiles, and identify controls on water table movement and groundwater flow in a tectonically 
and climatically dynamic area.

Iron oxides, such as hematite (Fe2O3), are common authigenic weathering minerals and can be dated 
using (U-Th-Sm)/He geochronology, providing a tool for constraining periods of weathering (Monteiro 
et al., 2014) and tracking water table movement (Cooper et al., 2016; Deng et al., 2017; Heim et al., 2006), 
as these minerals, and their metastable precursors, predominantly form under oxygenated conditions at or 
above the atmosphere-groundwater interface (Heim et al., 2006). The only application of hematite (U-Th-
Sm)/He geochronology to an Andean PCD weathering profile, which tracked water table decay at Cerro 
Colorado in the Andean Precordillera (Figure 1) was conducted by Cooper et al. (2016). Here, geochronol-
ogy data show that weathering had commenced by ∼31 Ma and persisted until at least ∼2 Ma. An apparent 
younging-with-depth trend observed after 16  Ma was attributed to aridity-induced incision of a nearby 
canyon (the Quebrada de Parca) which continues to control the local water table today. These geochronol-
ogy data show that regional climate can control water table movement and the progression of weathering 
via canyon incision, and that hematite precipitation persisted long after supergene enrichment ended (at 
∼14.6 Ma; Bouzari & Clark, 2002), suggesting that hematite is not a proxy for enrichment. However, the 
response of the water table in different locations to desiccation of the Atacama Desert, and the impacts of 
this response on the supergene development of different PCDs are yet to be determined.

This contribution re-examines the history of canyon incision and water table decay at Cerro Colorado 
(based on satellite imagery of truncated drainage networks and published ages of volcanic deposits con-
tained within the gravel cover proximal to the deposit), and investigates the timing of weathering at Spence, 
an enriched PCD situated within the Central Depression, ∼300 km south. In contrast to Cerro Colorado, 
Spence has not been affected by canyon incision and the modern water table is shallow despite persistent 
hyperaridity (Cameron & Leybourne, 2005). We report oxygen isotopic measurements (δ18O) for Fe-oxides 
from the weathering profiles at Spence and Cerro Colorado, enabling recharge mechanisms and groundwa-
ter sources during weathering to be constrained and compared.

2. Background
2.1. PCD Formation and Supergene Enrichment in the Central Andes

PCDs are typically located within arc-parallel belts at convergent plate boundaries, such as the western 
Andean margin of South America, where magmatism, PCD formation and orogenesis have resulted from 
subduction of the Farallon and Nazca plates beneath the South American plate from the mid to late Jurassic 
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Figure 1. (a) Locations of Central Andean porphyry copper deposits discussed in the text, color coded according to enrichment type. Dashed box encompasses 
the study area in (b). (b) Elevation map of northern Chile showing locations of Cerro Colorado and Spence. Dashed black lines separate the morphotectonic 
units of the western Andean margin. Dashed red line marks the eastern limit of the hyperarid core of the Atacama Desert. (c and d) Google Earth™ views of 
Cerro Colorado and Spence showing locations and IDs of sampled drill holes (red circles).
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onward (Armijo et al., 2015; Mpodozis & Cornejo, 2012; Richards, 2013; Sillitoe, 2010). PCDs form when 
heat and water expulsion from stocks and dykes, emplaced above granitoid plutons at paleo-depths of sev-
eral kilometers, drive hydrothermal alteration of large volumes of rock and generate disseminated and 
vein-hosted sulfide mineralization (e.g., pyrite [FeS2] and chalcopyrite [CuFeS2]; Sillitoe, 2010).

Erosional exhumation has brought many PCDs to the near-surface, where copper present in hypogene 
(“formed from below”) orebodies may be concentrated by up to a factor of three by supergene processes 
(Sillitoe,  2005). In the supergene environment, Cu enrichment is produced via chemical weathering by 
descending meteoric waters. Oxidation of sulfides at or above the water table forms sulfuric acid, enabling 
downward leaching of Cu. Under reducing conditions, beneath the water table, Cu is reprecipitated, form-
ing enriched secondary sulfides (e.g., chalcocite [Cu2S] and covellite [CuS]; Ague & Brimhall, 1989; Silli-
toe, 2005). Where acidity or water availability are insufficient for leaching, in situ oxidation may produce 
an “oxide zone” containing secondary Cu minerals such as atacamite and brochantite (Sillitoe, 2005; Vas-
concelos, 1999). Mature supergene weathering profiles thus comprise an upper, weathered zone, underlain 
by a sulfide enrichment blanket grading downward into the hypogene orebody. The boundary between the 
weathered zone and enrichment blanket represents the deepest paleo-water table position—the “ultimate 
redox front.”

Although there is evidence supergene enrichment is most effective during periods of landscape stability, 
characterized by pediplanation and low erosion rates (Riquelme et al., 2018; Sanchez et al., 2018), suffi-
cient lowering of the water table for deep weathering is aided by periods of tectonic uplift (Sillitoe, 2005). 
Between 26° and 27°S, the deeply leached and strongly enriched El Salvador deposit, which experienced 
multiple phases of tectonic uplift and erosion during the Oligocene and middle Miocene, contrasts with 
the Potrerillos deposit, which is less deeply exhumed and hosts a less mature supergene profile (Bissig & 
Riquelme, 2009). This shows the relative importance of climatic and tectonic factors and the extent to which 
they affect water tables are spatially variable.

Many Andean PCDs are buried beneath Miocene gravels which form regionally extensive paleo-surfaces 
(Evenstar et al., 2017; Hollingworth, 1964). Cover deposition may end enrichment by stopping precipitation 
reaching the water table, especially in areas with low infiltration rates and high evapotranspiration such as 
the Atacama (Davis et al., 2010). Furthermore, burial may cause the ultimate redox front to be “drowned” 
beneath an elevated water table, so that infiltrating water is moving through rocks already leached of cop-
per (Brimhall et al., 1985; Enders et al., 2006; Sillitoe & McKee, 1996). Ages of paleo-surfaces and ash lay-
ers within gravel units allow PCD weathering ages to be viewed within a sedimentological framework of 
pre-versus post-cover deposition (Bouzari & Clark, 2002).

2.2. Central Andean Neogene Paleoclimate

The western Andean margin of South America comprises five arc-parallel morphotectonic units; the Coastal 
Cordillera, Central Depression, Precordillera, Western Cordillera and Altiplano (Barnes & Ehlers, 2009; Fig-
ure 1). Encompassing much of the Coastal Cordillera, Central Depression, and Precordillera, between 15° 
and 30°S at elevations of 0–3,500 m a.s.l., the hyperarid core of the Atacama Desert is one of the driest places 
on Earth (Amundson et al., 2012; Bookhagen & Strecker, 2012; Garreaud et al., 2010; Houston, 2006a, 2006b; 
Houston & Hartley, 2003; Sun et al., 2018). Despite this, the region hosts many PCDs that have been en-
riched by meteoric groundwater (Arancibia et al., 2006; Hartley & Rice, 2005; Sillitoe, 2005).

Hyperaridity in the Atacama Desert is sustained by its latitudinal location within the Inter-Tropical 
Convergence Zone, the cold Humboldt ocean current moving northward along the west coast of South 
America, its distance from the Atlantic Ocean, and the effect of the Andean rain shadow, which blocks 
moisture from the Amazon basin (Houston,  2006b; Houston & Hartley,  2003). Modern mean annual 
rainfall (MAR) at Cerro Colorado is 20  mm (Jordan et  al.,  2014) and Spence receives <10  mm (Sun 
et al., 2018). Estimates for the onset of hyperaridity range from Oligocene (Dunai et al., 2005) to Pli-
ocene (Hartley & Rice, 2005), although it is generally considered to have begun during the middle to 
late Miocene. Evidence for strengthening aridity in the middle Miocene includes the apparent cessa-
tion of PCD supergene enrichment at ∼14 Ma (Alpers & Brimhall, 1988; Sillitoe & McKee, 1996), and 
increasingly heavy oxygen isotopic compositions of soil carbonates by 15 Ma (Rech et al., 2019). How-
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ever, multiple sedimentological and isotopic records indicate climate desiccation, from (semi-)arid to 
hyperarid conditions, in the late Miocene, between ∼12 and ∼10  Ma, due to a strengthening of the 
Andean rain shadow (Rech et al., 2019). Gypsum-cemented (“gypcrete”) horizons, formed when MAR 
was <20 mm, are preserved beneath ∼9.5 Ma ignimbrites in the Precordillera and Central Depression 
(Hartley & May, 1998; Jordan et al., 2014; Rech et al., 2019). Similarly, non-reworked soluble salt ho-
rizons in the gravels covering Spence, preserved beneath a 9.47 ± 0.04 Ma ash layer (Sun et al., 2018), 
suggest precipitation has been insufficient for direct recharge since this time. Isotopic evidence for hy-
peraridity includes increasingly heavy δ18O and δ13C signatures in palustrine carbonates in the Calama 
Basin after 12 Ma (Rech et al., 2010) and higher δ18O in travertine deposits at Barrancos Blancas (24°S) 
after ∼11.5 Ma (Quade et al., 2017). Global datasets suggest that direct recharge is negligible when MAR 
is <200 mm (Houston, 2009; Scanlon et al., 2006). Therefore, it is unlikely that either Cerro Colorado 
or Spence have experienced direct recharge since the onset of hyperaridity, especially through volcanic 
and sedimentary cover. Instead, indirect recharge by precipitation higher in the Andes and deep forma-
tion water (saline porewaters and meteoric water with a long residence time) are likely contributors to 
groundwater at lower elevations in the Precordillera and Central Depression (Hoke et al., 2004; Hou-
ston, 2002; Magaritz et al., 1990).

2.3. Weathering and Water Tables at Cerro Colorado and Spence

Comparing Cerro Colorado and Spence is useful because, despite their similar hypogene mineralization 
ages (53.5–50 Ma at Cerro Colorado [Bouzari & Clark, 2002; Tsang et al., 2018] and ∼57 Ma at Spence [Row-
land & Clark, 2001]), subsequent exhumation, weathering, and water table movement at each deposit have 
operated under contrasting tectonic, sedimentological, and geomorphological conditions.

At Cerro Colorado, situated 2,600 m a.s.l. within the Andean Precordillera (Figures 1 and 2), (U-Th-
Sm)/He hematite ages record persistent weathering from early Oligocene to Pleistocene (∼31–2 Ma; 
Cooper et al., 2016). By comparison, 40Ar/39Ar alunite ages suggest the onset of supergene enrichment 
was coeval at ∼35 Ma but ceased in the middle Miocene at ∼14.6 Ma (Bouzari & Clark, 2002). A min-
imum age for the end of exhumation is provided by the 19.25 ± 0.43 Ma Tambillo ignimbrite, which 
covers much of the deposit (Bouzari & Clark, 2002), ruling out regional, exhumation-driven water table 
descent as the cause of the post-middle Miocene water table decay observed by Cooper et al.  (2016). 
Cover deposition at Cerro Colorado, represented by gravels of the El Diablo Formation, continued 
until ∼11  Ma (Blanco et  al.,  2012), when climate desiccation led to surface abandonment (Evenstar 
et al., 2017) and decreased river discharge led to channel steepening and incision of the Quebrada de 
Parca (Cooper et al., 2016).

Spence lies within the Central Depression, at 1,700 m a.s.l., along the Antofagasta-Calama Lineament 
(ACL), a SW-NE-striking crustal-scale fracture which facilitated magma emplacement during formation 
of the deposit (Palacios et  al.,  2007) (Figures  1 and  2). Unpublished alunite ages suggest Spence was 
enriched between ∼44 and ∼21 Ma (Rowland & Clark, 2001), although it is unclear whether all dated 
samples were of supergene origin. Spence is covered by 50–100 m of Atacama Gravels (Cameron & Ley-
bourne, 2005). A 9.47 ± 0.04 Ma ash layer, situated 37 m above the gravel-bedrock contact, provides a 
minimum age for the end of exhumation (Sun et al., 2018) (Figures 2a and 2b). Unlike at Cerro Colorado, 
which is cut by the Quebrada de Parca, the nearest river is the Rio Loa, 34 km to the north (Figure 1b). 
Although it has been suggested that Spence lies within the groundwater catchment of the Rio Loa (Jordan 
et al., 2015), the water table slopes toward the southwest (Cameron & Leybourne, 2005). Furthermore, 
the Rio Loa did not breach the Coastal Cordillera until the late Pliocene to late Pleistocene, shifting the 
river base level from >1,000 m a.s.l. in the Central Depression to sea level at the Pacific Ocean, and caus-
ing upstream channel incision (May et al., 2005; Ritter et al., 2018). Incision of the Rio Loa is therefore 
unlikely to have influenced the water table at Spence. In contrast to Cerro Colorado, the modern water 
table at Spence is elevated relative to the ultimate redox front, approximating the gravel-bedrock contact, 
despite persistent hyperaridity. Oxygen isotope analysis of local groundwater suggests this is caused by 
upwelling formation water along the ACL, which acts as a fluid pathway for deep groundwater recharge 
(Cameron & Leybourne, 2005).
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2.4. Hematite as a Record of Water Table Movement and Weathering Fluid Composition

Fe-oxide formation during PCD weathering is thought to be caused by oxidation of sulfides at or above the 
water table (Ague & Brimhall, 1989), with minor sub-water table sulfide oxidation along high-permeability 
pathways (Lichtner & Biino, 1992). For pyrite, the summary reactions are approximated below (Dold, 2003):

      2 2
2 2 2 4

7FeS O H O Fe 2SO 2H
2

 (1)

Fe O H Fe H O
2

2

3

2

1

4
1 2

      / (2)

   
   3

2 3 s
Fe 3H O Fe OH 3H (3)

Sulfide oxidation (Equation 1) requires free oxygen, sourced either from the atmosphere or from oxygenated 
groundwater. In arid areas with low permeability and slow-moving groundwater, such as our study sites, 
this limits efficient weathering to the unsaturated zone, at or above the water table. Oxygen involved in 
subsequent Fe-oxide precipitation is primarily contributed by water (Equations 2 and 3), enabling the iso-
topic composition, and source, of groundwater during Fe-oxide precipitation to be determined. If hematite 
precipitation, via sulfide oxidation, genuinely persisted until more recently than supergene enrichment, 
liberated S and Cu (the latter from chalcopyrite) likely contributed to the oxide zone mineral assemblages 
observed at both deposits, which include atacamite (Cu-chloride), brochantite (Cu-sulfate) and gypsum 
(Bouzari & Clark, 2002; Cameron et al. 2007; Reich et al., 2008). Reich et al. (2009) reported Pleistocene 
230Th-234U ages for intergrown gypsum and atacamite from several PCDs, including Spence, showing that S 
and Cu mobility continued until much more recently than proposed by previous models of weathering and 
enrichment.

3. Methods
3.1. (U-Th-Sm)/He Hematite Geochronology

During weathering, trace amounts of radioactive U, Th, and Sm are adsorbed from groundwater onto high-
ly reactive surfaces of ferrihydrite (amorphous precursor to hematite and goethite) (Marshall et al., 2014; 
McBriarty et al., 2018) and incorporated and immobilized during Fe-oxide crystallisation (Das et al., 2011). 
High rates of radiogenic 4He ingrowth make these minerals suitable targets for (U-Th-Sm)/He dating (Far-
ley & Flowers, 2012). The closure temperature for He in hematite is dependent on crystallite size (gener-
ally ∼60 to >100°C) (Farley & Flowers, 2012), below which there is near-quantitative He retention at all 
scales (Bähr et al., 1994; Farley, 2018; Lippolt et al., 1993). Proton irradiation experiments by Farley (2018) 
showed that a 20 nm hematite crystal within a polycrystalline aggregate will retain >90% of its ingrown He 
over 100 Myr at 30°C. Thus, without reheating, ages for low-temperature hematite represent crystallisation, 
enabling the study of continental weathering histories (Monteiro, Vasconcelos, & Farley, 2018; Monteiro, 
Vasconcelos, Farley, & Lopes, 2018; Pidgeon et al., 2004; Riffel et al., 2016; Shuster et al., 2012; Vasconcelos 
et al., 2013) and weathering front propagation (Cooper et al., 2016; Deng et al., 2017; Heim et al., 2006).

3.1.1. Sample Collection, Characterization, and Preparation

At Spence, the hematitic weathered zone varies from 30–100 m thick. Minor hematite also occurs with-
in the subjacent enriched zone, on fracture surfaces and within partially weathered veins which formed 
high-permeability pathways for descending, weakly oxidising fluids (Lichtner & Biino,  1992). Hema-
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Figure 2. (a) Cerro Colorado cross-section modified from Bouzari and Clark (2002). The modern water table lies at the base of the weathered zone in the 
western part of the deposit but is assumed to slope westward, consistent with the drainage direction of the Quebrada de Parca. (b) View of the Cerro Colorado 
pit in 1995 (from Bouzari & Clark, 2002), showing cover rocks (ignimbrites and El Diablo Formation gravels) and the supergene anatomy of the deposit. (c) 
Spence cross-section modified from Cameron and Leybourne (2005). The modern water table approximates the gravel-bedrock contact. (d) View of the North 
Zone at Spence, showing the Atacama Gravels covering the deposit and the metasedimentary Cerritos Bayos Formation country rocks. The 9.47 ± 0.04 Ma ash 
layer dated by Sun et al. (2018) lies near the base of the Upper Member of the gravels.
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tite-bearing veins and fracture surfaces were sampled from two drill cores in the north zone (SPD1848 and 
SPD3024, 300 m apart) and one in the south zone (SPD0402) (Figure 1), where the weathered zone is 32 
and 48 m thick, respectively. Samples from SPD1848 span the full thickness of the weathered zone, whereas 
samples from SPD0402 span the lower half of the weathered zone due to the availability of suitable mate-
rial. Hematite from SPD3024 was taken from the zone of sulfide enrichment, extending the depth range 
of sampling beneath the ultimate redox front. Hematite was identified in drill core by its dark red to black 
appearance, textural characteristics (boxwork or botryoidal habit), and red streak. Mineral identification 
was confirmed via SEM analysis and Raman spectroscopy of polished thin sections. Dated samples were 
selected from mm to cm scale veins or fracture fills free from contamination and mineral intergrowth.

3.1.2. Analytical Methodology

Samples were extracted from drill core using a micro-saw and crushed to ≤1 mm. Seventy-two fragments of 
hematite (mean fragment weight = 46 μg) were picked manually under a binocular microscope and their 
mineralogy confirmed by Raman spectroscopy. (U-Th-Sm)/He dating was undertaken at the Caltech Noble 
Gas Laboratory, following the single aliquot method (Farley, 2002; House et al., 2000). Individual hematite 
fragments were loaded into Pt tubes and degassed by incremental heating with a Nd-YAG laser. To ensure 
complete extraction of He, samples were heated to >1,000°C. To avoid parentless He and erroneously high 
dates due to partial U-loss during hematite-magnetite transformation, He extraction was conducted under 
high pO2 (100 torr), buffering the transition to >1,200°C; above the temperature of complete He degassing 
(Hofmann et al., 2020). Isotope-dilution measurements of 4He were made with an enriched 3He spike, using 
a Pfeiffer Vacuum quadrupole mass spectrometer. U, Th, and Sm were measured on the same aliquots (dis-
solved in HCl for 12 h at 95°C, then dried and the precipitate re-dissolved in HNO3) using an Agilent 8800 
triple-quadrupole ICP-MS (Hofmann et al., 2017). (U-Th-Sm)/He ages were calculated according to Far-
ley (2002). Since aliquots were taken from structures much larger than the typical alpha-particle stopping 
distance in hematite of 13–16 μm (Ketcham et al., 2011), no correction for alpha-ejection or -implantation 
was applied.

3.2. Oxygen Isotope Analysis

The δ18O composition of weathering-derived hematite (and goethite) (δ18OH(G)) is fixed during crystallisa-
tion (Yapp, 2001). Rapid isotopic exchange between water and ferrihydrite promotes equilibrium, and pre-
served δ18OH(G) signatures reflect the temperature and average fluid composition during mineral formation 
(Bao & Koch, 1999; Yapp, 1987). Transformation of ferrihydrite likely occurs over days to ∼100 years (much 
shorter timescales than the multi-Myr weathering periods which affect PCDs), depending on temperature 
and pH (Das et al., 2011). Fe-oxides remain closed to later oxygen exchange with groundwater at ambient 
temperatures (Bao & Koch,  1999). Thus, δ18OH(G) compositions have been used to constrain continental 
climate change (Yapp, 2001), identify the nature of fluids present during alteration of hypogene base-metal 
deposits (Cruise et al., 1999), and track latitudinal variation in the isotopic composition of meteoric water 
during weathering (Miller et al., 2017).

3.2.1. Oxygen Isotope Sample Collection, Characterization, and Preparation

Hematite samples, identified by appearance in hand sample and SEM observations on corresponding thin 
sections, were selected from three drill holes at Spence and four holes at Cerro Colorado. Samples were 
crushed/micro-drilled to obtain several milligrams of chips and powder for analysis. Raman spectrosco-
py was used to confirm the mineralogy of samples JSC17-069 and FC1649. The composition of Fe-oxide 
extracted from fracture surfaces for two samples from drill hole SPD0551 (JSC17-068 and JSC17-072), and 
all of the Cerro Colorado samples, for which no thin sections were available, was determined by non-quan-
titative powder XRD following standard analytical procedures (Bish & Post, 2018). These samples yielded 
similar spectra, best interpreted as a mixture of hematite and goethite (referred to as hematite(goethite)). 
At equilibrium, low-temperature (25–120°C) hematite and goethite are isotopically indistinguishable (Bao 
& Koch, 1999; Yapp, 1990), allowing calculation of fluid values using the same mineral-water fractionation 
equation. The isotopic effect of quartz present in several Cerro Colorado samples was accounted for via aqua 
regia dissolution and isotopic measurements on quartz separates (see Supporting Information).
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3.2.2. Oxygen Isotope (δ18O) Analysis Via Laser Fluorination

Oxygen isotope analysis of 21 Fe-oxide samples (15 from Spence and six from Cerro Colorado) was conduct-
ed at the SUERC Stable Isotope Facility via laser fluorination (Giuliani et al., 2005). For each measurement, 
3–5 mg of Fe-oxide was heated with a CO2 laser in the presence of a fluorine-based reagent (ClF3). After 
passing through an in-line Hg-diffusion pump, liberated oxygen was converted to CO2 using a heated rod 
of platinized graphite. Isotopic measurements were made using a BG Optima dual-inlet mass spectrometer. 
Isotopic values were calculated using the mass measurements of CO2 isotopologues and are reported as 
δ18O‰ relative to Vienna Standard Mean Ocean Water (VSMOW). Calibration on three secondary standards 
(UWG2, GP147 (international garnet standards) and YP2 (internal quartz standard)) yielded a standard 
error of 0.07 and R2 = 0.9999. Internal uncertainty on the isotopic measurements is <0.1‰ (1σ).

4. Results
4.1. (U-Th-Sm)/He Geochronology

At our study sites, empirical evidence such as the presence of hematite in former hypogene sulfide veins 
(originally containing pyrite ± chalcopyrite and minor quartz) (Figure 3a), boxwork texture (semi-pseu-
domorphic replacement of cubic pyrite crystals by hematite) (Figure 3b) and microscale textural relation-
ships between spherulitic Fe-oxides and embayed pyrite (Figure 3c) show that hematite has formed through 
sulfide oxidation, supporting the use of hematite dating to track the paleo-weathering front.

Hematite occurs as amalgamated micro-spheres or polycrystalline aggregates, commonly exhibiting layer-
ing on the scale of microns to tens of microns (Figure 3d). It is unclear whether layers are Liesegang bands, 
formed by geochemical self-organization during precipitation from a supersaturated solution in a single 
depositional event, or growth layers formed by discrete precipitation events. In the latter case, all ages (new 
and previously published discussed here) will be averages of the individual growth events contained within 
each dated fragment (Heim et al., 2006).

Hematite precipitation at Spence records continuous weathering from the middle Miocene to the Pleis-
tocene, with ages tightly clustered in both the North and South Zones (Table 1; Figures 4a–4d). Hematite 
in North Zone hole SPD1848 formed between 10.5 and 2.2 Ma, although only two fragments yielded ages 
younger than 5.8 Ma. In South Zone hole SPD0402, most ages fall between 8.6 and 2.7 Ma, although two 
fragments, situated ∼50  m beneath the gravel-bedrock contact, yielded older ages of 12.4 and 14.7  Ma. 
As hematite may continue to precipitate in the weathering zone after initial water table drop (e.g., while 
residing in the capillary fringe or during transient wetting through water table fluctuation during overall 
descent), we are most interested in the oldest ages within the clustered data, which mark the onset of gen-
erally oxidizing conditions and which we interpret as a record of relative water table descent. Regression 
through the oldest ages at each sampled depth allows rates of relative water table descent to be estimated; 
23.9 ± 19.7 m/Myr in the North Zone and 17.6 ± 9.2 m/Myr in the South Zone (2σ error). If these general 
trends are extended to the top of the weathered zone, we may expect to find hematite of similar age at the 
gravel-bedrock contact in both the North and South Zones of the deposit, between ∼10.2 and ∼10.8 Ma, 
although the lack of hematite suitable for dating in the upper part of the weathering profile in SPD0402 
(South Zone drill hole) does not allow us to test this hypothesis. Hematite from hole SPD3024, which lies 
beneath the ultimate redox front, yields ages between 14.0 and 4.8 Ma and a younging-with-depth relation-
ship is not observed.

Continued hematite precipitation until ∼2  Ma at the ultimate redox front in both the North and South 
Zones could suggest that the water table rose to its present position after this time. However, it is possible 
that these young ages instead reflect late uranium addition from groundwater, as has been documented in 
hematite from the Navajo Sandstone (Reiners et al., 2014). Uranium addition is consistent with the high eU 
and low Th/U recorded in the youngest aliquots of Spence samples EB16128 and JSC17-186 and Cerro Col-
orado samples FC1478 and FC1483 (see Supporting Information), although this does not affect our overall 
interpretation of the data.

Previously published hematite results for Cerro Colorado (Cooper et al., 2016) are shown for comparison in 
Figures 4e and 4f. Cooper et al. (2016) presented sample ages from different areas on a single age-elevation 
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plot, assuming a horizontal water table. To account for the westward slope of the land surface and the water 
table (Section 5.1), we replot these data, normalised to a sloping water table (Figure 4g).

4.2. Iron Oxide Oxygen Isotope Analysis

Fe-oxide samples from Spence yielded δ18O values between +5.7‰ and +11.2‰, whereas samples 
from Cerro Colorado were found to be isotopically lighter (−3.14‰ to +6.76‰) (Table  2). Published 
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Figure 3. (a) Spence drill-core from hole SPD3024 showing hematite-bearing leached cap rocks beneath gravel cover 
(wooden markers indicate down-hole depth in meters). In this upper section of the leached cap, weathering is pervasive 
and all primary sulfides have been replaced by Fe oxides. The host rocks in this core are fine-grained metasediments of 
the Cerritos Bayos Fm. Minor green oxide mineralization can be seen between 97.30 and 101.00 m. (b–d) Backscattered 
electron images of representative hematite textures from Spence drill hole SPD0402. (b) Characteristic spherulitic 
(botryoidal) hematite showing growth banding. (c) Pseudomorphic (boxwork) replacement of a primary sulfide crystal 
(probably pyrite based on its cubic habit) with botryoidal hematite. (d) An embayed pyrite crystal, collected from the 
base of the weathering profile, that has been only partially replaced by spherulitic hematite.
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hematite(goethite)-water fractionation factors at 25°C range from −8.96‰ (Zheng & Si-
mon,  1991; based on thermodynamic calculations) to 6.04‰ (Yapp,  1990; based on syn-
thesis experiments), which is important because the isotopic composition of the parental 
water is the predominant control on that of the precipitate (Miller et al., 2017; Sultan, 2015; 
Yapp, 1987). We apply the fractionation factor of Yapp (1990) as it is representative of sam-
ples from natural environments (Miller et al., 2017; Yapp, 2000), and yields calculated fluid 
compositions within previously published ranges for meteoric and groundwater document-
ed near Cerro Colorado (Aravena et al., 1999; Fritz et al., 1981) and Spence (Cameron & Ley-
bourne, 2005). We assume a temperature of 25°C when calculating parental fluid isotopic 
compositions based on groundwater temperatures of 20–29°C (BHP data) measured in drill 
holes around Spence and elsewhere in the Central Depression and Precordillera close to 
Cerro Colorado (Fritz et al., 1981; see Supporting Information).

5. Discussion: Geochronological and Geochemical Constraints on 
Weathering at Cerro Colorado and Spence
5.1. Landscape Evolution, Canyon Incision, and Water Table Movement at Cerro 
Colorado

The north side of Cerro Colorado is cut by the Quebrada de Parca, one of several endorheic 
drainages linking the Andean Precordillera with regional base level in the Central Depression 
(Figures 1b, 1c, and 2d). Cooper et al.’s (2016) hematite (U-Th-Sm)/He data appear to support 
a prolonged period of water table stability between ∼31 and ∼16 Ma, with water table descent 
<16 Ma linked to aridity-induced incision of the Quebrada de Parca. However, we suggest 
that at least some of the age-elevation trend observed by Cooper et al. (2016) is an artifact of 
sample locations and the slope of the water table, and present a reinterpretation of these data 
constrained by published paleo-climate and sedimentological records, and geomorphological 
relationships observed in satellite imagery, which imply later incision at ∼11 Ma.

Outcropping both north and south of the Quebrada de Parca are Miocene El Diablo For-
mation (EDF) gravels (Blanco et al., 2012), deposited by a large distributive fluvial system 
(García et al., 2011; Jordan et al., 2010, 2014). K-Ar ages of volcanic units within the up-
permost EDF sediments, including samples located ∼5 km downslope of Cerro Colorado, 
suggest that deposition ended between ∼11.9 and ∼11.2  Ma (Blanco et  al.,  2012; Farías 
et al., 2005; García et al., 2004, 2011), forming a regional aggradational paleo-surface (Even-
star et al., 2017, 2020). The Quebrada de Parca dissects a weakly developed drainage network 
on this surface, showing that canyon incision must post-date EDF deposition. This supports 
the view that the onset of modern hyperaridity, which created the conditions for both sur-
face abandonment and canyon incision, occurred between ∼12 and 10 Ma, in agreement 
with the onset of canyon incision elsewhere in the Precordillera at ∼10  Ma (e.g., García 
et al., 2011; Hoke et al., 2007; Schlunegger et al., 2006).

Proximal to Cerro Colorado, the surface of the EDF slopes westward 2.7–3.7°. Between 
the Precordillera and the Central Depression, the Quebrada de Parca drops from ∼4,000 to 
∼1,000 m a.s.l., and recent geophysical (TDEM) data from the lower reaches of the Precor-
dillera near to Cerro Colorado show the water table approximates a subdued version of the 
surface topography (Viguier et al., 2018). Based on geomorphic analysis of the channel pro-
file, Cooper et al. (2016) showed that canyon incision was driven by climatic factors and that 
post-incision tilting of this section of the Precordillera has been negligible since the middle 
Miocene. Therefore, we assume the modern surface and water table slopes are representa-
tive of those during development of the preserved weathering profile at Cerro Colorado. To 
account for the lateral separation of sampled drill holes (1.5 km in the direction of slope), we 
replotted the (U-Th-Sm)/He data in terms of elevation relative to a water table with a west-
ward slope of 2.7° (Figure 4g). By normalizing the data in this way, the previously apparent 
break in slope at ca. 16 Ma is no longer obvious.Ta
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Figure 4.
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We suggest that following the end of exhumation-driven relative water table descent, possibly by ∼30 Ma 
(which marks the beginning of prolonged hematite precipitation), and certainly by 19.25 Ma (minimum 
age constrained by the Tambillo ignimbrite; Bouzari & Clark, 2002), the water table at Cerro Colorado re-
mained relatively stable, until a reduction in MAR, from ∼130 to <20 mm, between 12 and 11 Ma (Jordan 
et al., 2014) ended deposition of EDF sediments and drove incision of the Quebrada de Parca and associated 
water table decay (Figure 5a). Our reassessment implies 300 m incision (the depth of the Quebrada de Parca 
proximal to Cerro Colorado) within ∼11 Myr; an overall incision rate of ∼27 m/Myr, in agreement with esti-
mates for other canyons in the Precordillera (Evenstar et al., 2020). However, the overall impact of incision 
on the elevation of the water table is of lower magnitude (∼85 m) as the water table was already situated at 
a depth of ∼150–200 m when incision began (Figure 5a).

5.2. Landscape Evolution and Water Table Movement at Spence

Most hematite ages above the ultimate redox front at Spence are younger than ∼10.5 Ma (Figure 4). The 
cluster of hematite ages starting at this time across a range of depths likely reflects pervasive weathering 
following relative water table descent. We attribute two older ages from beneath the ultimate redox front 
in the North Zone (14.7 and 12.4 Ma; Figure 4a) to incipient oxidation along high-permeability pathways, 
such as faults and fractures, which allowed oxygenated water to penetrate beneath the paleo-water table 
(Lichtner & Biino, 1992). Similarly, two middle Miocene-aged samples from the South Zone (Figure 4c) are 
interpreted as hematite that formed along high-permeability pathways prior to water table descent.

In the absence of canyon incision, we suggest that weathering front propagation at Spence was controlled 
by exhumation-driven relative water table descent. The position of the ultimate redox front was attained 
when exhumation ceased, and the estimated rates of relative water table descent (23.9 ± 19.7 m/Myr in 
the north and 17.6 ± 9.2 m/Myr in the south) approximate rates of exhumation prior to cover deposi-
tion. The apparent end of exhumation in the North Zone, constrained by a 9.50 ± 0.67 Ma (2σ) hematite 
at the ultimate redox front (Figure 4a), coincides with the age of a 9.47 ± 0.04 Ma ash layer within the 
overlying gravels (Figure 5b; Sun et al., 2018). Assuming steady-state erosion and water table descent, the 
switch from erosion to local cover deposition occurred in the late Miocene (Figure 5b), at least 10 Myr 
after Cerro Colorado and coeval with the onset of hyperaridity. Our observations at Spence bear some 
similarity to the thin cover of Arriero Gravels overlain by a 9.52 Ma tuff layer at the Mirador mine in the 
Centinela District, described by Riquelme et al.  (2018), although the supergene enrichment at Spence 
(∼44-20  Ma; Rowland & Clark,  2001) occurred earlier than in the Centinela District (∼25.2–12.6  Ma; 
Riquelme et al., 2018).

At Spence, the modern water table depth (86 m in the North Zone and 39 m in the South Zone) is not 
significantly different to the depth of the ultimate redox front below the erosional paleo-surface/base of 
the gravel cover (32 m in the North Zone and 48 m in the South Zone). Although increasing aridity was 
probably important in the switch from erosion to deposition (first of sheet flood sediments, followed by 
drier debris flows: Riquelme et al., 2007; Sun et al., 2018), and then to surface abandonment, prolonged 
hyperaridity has had little effect on the position of the water table, which did not get progressively 
deeper from the late Miocene onward (Figures 4a, 4c, and 5b). Similarly, the depth of the modern water 
table in the Central Depression west of Cerro Colorado is ∼50 m in some areas (Viguier et al., 2018). 
Although it is unclear when the water table at Spence attained its present position near the gravel-bed-
rock contact, this likely occurred during the Pliocene, based on the youngest clustered ages observed in 
both the North and South Zones.
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Figure 4. Spence and Cerro Colorado (U-Th-Sm)/He hematite data. (a–d) At Spence, most of the preserved hematite formed from the late Miocene (∼10.5 Ma) 
onward. (a and c) Age-elevation plots show that the modern water table, which approximates the position of the gravel-bedrock contact, is elevated relative to 
the ultimate redox front. Rates of relative water table descent are similar in the North and South zones. Red arrows indicate the intercept of each trendline with 
the gravel-bedrock contact, showing the expected onset of weathering in the uppermost part of the preserved profile assuming steady state water table descent. 
(b and d) Kernel Density Estimator (KDE) plots show the distribution of ages from each of the zones, clustered between the late Miocene and Pliocene. (e and 
f) Age-elevation and KDE plots of Cerro Colorado data from Cooper et al. (2016) distributed between ∼31 and ∼2 Ma. G: Cerro Colorado data replotted as 
elevation above a water table with an assumed westward slope of 2.7° (the minimum slope for the El Diablo Formation surface).
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5.3. The Relative Importance of Climate and Tectonics on Water Table Descent and Supergene 
Enrichment

As climate desiccation in the Atacama occurred on a regional scale, subjecting many PCDs to comparable 
environmental conditions, variations in water table depth, supergene enrichment, and weathering zone 
thickness between different deposits (5–50 m at Spence, 50–200 m at Cerro Colorado, 10–500 m at La Es-
condida) cannot be explained by spatially variable precipitation. Instead, this variation suggests differences 
in exhumation histories (Bissig & Riquelme, 2009), local lithological and tectonic controls on aquifer archi-
tecture (Jordan et al., 2014), medium to long-range groundwater recharge characteristics (Houston, 2002; 
Magaritz et al., 1990; Scheihing et al., 2017) and canyon incision may be important factors.

5.4. Oxygen Isotopes, Groundwater Sources, and the Susceptibility of Water Tables to Post-
Hyperaridity Descent

δ18OH(G) compositions have been shown to rapidly equilibrate with, and record, those of weathering fluids, 
according to the fractionation factor of Yapp (1990) (Miller et al., 2017; Yapp, 1990, 2000). Thus, our calcu-
lated groundwater isotopic values demonstrate the relative importance of meteoric versus formation water 
during PCD weathering and offer clues as to the relative susceptibility of different locations to water table 
decay in response to increased aridity.

Calculated fluid compositions for Cerro Colorado Fe-oxides (δ18O = (−3.14‰ to +6.76‰)) largely overlap 
the range of measured values for precipitation falling within the Quebrada de Parca catchment at or above 
the modern elevation of the deposit (Aravena et al. [1999] and Fritz et al. [1981] data; Figure 6). A meteoric 
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Sample name Mineralogy Hole ID/location Elevation (m a.s.l) Raw δ18O (‰) δ18O (‰) Fluid δ18O (‰)*

JSC17-025 Hematite SPD0402 (Spence south) 1,625 −17.11 8.62 2.58

JSC17-032 Hematite SPD0402 (Spence south) 1,612 −15.19 10.77 4.73

JSC17-032 Hematite SPD0402 (Spence south) 1,612 −14.84 10.89 4.85

JSC17-033 Hematite SPD0402 (Spence south) 1,612 −15.05 10.91 4.87

JSC17-035 Hematite SPD0402 (Spence south) 1,609 −15.16 10.79 4.75

JSC17-038 Hematite SPD0402 (Spence south) 1,603 −15.33 10.63 4.59

JSC17-038 Hematite SPD0402 (Spence south) 1,603 −14.56 11.17 5.13

JSC17-039 Hematite SPD0402 (Spence south) 1,603 −17.99 7.56 1.52

LiC17-013 Hematite SPD0402 (Spence south) 1,603 −15.66 10.31 4.27

LiC17-013 Hematite SPD0402 (Spence south) 1,603 −15.33 10.39 4.35

JSC17-068 Hem/Goe SPD0551 (Spence south) 1,620 −16.98 8.63 2.59

JSC17-069 Hematite SPD0551 (Spence south) 1,620 −17.49 8.08 2.04

JSC17-070 Hematite SPD0551 (Spence south) 1,620 −17.97 7.58 1.54

JSC17-072 Hem/Goe SPD0551 (Spence south) 1,612 −15.97 9.69 3.65

JSC17-184 Hematite SPD3024 (Spence north) 1,542 −19.79 5.67 −0.37

FC1649 Hematite DDH-05-21 (Cerro Colorado) 2,500 −24.31 0.90 −5.14

FC1644 Hem/Goe D-DDH-05-21 (Cerro Colorado) ∼2,500 – 1.54 −4.50

FC1653 Hem/Goe D-DDH-099-13 (Cerro Colorado) ∼2,500 – −3.14 −9.18

FC1654 Hem/Goe D-DDH-099-13 (Cerro Colorado) ∼2,500 – 6.76 0.72

FC1675 Hem/Goe DDH-14-041 (Cerro Colorado) ∼2,500 – 1.58 −4.46

FC1697 Hem/Goe D-DDH-11-076 (Cerro Colorado) ∼2,500 – −3.00 −9.04

Note. The “*” refers to calculated using the fractionation factor of Yapp (1990).

Table 2 
Hematite (Goethite) Oxygen Isotope Results and Corrected Fluid Values (Using the Fractionation Factor of Yapp [1990]; 1,000lnα = 1.63 × (106/T2) − 12.3), 
Where 1,000lnα Refers to the Fractionation Factor and T is Temperature in Kelvin
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signature is indicative of direct recharge (pre-hyperaridity) or short to medium-range (catchment-scale) in-
direct recharge (post-hyperaridity), recording groundwater flow through the shallow subsurface according 
to the Andean basin fill recharge model (Houston 2002; Figure 7). Prior to climate desiccation, groundwater 
at Cerro Colorado would have been replenished by more rainfall in the upper reaches of the Precordillera 
infiltrating down to the water table (Jordan et al., 2014; Rech et al., 2019), but the deposit has since been 
susceptible to water table decay due to decreased meteoric recharge in the Quebrada de Parca catchment, 
and aridity-induced canyon incision.

At Spence, isotopically light meteoric water, derived from precipitation between 2,500 and 3,000 m a.s.l., 
has been documented in the eastern area of the deposit, upslope of the ACL, whereas isotopically heavy, 
saline water has been documented west of the ACL (Figure 6c; Cameron & Leybourne, 2005). Our cal-
culated fluid isotopic values for Spence hematite(goethite) (δ18O = −0.37‰ to +5.13‰), from both sides 
of the ACL (Figure 6c) are much heavier than for Cerro Colorado (Table 2; Figure 6b). Although the ele-
vation-dependent trend of precipitation compositions in Figure 6b could be extrapolated to intercept the 
range of calculated parent fluid values for Spence hematite, most hematite at Spence formed after climate 
desiccation and beneath cover, making local precipitation an unlikely water source during weathering. Iso-
topically distinct groundwaters at Spence (Cameron & Leybourne, 2005) show that meteoric water that 
arrives via indirect recharge retains its light isotopic signature under hyperarid conditions. Therefore, iso-
topically heavy groundwater cannot be explained by evaporation or reactive flow of meteoric water through 
the shallow subsurface. Isotopically heavy groundwater is likely deep formation water, upwelling along 
weaknesses associated with the ACL (Cameron & Leybourne, 2005). We suggest that the maintenance of a 
shallow water table at Spence is due to long-range groundwater recharge of basal aquifers in the Pampa del 
Tamarugal, over long timescales (104–105 years; Jayne et al., 2016), by more consistent precipitation in the 
high Andes (>100 mm/year MAR above 4,000 m a.s.l.; Jordan et al., 2014). The heavy isotopic signature of 
hematite-forming water at Spence may be the result of prolonged reactive transport and mixing with hydro-
thermally circulating waters within the basement (Magaritz et al., 1990) prior to upwelling along the ACL 
in line with the Toth (1963) model of groundwater flow (Figure 7).

The destructive nature of both techniques precluded obtaining isotopic data for the same hematite frag-
ments that were dated. However, in many cases both measurements were made on hematite from the same 
veins/fractures and we therefore assume that our isotopic results reflect the composition of groundwater 
during weathering from the late Miocene onward. The isotopic composition of hematite-forming water at 
Spence shows deep formation water has contributed to recharge for ≥10 Myr, suggesting that the groundwa-
ter regime proposed by Cameron & Leybourne (2005) has been long-lived. We propose that the water table 
at Spence has remained shallow, despite climate desiccation, because of deep recharge fed by consistently 
higher MAR in the high Andes.

6. Conclusions
We use hematite (U-Th-Sm)/He geochronology and oxygen isotope analysis to compare the timing of 
weathering and sources of groundwater at two Andean PCDs in different morphotectonic settings—Cerro 
Colorado, within the Precordillera, and Spence, within the Central Depression. By combining our data with 
field observations and published sedimentological and geochronological constraints, we draw the following 
conclusions:

1.  At Cerro Colorado, the dissection of an older drainage network on the surface of the El Diablo For-
mation, combined with published sedimentological and geochronological evidence (dated ash layers 
within the El Diablo Formation local to the deposit), suggest that incision of the Quebrada de Parca 
began at ∼11 Ma (rather than ∼16 Ma as previously suggested), implying 300 m of incision since the 
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Figure 5. Models for water table movement and supergene enrichment at Cerro Colorado and Spence. (a) At Cerro Colorado, exhumation-driven water table 
descent was likely important before ∼31 Ma, after which the water table remained stable for a prolonged period. At ∼11 Ma, canyon incision initiated, resulting 
in a deep modern water table. (b) At Spence, preserved hematite formed later than at Cerro Colorado and the oldest dated cover is a 9.47 Ma ignimbrite (Sun 
et al., 2018). Exhumation-driven water table descent was important until the late Miocene. The modern water table is elevated relative to the ultimate redox 
front, approximating the gravel-bedrock contact.
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late Miocene. River base level in the Quebrada de Parca continues to control the position of the modern 
water table today.

2.  Published ages constraining cover deposition suggest exhumation-driven water table descent ceased be-
tween ∼31 and 19.25 Ma at Cerro Colorado and by 9.47 Ma at Spence, a difference of at least 10 million 
years. At Spence, the younging-with-depth relationship in the (U-Th-Sm)/He data above the ultimate 
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Figure 6. (a) Elevation map of northern Chile showing river catchment boundaries along the Precordillera and rainfall sampling locations from 
Aravena et al. (1999) and Fritz et al. (1981). Locations of isotopic and sedimentological hyperaridity indicators are from Hartley and May (1998) and Rech 
et al. (2010, 2019) (Section 2.2). Lines A-A′ and B-B′ are centerlines of the topographic and precipitation swath profiles in Figure 7. (b) Elevation-dependent 
isotopic composition of rainfall in the Atacama Desert based on data from sampling stations in A, with corrected fluid isotopic values for hematite from Cerro 
Colorado and Spence. (c) Distribution of groundwater types at Spence (after Cameron & Leybourne, 2005). Red circles show the locations of drill holes sampled 
at Spence for oxygen isotope analysis in this study.

Figure 7. Topographic (SRTM DEM data) and precipitation (TRMM rainfall data; Bookhagen & Strecker, 2012) swath profiles for Cerro Colorado and Spence 
(accounting for data 20 km either side of lines A-A′ and B-B′ in Figure 6a). Arrows schematically show indirect recharge pathways. The Houston (2002) basin 
fill recharge model accounts for water table decay at Cerro Colorado in response to increased aridity and incision of the Quebrada de Parca. At Spence, the 
water table has remained shallow as the ACL has provided a pathway for upwelling formation water, originating as precipitation in the high Andes and moving 
through the basement according to the recharge and hydrothermal mixing model of Magaritz et al. (1990).
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redox front suggests that exhumation-related water table descent, at a rate of ∼20 m/Myr, was active 
prior to gravel deposition. The similarity in age of a ∼9.47 Ma ash layer within the overlying gravels to 
a ∼9.50 Ma hematite fragment precipitated at the ultimate redox front suggests an abrupt switch from 
exhumation to deposition around this time.

3.  Supergene alunite ages suggest enrichment ended by ∼14.6 Ma at Cerro Colorado (Bouzari & Clark,   
2002) and ∼21 Ma at Spence (Rowland & Clark, 2001), whereas hematite precipitation at both depos-
its persisted into the Pleistocene. Post-hyperaridity hematite precipitation suggests weathering profiles 
continue to develop after the end of supergene enrichment—therefore hematite ages are not necessarily 
indicative of periods of enrichment.

4.  Fluid isotopic compositions show deep formation water was present during hematite precipitation at 
Spence. Long-range groundwater recharge and the low-relief setting of Spence maintained a relatively 
shallow water table despite hyperaridity. Conversely, Cerro Colorado has been more susceptible to water 
table decay linked to aridity-induced canyon incision in the Precordillera. These results are consistent 
with models of groundwater recharge in the Atacama, within different morphotectonic settings (Hou-
ston 2002; Magaritz et al. 1990).

Both Spence and Cerro Colorado are enriched, yet there has been no canyon incision local to Spence, and 
incision of the Quebrada de Parca at Cerro Colorado began ∼3.5 Myr after the apparent end of supergene 
enrichment. We suggest that exhumation-driven relative water table descent, rather than incision-driven 
water table decay, has been more important for the propagation of weathering fronts during supergene 
enrichment of both PCDs. Therefore, deeply exhumed areas (tectonic control) are more likely to host su-
pergene enrichment than incised areas (climatic and/or tectonic control), unless incision occurred while 
conditions were conducive to copper leaching (prior to climate desiccation). The greater importance of 
exhumation, compared to canyon incision, is also demonstrated by the potential magnitude of each process. 
The cumulative thickness of rock which can be exposed above the water table through exhumation is on 
the order of kilometers (bringing PCDs from their depth of emplacement to the surface), whereas canyon 
incision can only exert a second-order control on the water table, over a smaller depth range. It appears that 
climate variability alone is insufficient to produce relative water table descent over the depth range recorded 
by weathering profiles in the Atacama.

Data Availability Statement
Data reported in this paper can be accessed at the BGS NGDC repository. Data reported in Cooper et al.   
(2016) can be accessed at the GSA repository: https://gsapubs.figshare.com/articles/journal_contribution/
Supplemental_material_Aridity-induced_Miocene_canyon_incision_in_the_Central_Andes/12533894.
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