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The impact of human mobility 
data scales and processing 
on movement predictability
Kamil Smolak1*, Katarzyna Siła‑Nowicka1,2,3, Jean‑Charles Delvenne4, Michał Wierzbiński5 & 
Witold Rohm1

Predictability of human movement is a theoretical upper bound for the accuracy of movement 
prediction models, which serves as a reference value showing how regular a dataset is and to what 
extent mobility can be predicted. Over the years, the predictability of various human mobility 
datasets was found to vary when estimated for differently processed datasets. Although attempts 
at the explanation of this variability have been made, the extent of these experiments was limited. 
In this study, we use high‑precision movement trajectories of individuals to analyse how the way 
we represent the movement impacts its predictability and thus, the outcomes of analyses made on 
these data. We adopt a number of methods used in the last 11 years of research on human mobility 
and apply them to a wide range of spatio‑temporal data scales, thoroughly analysing changes in 
predictability and produced data. We find that spatio‑temporal resolution and data processing 
methods have a large impact on the predictability as well as geometrical and numerical properties of 
human mobility data, and we present their nonlinear dependencies.

The proliferation of mobile devices has a significant impact on studying human mobility in areas such as disease 
spread  modelling1, utility  management2, and urban  planning3. The majority of these applications is based on 
the regularity and predictability of the movement of  individuals4, helping to understand the human behaviour 
underlying mobility. This raised questions of how predictable individual movement trajectories are and what 
impacts their predictability.

In 2010, Song et al.5 adopted an entropy measure to quantify the predictability of individual mobility using a 
mobile phone location dataset collected from 45,000 users. Their locations were assigned to a currently connected 
cell tower and grouped into 1-h time intervals (called time-bins), creating individual movement trajectories. 
Each of them consisted of a sequence of symbols where each symbol corresponded to the tower. The proposed 
method calculates the entropy using a Lempel-Ziv data compression  algorithm6 which enables measuring the 
probability of finding a particular time-ordered subsequence in the trajectory. Then, the predictability measure 
is derived from the calculated entropy by solving a limiting case of Fano’s inequality (originally related to the 
information decrease in the message obtained over a noisy channel)7. Their work reported the upper bound of 
human mobility predictability to be �max = 93%.

This aforementioned work was followed by numerous studies investigating the predictability of human mobil-
ity which used data gathered from different populations and at various spatio-temporal scales (but not limited 
to human mobility only, as other types of sequences, such as vehicle movement and radio spectrum state, were 
 evaluated8–10). These studies derived different upper bounds of predictability ranging from 43% up to 95%11. Lu 
et al.4,12 applied a predictability estimation algorithm to two different mobile phone datasets. In the first study, 
the data were spatially assigned to cell towers, thus had a similar spatial resolution to the data used in the work 
of Song et al., but they had a low (daily) temporal resolution, which resulted in a different �max = 85% . In the 
second work, the movement of individuals was recorded at a low spatial resolution of a few square kilometres 
on average, which yielded yet another result of �max = 88% . The impact of the spatio-temporal resolution of the 
movement trajectories was noted in later works using high-precision data gathered through Global Navigation 
Satellite Systems (GNSS)  loggers11,13–17. A decrease in spatial resolution caused an increase in predictability, hence 

OPEN

1Institute of Geodesy and Geoinformatics, Wrocław University of Environmental of Life Sciences, Wrocław, 
Poland. 2Urban Big Data Centre, University of Glasgow, Glasgow, UK. 3School of Environment, The University 
of Auckland, Auckland, New Zealand. 4 Institute of Communication Technologies, Electronics, and Applied 
Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium. 5Spyrosoft S.A., Kraków, 
Poland. *email: kamil.smolak@upwr.edu.pl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-94102-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15177  | https://doi.org/10.1038/s41598-021-94102-x

www.nature.com/scientificreports/

precise GNSS data were less predictable in their raw form. On the other hand, when the temporal resolution of 
the data decreased, the predictability was also falling.

The key part of all predictability studies, also important for human mobility data mining, is converting the 
original data source into a sequence of visited locations. Multiple  studies14–16 demonstrated that not only the 
spatio-temporal resolution of the data but also the trajectory processing method significantly affects the entropy 
and predictability of the data. An original approach from the work of Song et al.5 was to determine a person’s 
location at regular time intervals �t (we refer to it as the next time-bin approach). Ikanovic and  Mollgaard15, and 
Cuttone et al.16 simultaneously noticed that this method creates many self-transitions, that is cases when a person 
stays in the same location in the next time-bin. Because predictability is measured as the number of correctly 
predicted symbols, the high number of self-transitions artificially enhances its value as it is easy to predict them. 
Moreover, movement trajectories have data gaps (i.e. data are missing because the device stopped working or the 
position was recorded with a high error and had to be  removed18), thus this method tends to create empty time-
bins. These missing data decrease predictability estimation. To address it, Ikanovic and  Mollgaard15, and Cuttone 
et al.16 have proposed an alternative approach, referred to as the next place sequence, where all self-transitions 
are eliminated, also removing the temporal dimension from the sequences. For the same sequence processed 
with the next place approach the predictability was lower (dropping from �max = 95% to around �max = 70%).

High-precision location data require the application of spatio-temporal aggregation methods to assign spa-
tially close (lying within a predefined range) data points to a single location, called stay-region. In human mobility 
studies, this is a commonly applied data processing step that is designed to group data points into meaningful 
locations which form a  sequence19,20. In the mobile phone data, this issue is usually omitted as mobile phone 
locations are recorded as cell tower locations. The movement is recorded as a sequence of towers’ identifiers, and 
the area tessellation is based on the Voronoi  diagram5. In the majority of works on human mobility predictability, 
for the next time-bin approach, space was divided into cells of a uniform  grid14–17. Each data record was assigned 
to the cell of the grid within which it lied and was represented by a unique cell identifier. Then, the data were 
temporally aggregated by selecting a location within which a person spent most of the time during the current 
time interval. Different sizes of cells were used to assess the impact of data resolution on predictability. Another 
method of spatial aggregation was used for the next place  sequences15,16, where points were aggregated in a two-
step clustering process. First, data were filtered to remove noisy data points and then the remaining locations 
were grouped into clusters based on spatial and/or temporal conditions, ensuring their similarity, thus describing 
the same location. Data filtering is motivated by removing meaningless data points such as travels and stops in 
traffic jams to focus only on the intentionally visited places. Temporal aggregation does not apply to this case.

Movement trajectories processing methods have been found to introduce variations into the movement 
 sequences11,15,16,21, which means that the observed mobility depends on the method used to process the data. 
Therefore, not only entropy is affected but other statistical measures of mobility are also modified. This effect is 
not limited to predictability studies as processing movement trajectories into sequences is a widely used approach 
in mobility data  mining20, hence it spreads on a large portion of mobility studies. The variability of mobility meas-
ures is related to the problem of statistical bias arising from the spatial aggregation of point-based measures and 
was identified almost 90 years  ago22 and is known as a modifiable areal unit problem (MAUP). The same statisti-
cal bias being a result of a modification of the temporal dimension, conceptualised later by Çöltekin et al.23 was 
named modifiable temporal unit problem (MTUP). The recent research by Alessandretti, Aslak and  Lehmann24 
investigates the issue of spatio-temporal scales at which we quantify individual movement trajectories. A large 
portion of the literature, majorly originating from a physics-based point of view on empirical analyses of human 
mobility, describes human movement trajectories as scale-free25–27. However, this recent study shows that human 
mobility is characterised by nested containers at different spatial levels. These containers are corresponding to the 
spatial scales of human mobility at which we can quantify the movement. The impact of temporal data resolution 
has also been investigated in mobility  studies28, which resulted in finding its strong impact on commonly used 
mobility indicators, such as the number of daily trips. However, such analyses have not yet been done in human 
predictability studies. The same individual movement trajectories observed at different scales and sampled at 
diverse temporal intervals are described by various sequences and hence, yield different values of predictability.

Until now, high-resolution GNSS data were used to investigate the relationship between data resolution and 
predictability. However, in these cases, the impact of this relationship was shown only for the next time-bin 
approach using grid-based aggregation and at a limited set of scales, from a hundred to a few hundred metres 
spatially and from 5 min up to 2 h temporally. We fill this gap by thoroughly studying the effect of spatio-temporal 
aggregation methods for the next time-bin and the next place approaches across a range of scales, spanning 
from fine spatio-temporal resolutions of ten metres and 5 min up to the data maximum extent. In addition to 
the grid-based aggregation, we also verify the impact of clustering on the created sequences. For clustering, we 
use the density-based spatial clustering of applications with noise (DBSCAN) which was predominantly used in 
predictability studies to create the next place  sequences15,16. In contrast to the grid-based approach, clustering 
parameters cannot be directly related to the spatio-temporal magnitude of aggregation, impeding the selection 
of their correct values. Moreover, as the methodology proposed by Song et al.5 was extensively followed by the 
human mobility research community, researchers found entropy estimates from missing data, calculated using 
the original method (denoted here as Ĥshuff  ), being inaccurate and proposed two alternative methods. We evalu-
ate these methods at the mentioned levels of temporal resolution.

Results
Human mobility dataset. To ensure a precise depiction of human mobility at all spatial and temporal 
scales, we use high-resolution individual movement trajectories collected from mobile devices of people living 
in London, UK. The data were harvested through smartphone applications, where the location of devices was 
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determined using GNSS receivers installed in mobile phones. Following the methodology of Song et al.5 we 
select trajectories using a fraction of missing records in hour-long intervals q and a trajectory length d, expressed 
in days, as filtration criteria. However, in comparison to this work, we decided to use more strict criteria to mini-
mise the impact of missing data and short movement trajectories on results. We consider only the trajectories 
with q ≤ 0.15 and d ≥ 28 consecutive days. From the initial dataset consisting of nearly five million devices, 
after the filtration, from trajectories fulfilling the above criteria, we randomly select 500 people. As a result, the 
median fraction of missing records in the dataset is q = 0.04 and the length of movement trajectories vary from 
28 to 31 days. The selected dataset consists of almost five million data points.

We start with data processing for which details can be found in the Methods section. Due to the high temporal 
resolution of the data, movement trajectories have to be filtered, as a large portion of data points was recorded 
during travels between locations which from the perspective of mobility prediction are unimportant. Some stops, 
such as those caused by traffic jams, are also meaningless for mobility prediction and should be discarded during 
the process. For that, we apply a commonly used approach for stationary points (stay-points) detection which also 
accounts for GNSS positioning  error19. This creates sequences of detected stationary points which will be later 
aggregated into the sequences of stay-regions. Although this step was not applied before the grid-based clustering 
in existing predictability studies, we argue that it should be done in all cases due to the reasons mentioned above.

Entropy estimation from missing data. The next time-bin approach forces sequences to be indexed by 
temporally ordered time intervals �t which in turn may create situations where time-bins are empty. For exam-
ple, if �t = 1 h and an individual does not record any positions for one whole hour, the resulting sequence will 
be empty at this specific interval. Record completeness is measured by the fraction of empty records q, originally 
expressed for �t = 1 h . Here, we measure the mean q for every calculated sequence for a wide range of �t from 
5 min up to 12 days. For higher values of �t , the value of q is lower. For resolutions lower than 1 h, no empty 
records are present in the next time-bin sequences. Results are presented in Table 1.

Three different approaches to entropy estimation from missing data were presented across the literature. These 
include the initial  work5, and the two following  studies15,17. We denote those methods as Ĥshuff  , Ĥ�e , Ĥunc , respec-
tively. To verify their accuracy, for each method we calculate the average error of entropy estimation and present 
them in Table 1. For the experiment, we use 100 complete movement sequences for which we calculate the real 
entropy serving as a reference value. Although, it was concluded that for the sequences with q < 0.25 estimated 
actual entropy can be considered equal to the real  entropy17, we select an even more strict threshold selecting 
users with q < 0.15 for the entropy estimation methods evaluation. After that, we gradually remove records to 
simulate missing data up to the level of q ≤ 0.6 , estimate actual entropy and compare it with a reference value to 
assess the methods. Details of these methods and our experiment design can be found in the Methods section.

The best performing method is Ĥ�e with the lowest error across various �t . Interestingly, the error of Ĥ�e 
is growing with �t which is not observable in the remaining methods. The original method Ĥshuff  returns rela-
tively high errors, while Ĥunc is performing slightly better. As all of these methods are based on an estimation of 
functional dependency between entropy calculated on complete and incomplete data, we study the type of this 
relationship. We assume that function fits well to the estimated ratio when the coefficient of determination R2 > 
0.9. We find that relationship in Ĥ�e and Ĥunc can always be estimated by an offset exponential function, while 
in the case of Ĥshuff  it is not always the case as some relationships are linear. Moreover, the number of users with 
linear relationships between estimated entropies increases together with �t.

Full‑scale predictability estimation. We now focus on the predictability of individual mobility sequences 
obtained via different methods at various spatio-temporal scales. We separately evaluate the impact of spatial 
and temporal resolutions on the three types of predictability.

Impact of spatial aggregation on predictability estimation. Figure 1 presents the change of actual predictability 
( �max ), uncorrelated predictability ( �unc ), and random predictability ( �rand ) (see Methods for details on these 
measures), with parameters used for spatial data aggregation. �max for the next time-bin approach is high across 
the whole range, starting from 87.6% for grid-based approach and 94.8% for DBSCAN at a high spatial granu-
larity of the data and reaching up to 99.8% and 99.9%, respectively. For the whole range of spatial parameters, 
the data processed with DBSCAN are more predictable. The spread of predictability among users is relatively 

Table 1.  Comparison of average actual entropy estimation errors from incomplete mobility sequences for 
q ≤ 0.60 using three approaches Ĥshuff  , Ĥ�e , Ĥunc . Estimations are compared to the real entropy H calculated 
on complete movement sequences and at different levels of temporal aggregation �t . q is an average fraction of 
missing data in movement trajectories used in the experiment. A 95% confidence interval across the sequences 
is presented next to the average values of measures.

�t q (%) Ĥshuff /H (%) Ĥ�e/H (%)
Ĥunc/H 
(%)

5 min 5.2± 0.2 50.6± 4.8 3.0± 0.6 43.2± 2.1

10 min 4.2± 0.2 40.2± 4.4 3.5± 0.9 23.9± 1.5

30 min 2.0± 0.1 26.5± 1.7 4.5± 1.4 19.6± 1.3

1 h 0.7± 0.6 25.0± 1.8 5.7± 1.9 19.4± 1.3
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high (14.5% for DBSCAN and 17.6% for grid-based approach, measured by the interquartile range (IQR)) and 
drops with the increase in data spatial aggregation. The dependence of �max on spatial parameters in the next 
time-bin approach follows an exponential function with R2 > 0.88 . In the case of the next place sequences, the 
values of �max are much lower and start from 46.7% for DBSCAN and 36.3% for the grid-based approach. Then 
predictability slowly grows reaching over 70% in both methods when the aggregation parameter is around 103 
metres. Up to this point, clustered sequences are more predictable than the data processed with the grid-based 
approach. Over that level the �max in the grid-based aggregation still grows, reaching 79.5% for the maximum 
aggregation level, while in the clustering-based method the predictability first drops to reach maximum value 
for the higher aggregation levels. These fluctuations are caused by the length of the sequences. Clusters created 
by the DBSCAN method are larger (see Fig. 3(a)), which in the case of the next place approach makes sequences 
very short. For example, when an aggregation level is high, all the stationary points are assigned to a single stay-
region. This in turn results in sequences consisting of the same symbol, repeated multiple times, which are then 
truncated to the length of one to remove all redundant symbols. By definition, such a sequence is completely 
predictable. In another case, when two stay-regions are detected, sequence predictability is 50% because a user 
can be found in one of these positions with an equal probability. The spread of �max is lower in the case of the 
next place sequences (14.4% for DBSCAN and 11.5% for grid-based approach, measured by IQR).

Values of �unc are also higher for the next time-bin sequences and similarly to �max , the sequences processed 
with DBSCAN are more predictable. Interestingly, �unc for the next place sequences is close to �max for the low 
magnitude of spatial aggregation. Values of �unc are following an exponential function with R2 > 0.89 . �rand , 
which is based on the number of unique locations present in the sequence, is similar for the next time-bin and 
the next place sequences and is lower for the DBSCAN algorithm. Values of �rand are following an exponential 
function with R2 > 0.91.

Impact of temporal aggregation on predictability estimation. The next time-bin sequences can also be analysed 
for variations at different temporal resolutions �t . We find the relationship between the estimated predictability 
values and �t being irregular. Values of �max are decreasing with increasing �t up to a resolution of one day for 
DBSCAN and six days for grid-based aggregation. After, they rise to 99.9% when trajectories consist of the same 
symbol, repeated multiple times, which is the most often visited location. Interestingly, the spread of all actual 
predictability values is increasing with �t . Similarly to �max , values of �unc also fall along with �t rise but this 
decrease is lower than in the case of �max . �rand shows reversed dependency growing with �t increase.

Sequences properties and their relationship with predictability. Variations in predictability meas-
ures stem directly from changes in sequences of symbols introduced by different processing algorithms. To take 
a deeper insight into the impact of processing methods on the sequences themselves, we analyse them studying 
solely their geometrical and numerical properties.

Geometrical properties of sequences. First, we look into the differences in stay-regions created through the grid-
based and clustering spatial aggregation algorithms. As seen in Fig. 3(a), the size of stay-regions varies for the 
same values of controlling parameters (grid resolution and ǫ values) in the aggregation methods, thus they have 
a different sensitivity for their parameters. Clusters detected by the DBSCAN algorithm are usually spatially 

Figure 1.  An impact of parameters (grid resolution and ǫ parameter of the DBSCAN algorithm) controlling 
the spatial resolution of aggregated data on three types of predictability (actual (a, d), uncorrelated (b, e) and 
random (c, f)) for two types of mobility sequences and data aggregation methods (in rows: GRID (a–c) and 
DBSCAN (d–f)). The lines represent the median value and the shaded area indicate the interquartile range of 
predictability measures calculated for all the users in the dataset.
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larger than data points groups aggregated in grid cells. However, the increase in an area of clusters created by 
the DBSCAN algorithm is lower for the lowest aggregation levels, which indicates the robustness of the cluster-
ing method in a stay-regions detection. The rapid growth of stay-regions areas, which occurs for parameters 
larger than few hundreds of metres, suggests that at this point stay-regions are merging, lowering the number of 
unique symbols in the sequences and thus, increasing the predictability. The data aggregation of the grid-based 
algorithm does not scale linearly with the increasing cell size.

Although studies suggest eliminating single-point stay-regions (stay-regions consisting of an only one stop) 
arguing their meaninglessness, we decide to analyse the fraction of such stay-regions in the overall number of 
detected stay-regions. Such locations are impossible to predict using conventional methods as they appear only 
once in the sequence. Although a person can visit a location only once over the course of a few days, Fig. 3(b) 

Figure 2.  An impact of temporal resolution of data on the three types of predictability (actual (a), uncorrelated 
(b), and random (c) in the next time-bin sequences). The lines represent the median value and the shaded area 
indicate the interquartile range of predictability measures calculated for all the users in the dataset.

Figure 3.  A dependence between the spatial aggregation method and the stay-regions area (a) and the 
fraction of single-point stay-regions (b). The lines represent the median value and the shaded area indicate the 
interquartile range of the measure calculated for all the stay-regions in the dataset. Spatial parameter relates to 
the variable controlling the magnitude of spatial aggregation in the grid-based approach (grid resolution) and 
the DBSCAN ( ǫ parameter) method.

Figure 4.  An impact of parameters controlling the spatial resolution of aggregated data on three types of 
quantitative properties of mobility sequences (number of stay-regions (a), number of records (b), and number 
of self-transitions (c)). The lines represent the median value and the shaded area indicate the interquartile range 
of the measure calculated for all the users in the dataset. Spatial parameter relates to the variable controlling the 
magnitude of spatial aggregation in the grid-based approach (grid resolution) and the DBSCAN ( ǫ parameter) 
method.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15177  | https://doi.org/10.1038/s41598-021-94102-x

www.nature.com/scientificreports/

suggest that a grid-based algorithm tends to artificially separate stops from stay-regions resulting in a higher 
number of single-point stay-regions.

Numerical properties of sequences. Impacts of the spatio-temporal granularity of the data on the quantitative 
properties of individual movement sequences are presented in Figs. 4 and 5. An increase in both, spatial and 
temporal aggregation, decrease the number of stay-regions present in sequences but for �t we find the number 
of stay-regions being stable up to 1-h resolution. In general, the number of detected stay-regions is higher for the 
next place sequences than for the next time-bin sequences. This effect is caused by the presence of short visits. 
The median time elapsed between starts of users’ visits in two distinct stay-regions is 167 min, while over 27% of 
stay-regions are visited for a period not exceeding 60 min. Therefore, in the next-time bin sequences, for higher 
levels of temporal aggregation, locations visited in a short time span are removed leaving only the one where a 
person stayed for the longest period, while in the next place sequences all these locations will be present. This 
effect aligns with the lower �max of the next time-bin sequences as the higher number of stay-regions decreases 
their predictability because each stay-region is a unique symbol in the sequence.

Spatial aggregation methods, in general, do not affect the number of records and self-transitions in the 
next-time bin sequences. Their quantity is imposed only by their �t which present a logarithmic relationship 
( R2 > 0.99 ). We find that the next time-bin sequences predictability is mainly affected by the number of self-
transitions and that this number scales linearly with the sequence length. This effect is however stronger for 
sequences created with a clustering algorithm, especially for highly aggregated data where the linear relationship 
between the number of records and self-transitions in data aggregated into the grid is disturbed. In the case 
of the next place sequences, decreasing spatial resolution reduces the total number of records as stay-regions 
become larger and are eliminated. The effect of low records count is observable as the rapid changes of the next 
place sequences predictability (see Fig. 1).

Discussion
We have adopted a wide variety of methods used in the last 11 years of research on human mobility predictability 
and applied them to a dataset of a high spatio-temporal resolution and completeness to understand how the 
data and used processing methods impact movement predictability. We confirm findings from previous works, 
finding entropy and predictability of movement sequences varying for different levels of spatio-temporal data 
resolution and processing techniques. In comparison to these works, we significantly extend the range of analy-
sis, studying the impact of multiple spatial scales and a wide range of temporal resolutions, and transforming 
movement trajectories into two distinct types of movement sequences aggregated spatially with grid-based and 
clustering approaches. This enables us to fully estimate the relationship between predictability measures and 
processed sequences (see Figs. 1, 2).

We found that �max of the next time-bin sequences correlate negatively with a spatial resolution which 
aligns with findings from previous  works11,13–17. We determined that this relationship is non-linear and close to 
exponential. On the other hand, an increase in �max observed in the data of high temporal resolution, which 
was identified in the literature, in our study was found to be limited to a certain level (in our case 1 and 6 days) 
where this dependency vanishes due to sequence shortening.

We have also studied the next place sequences which were previously proposed by Ikanovic and Mollgaard 
and Cuttone et al.15,16 but were not analysed for their predictability at various scales. We found the next place 
sequences being much less predictable than the next time-bin sequences, which also was identified in the afore-
mentioned works, but only for a single algorithm setting. Interestingly, their �max grow slowly with a resolution 
decrease and at low temporal resolution rapidly changes due to the limited number of symbols in sequences. It is 
important to note that the Lempel-Ziv estimator converges to the actual entropy when the length of a sequence 
approaches infinity, hence, as noted by Teixeira et al.14, estimates for short next place sequences as well as low 
temporal resolutions are subject to error and should not be considered precise. This also explains why �unc for 
highly spatially aggregated data is higher than �max.

The difference between the next time-bin and the next place sequences is in removing self-transitions from 
the latter. This procedure alters the predictability measure, which, instead of measuring the number of cor-
rectly predicted symbols in the whole sequence, is approximately measuring the number of correctly predicted 

Figure 5.  An impact of temporal resolution of data on three types of quantitative properties of the next time-
bin sequences (number of stay-regions (a), number of records (b), and number of self-transitions (c)). The lines 
represent the median value and the shaded area indicate the interquartile range of the measure calculated for all 
the users in the dataset.
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transitions between locations, which from the perspective of mobility prediction are the most important. As 
previously  noted11,14,16, a large number of self-transitions rapidly increases predictability as even a naive algorithm 
guessing that a person always stays in a previous location is achieving high prediction accuracy. Therefore, an 
increase in predictability for higher temporal resolutions is a result of a logarithmical growth in the number of 
self-transitions (see Fig. 5(c)). Spatial aggregation, however, in general, does not influence the number of self-
transitions (see Fig. 4(c)), hence the increase in predictability together with the decrease of the spatial resolution 
of both types of sequences is most likely stemming from the lower number of extracted stay-regions. A decrease 
in the number of stay-regions can be linked to the number of containers, described in the recent work of Ales-
sandretti, Aslak and  Lehmann24, at different spatial scales within which data points can be grouped. Logically, 
it is easier to predict the location of an individual at the level of a country rather than at the level of buildings.

Previous works on human mobility predictability presented different ways to determine important locations 
from mobility data, which can generally be divided into the grid-based aggregation and clustering. Up till now, 
the impact of spatial data aggregation was evaluated using a grid of varying cell size. We presented and stud-
ied a commonly used representative of clustering methods, namely DBSCAN, and compared it to the results 
obtained via grid aggregation. We found data processed with DBSCAN to be more predictable at all levels of 
aggregation. The reason for that is the grid-based aggregation introducing additional uncertainty into the data 
by detecting more single-point stay-regions than DBSCAN (see Fig. 3(b)). Stay-regions may have different sizes 
and are unevenly spread in space, therefore it is not possible to select a grid cell size that would correspond to all 
detected locations. It has been identified that grid aggregation can split neighbouring data  points29. DBSCAN 
tends to create larger clusters than the grid-based algorithm for the same values of a parameters controlling the 
magnitude of spatial aggregation. However, the DBSCAN ǫ parameter cannot be directly related to the spatio-
temporal magnitude of aggregation, as a spatio-temporal resolution of outcoming data depends also on the 
topology of data points.

We have also compared the entropy estimation methods for the next time-bin sequences with missing data. 
Among three proposed  methodologies5,15,17, the method denoted as Ĥ�e was performing best. However, it is 
important to note that this approach requires some representative trajectories in a studied dataset to have a 
low fraction of missing data ( q < 0.25 ) which significantly limits the applicability of this approach. Although, 
we were able to apply this method on our dataset, reported in the related literature values of completeness are 
q ∈ [0.7; 0.9] for mobile phone data and q ∈ [0.2; 0.9] for GNSS data. We found errors of Ĥshuff  and Ĥunc methods 
to be relatively high, especially for high temporal resolutions. A functional dependence between q and estimated 
entropy in the Ĥshuff  method varies between linear and exponential, while in the Ĥunc it is always exponential, 
making it easier to fit and extrapolate a function, which in turn results in overall higher accuracy. Because our 
dataset had a low fraction of missing data and all movement trajectories had q < 0.15 , we did not have to use 
any of the estimation methods, thus their errors did not influence obtained results.

Our study has limitations. First of all, although we used a sample of human mobility data of high spatio-tem-
poral granularity, the impact of data processing may be different for another area as mobility can be influenced 
by factors such as weather conditions and  climate30. Secondly, we did not fully study why the predictability of 
mobility sequences is altered at specific spatio-temporal scales. We found, for example, that not all increases in the 
predictability of the next time-bin sequences can be explained by the increase in the number of self-transitions. 
Therefore, there is a need for further in-depth investigation of properties of mobility sequences to explain what 
and how changes introduced into the mobility sequences influence their predictability. The ultimate goal of 
further research is not only to explain these dependencies but to indicate how mobility data should be processed 
to maximise retained information, avoid bias, and increase their utility.

In summary, to the best of our knowledge, this paper is the first to study the impact of spatio-temporal reso-
lution and data processing algorithms on the predictability and associated properties of movement trajectories 
to such an extent. We analysed how the measure of predictability change, reaching extremely high and low 
spatio-temporal scales and attempted to explain the functional dependence between these values. We applied 
approaches commonly used in the literature to process human mobility data, presenting their impact on the 
created movement sequences and discussing their advantages and disadvantages. This work is a step towards 
understanding how the processing of individual movement trajectories, which is directly related to the way of 
their representation, influences the obtained results.

Methods
Stationary points detection. To estimate the impact of the spatio-temporal resolution of data on pre-
dictability, the movement trajectories of individuals have to be processed. First, we apply a stationary points 
detection  algorithm31, which is common for all the evaluated processing methods. Let the movement trajec-
tory Pi = {p1, p2, . . . , pTi } be a sequence of Ti data points recorded by a GNSS device i representing the move-
ment of an individual. Each data point is a triplet (xTi , yTi , tTi ) , where xTi and yTi are coordinates recorded at 
time tTi . The method accepts distance δ and time τ thresholds as parameters. The goal is to extract a sequence 
of n stay-points Si = {s1, s2, . . . , sn} for each recorded movement trajectory. Each stay-point is is a quadruplet 
(xn, yn, startn, endn) , where xn and yn coordinates are a centre of a stay-point which was visited between startn 
and endn time. The algorithm scans through a movement trajectory Pi in a temporally ascending order, starting 
from the first point that is not yet assigned to any stay-point. Then, it iterates through the consecutive points, 
at each step calculating a distance between the current and the first point from which stay-point detection has 
started. If that distance is lower than δ , the current data point is accumulated to a single stay-point, together with 
all previous records. When the distance is larger than δ , the algorithm checks the time interval between the first 
and the last of data points assigned to the currently processed stay-point. If it is larger than τ , data points are 
selected as a stay-point, otherwise, all points are discarded. After that, the algorithm starts searching for the next 
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stay-point starting from the fist data point which failed to be within the δ threshold and the process repeats again. 
Following previous  works19, we set δ = 300 metres and τ = 10 min to detect stay-points in our dataset.

Stay‑regions detection. To study the impact of data resolution on predictability, we aggregate data spa-
tially and temporally. First, we execute the spatial aggregation where stay-points are aggregated from a sequence 
Si into sequence of stay-regions Xi = {x1, x2, . . . , xLi } , so each stay-region consist of spatially close stay-points. 
In practice, we create a dictionary where each stay-point is assigned to a stay-region and a stay-region can consist 
of multiple stay-points. We then use that dictionary to map a sequence Si into a sequence of stay-regions Xi . It is 
important to precede temporal aggregation with spatial aggregation, as the reversed process could result in data 
loss. For spatial aggregation, we use two commonly used methods, that is grid-based aggregation and clustering.

Grid-based aggregation. For the grid-based aggregation, we generate a regular grid of cells of size G, where G 
is the spacing between grid nodes. The grid covers the spatial extent of the stay-points and divides the area into 
regular grid cells. Stay-points lying within a cell are assigned to its centre. For G values we use a set of 30 values 
(to provide enough insight simultaneously limiting the computational time) spaced evenly on a log scale, start-
ing from 101 to 104.8 , where the maximum value corresponds approximately to a half of the dataset’s maximum 
spatial extent. We decided to use a log scale because we expect predictability to be more vulnerable to changes 
at high spatial resolutions.

DBSCAN. DBSCAN iterates through each stay-point and assigns it to a cluster (stay-region) if a distance from 
any stay-point in the cluster is smaller than the distance defined by the ǫ parameter. Therefore, to analyse how 
movement sequences change for varied levels of spatial aggregation, we vary the ǫ parameter, testing 30 values 
evenly spaced on a log scale, starting from 101 to 104.8 . The cluster has to consist of at least one point to be con-
sidered as meaningful.

Next time‑bin and next place sequences. We process movement trajectories from detected stay 
regions Xi into the next time-bin and next place sequences.

Next time-bin sequences. For the next time-bin sequences, Xi of each person is transformed into a vector of 
evenly spaced on a time scale time-bins, where each time-bin has size �t . For each time-bin, a current position 
is recorded as xn visited during this particular time-bin. In situations when in the same time-bin, more than 
one place was visited, the one where the person spent more time is selected. If locations have the same visiting 
time in the same time-bin, then the one which was more often visited is selected. If no location was visited dur-
ing the time-bin, a null value is assigned to the vector, creating missing data. In this study, to simulate various 
data temporal resolution, we select different �t values to create the next time-bin sequences. These values are 
5, 10, 15, 30, 45, 60 min and 1, 6, 12, 24, 48, 72, 144 h.

Next place sequences. The next place sequences are designed to represent transitions between locations only. 
They are created by removing all consecutively repeating stay-regions from Xi of each person.

Entropy and predictability measures. Following the previous  works5,12, we calculate the three types of 
entropy. The random entropy, Srandi = log2 Li , measures sequence uncertainty assuming that each location in a 
sequence is visited with the same frequency. Predictability calculated on Srandi  assumes that only the number of 
unique symbols in the sequence is known and represents sequence predictability which can be reached ran-
domly guessing symbols in the sequence. The uncorrelated entropy, Sunci = −

∑Li
k=1 pk log2 pk , assumes that 

visitation frequency for each stay-region is known and is denoted as pk . Predictability associated with this 
entropy corresponds to an accuracy which can be reached by drawing symbols from the known frequency dis-
tribution. The actual entropy, Si = −

∑
X
′
i⊂Xi

P(X ′
i) log2[P(X

′
i)] , where P(X ′

i) is the probability of finding a 
particular time-ordered subsequence X ′

i in the Xi sequence. Predictability associated with the actual entropy 
represents the theoretical upper bound of predictability of the sequence, capturing the full spatiotemporal order 
of data points in it. Because the direct computation of probability P(X ′

i ) is highly time-consuming, Song et al.5 
proposed to estimate the actual entropy using the Lempel-Ziv compression algorithm given as 
Sest = ( 1n

∑
j �j)

−1 log2 n , where �j denotes the length of the shortest substring starting at position j of the 
sequence, which does not appear from position 1 to j − 1 . Such estimated entropy converges to the actual 
entropy when n reaches infinity. Importantly, when a unique substring cannot be found, then �j = n− j + 2 for 
all remaining  positions32.

The upper l imit for the predictability can be calculated from the derived entro-
pi e s  by  s o lv i ng  Fan o’s  i n e qu a l i t y,  w h i ch  i s  �i ≤ �Fano

i (E, Li) .  �Fano
i  i s  g ive n  by 

E = −�Fano
i log2(�

Fano
i )− (1−�Fano

i ) log2(1−�Fano
i )+ (1−�Fano

i ) log2(Li − 1) . When we substitute E by 
Srandi  , Sunci  , or Sesti  we are able to calculate random, uncorrelated and actual predictability, respectively. It is impor-
tant to note that the logarithm base in Fano’s inequality has to be the same as the ones used to estimate  entropies32.

Estimating actual entropy from missing data. When the next time-bin sequences are created, some of 
the time-bins may be empty, which artificially increases the sequence’s  entropy5. The ratio of missing time-bins is 
denoted as q. We compare three distinct approaches for estimating actual entropy from sequences with missing 
data, which were proposed in the literature. For the experiment, we calculate a reference value of actual entropy 
H from 100 trajectories with q < 0.15 , which are considered to present true entropy. We artificially remove 
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portions of data from them to simulate various levels of q. Specifically, these are q = 0.15, 0.20, 0.25, . . . , 0.60 . 
Then for each level, we estimate the actual entropy using three different methods and calculate the error as Ĥ/H , 
where Ĥ is an estimated entropy and H is a true entropy calculated for the complete sequence.

Song et al.5 proposed an algorithm which we denote as Ĥshuff  . Given a sequence, the algorithm increases 
its q to q′ = q+�q , where �q = 0.00, 0.05, 0.10, . . . , 0.90− q and for each q′ calculates the order parameter 
σ(q′) = log2(S

est(q′/Sunc(q′)) , where Sest(q′) is estimated using the Lempel-Ziv algorithm and Sunc(q′) is deter-
mined using the Lempel-Ziv algorithm on the same sequence which is randomly shuffled. This enables calcula-
tion of a series of order parameters for different levels of q′ , which are then extrapolated to q′ = 0 , giving a σest 
at q = 0 . The entropy is calculated as Ĥshuff = 2σest Sunc(q) , where Sunc(q) is calculated using the Lempel-Ziv 
algorithm over the randomly shuffled input sequence.

Ikanovic et al.15 proposed a very similar algorithm, but instead of calculating Sunc(q′) with Lempel-Ziv algo-
rithm over the randomly shuffled sequence, they proposed to use equation for uncorrelated entropy, that is 
Sunc(q′) = −

∑Li
k=1 pk log2 pk , as a scaling feature. The rest of the algorithm remains identical. We denote this 

method by Ĥunc.
Another algorithm was proposed by Lin et al.17. Similarly to previously presented approaches, the q of the 

sequence is increased to q′ = q+�q . Then, for each q′ an error �e =
Ĥ(q′)−Ĥ(q)

Ĥ(q)
 is calculated, where Ĥ(q′) is an 

entropy calculated using the Lempel-Ziv algorithm for a sequence with q′ fraction of missing data. Calculated 
errors �e are used to estimate the average entropy estimation error for various levels of q′ . These estimations are 
then used to correct entropies estimated from sequences with larger q. We denote this method as Ĥ�e . It is 
important to note that movement trajectories used to estimate �e in our experiment are not used in the evalu-
ation, as this would artificially decrease an estimation error.

Ethics approval and consent to participate. We hereby confirm that ethics approval for data collec-
tion and research in this study was received from the Institute of Geodesy and Geoinformatics Human Mobility 
Ethics Committee. All participants of the study have been acknowledged with the data collection process and 
delivered informed consent to use data collected from them, confirming that they understand what kind of data 
will be collected from them and that they can withdraw from the study at any moment. We confirm that all the 
research methods were carried out in accordance with relevant guidelines and regulations.

 Data availability
The datasets of statistical measures calculated and analysed during the current study are available in the Zenodo 
repository, 10.5281/zenodo.4893432. The code produced during this study is a part of a HuMobi programming 
library and is available at the GitHub repository, https:// doi. org/ 10. 5281/ zenodo. 48933 69.
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