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Abstract

Background: Streptococcus agalactiae (Group B Streptococcus, (GBS)) is the leading cause of mastitis (inflammation
of the mammary gland) among dairy camels in Sub-Saharan Africa, with negative implications for milk production
and quality and animal welfare. Camel milk is often consumed raw and presence of GBS in milk may pose a public
health threat. Little is known about the population structure or virulence factors of camel GBS. We investigated the
molecular epidemiology of camel GBS and its implications for mastitis control and public health.

Results: Using whole genome sequencing, we analysed 65 camel milk GBS isolates from 19 herds in Isiolo, Kenya.
Six sequence types (STs) were identified, mostly belonging to previously described camel-specific STs. One isolate
belonged to ST1, a predominantly human-associated lineage, possibly as a result of interspecies transmission. Most
(54/65) isolates belonged to ST616, indicative of contagious transmission. Phylogenetic analysis of GBS core
genomes showed similar levels of heterogeneity within- and between herds, suggesting ongoing between-herd
transmission. The lactose operon, a marker of GBS adaptation to the mammary niche, was found in 75 % of the
isolates, and tetracycline resistance gene tet(M) in all but two isolates. Only the ST1 isolate harboured virulence
genes scpB and lmb, which are associated with human host adaptation.

Conclusions: GBS in milk from Kenyan camel herds largely belongs to ST616 and shows signatures of adaptation
to the udder. The finding of similar levels of within- and between herd heterogeneity of GBS in camel herds, as
well as potential human-camel transmission highlights the need for improved internal as well as external
biosecurity to curb disease transmission and increase milk production.

Keywords: Streptococcus agalactiae, Nomadic, Dairy, Camelids, Molecular epidemiology, Intramammary infection,
Biosecurity

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: dinah.seligsohn@sva.se
1Department of Animal Health and Antimicrobial Strategies, National
Veterinary Institute, SE- 75189 Uppsala, Sweden
2Department of Clinical Sciences, Swedish University of Agricultural Sciences,
Uppsala, Sweden
Full list of author information is available at the end of the article

Seligsohn et al. BMC Microbiology          (2021) 21:217 
https://doi.org/10.1186/s12866-021-02228-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-021-02228-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:dinah.seligsohn@sva.se


Background
In the arid and semi-arid lands of the Horn of Africa,
camels are valuable assets for household income and
food security, and commonly kept for milk production.
In these areas, where desertification and prolonged
droughts are constraints for food production, camel pas-
toralism is an integral part of the sustenance of the in-
habitants, and in some areas camel milk and meat
contribute to more than 50 % of the diet [1, 2]. Camels
are well-adapted to harsh conditions and can continue
to produce milk despite limited access to feed and water,
which sets them apart from other types of livestock [3].
Kenya has the third largest camel population globally
[4]. The majority of these camels are kept by pastoralists,
who adhere to nomadic husbandry traditions, browsing
camels over large areas and milking by hand [5]. These
pastoralists live in close contact with their animals, and
milk is consumed without prior pasteurization, both
practices that contribute to zoonotic disease transmis-
sion risks [2].
Mastitis, inflammation of the mammary gland, is a

frequently-occurring problem among dairy camels with
negative implications for production and animal welfare
[6, 7]. Streptococcus agalactiae, or group B Streptococcus
(GBS), has been identified as a common cause of both
clinical mastitis (CM) and subclinical mastitis (SCM) in
camels [8, 9], often resulting in chronic infections [10],
reduced milk yield [11] and high bacterial counts in milk
[12]. In Kenya, a lack of involvement of veterinary ser-
vices and poor compliance with recommended dosing
regimens in camels [13], in combination with the com-
mon use of substandard antimicrobial products [14, 15],
may serve as drivers in the development of antimicrobial
resistance. Resistance has been reported in bacteria from
camel milk within the region, including GBS [8, 16, 17].
In the bovine dairy industry, the molecular epidemi-

ology of GBS largely depends on the local context.
Studies in dairy herds in northern Europe (Denmark,
Finland, Norway) [18–20] and in Australia [21] show
limited strain diversity of GBS at farm level, with one
genotype predominating in each herd. Differently, in
India and Colombia, extensive within-herd heterogeneity
has been observed, with an overlap in sequence types
(STs) isolated from cattle and people [22, 23]. Variation
in access to veterinary services [24], milking hygiene [8],
and other biosecurity practices, [25] affecting pathogen
transmission and mastitis control may contribute to
such differences.
Investigations of the global GBS population have re-

vealed the existence of clonal complexes (CC) associated
with specific host species or niches (e.g. the mammary
gland) and generalist lineages [22, 26, 27]. Niche adapta-
tion, such as lactose fermentation, has been described in
mastitis-causing isolates, and the lactose operon (Lac.2)

has been identified as responsible for lactose metabolism
in the vast majority of bovine isolates [19, 28, 29]. In
addition to genes encoding metabolic properties, viru-
lence genes, including adhesins and invasins, can affect
pathogens’ ability to cause infections. For example, scpB
(C5a peptidase) and lmb (laminin-binding protein) have
been strongly associated with disease in humans, but not
animals [29].
In camels, little is known about the population struc-

ture and epidemiology of GBS. Fischer et al. [17] found
that isolates from camel mastitis primarily belonged to a
common genotype, ST616, but with limited description
of spatial or social relations between animals or herds
under investigation. Combined molecular and epidemio-
logical investigation is needed to increase the under-
standing of sources and transmission routes for GBS in
pastoralist camel herds, to expand the knowledge base
underpinning mastitis control strategies, and to explore
the potential threat to public health. Here, we investigate
the molecular epidemiology of GBS in dairy camel herds
in Kenya using genomic and phylogenetic analysis, as
well as spatial mapping.

Methods
Study area and selection of herds
This cross-sectional study was undertaken around Isiolo
town, located in Isiolo County in central Kenya. Isiolo
County is classified as arid or semi-arid with an annual
rainfall of approximately 150–250 mm [30]. The camel
population in the region was estimated to comprise of
45,309 individuals [31] distributed over 2,050 camel milk
producers [32] out of a total human population of 268,
002 individuals [33]. Camel keeping households produce
milk for household consumption, but there is also an
expanding camel milk market with milk being sold com-
mercially along an informal milk value chain.
Herds were selected based on the following inclusion

criteria: Pastoralist herd practicing extensive browsing
and selling milk, willingness among camel owners to
participate, and accessibility of the herds [8]. All selected
herds were visited once during the period from February
to April 2017, which corresponded to the end of dry sea-
son or early wet season. Herd data regarding manage-
ment was collected digitally on a tablet using free open-
source software [34]. All herds belonged to the Mlango-
Ngarendare-Burat camel milk cluster [35] and sold milk
along the informal milk value chain with end markets in
Isiolo town and central Nairobi.

Milk sampling, bacteriological culture and isolate
selection
Milk was sampled and cultured as described elsewhere
[8]. In brief, 20 pastoralist camel herds were visited and
a subset of 7 to 13 camels per herd were screened for
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evidence of mastitis (udder inflammation). Initially, ud-
ders were examined clinically and checked for the pres-
ence of blind (non-milk producing) quarters and signs of
inflammation, such as swelling, increased temperature,
pain and redness or palpatory findings of induration of
udder tissue. Quarter milk was subjected to the California
Mastitis Test (CMT), which provides semi-quantitative
measurement of milk leucocyte content as indicator of the
degree of inflammation [36]. After discarding the first
streaks of milk, approximately 10 mL of milk from each
quarter was milked in to the CMT-paddle. Milk was
assessed visually for colour, viscosity, presence of blood
and clots and then mixed with an equal amount of test re-
agent. The liquids were mixed by gently rotating the pad-
dle and the viscosity of the solution was scored according
to the Scandinavian scoring system (scale from 1 to 5)
where 1 represents no change in viscosity, and 5 repre-
sents gel formation with a distinct peak [37]. A CMT-
score of ≥ 3 was considered indicative of mastitis. For
herds with fewer than 20 lactating camels, all animals were
sampled. In herds with 20 or more camels every second
camel was sampled until a target of 10 camels per herd
was reached. Milk samples were frozen at -18 °C to -20 °C
for 1 to 7 days prior to culturing. All samples were
cultured on blood agar (CM0271, Oxoid, Thermo Fisher
Scientific, Waltham, MA) containing 5 % defibrinated

sheep blood, and Edwards agar (Oxoid, CM0027) and in-
cubated aerobically at 37℃. After 24 to 48 h, primary spe-
cies identification was based on colony morphology and
catalase testing. Species confirmation was conducted using
MALDI-ToF mass spectrometry (MS). Out of 804 quarter
milk samples collected across all herds, 154 samples from
65 animals in 19 herds were GBS-positive. One isolate per
animal was arbitrarily selected for further analysis. Most
(n = 53 of 65) isolates were collected from CMT-positive
udder quarters, with the remainder (n = 12) collected from
CMT-negative quarters. Forty quarters had SCM (CMT-
positive but no palpatory or visual changes of the udder or
milk) and 13 had signs of CM (visible or palpable abnor-
malities in the milk or udder). Five CM cases were classi-
fied as acute CM (ACM) based on swelling, pain, redness
and/or abnormal milk), with the remainder classified as
chronic CM (CCM) (based on induration of the udder).
Distribution of mastitis categories is shown in Fig. 1. One
isolate per camel (1 to 8 isolates per herd, additional file 1)
was arbitrarily selected for sequencing and further analysis
(additional file 2).
Potential associations between categorical variables were

investigated using Pearson’s chi2 test and Fisher’s exact test.
A p-value of < 0.05 was considered significant. Statistical
analyses were performed in Stata (Stata; Stata Statistical
Software, release 13.1; StataCorp LP, College Station, TX).

Fig. 1 Flowchart of sample and mastitis classification: normal milk (CMT < 3), mastitis (defined as a CMT-score ≥ 3), subclinical mastitis (defined as
a CMT- score≥ 3 and no palpatory or visual changes of the udder or milk), clinical mastitis (defined as CMT-score≥ 3 and abnormalities in the
milk or udder), acute clinical mastitis (ACM) (defined as a CMT-score≥ 3 and swelling, pain, redness or abnormal milk), and chronic clinical
mastitis (CCM) (defined as a CMT-score ≥ 3 and induration of the udder)
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DNA extraction and sequencing
For DNA extraction, GBS colony material was collected
with a calibrated loop (1 µl) and suspended in 600 µl nu-
clease free water (Sigma-Aldrich, St Louis, MO, USA).
The suspension was mixed with 0.1 mm silica beads
(BioSpec Products Inc., Bartlesville, USA) and added to
the FastPrep24 (MP Biomedicals LLC, Irvine, CA, USA)
and then run at 6.5 m/s for three 2-minute cycles. DNA
was extracted from 200 µl samples using the IndiMag
Pathogen kit (Indical Bioscience GmbH, Leipzig,
Germany) and eluted in nuclease free water. DNA con-
centration was measured using the Invitrogen Qubit 3.0
Fluorometer (ThermoFisher Scientific Inc., Waltham,
MA, USA), and adjusted to 7.5 ng/µL. Library prepar-
ation and whole genome sequencing were performed by
Clinical Genomics, Science for Life Laboratory (Clinical
Genomics, Solna, Sweden) on the Illumina NovaSeq
(Illumina, Inc. CA, US) resulting in paired end reads of
150 bp in length.

Antimicrobial susceptibility and virulence testing
Phenotypic antimicrobial susceptibility testing was car-
ried out as previously described [8]. Minimum inhibitory
concentrations were determined using broth microdilu-
tion. Testing was performed according to the recom-
mendations of the Clinical and Laboratory Standards
Institute [38] using VetMIC panels (SVA, Uppsala,
Sweden). SRST2 v0.2.0 [39] was used to detect anti-
microbial resistance (AMR) genes from raw sequence
reads with the ARG-ANNOT v3 database [40].
Lactose fermentation was assessed phenotypically by

inoculating each of the selected isolates onto bromocre-
sol purple lactose agar (SVA, Uppsala, Sweden). A yel-
low colour change of the colonies indicated lactose
fermentation whereas purple colonies were classified as
negative for lactose fermentation. Escherichia coli
ATCC35218 and Proteus mirabilis CCUG26767 were
used as positive and negative controls. Plates were incu-
bated aerobically at 37℃ and checked for colour change
at 24, 48 and 72 h. Assembled genomes (see below) were
scanned for the presence of the lactose operon (Lac.2)
[28] with a BLASTn v2.9.0 search [41] based on a data-
base of four known Lac.2 genotypic variants [27, 42].
Minimum thresholds for identity (ID) and query cover-
age (QC) were both set at 90 %. Lac.2-negative isolates
based on BLAST searches were further scanned for an-
notations related to Lac.2 in files obtained using Prokka
v1.14.6 [43]. To confirm presence/absence of the Lac.2
operon in the chromosome, a PCR targeting a ≈ 2.5-kbp
region straddling lacEG was used. Positive and negative
controls were selected from the study isolates based on
genomic detection of Lac.2.
Assembled genomes were scanned for the presence of

human-associated virulence genes scpB and lmb [44]

using tBLASTn. Capsular serotyping was conducted in
silico using a standard method [45].

Phylogenetic and statistical analysis
Reads were filtered for quality and trimmed with Con-
DeTri suite v2.3 [46]. De novo assembly was performed
using SPAdes v3.13.1 [47]. Assembly quality was
checked with QUAST v5.0.2 [48] and species identity
was confirmed with KmerFinder v3.2 [49]. All assembled
genomes passed quality control. Multi locus sequence
typing (MLST) was carried out with SRST2 and new al-
leles were submitted for allele number and ST assign-
ment through pubMLST [50].
A core genome alignment was obtained with Snippy

v4.6.0 [51] using ILRI112, an ST617 isolate from a Ken-
yan camel, as reference genome (accession HF952106).
A maximum likelihood tree was inferred with RAxML-
NG v0.9.0 [52] under a GTR +G model. A map of herd
coordinates was created with ggplot in RStudio, with R
(v4.0.). All figures were edited using Inkscape [53]).
Pairwise single nucleotide polymorphism (SNP)-dis-

tances between ST616 genomes were calculated using
pairsnp v0.2.0 [54] Within-herd pairwise distances and
between-herd pairwise distances were plotted using mat-
plotlib v3.3.2 [55].

Results
Sequence types and serotypes associated with camel
mastitis
All 65 sequenced isolates were confirmed as GBS.
Among them, only six STs were identified. These in-
cluded three novel STs that were single locus variants
(SLVs) of STs already described (ST1652, SLV of ST617;
ST1653 and ST1654, SLVs of ST616). The vast majority
of isolates (n = 54) belonged to ST616, which was found
in all herds but one, followed by ST1652 (n = 6) found in
five herds, ST612 (n = 2) found in two herds, ST1653
(n = 1), and ST1654 (n = 1), all belonging to previously
described camel-associated clonal complexes. One iso-
late, however, belonged to a completely unrelated clonal
complex (CC1) and was identified as ST1. In most herds
(n = 12), isolates belonged to a single ST, but multiple
STs were detected in the remaining seven herds. In five
herds (herds A, B, D, J and N), two STs were present
and in two herds (P and R), isolates belonged to three
STs.
Four capsular serotypes were detected in silico (III to VI).

The most common serotype was serotype III (n = 56),
followed by serotype VI (n = 6), serotype IV (n = 2) and
serotype V (n = 1). There was perfect concordance between
STs and serotypes, with ST616 and its SLVs ST1653 and
ST1654 all belonging to serotype III, ST612 isolates to sero-
type IV and ST1652 to serotype VI. Serotype III was
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significantly associated with SCM (36 of 56 serotype
III isolates) (Fisher’s exact test; p = 0.04).

Antimicrobial susceptibility and virulence testing
Phenotypic susceptibility testing revealed tetracycline
resistance (minimum inhibitory concentration (MIC)
above 1 µg/mL) in 63 of 65 GBS isolates (MIC-values
for tetracycline shown in Additional file 2, for details on
the susceptibility testing, please see [8]). The tet(M) gene
was found in all phenotypically tetracycline-resistant iso-
lates and was absent from the two isolates that were
phenotypically susceptible to tetracycline. Apart from
the tet(M) gene, no more genes coding for antibiotic re-
sistance were found within the GBS genomes.
Lactose fermentation was detected phenotypically in

75 % (n = 49) of the isolates. PCR-results were in 100 %
agreement with the findings of phenotypic lactose fer-
mentation and the presence of a lactose operon in the
genomic analysis. There was an association between ST
and lactose fermentation (Fisher’s exact test; p = 0.002)
with the majority of ST616 (n = 45) and ST1653 (n = 1)
being lactose fermenters. Three variants of the lactose
operon (Lac.2) were detected, including two known
genotypic variants (Lac.2b, n = 8; Lac.2d, n = 26) and a
new variant (n = 15) that was named Lac.2e. Lac.2e
(length = 9,535 bp) has the same gene arrangement as
Lac.2a, with the exception of an additional gene in
Lac.2e, a glucokinase (glk, length = 951 bp), upstream
lacA. The Lac.2-variants were located at several insertion
sites (Lac.2b, n = 2; Lac.2d, n = 1; Lac.2e n = 2), which
largely agreed with their integrase types (additional file
3). Multiple STs were associated with each Lac.2 type
and multiple Lac.2 types were detected within STs
(Table 1) but there was no association between serotype
and lactose operon. For mastitis isolates, i.e. those asso-
ciated with the presence of an inflammatory response,
Lac.2d was overrepresented (25 of 41 mastitis-derived
isolates), (Pearson’s chi2-test; p = 0.001) and the same as-
sociation was found for isolates from quarters with SCM
(19 of 31 SCM isolates), (Pearson’s chi2-test; p = 0.001).
The human-associated virulence genes scpB and lmb

were detected in a single genome assembly, which
belonged to ST1, as part of a known composite

transposon [56]. Two scpB variants were found within
this mobile element, with scpB1 (1,071 bp) upstream
scpB2 (2,214 bp), followed by lmb (additional file 4).

Phylogenetic analysis
After initial inspection, the isolate belonging to ST1 was
removed from the phylogenetic tree to better visualise
the relatedness among the other isolates. Three main
lineages were observed in the core genome phylogenetic
tree (Fig. 2). Two lineages corresponded to a single ST
(ST612, ST1652), whereas the third and largest lineage
included ST616 and its SLVs, ST1653 and ST1654.
Within the major lineage, pairwise genetic distances

(i.e. number of single nucleotide polymorphisms) be-
tween isolates did not differ for within-herd (mean =
51.33, standard deviation = 24.01) versus between-herd
(mean = 57.86, standard deviation = 20.29) comparisons
(Fig. 3).

Discussion
Genomic analyses show the existence of a predominant
niche-adapted strain in camel milk
Here, we describe the genomic diversity of GBS from
camel milk in Kenyan dairy herds and demonstrate that
the main strain responsible for mastitis shows genetic
signatures of adaptation to the mammary gland. ST616
serotype III was the predominant lineage among milk
isolates, similar to previous findings [17]. The presence
of Lac.2, which always corresponded to phenotypic lac-
tose fermentation in GBS, suggests niche-adaptation to
the mammary gland and has been described for GBS
[19] as well as for Gram-negative mastitis pathogens
[57]. The Lac.2 operon in cattle GBS shows signatures of
genetic mobility (e.g. integrase) [28] and several possible
insertion sites [42], and in camel GBS, Lac.2 showed
similar mobility features. Isolates belonging to STs other
than ST616 were less likely to ferment lactose which
could indicate infection by strains from extramammary
sources, a route of exposure that has also been suggested
for dairy cattle [20]. Some non-ST616 isolates encoded
Lac.2, which may have been acquired through horizontal
gene transfer (HGT) as a means of adaptation to the
mammary gland, again as seen in cattle GBS isolates

Table 1 Distribution of lactose operons across sequence types (STs) in 65 GBS isolates from camel milk

ST

Lactose operon 1 612 616 1652 1653 1654 Total

Negative 1 2 9 3 1 16

Lac.2b 6 1 1 8

Lac.2d 24 2 26

Lac.2e 15 15

Total 1 2 54 6 1 1 65
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[28]. To further explore infection dynamics within camel
herds, within host-diversity needs to be investigated as
well as the prevalence and molecular characteristics of
extramammary GBS isolates in camels.
Tetracycline resistance was common among the investi-

gated isolates and the tet(M) gene was found in all pheno-
typically resistant isolates. The presence of tet(M) has also
been described in GBS populations in humans, fish, and,
to a much lesser extent, cattle [26, 58, 59]. It has been
considered a marker or even driver of expansion of GBS

in the human population, starting in the 1940s. Its pres-
ence in piscine and bovine isolates has been interpreted as
evidence of a human origin of animal GBS [42], but only
in isolates from lineages that are shared between host spe-
cies. Camel GBS is unique and, with the exception of the
ST1 isolate reported here, there is no evidence of strain
sharing between camels and humans. Considering that
tetracycline is commonly used in pastoralist camel herds
[13], its presence is likely due to acquisition of mobile gen-
etic elements under selective pressure [17, 60].

Fig. 2 Maximum likelihood phylogenetic tree based on a core genome alignment of 65 camel group B Streptococcus (GBS) isolates. Leaf colours
correspond to herd of origin (n = 19), whose locations are indicated on the map. Sequence types (ST) are shown on the branches, with the ST616
nomenclature also comprising its two single locus variants (ST1653 and ST1654). Grey bars indicate Lac.2 genotypic variants. A single genome
assembly belonging to ST1 was removed from the tree to facilitate visualisation. Tree has been rooted at midpoint. ILRI112 (ST617; accession
HF952106) was used as reference genome. The map was created with ggplot in RStudio, with R (v4.0.)
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Camel GBS isolates from different herds are genetically
related
This is the first report on GBS genomic variation within
camel herds. Within-herd heterogeneity of GBS was de-
tected both at ST level (based on ca. 3500 nucleotides
from 7 partial housekeeping genes) and within STs
(based on single nucleotide polymorphisms detected
through whole genome sequencing), with similar hetero-
geneity within and between herds. Heterogeneity may
result from within-herd evolution, as described for GBS
in dairy cattle [18]. Considering the finding of GBS in
camels with evidence of chronic mastitis such as
induration, and the high within-herd prevalence [8],
within-camel and within-herd evolution are plausible. In
addition, heterogeneity may reflect the occurrence of
multiple transmission events between herds. In dairy
cattle farms in high income countries, GBS is commonly
introduced through the purchase of infected animals
[61]. In Kenya, lactating female camels are rarely sold
due to their high economic value as milk producers [62].
However, camel dairy herds are not closed, and females
are frequently moved between groups depending on re-
productive status. Additionally, herds could come into
contact with each other during the daytime while brows-
ing or at common watering points. Moreover, herdsmen
in commercial herds may move between herds or share
duties when camping together, increasing the likelihood
of transmission of GBS from one herd to another,
especially if not following proper hygiene practices (e.g.
washing hands) (personal communication, Yussuf
Maalim, Kenya Camel Association). In addition to
between-herd biosecurity, within-herd biosecurity is af-
fected by poor hygiene, leading to transmission of GBS

between camels. Lack of water and inadequate milking
hygiene are common issues in camel pastoralist herds
and significant risk factors for mastitis [63, 64]. Funda-
mental milking hygiene practices, such as cleaning of
hands before milking or using gloves, washing of the
udder prior to milking or using post-milking teat disin-
fectant, were lacking in all of the herds included in this
study [8]. Some herds would use a milking order, which
could be a mastitis-reducing intervention [65], however,
this alone is insufficient to halt contagious transmission
of GBS without other hygiene measures, which would
also require awareness of the existence of SCM, which,
by definition, is not visible with the naked eye. Suckling
calves may cause contamination of the camel udder [62]
but they are unlikely to contribute to camel-to-camel
transmission because cross-suckling is thought to be un-
common among camels [66].

Potential interspecies transmission
This is the first reported case of GBS ST1 isolated from a
camel. ST1 is commonly isolated from humans, including
healthy carriers, although there are no reports on distribu-
tion of human carriage strains in Kenya [67, 68]. This ob-
servation may represent interspecies transmission as also
observed for cattle [19, 22, 27] and fish [26]. Contamination
of the milk sample with a human GBS carriage isolate dur-
ing the sampling procedure cannot be ruled out, although
the isolate was collected from an udder quarter with signs
of mastitis (CMT4) and using aseptic sampling technique,
suggesting that the bacteria was present intramammarily.
The fact that the scpB1, scpB2 and lmb-genes were found
only in the ST1 isolate further points towards this isolate
being of human origin, as those genes are specifically

Fig. 3 Frequency distribution of pairwise genetic distances calculated between genomes from the largest group B Streptococcus lineage from
camel milk (sequence types 616, 1653 and 1654) belonging to the same herd (within-herd diversity) or to different herds (between-herd diversity)
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associated with the human host [29]. The possibility of in-
terspecies transmission could interfere with camel mastitis
control strategies as well as pose a risk to the consumers of
camel milk. The camel milk industry in Kenya is currently
undergoing rapid changes [69] and urban herds kept under
more intensive management are becoming more common.
In the aquaculture sector, intensification has been associ-
ated with the emergence of zoonotic GBS [26] and this risk
may also exist in other production animal industries. The
direct exposure to GBS of people consuming unpasteurized
camel milk warrants further investigation into the potential
human health hazard of camel GBS. To investigate poten-
tial interspecies transmission, isolates should be collected
and compared from camels and from humans living in
close contact with camels.

Conclusions
We found that GBS isolated from camel milk collected in
and around Isiolo town (Isiolo County, Kenya) belonged
to one predominant sequence type, ST616 or its single
locus variants, of which a large proportion showed signs
of niche adaptation. In light of this, it is likely that
mastitis-causing GBS strains in camels are largely udder-
bound and this demonstrates the need for improved milk-
ing hygiene. The similarity in heterogeneity of isolates
within and across herds suggests that internal and external
biosecurity measures would be needed to reduce within-
and between herd-transmission, respectively. Our finding
of one likely human-derived isolate (ST1) in an infected
udder strongly suggests that human to camel transmission
is possible, and this potential risk should be further ex-
plored. Biosecurity is a cornerstone of disease control; in
order for it to be feasible, sustainable and thus efficiently
implemented in pastoralist settings, locally-appropriate in-
terventions should be devised and tested.
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cession numbers available at European Nucleotide Archive (ENA).

Additional file 3: Figure S1. Maximum likelihood phylogenetic tree of
49 Lac.2 integrase amino-acid sequences extracted from group B Strepto-
coccus genomes from Kenyan camels. Sequences were aligned using
MAFFT v7.475 and phylogeny was estimated with PhyML v3.3.20190909.
Isolate names are shown. Leaf colours correspond to the insertion site
where Lac.2 is integrated (light green: deoD, red: yxdL, blue: hypothetical,
purple: ClbS/DfsB family four-helix bundle protein). For 30 isolates, the
Lac.2 insertion site could not be determined because their integrases
were found at the edge of a contig (dark green leaves).

Additional file 4: Figure S2. Organisation of genes of the scpB-lmb
mobile transposon as found in group B Streptococcus isolate P4 (se-
quence type 1) in milk from a camel (Camelus dromedarius) in Kenya. In
this transposon, two variants of C5a peptidase gene scpB are present
(scpB1 and scpB2) upstream the laminin binding protein gene lmb.
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