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We provide a 0.8%-accurate determination of Vcs from combining experimental results for the
differential rate of D → K semileptonic decays with precise form factors that we determine from lattice
QCD. This is the first time that Vcs has been determined with an accuracy that allows its difference from 1
to be seen. Our lattice QCD calculation uses the highly improved staggered quark (HISQ) action for
all valence quarks on gluon field configurations generated by the MILC Collaboration that include the
effect of u, d, s, and c HISQ quarks in the sea. We use eight gluon field ensembles with five values of the
lattice spacing ranging from 0.15 fm to 0.045 fm and include results with physical u=d quarks for the first
time. Our calculated form factors cover the full q2 range of the physical decay process and enable a
Standard Model test of the shape of the differential decay rate as well as the determination of Vcs from a
correlated weighted average over q2 bins. We obtain jVcsj ¼ 0.9663ð53Þlattð39Þexpð19ÞηEWð40ÞEM, where
the uncertainties come from lattice QCD, experiment, short-distance electroweak, and electromagnetic
corrections, respectively. This last uncertainty, neglected for D → Klν hitherto, now needs attention if the
uncertainty on Vcs is to be reduced further. We also determine Vcs values in good agreement using the
measured total branching fraction and the rates extrapolated to q2 ¼ 0. Our form factors enable tests of
lepton flavor universality violation. We find the ratio of branching fractions for D0 → K− with μ and e in
the final state to be Rμ=e ¼ 0.9779ð2Þlattð50ÞEM in the Standard Model, with the uncertainty dominated by
that from electromagnetic corrections.
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I. INTRODUCTION

The flavor changing weak interactions between quarks
via emission of W bosons can be parametrized in terms of
the unitary Cabbibo-Kobayashi-Maskawa (CKM) matrix in
the Standard Model, given by [1,2]

VCKM ¼

2
64
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

3
75: ð1Þ

Precise and independent determination of each of the CKM
matrix elements from multiple processes is crucial to test
the Standard Model stringently. Current accuracy varies
from 0.014% for Vud to 6% for Vub with several reviews in
[3] discussing different aspects of their determination. For a
recent review of the impact of lattice QCD on this endeavor
see [4]. Here we will focus on the determination of Vcs and
provide a significant improvement in its accuracy that
expands the range of tests we can perform of the CKM
matrix.
Any significant deviation from unitarity of the CKM

matrix would signal the existence of physics beyond the
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Standard Model, but the accuracy with which unitarity tests
can be performed varies substantially across the matrix.
The unitarity of the first row has been tested to a precision
of 0.05%. A result of

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9985ð3ÞVud
ð4ÞVus

ð2Þ

is quoted in “Vud, Vus, the Cabibbo Angle and CKM
Unitarity” in [3], noting that the value of Vub is too small
to affect this relation. Vud here is determined from super-
allowed nuclear β decay with a 0.01% experimental
accuracy that requires careful treatment of electroweak
radiative corrections (see the review for a discussion of
this). Vus is determined from a weighted average of results
from combining experimental results for K meson leptonic
and semileptonic decays with lattice QCD calculations of
the appropriate hadronic parameters [5–7]. A determination
with uncertainty better than 0.3% is possible in both cases,
paying attention to various sources of electroweak radiative
corrections. The value quoted in Eq. (2), with its 3σ hint
of a discrepancy with unitarity, results from a weighted
average of leptonic and semileptonic Vus values with an
uncertainty increased by a factor of 2 to allow for the
tension between them.
Tests of unitarity for other rows and columns of the

CKM matrix are much less stringent, because of either
larger experimental uncertainties, larger theoretical uncer-
tainties, or both. Our aim here is to improve Vcs. Since Vcs
is close to 1 in value, it needs to have a small uncertainty
to avoid ruining any CKM unitarity test that it appears
in. The determination of Vcs proceeds most directly, as
for Vus, either through a study of leptonic decays of the Ds
meson or through D semileptonic decay to Klν. We
summarize its current status below before outlining our
new determination.
We will not discuss the determination of Vcs from other

semileptonic channels such as Ds → ϕ [8] or Λc → Λ [9].
These are not currently competitive but do provide further
checks on Vcs; the baryon channel is particularly important
to provide constraints on new physics complementary to
those available from meson decays.

A. Current situation on Vcs

The experimental measurement of the branching fraction
forDs leptonic decay has been challenging, with the average
drifting downward slowly with time as newer results are
added. The current situation is reviewed in “Leptonic decays
of charged pseudoscalar mesons” in [3] (we will refer to this
as RSV). See also results from the Heavy Flavor Averaging
Group (HFLAV) [10]. There are now experimental results
from BABAR, Belle, BES III, and CLEO-c with either μ or τ
in the final state. The experimental branching fraction
Ds → lν̄ is obtained after removing the effect of QED
bremsstrahlung at leading-log order using PHOTOS [11]. The
measured width is then given by

Γ ¼ G2
Fm

2
lMDs

8π
ðηEWfDs

jVcsjÞ2
�
1 −

m2
l

M2
Ds

�
ð3Þ

up to remaining QED effects (RSVapply a 1% correction to
BABAR andBelleμ results to account for contamination from
Ds → ðD�

s → lν̄Þγ [12]). ηEW accounts for short-distance
electroweak corrections to the value ofGF obtained from the
μ lifetime [13], a correction applied as standard in the K
leptonic and semileptonic decays discussed above. The
experimental width then yields a result for the combination
ηEWfDs

jVcsj, where fDs
is the decay constant of the Ds

meson, the hadronic parameter that determines the amplitude
for annihilation to a W boson. RSV take ηEW ¼ 1.009 and
obtain an average from experiment of

jVcsjfDs
¼ 245.7ð3.1Þð3.4Þ MeV: ð4Þ

The first error here comes from the experimental branching
fractions and the second error takes a 100% uncertainty from
the applied radiative corrections (ηEW and the additional 1%
on the rate to μ above). The average from HFLAV [10]
(included in the review “CKMQuark-MixingMatrix” in [3])
has a larger central value because they take ηEW ¼ 1, and a
smaller uncertainty since they do not include the second
uncertainty above. The total experimental uncertainty then
ranges from 1.3% from HFLAV [10] to 1.9% from Eq. (4).
Early full lattice QCD calculations [14] of the Ds decay

constant were undertaken before the experimental results
were obtained. They had rather large (6%) systematic
uncertainties from discretization effects associated with
the relatively heavy c-quark mass and uncertainties from
matching the normalization of the lattice representation of
the cs̄weak current to that in the continuum. A step change
in accuracy was made possible by the development of
HPQCD’s highly improved staggered quark (HISQ) action
[15]. This has good control of discretization effects [going
beyond OððmaÞ2Þ] and a partially conserved axial current
relation that enables the decay constant to be absolutely
normalized. HPQCD used this to obtain a 1% accurate
result for fDs

[16,17] back in 2010. Combined with the
higher experimental average for the branching fraction at
that time it led to a Vcs result with a central value above 1.
More recent results from the Fermilab/MILC Collaboration
[5] using HISQ give a 0.2% uncertainty on fDs

. RSV then
give a leptonic determination

jVcsjlept ¼ 0.983ð13Þð14Þð2Þ; ð5Þ

where the first uncertainty is from experiment, the second
from radiative corrections, and the third from fDs

. We see
that the current picture for Vcs from leptonic decays is one
in which the experimental uncertainty dominates that from
lattice QCD (fDs

), which is now almost negligible here.
When radiative corrections are considered, as in RSV, they
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also have a sizable uncertainty. The value obtained for Vcs
is consistent with 1.
The situation with semileptonic D → K decays is some-

what different. Smaller experimental uncertainties have
been available for some time but lattice QCD calculations
are harder to do, with less accurate results to date. The
hadronic quantities that parametrize the amplitude for
the c → s transition within the meson are form factors,
functions of the squared 4-momentum transfer, q2, from the
initial D to final K meson. The only form factor that
contributes here, for light leptons in the final state, is the
vector form factor, fþðq2Þ. Here we will improve sub-
stantially on previous lattice QCD uncertainties for the
D → K form factor and demonstrate the improvement in
accuracy of Vcs that results. This will inevitably mean, as
discussed above, that uncertainties from electroweak radi-
ative corrections will rear their heads.
Experimental results for D → Klν̄ are available from

BABAR, Belle, BES III, and CLEO-c [10] and will be
discussed in more detail later. Results exist for both charged
and neutralDmesons andwith both e and μ in the final state.
They are either given in the form of a differential distribution
in bins of q2 or, following a fit to the distribution combined
with an analysis of radiative bremsstrahlung corrections
using PHOTOS, a value for ηEWjVcsjfþð0Þ. HFLAV [10]
quote an average for this latter quantity with a 0.5%
uncertainty from experiment. Note that ηEW is taken to be
1 in these analyses and does not appear as a factor.
Full lattice QCD calculations of the D → K form factors

again began before experimental results were available [18]
but were limited in accuracy (to 10%) by systematic effects
from the discretization of the quark action. The use of the
HISQ action by HPQCD brought a big improvement [19]
coupled with the fact that the scalar form factor f0 (equal to
fþ at q2 ¼ 0) can be determined with absolute normali-
zation. HPQCD extended this to a determination of the
vector form factor across the full physical q2 range in [20]
with nonperturbative normalization of the vector current.
This allowed a 1.6%-accurate determination of jVcsj using
a bin-by-bin comparison of the differential distribution with
experiment, thus providing also a Standard Model test of the
shape of the distribution. Recently the European Twisted
Mass Collaboration (ETMC) determined the full shape of the
D → K form factors [21,22] using the twisted-mass formal-
ism and combined that with experimental results to obtain a
3.5%-accurate result for jVcsj. Work is also under way by
other groups; see, for example, [23,24].
The ETMC result for fD→Kþ ð0Þ is used in the “CKM

Quark-Mixing Matrix” review in [3] (quoting [7]) to give a
semileptonic determination of Vcs as

jVcsjsemi ¼ 0.939ð38Þ: ð6Þ

The uncertainty here is strongly dominated by that from
lattice QCD. The result takes ηEW ¼ 1 and does not include

additional uncertainties to allow for possible missing QED
corrections. Combining their results over the full range of
q2 with experiment, ETMC [22] instead obtains

jVcsjsemi ¼ 0.978ð35Þ; ð7Þ

with similar uncertainty. Both results above are consis-
tent with the value 1 within 2σ because of the large
uncertainty. They also agree with the expectation Vcs ¼
Vud ¼ 0.97370ð14Þ [3] to Oððλ ¼ VusÞ4Þ.
The results for jVcsj in Eqs. (5)–(7) contribute 4%–7%

uncertainties to CKM second row or column unitarity, i.e.,
2 orders of magnitude worse than that for the first row
discussed earlier [Eq. (2)]. This precludes picking up hints
of new physics.
Here we provide a substantial improvement to the lattice

QCD determination of these form factors using the HISQ
action on gluon field configurations that include u, d, s, and
c quarks in the sea. We build on [20] (although using a
method for normalizing the vector current suggested but
not implemented there) to determine the scalar and vector
form factors across the full physical q2 range for the decay.
This enables us to compare to experimental results in each
q2 bin as well as at q2 ¼ 0, as in [20–22], to determine Vcs.
We include results over a larger range of lattice spacing
values than in [20] and with sea light quark masses going
down to physical values of the u=d mass. Our work will
also provide form factors for the improved experimental
determinations to come in the future, for example from
Belle II [25].
The paper is laid out as follows: Sec. II lays out our

formalism and then Sec. III describes our lattice QCD
calculation. This includes details of the gluon ensembles
used and the correlation functions calculated followed by a
description of how the calculated lattice correlation func-
tions are fitted and values for the form factors extracted. We
then describe how the form factor results are extrapolated to
the physical continuum limit. Section III can be omitted by
anyone who is not interested in the lattice QCD details.
Section IV gives our results for the physical form factors,
with instructions on how to reconstruct them from the
parameters given. We compare the shape of the vector
form factor to that obtained from the differential decay rate
by experiment. We also give the ratio of branching fractions
for a muon in the final state to that for an electron as a
function of q2 for tests of lepton flavor universality.
Section V gives three different methods for determining
Vcs using our results and experimental measurements of the
D → Klν decay rate. Our preferred method is to use a bin-
by-bin comparison with the differential decay rate but we
also give values determined from the total branching
fraction and from the rate at q2 ¼ 0. Section VI puts our
improved results for Vcs into context with previous results
and other CKM elements in tests of unitarity of the CKM
matrix. Finally, Sec. VII gives our conclusions.
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II. FORMALISM

We write the differential decay rate for D → Klν̄
(inclusive of photons) as

dΓ
dq2

¼ G2
F

24π3
ðηEWjVcsjÞ2ð1 − ϵÞ2ð1þ δEMÞ

×

�
jp⃗Kj3

�
1þ ϵ

2

�
jfþðq2Þj2

þ jp⃗KjM2
D

�
1 −

M2
K

M2
D

�
2 3ϵ

8
jf0ðq2Þj2

�
; ð8Þ

where ϵ ¼ m2
l=q

2, ml being the lepton mass, and p⃗K is the
3-momentum of the K in the D rest frame. Note that the
contribution of f0 to the differential rate is suppressed by ϵ.
ηEW accounts for universal short-distance corrections to GF
from box diagrams in the Standard Model [13]. We take

ηEW ¼ 1þ αQED
π

log

�
MZ

MD

�
¼ 1.009ð2Þ; ð9Þ

where the uncertainty allows for a factor of 2 variation in
the lower scale from the central value ofMD. δEM accounts
for QED corrections to the leading-order formula. Some of
these corrections may be q2 dependent. We will handle δEM
by taking an overall uncertainty for it, rather than making
an explicit correction (see Sec. V).
In Eq. (8) fþ and f0 are the vector and scalar form

factors for the process, respectively. They are defined from
the matrix element of the vector part of the weak current
betweenD andK, since that is the only part that contributes
for a pseudoscalar meson to pseudoscalar meson semi-
leptonic decay. The parametrization of the matrix element
of the vector current, Vμ ¼ ψ̄ sγ

μψc, in the continuum can
be written as

hKjVμjDi ¼ fD→Kþ ðq2Þ
�
pμ
D þ pμ

K −
M2

D −M2
K

q2
qμ
�

þ fD→K
0 ðq2ÞM

2
D −M2

K

q2
qμ; ð10Þ

where MD and MK are the masses of the D and K mesons
(charged or neutral, as appropriate), respectively. The
momentum transfer, qμ ¼ pμ

D − pμ
K .

Application of the partially conserved vector current
(PCVC) relation shows that the scalar form factor can also
be obtained from the matrix element of the scalar current,
S ¼ ψ̄ sψc:

hKjSjDi ¼ M2
D −M2

K

mc −ms
fD→K
0 ðq2Þ: ð11Þ

The PCVC relation also holds in lattice QCD for the HISQ
discretization [15] of the quark action that we use. This

means that ðmc −msÞhKjSjDi is not renormalized and f0 is
obtained from the HISQ lattice QCD calculation with
absolute normalization [19]. Equation (10) requires that
fþð0Þ ¼ f0ð0Þ and hence a determination of the scalar
form factor obtained at q2 ¼ 0 is sufficient to determine the
vector form factor there. This can then be combined with
experimental results, if they are given in the form of a
determination of jVcsjfþð0Þ, to yield a value for Vcs [19].
We will make use of this as one method to obtain jVcsj.
Here we also determine fþ over the full range of

physical q2 for the decay so that we can compare to the
differential rate from experiment using Eq. (8). Although
the HISQ action has a conserved vector current that is well
understood [26], it is a complicated operator with several
different multilink point-split components. Instead we use
here a much simpler local vector current but this must be
renormalized to match the (partially) conserved current.
We do this by writing Vμ ¼ ZVV

μ
latt and determine ZV by

comparing scalar and temporal vector matrix elements in
the ‘zero recoil’ configuration where the D and K are both
at rest and q2 ≡ q2max ¼ ðMD −MKÞ2. Then, from Eq. (10)

ZVhKjV0
lattjDi ¼ fD→K

0 ðq2maxÞðMD þMKÞ ð12Þ

so that ZV can be determined at this kinematic point [20]
from

ðMD −MKÞZVhKjV0
lattjDiq2max

¼ ðmc −msÞhKjSjDiq2max
:

ð13Þ

Note thatmc andms here are the HISQ lattice quark masses
for c and s. This provides a self-consistent normalization
for the matrix elements in Eqs. (10) and (11) that matches
that in the continuum.

III. LATTICE CALCULATION

A. Simulation details

The calculation used gluon ensembles generated by the
MILC Collaboration [27]. The gluon action is improved
throughOðαsa2Þ [28] and includes the effect of four flavors
of sea quarks (Nf ¼ 2þ 1þ 1) using the HISQ action
[15]. The u and d sea quark masses are taken to be the
same, with value denoted msea

l . The eight ensembles used
have parameters listed in Table I. Sets 1, 2, and 3 have msea

l
set to the physical average value of mu and md, while sets
4–8 have msea=val

l ¼ 0.2msea
s . These “second-generation”

gluon field configurations are a significant improvement
over the “first-generation” Nf ¼ 2þ 1 asqtad configura-
tions used in [20]. We also have results for a bigger range of
lattice spacing values and going down to smaller values,
from a ¼ 0.15 fm to a ¼ 0.045 fm. Although [20] dis-
cussed the use of the local temporal vector current, the
results were obtained using a one-link-split spatial vector
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current. We believe that the approach using the local
temporal current that we adopt here gives improved
statistical and systematic uncertainties.

B. Lattice correlation functions

Our goal is to extract scalar and temporal vector current
matrix elements between D and K mesons for the deter-
mination of form factors using Eqs. (10) and (11). To do
this we calculate three-point correlation functions on the
lattice, as shown schematically in Fig. 1, constructed by
multiplying together three valence quark propagators,
obtained by solving the Dirac equation on the gluon field
configuration. We use propagators for a c quark, an s quark,
and a “spectator” light quark, combined together with
appropriate spins (implemented by a position-dependent
phase for staggered quarks [15]) to give a pseudoscalar
meson at each end and an appropriate current operator at J.
For computational cost it is most convenient to perform the
calculation in the following way: two of the propagators, s
and l, are generated from the same random wall source and
the third quark propagator, the c, is an extended propagator

using as a source the appropriate time slice of the light
quark propagator. In Fig. 1 the cl̄ pseudoscalar operator is
placed at the origin and labeled by “D,” the ground-state
meson in that channel. Likewise the sl̄ operator at T is
denoted by “K.” We calculate correlation functions from
multiple different values of the origin time slice (averaged
over before fitting) to improve statistical errors. We also use
multiple values of the time separation between D and K, T
to improve the determination of the ground-state to ground-
state matrix element. The T values are listed in Table II.
The extra “taste” degree of freedom for staggered quarks

leads to some technical complications when constructing
our meson three-point correlation functions. We need to
combine pseudoscalar operators for the mesons at 0 and T
with either a scalar or temporal vector current operator at t.
Staggered bilinears of different taste for a given spin are
constructed with different point-splitting arrangements.
Our preference is to use local operators because they are
simple and most precise (since they do not incorporate
gluon fields). A further advantage is that they have no tree-
level discretization errors. We then have to make sure that

TABLE I. Parameters for the Nf ¼ 2þ 1þ 1 gluon field configurations used in this work. The Wilson flow parameter [29] is used to
determine the lattice spacing, a, via the values for w0=a. We take w0 ¼ 0.1715ð9Þ fm, as determined in [30] from fπ . Column 4 gives
approximate values for a in femtometers for each set, and column 5 gives the approximate value for the ratio of the light quark mass to
that of strange in the sea (the physical value is close to 0.036 [5]). Column 6 gives the spatial (Nx) and temporal (Nt) dimensions of each
lattice in lattice units and column 7 the number of configurations and time origins used in our calculation. Columns 8–12 give the masses
of the valence and sea quarks in lattice units. For the light (u=d) quark the valence and sea masses are the same. Column 13 shows values
for the normalization Zdisc, defined in [31] and appearing in Eq. (22).

Set β w0=a a (fm) ðml=msÞsea N3
x × Nt ncfg × nsrc amsea=val

l
amsea

s amsea
c amval

s amval
c Zdisc

1 5.8 1.1367(5) 0.15 0.036 323 × 48 998 × 16 0.00235 0.0647 0.831 0.0678 0.8605 0.99197
2 6.0 1.4149(6) 0.12 0.036 483 × 64 985 × 16 0.00184 0.0507 0.628 0.0527 0.643 0.99718
3 6.3 1.9518(7) 0.09 0.033 643 × 96 620 × 8 0.00120 0.0363 0.432 0.036 0.433 0.99938
4 5.8 1.1119(10) 0.15 0.20 163 × 48 1020 × 16 0.013 0.065 0.838 0.0705 0.888 0.99105
5 6.0 1.3826(11) 0.12 0.20 243 × 64 1053 × 16 0.0102 0.0509 0.635 0.0545 0.664 0.99683
6 6.3 1.9006(20) 0.09 0.20 323 × 96 499 × 16 0.0074 0.037 0.440 0.0376 0.449 0.99892
7 6.72 2.896(6) 0.06 0.20 483 × 144 415 × 8 0.0048 0.024 0.286 0.0234 0.274 0.99990
8 7.0 3.892(12) 0.044 0.20 643 × 192 375 × 4 0.00316 0.0158 0.188 0.0165 0.194 0.99997

FIG. 1. Schematic diagram of our three-point correlation
function for current insertion J.

TABLE II. Details of the T values and K meson momenta used
on each ensemble. Momenta can be obtained from twist, θ, via
θ ¼ jap⃗K jNx=ð

ffiffiffi
3

p
πÞ, where Nx is the spatial dimension of the

lattice, given in Table I.

Set θ T=a

1 0, 2.013, 3.050, 3.969 9, 12, 15, 18
2 0, 2.405, 3.641, 4.735 12, 15, 18, 21
3 0, 0.8563, 2.998, 5.140 14,17,20
4 0, 0.3665, 1.097, 1.828 9, 12, 15, 18
5 0, 0.441, 1.323, 2.205, 2.646 12, 15, 18, 21
6 0, 0.4281, 1.282, 2.141, 2.570 14, 17, 20
7 0, 1.261, 2.108, 2.946, 3.624 20, 25, 30
8 0, 0.706, 1.529, 2.235, 4.705 24, 33, 40
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the three operators chosen have appropriate tastes; if not,
the correlation function will be zero. The simplest way to
test this is to write down the correlation function using
naive quarks and apply the transformation to staggered
quarks so that the correlation function factorizes into a
product of a color trace over a product of staggered quark
propagators and a spin trace over a product of gamma
matrices. The spin trace will be zero if tastes have been
incorrectly combined [15].
This means that we must use two different operators

for the cl̄ pseudoscalar meson depending on whether the
current in the three-point correlation function is a scalar,
S ¼ ψ̄ s1 ⊗ 1ψc, or temporal vector, V0 ¼ ψ̄ sγ

0 ⊗ γ0ψc.
Wegive both operators here in their conventional “spin-taste”
notation. The fact that the spin and taste gamma matrices are
the same means that they are both local (i.e., with ψ and ψ̄
fields at the same point). The operators are implemented for
staggered quarks simply using a position-dependent pattern-
ing of �1 instead of γ matrices. In both cases we use an sl̄
pseudoscalar operator for theK meson of “Goldstone” form,
i.e., ψ̄ lγ

5 ⊗ γ5ψ s. For the D meson we can use this same
form, ψ̄ lγ

5 ⊗ γ5ψc, for correlation functions with the scalar
current, since this is taste singlet with a taste matrix of 1.
Since the local temporal vector current has taste γ0 we use
a different, but still local, operator in its correlation func-
tions. We distinguish this operator by denoting it by D̂;
D̂ ¼ ψ̄cγ

5γ0 ⊗ γ5γ0ψ l. We also calculate two-point corre-
lation functions for the Goldstone pseudoscalar K, and the
Goldstone and non-Goldstone D bilinears detailed above.
The D meson masses for the Goldstone and non-Goldstone
operators will not be the same but differ by a taste splitting
which is a discretization effect. These splittings are very
small for heavy mesons such as the D [15,27]. We demon-
strate that for this calculation in Appendix A.
We take the D meson to be at rest and give spatial

momentum to the K meson so that we can map out the
dependence of the form factors on q2. We do this by using
twisted boundary conditions [32] for the s-quark propaga-
tor. The twist is taken equally in all three spatial directions
to generate a momentum in the (1,1,1) direction, minimiz-
ing discretization effects for a given value of jp⃗Kj. The twist
angle, θ ¼ jap⃗KjNx=ð

ffiffiffi
3

p
πÞ, where Nx is the spatial extent

of the lattice in lattice units. Different values of momentum
were chosen so as to cover the full physical range of
momentum transfer, q, and the twists used are listed in
Table II.
We summarize below how the two-point correlation

functions are built from quark propagators, gqðxt; x0Þ, of
flavor q from point x0 ¼ ð0; x⃗0Þ to point xt ¼ ðt; x⃗tÞ. The
two-point correlators are labeled by the ground-state meson
in that channel

CDðtÞ ¼
1

4

X
x⃗0;x⃗t

hTr½g†cðxt; x0Þglðxt; x0Þ�i; ð14Þ

CD̂ðtÞ ¼
1

4

X
x⃗0;x⃗t

hð−1Þx̄00þx̄0t Tr½g†cðxt; x0Þglðxt; x0Þ�i; ð15Þ

where x̄μ ¼ P
ν≠μ x

ν, and

Cp⃗
KðtÞ ¼

1

4

X
x⃗0;x⃗t

hTr½gθ†s ðxt; x0Þglðxt; x0Þ�i: ð16Þ

The factor of 1=4 is the inverse of the number of staggered
quark tastes. We sum over the spatial components of xt
and x0; the sum for x0 is implemented using a random
wall source. The hi denote the average over gluon field
configurations in an ensemble and the trace is over color. θ
denotes the twist that gives spatial momentum to the s quark.
Three-point correlation functions are built similarly

[33,34] and labeled by the current operator

Cp⃗
Sðt; TÞ ¼

1

4

X
x⃗0;x⃗t;x⃗T

hTr½g†cðxT; xtÞglðxT; x0Þgθ†s ðxt; x0Þ�i;

ð17Þ

Cp⃗
V0ðt; TÞ ¼ 1

4

X
x⃗0;x⃗t;x⃗T

hð−1Þx̄0tþx̄0T

× Tr½g†cðxT; xtÞglðxT; x0Þgθ†s ðxt; x0Þ�i: ð18Þ

In the next section we discuss how we fit these two- and
three-point correlation functions to determine the D to K
matrix elements and hence form factors.

C. Correlator fits

We perform a simultaneous multiexponential fit to all of
the two- and three-point correlation functions on each
gluon field ensemble, using a standard Bayesian approach
[35].1 The fit form that we use for the two-point correlator
for meson H is

CHðtÞ ¼
XNexp

i¼0

ðjdH;n
i j2ðe−EH;n

i t þ e−E
H;n
i ðNt−tÞÞ

− ð−1Þt=ajdH;o
i j2ðe−EH;o

i t þ e−E
H;o
i ðNt−tÞÞÞ; ð19Þ

where we include on the first line a tower of excited states
of H of energy EH;n

i and amplitude dH;n
i above the ground

state (i ¼ 0) generated by our lattice operator. Staggered
quark operators also generate a tower of opposite parity
states that oscillate in time and we also include such states
in our fit (on the second line above) with their own
amplitudes and energies, dH;o

i and EH;o
i .

1We use the CORRFITTER package [36–38] to do this.
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Likewise the fit form for three-point correlators for
current J is

Cp⃗
J ðt; TÞ ¼

XNexp

i;j¼0

ðdK;ni Jnnij d
D
ð∧Þ

;n
j e−E

K;n
i te−E

D
ð∧Þ

;n
j ðT−tÞ

− ð−1ÞðT−tÞ=adK;ni Jnoij d
D
ð∧Þ

;o
j e−E

K;n
i te−E

D
ð∧Þ

;o
j ðT−tÞ

− ð−1Þt=adK;oi Jonij d
D
ð∧Þ

;n
j e−E

K;o
i te−E

D
ð∧Þ

;n
j ðT−tÞ

þ ð−1ÞT=adK;oi Jooij d
D
ð∧Þ

;o
j e−E

K;o
i te−E

D
ð∧Þ

;o
j ðT−tÞÞ:

ð20Þ

This includes the same towers of normal and oscillating
states for K and D as those in two-point correlation
functions. The only new parameters here are the three-
point amplitudes, Jij. To obtain these requires both two-
and three-point correlator fits so that the Jij can be
separated from the di and dj amplitudes.
The key parameters that we want to determine from these

fits are the ground-state to ground-state amplitudes, Jnn00 , for
the lattice temporal vector and scalar currents.We include the
tower of excited states to remove contamination of excited
states from the ground-state parameters and so that system-
atic errors from this contamination are fully included in the
uncertainties on theground-state parameters.Discardingdata
for t < tmin allows us to fit a finite number, Nexp, of excited
states, and tmin=a takes values in the range 2–5 for different
correlators and different lattice spacings. Our fits useNexp of
4 (a ¼ 0.15 and 0.12 fm lattices) and 5 (finer lattices).
Our fits use log-normal parameters to ensure non-negative

amplitudes di (because all of our two-point correlators have
the same operator at source and sink) and energy differences
between ordered states. We estimate priors for the ground-
state energies and amplitudes using the effective mass and
effective amplitudes, as in [34], and give each a broad
uncertainty (typically 5%), ensuring that the final result of
the fit ismuchmore precisely determined (by at least an order
of magnitude) than this prior. The ground-state energy in the
oscillating channel is taken to be 0.4 GeVabove the ground-
state D meson in the D correlator and 0.25 GeV above the
ground-state K meson in the K channel, using information
from the Particle Data Tables [3]. The prior widths are
typically taken as 20% of the energy for the oscillating
ground state, again many times broader than the output from
the fit. Likewise the priors for the ground-state to ground-
state Jnn00 are estimated from the three-point correlators by
dividing through by the relevant two-point correlators and
multiplying by their effective amplitudes. These priors are
given an uncertainty of 20%–50% depending on the ensem-
ble, again many times larger than the result from the fit.
For the K mesons with nonzero momentum, we take

priors for the ground-state energy and amplitude based on

the priors for the zero-momentum parameters and the
dispersion relation. Denoting the prior for parameter x as
P½x� we use

P½aEK
0;p⃗� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP½aEK

0;0⃗
�Þ2 þ ðap⃗Þ2

q �
1þ P½A�

�
ap⃗
π

�
2
�
;

P½dK
0;p⃗� ¼

P½dK
0;0⃗
�

ð1þ ðp⃗=P½EK
0;0⃗
�Þ2Þ1=4

�
1þ P½B�

�
ap⃗
π

�
2
�
:

ð21Þ

We take priors for A and B as 0� 1.
Priors for energy splittings between excited states are

taken as 0.5 GeV with a 50% uncertainty. Priors for excited
state nonoscillating and all oscillating amplitudes are
based on the size of ground-state amplitudes and generally
given 100% uncertainties. These are listed in Table V in
Appendix A along with the priors for the remaining Jklij .
Since we have many correlators on each gluon field

ensemble, the covariance matrix that must be inverted to
minimize χ2 in our fits is very large. For a finite number of
samples (gluon field configurations) there is a bias in the
small eigenvalues of the covariance matrix that needs to
be addressed in order to avoid underestimating uncertain-
ties on the fit parameters; see Appendix D of [39] for a
discussion of this. We address this bias by applying a
singular value decomposition (svd) cut on the eigenvalues
using tools provided in our fitting package [36] for
estimating an appropriate value. Using a svd cut leads to
an artificial reduction in the χ2 value and so we implement
additional “svd noise” [36,39] for a more reliable χ2 value.
Our fit results are all based on fits for which this χ2=d:o:f:
value is less than or close to 1.
The results for the ground-state parameters for our

preferred fits are given in Table VI in Appendix A.
Figure 2 shows an example of tests of the stability of our

correlator fits against a variety of changes. These tests are
performed on all of our fits. We give further tests of our fit
results in Appendix A.
Our fit results for the three-point amplitudes Jnn00 are

converted into the matrix elements we need in the following
way:

hKjJjD
ð∧Þ

i ¼ 2Zdisc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDEK

p
Jnn00 ; ð22Þ

where MD is the Goldstone D meson mass and EK the K
meson energy from the fit. We correct the normalization for
discretization effects using the results of [31]. Zdisc differs
from 1 at OððamcÞ4Þ, which is less than 1% in all cases
here; the values are given in Table I. For the temporal vector
current the matrix element obtained above is hKjV0

lattjD̂i.
This needs to be normalized by multiplication by ZV, which
is determined using the matrix elements at zero recoil and
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Eq. (13). The ZV values we obtain are listed in Table VI in
Appendix A.
The vector and scalar form factors can now be deter-

mined from the matrix elements for the temporal vector and
scalar currents on each gluon field ensemble using
Eqs. (10) and (11). Our results for the form factors are
listed in Table VI in Appendix A and plotted against q2 in
Fig. 3. Little dependence on lattice spacing or sea light
quark masses is visible. There are correlations between

form factor values on a given field ensemble and these are
captured in our correlator fits and passed on to the next
stage of fitting. These correlations are sizable between
results for a given form factor (fþ or f0) at small values of
the spatial momentum, close to zero recoil. They are also
substantial between fþ and f0 at large values of spatial
momentum close to q2 ¼ 0.
In the next section we discuss how we extrapolate

our form factor results as a function of q2 to the continuum
limit.

D. Evaluating form factors at the physical point

Our results for the form factors at each value of q2 on a
given gluon field ensemble differ from the physical curve of
fðq2Þ by discretization effects and the mistuning of valence
and sea quark masses. By fitting our results at multiple
values of the lattice spacing and for multiple sea quark
masses and allowing for valence quark mass mistuning we
can account for both of these systematic effects. At the
same time we interpolate in q2 to obtain the physical form
factor curves for the full kinematic range of q2 values.
Our preferred method for doing this is to extend the form

factors to an analytic function in the complex q2 plane and
then map the physical region into a line inside the unit circle
in z space. This enables a simple fit and a → 0 extrapolation
in z space and we can then transform back to q2. We will
describe that approach first in Sec. III D 1, along with a
variety of tests of its robustness. In Sec. III D 2 we will
compare results to a direct cubic spline fit in q2 space.

1. Using a z expansion

The physical region of q2 values for the D → K form
factors is from q2 ¼ 0 to q2max ¼ ðMD −MKÞ2. In the larger
complex t ¼ q2 plane we expect a branch cut to appear
from t ¼ tþ ¼ ðMD þMKÞ2 upward, corresponding toDK
production in the crossed channel. SinceMD þMK has the
value 2.36 GeV, we also have two poles below MD þMK
in this channel, corresponding to the vector D�

s meson and
the scalar D�

s0. We can map the cut-t plane into the interior
of the unit circle in z space using a standard mapping (see,
for example, [40]):

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p : ð23Þ

Here t0 is the point mapping onto z ¼ 0. We take t0 ¼ 0 for
simplicity but will show below that we get the same result
using other values of t0.
Since the form factor, with subthreshold poles removed,

is analytic we can fit to a polynomial form in z space,
modified by terms to allow for lattice discretization and
quark mass-mistuning effects [20]. We use the BCL para-
metrization [41],

FIG. 2. Stability plot for our fit on the set 5 (a ¼ 0.12 fm)
lattice, with our preferred fit using N ¼ 4 exponentials, shown as
the value at location 0. The different panels show (from the top)
the mass of theD (parameter ED;n

0 ), the ground-state energy of the
K (parameter EK;n

0 ) with the largest twist for this set of 2.646, and
the current matrix element for the temporal vector current Vnn

00

(parameter Jnn00 ) for twist 0.441. Tests 1 and 2 give the results from
including one fewer and one more exponential, respectively.
Test 3 increases tmin=a by 1 across the whole fit. Tests 4 and 5
double and halve the svd cut and tests 6 and 7 double and halve
all prior widths. The final test, 8, shows the results when the
single correlator is fit on its own or, in the case of Vnn

00 , just with
the D and K two-point correlation functions required, rather than
as part of one big simultaneous fit.

FIG. 3. f0 and fþ results on each of the eight ensembles,
marked by symbols as given in the legend. Our results cover the
full physical q2 range from q2 ¼ 0 to q2 ¼ ðMD −MKÞ2 ¼
1.88 GeV2. The solid blue and red curves correspond to our
fit results for the form factors in the continuum limit, as described
in Sec. III D.
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�
1 −

q2

M2
D�

s0

�
f0ðq2Þ ¼ ð1þ LðmlÞÞ

XN−1

n¼0

a0nzn;

�
1 −

q2

M2
D�

s

�
fþðq2Þ ¼ ð1þ LðmlÞÞ

×
XN−1

n¼0

aþn

�
zn −

n
N
ð−1Þn−NzN

�
:

ð24Þ

We now describe each piece of this fit form in turn.
The factors of 1 − q2=M2 on the left-hand side of

Eq. (24) remove the subthreshold poles in the scalar and
vector channels discussed above. The physical masses of
the two mesons that appear are well known from experi-
ment [3]. It is convenient in our calculation to use pole
masses that are related to our D meson masses to minimize
uncertainties from the lattice spacing. We therefore use two
simple formulas for the pole masses in Eq. (24):

MD�
s0
¼ MD þ Δ0;

MD�
s
¼ MD þ Δ1; ð25Þ

where Δ0 ¼ Mphys
D�

s0
−Mphys

D and Δ1 ¼ Mphys
D�

s
−Mphys

D using

mass values from [3]. Mphys
D is the average of the exper-

imental masses for Dþ and D0. The MD values in Eq. (25)
correspond to those from our lattice QCD calculation and the
Δ values are constructed so that the pole masses in Eq. (24)
are equal to the appropriate experimental masses when our
lattice results are extrapolated to the physical point.
Figure 4 shows our results for the form factors with poles

removed [i.e., the left-hand side of Eq. (24)] as a function
of z. We can see that the z dependence is very benign,
almost linear with opposite sign gradients for fþ and f0,
and there are no large deviations for discretization effects or
mistuning of sea quark masses. This enables a simple fit
in z space.
On the right-hand side of Eq. (24) we have a polynomial

expansion in z multiplied by a term that includes a chiral
logarithm, a function of the light quark mass. We discuss
the logarithmic term below but first describe the poly-
nomial expansion. We include N powers of z starting from
z0 and take each coefficient to be of the form

a0;þn ¼ ð1þN 0;þ
n Þ ×

XNj−1

j¼0

d0;þjn

�
amval

c

π

�
2j
: ð26Þ

We take N ¼ Nj ¼ 3 for our preferred fit and will show
below that our fits are stable to a change in the number of
terms. Equation (26) allows for discretization effects in the
coefficients of the z expansion when j is nonzero. For the
HISQ action, discretization effects appear as even powers
of the inverse lattice cutoff a=π. We allow for discretization

effects that are set by the charm quark massmc since that is
the largest energy scale here. The coefficients that set the
discretization effects, d0;þjn for j > 0, take independent
values for different values of n to allow for z-dependent
(q2-dependent) discretization effects. They also take inde-
pendent values for fþ and f0. In the absence of discretiza-
tion effects we have the kinematic constraint that
fþð0Þ ¼ f0ð0Þ. Since we are using t0 ¼ 0, we can easily
enforce this constraint by setting dþ00 ¼ d000.
TheN 0;þ

n term encodes (nonlogarithmic) dependence on
quark masses, again with independent coefficients for each
value of n:

N 0;þ
n ¼ cval;0;þs;n δvals þ cval;0;þl;n δvall

þ csea;0;þs;n δseas þ 2csea;0;þl;n δseal

þ c0;þc;n

�
Mηc −Mphys

ηc

Mphys
ηc

�
: ð27Þ

FIG. 4. Our lattice results for f0 and fþ on each of the eight
ensembles, plotted as a function of z [Eq. (23)]. In both cases the
expected pole has been removed. The points plotted then
correspond to the left-hand side of Eq. (24). The solid blue
and red curves correspond to the fit described in the text evaluated
in the continuum limit and with quark masses tuned to their
physical values. The curves are plotted for the range in z
corresponding to the physical range in q2. The black dashed
lines give the fit results evaluated for each set of gluon field
configurations.
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In the first four terms,

δq ¼
mq −mtuned

q

10mtuned
s

ð28Þ

takes account of the mistuning of the light and strange
valence and sea quarks, relative to the tuned s-quark
mass. Dividing by mtuned

s makes this a physical, scale-
independent, ratio and the factor of 10 matches this
approximately to the usual expansion parameter in chiral
perturbation theory. We tune the ms mass using the mass of
the artificial ss̄ pseudoscalar meson, the ηs, whose mass can
be determined in terms of those of the π and K mesons in
lattice QCD [30,42]. mtuned

s is obtained on each ensemble
from [43]

mtuned
s ¼ mval

s

�
Mphys

ηs

Mηs

�
2

; ð29Þ

withMphys
ηs ¼ 0.6885ð20Þ GeV [30]. We then determine the

tuned l-quark mass from this using [5]

mtuned
s

mtuned
l

¼ 27.18ð10Þ: ð30Þ

The final term in Eq. (27) allows for mistuning of the
valence c-quark mass. We takeMphys

ηc equal to 2.9766 GeV,
allowing for the fact that the ηc mass determined from
quark-line connected diagrams (only) on the lattice differs
from the experimental value [3] by 7 MeV [44].
Returning to Eq. (24), the first term on the right-hand

side allows for the chiral logarithms expected from hard
pion chiral perturbation theory [45]. Following [46] we
include a chiral logarithm term multiplying the polynomial
in z for both fþ and f0. Because our light quark masses
are small (with maximum ml=ms ¼ 0.2) the K meson
mass changes very little between different values ofml. We
therefore only include the chiral logarithm associated with
the π meson mass:

LðmlÞ ¼ −
9g2

8
xπðlog xπ þ δFVÞ; ð31Þ

where xπ ¼ M2
π=Λ2

χ , with Λχ the chiral scale of 4πfπ. We
rewrite xπ in terms of quark masses as ml=ð5.63mtuned

s Þ,
using the ratio of Λχ toMηs to evaluate the chiral logarithm
accurately. δFV above is a finite-volume correction, calcu-
lated for each ensemble at the pion mass [see Eq. (47) of
[47] ]. δFV has a negligible effect in our fit. We take the
DD�π coupling, g ¼ 0.570ð6Þ from [48]. As shown in
Eq. (27) we include other terms in our fit, independently
for each z-expansion coefficient, to allow for (analytic)
dependence onml from chiral perturbation theory. Our fit is
not able to distinguish between linear and logarithmic
dependence and so, as we will show below, gives the same

result if the chiral logarithm of Eq. (31) is dropped. We
include it in our preferred fit, however.
The priors on the d0n in Eq. (26) that give the z-

expansion coefficients in the continuum limit are taken
to be 0� 2. All other d coefficients that set the discretiza-
tion effects are given prior 0� 1. The c coefficients in
Eq. (27) that account for valence mass mistuning are given
priors 0� 1; those that correspond to the smaller sea quark
mass effects are given priors 0� 0.5. An Empirical Bayes
study [35] suggests that our priors are conservative.
Our preferred fit, as described above, returns a χ2=d:o:f:

of 0.67 with 64 degrees of freedom. The stability of this fit
against a variety of changes is demonstrated in Fig. 5. We
show the impact of omitting sets of lattice results, changing
the numbers of terms in the z expansion and the number of
discretization effects considered as well as doubling and
halving the prior widths on all of the d coefficients.
Modifications to the fit in which we drop the logarithmic
term of Eq. (31) or remove the constraint that fþð0Þ ¼
f0ð0Þ are tested. We also show the impact of changing t0
from zero to the choice t0 ¼ tþ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − t−

tþ

q �
, which

minimizes the maximum magnitude of z as well as the
choice t0 ¼ t− ≡ ðMD −MKÞ2. In both of these cases we
implement the constraint that fþð0Þ ¼ f0ð0Þ by setting the
difference between them equal to a parameter with prior
0� 1 × 10−6. These two different values of t0 correspond

FIG. 5. Stability test of the z-expansion fit; 0 marks our final
result. Test 1 removes all the results from gluon field configu-
rations with ms=ml ¼ 5, so that only sets 1–3 remain. Test 2
removes the results from sets 1–3 and fits the others. Test 3 takes
t0 in the q2 to z mapping to the “minimum” prescription
described in the text. Test 4 sets t0 to t−. Test 5 includes an
extra term in the sums over n up to N and over j up to Nj

[Eqs. (24) and (26)]. Test 6 removes the highest momentum data
point for each gluon field ensemble (and highest two on set 7 so
that there are no results included with q2 < 0). Test 7 doubles the
width of all “d” priors (this decreased the Gaussian Bayes factor),
and test 8 halves them. Test 9 sets the logarithmic factor LðmlÞ to
zero [Eq. (31)]. Test 10 shows the results of a completely different
kind of fit, a cubic spline fit in q2 discussed in Sec. III D 2. Test 11
removes the f0ð0Þ ¼ fþð0Þ constraint, in this case the black point
is f0ð0Þ and the red is fþð0Þ.
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to different ranges for the fit in z space with the q2

distribution mapped very differently into z space. The
good agreement is a strong validation of the z-expansion
approach. In Sec. III D 2 we consider a completely different
kind of fit, to cubic splines in q2 space, and compare the
results of that also in Fig. 5. Our fit result is stable against
all of these changes, although the uncertainties increase
significantly if the lattice results for physicalml values (sets
1–3) are dropped. Dropping all of the lattice results for the
unphysical ml values (sets 4–8) also increases the uncer-
tainties but to a lesser extent. Note that dropping specific
single lattices makes very little difference; the finest lattices
(set 8) have almost no impact on the fit result.
In the next section we compare our z-expansion fit to a fit

in q2 space using cubic splines.

2. Using a cubic spline in q2

There are choices to be made in implementing a z
expansion, from the choice of t0 in the q2 to z mapping to
the prefactors in front of the polynomial in z [compare the
form we use in Eq. (24) to that used for the shape
parameters in Eq. (36)]. Here, since we have precise lattice
QCD results over the full q2 range of the decay, we can test
a completely model-independent approach to the fit. Using
cubic splines allows us to fit a very general function directly
in q2 space. We use the Steffen spline [49] to do this and
denote each spline function, giðq2Þ. After removing the
expected pole, as described in Sec. III D 1, and including
the chiral logarithm term of Eq. (31), we use a spline
function g0 to describe the physical dependence of each
form factor on q2 and further spline functions to account for
discretization and quark mass-mistuning effects. The fit
forms are given by
�
1 −

q2

M2
D�

s0

�
f0ðq2Þ ¼ ð1þ LðmlÞÞ

×

�
g00ðq2Þ þ

XNj−1

j¼1

�
g0jðq2Þ

�
amc

π

�
2j
þN 0

��
;

�
1 −

q2

M2
D�

s

�
fþðq2Þ ¼ ð1þ LðmlÞÞ

×

�
gþ0 ðq2Þ þ

XNj−1

j¼1

�
gþj ðq2Þ

�
amc

π

�
2j
þNþ

��
: ð32Þ

We take Nj ¼ 2 but taking Nj ¼ 3 gives no significant
difference. For N we use further spline functions:

N 0;þ ¼ gval;0;þs δvals þ gval;0;þl δvall þ gsea;0;þs δseas þ 2gsea;0;þl δseal

þ g0;þc

�
Mηc −Mphys

ηc

Mphys
ηc

�
: ð33Þ

The definitions of δl and δs are given in Eq. (28).

All of the spline functions use the same four knots,
positioned at q2 values at either end of our range of results
and with two values in between. This gives knot positions
at f−3.25;−1.5; 0.25; 2.0g GeV2. We take priors on the
values of the spline functions at these knots. For g0;þ0 , which
give the form factors in the continuum limit at physical
quark masses, we take 0.75(15). This is informed by the
range of the raw lattice results with pole removed (see
Fig. 4). The priors for the gj, gs, and gl are taken to be 0.0
(5) and for the gc 0.0(1.0).
The spline fit returns a χ2=d:o:f: value of 0.66 for

65 degrees of freedom. The form factors at the physical
point can then be reconstructed from the g0ðq2Þ spline
functions along with the ð1þ LðmlÞÞ and pole factors. A
comparison of the form factors at the physical point with
those from our z-expansion fit of Sec. III D 1 is shown in
Fig. 6. We see good agreement across the q2 range. The
cubic spline results are slightly less accurate (see also
Fig. 5) but the cubic splines also explore nonanalytic
functions of q2 that we do not expect to contribute to
the form factors. This is why we prefer the z-expansion fit
results.

IV. RESULTS FOR FORM FACTORS

In Sec. III D 1 we described how we fit the lattice form
factor results, obtained at specific values of momentum for
a set of lattice spacing values and quark masses, to a
functional form (Eq. (24) that allows us to interpolate in q2

and extrapolate to zero lattice spacing and physical quark
mass values. To obtain the form factor at the physical point
we set N n and a to zero in Eq. (26), so that a0;þn ¼ d0;þ0n .
These values of an are then substituted into Eq. (24) with
LðmlÞ evaluated for physical ml=ms [Eq. (30)] and δFV set
to zero.MD�

s
andMD�

s0
take their experimental values [3] in

the pole factors.

FIG. 6. A comparison of the fþ and f0 form factors, at the
physical point (a ¼ 0 and physical quark masses), obtained from
our preferred z-expansion fit of Sec. III D 1 and from a cubic
spline fit in q2 of Sec. III D 2.
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In our lattice calculation we have degenerate u and d
quarks with mass ml (for both valence and sea). Our
physical point is defined as that where ml has a value equal
to the physical average for u and d from Eq. (30). We
therefore do not distinguish between form factors forD0 →
K− and Dþ → K0 decay. Our decay process is that for a D
with the average mass of D0 and Dþ to that of a K meson
with the average mass of a Kþ and a K0. When we
determine Vcs in Sec. V we will include an uncertainty to
allow for the fact that mu ¼ md in our calculation.
The form factors obtained in the continuum limit and

with physical quark masses are plotted as a function of q2

in Fig. 7.
Table III gives the parameters needed to reconstruct our

form factors at the physical point. As discussed above these
are the a0;þn coefficients of the z expansion [Eq. (23)] in the
a → 0 limit with physical quark masses. The form factors
are then reconstructed from

f0ðq2Þ ¼
ð1þ LðmlÞÞ
ð1 − q2=M2

D�
s0
Þ
X2
n¼0

a0nzn;

fþðq2Þ ¼
ð1þ LðmlÞÞ
ð1 − q2=M2

D�
s
Þ
X2
n¼0

aþn ðzn þ
n
3
ð−1Þnz3Þ: ð34Þ

Table III gives the coefficients and also their correlation
matrix, including their correlations with LðmlÞ and the D�

s
and D�

s0 pole masses.
Figure 8 shows a breakdown of our errors as a function of

q2. We see that the total uncertainty is dominated by the
statistical errors in the lattice QCD results. These can be
reduced by collecting higher statistics, particularly on the
finest lattice, set 8, where our statistical sample is not very
large. The uncertainties are larger for fþ than f0; this is
because of theway that the form factors are determined using
Eqs. (10) and (11). The uncertainty for fþ increases close to
zero recoil. This is becausewe have used the temporal vector
current to determine fþ. Using a spatial vector current
reduces this uncertainty, but it requires additional correlators
to be calculated so we have not done that here. The region of
q2 close to zero recoil is not important for the determination
of Vcs, as we shall see in Sec. VA.

A. Comparison to previous results

We can compare our results for the D → K form factors
to those from earlier full lattice QCD calculations (all of
which have mu ¼ md). In Fig. 9 we show the comparison
of results at the two ends of the physical q2 range, q2 ¼ 0

and q2 ¼ q2max ¼ ðMD −MKÞ2. For our results at q2max
we use, as discussed above, MD ¼ ðMDþ þMD0Þ=2
and MK ¼ ðMKþ þMK0Þ=2. Previous results are from
HPQCD: Ref. [19] calculating only the scalar form factor
[in order to obtain the vector form factor at q2 ¼ 0 from
fþð0Þ ¼ f0ð0Þ] and Ref. [20] calculating the vector and

FIG. 7. Our results for the fþ and f0 form factors, at the
physical point (a ¼ 0 and physical quark masses), as a function
of squared momentum transfer, q2.

TABLE III. Values and uncertainties for the fit coefficients a0;þn , pole masses, and chiral logarithmic term ð1þ LðmlÞÞ for the
reconstruction of our form factors at the physical point as a function of q2 from Eq. (34). The correlation matrix between these
parameters is given below the row with their values. The pole masses are in GeV. The pole masses and LðmlÞ are very slightly correlated
due to the way the fit function is constructed. These correlations are too small to have any meaningful effect on the fit, but we include
them for completeness in reconstructing our results.

a00 a01 a02 aþ0 aþ1 aþ2 Mphys
D0

s
Mphys

D�
s

ð1þ LðmlÞÞ

0.7292(43) 0.825(80) 0.72(50) 0.7292(43) −0.95ð10Þ 1.1(1.3) 2.31780(50) 2.11220(40) 1.01200(26)

1.00000 0.73103 0.51757 1.00000 0.29251 0.02299 −0.00023 −0.00005 −0.04904
1.00000 0.90723 0.73103 0.49742 0.01488 −0.01619 0.00001 −0.00795

1.00000 0.51757 0.52335 0.00600 0.00368 0.00003 −0.00222
1.00000 0.29251 0.02299 −0.00023 −0.00005 −0.04904

1.00000 0.49065 0.00007 −0.01488 0.00553
1.00000 0.00019 0.00362 −0.00017

1.00000 −0.00000 −0.00000
1.00000 0.00000

1.00000
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scalar form factors across the full q2 range of the decay.
Both of these calculations were done on gluon field
configurations that include 2þ 1 flavors of asqtad sea
quarks. More recently ETMC has completed a calculation
of the vector and scalar form factors across the full q2 range
using gluon field configurations with 2þ 1þ 1 flavors of
twisted-mass sea quarks [21,22]. Our results here include
2þ 1þ 1 flavors of HISQ sea quarks and are plotted as the
leftmost results in Fig. 9. They show a significant improve-
ment in uncertainty over the earlier results.

Our results (plotted in Fig. 9) are

fþ;0ð0Þ ¼ 0.7380ð44Þ;
f0ðq2maxÞ ¼ 1.0158ð41Þ;
fþðq2maxÞ ¼ 1.465ð20Þ: ð35Þ

We observe a 2σ tension with the results of [21] at q2max.
Since the experimental differential rate for light leptons

is proportional to the square of the vector form factor
[Eq. (8)], the form factor shape can be determined from
experiment. The experimental shape parameters come from
a z-expansion fit but from a somewhat different one than
the one that we have used here. To make a comparison we
therefore need to fit our results in terms of the z expansion
used by the experiments. We do this by a “refitting”
procedure that we describe in Appendix B. The fit form
used by the experiments is [40]

fþðq2Þ ¼
1

zðq2; t0 ¼ M2
D�

s
Þϕðq2Þ

XN−1

n¼0

anzn; ð36Þ

where ϕ is an “outer function” given in Eq. (B2) and t0 is
taken to be the value which minimizes the maximum value
of z in the q2 to z mapping [Eq. (23)]. The ratios a1=a0 and
a2=a0 and their correlation coefficient then define the
shape of the vector form factor. Experimental results from
[50–52] are plotted in Fig. 10.
By fitting our form factors at the physical point (from

Table III) to the form in Eq. (36) we obtain a1=a0 ¼
−2.18ð14Þ and a2=a0 ¼ 0.6ð1.5Þ with a correlation coef-
ficient of ρ12 ¼ −0.70. As is clear from Fig. 10 this agrees
well with the experimental shape parameters, providing
a good test of QCD. The HFLAV average [53] of the

FIG. 8. Uncertainties for f0 and fþ (formu ¼ md) as a function
of q2. The red line “Inputs” shows the uncertainties coming from
fixed inputs, such as experimental meson masses used in the
analysis. The purple line “q mistunings” adds in uncertainties
arising from mistuning of valence and sea quark masses. The blue
“Statistics” line further adds the statistical uncertainties from the
lattice results (correlator fits). Finally, the black line (“Discreti-
zation”) gives the total uncertainty, now including the contribu-
tion from discretization effects. These uncertainties add in
quadrature, so we plot the squared percentage error and include
an axis showing the corresponding percentage error on the right
for clarity.

FIG. 9. Comparison of our lattice form factors at q2 ¼ 0 and
q2max with earlier lattice QCD calculations. The points marked
“HPQCD ’10” are from [19]; the points marked ‘HPQCD ’13’
from [20], and the points marked “ETMC ’17” from [21,22]. A
preliminary analysis of the scalar form factor in [24] gives
f0ð0Þ ¼ 0.768ð16Þ, but we have not plotted that point. Our
new results [Eq. (35)] are labeled “HPQCD ’21” and demonstrate
a significant improvement in uncertainty over earlier values.

FIG. 10. Comparison of the shape of the vector form factor for
D → K expressed in terms of ratios of the z-expansion coef-
ficients a1 and a2 to a0 for the fit form of Eq. (36). Ellipses give
the 68% confidence limits (Δχ2 ¼ 2.3). Experimental results are
from [50–53]. CLEO results are for D0 → K−eþνe (dark blue)
and Dþ → K̄0eþνe (light blue); all other experimental data is for
D0 → K−eþνe. The HFLAV experimental average [53] is given
as the red ellipse. Our results here are given by the black ellipse,
showing good agreement.
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shape parameters is more accurate than the individual
experimental results giving a1=a0 ¼ −2.38ð13Þ: a2=a0 ¼
4.7ð3.0Þ and ρ12 ¼ −0.19. The agreement of our results
with this average is particularly striking.

B. Tests of lepton flavor universality

In the Standard Model the three charged leptons are
copies of each other apart from having different masses.
Hints are seen in experiment of violations of this lepton
flavor universality in B decays (for a review see [54]) and
this motivates a search for this also inD decays [55,56]. We
can only compare results with μ and e in the final state
for D → K decay because the production of τ leptons is
kinematically forbidden. The BES experiment recently
measured the ratio Rμ=e of branching fractions to μ and
to e as a function of q2 [57]. We can calculate this ratio very
accurately from our form factor results using Eq. (8),
because there is a lot of cancellation of uncertainties in the
form factors in the ratio. If we ignore long-distance QED
corrections (to be discussed below) we can compare the
BES results to the curve derived from our form factors
(solid black line) in Fig. 11. We see good agreement across
the q2 range. To quantify this agreement it would be
necessary to have a correlation matrix for the experimental
results. Rμ=e is smaller than 1 at small values of q2, where
the factor ð1 − ϵÞ2 in Eq. (8) has an effect for the μ. It is
larger than 1 at large values of q2 where the term containing
the scalar form factor, f0, contributes.
The ratio of branching fractions to μ and to e, Rμ=e can be

obtained by integrating Eq. (8) from q2 ¼ m2
l to q2max. We

take q2max from the D and K masses averaged over charged

and neutral cases, although other choices make negligible
difference. Our result for the ratio of branching fractions then
has a 0.02%uncertainty from lattice QCD.A larger source of
uncertainty is the difference of long-distance QED correc-
tions to the rate in the μ and e cases. This could be a sizable
effect when there are electrically charged mesons in the final
state, as in the BES experimental results which correspond to
D0 → K− decay. Our result for Rμ=e is then

Rμ=e ¼ 0.9779ð2Þlattð50ÞEM; ð37Þ

allowing a 0.5% uncertainty for the difference of QED
corrections in theD0 → K− case. Our Rμ=e agrees well with
the BES result of 0.974(7)(12) [57] but is much more
accurate. We see some tension with the earlier ETMC result
[22] for this ratio using lattice QCD of 0.975ð1Þlatt.
Violation of lepton flavor universality might be seen in

comparison to the curve of Fig. 11 with accurate enough
experimental results, up to possible QED effects. We
illustrate the impact of a new physics scalar coupling in

the μ sector, CðμÞ
S , with red and blue dashed lines. CðμÞ

S
would multiply a new physics contribution to the effective
Lagrangian consisting of a scalar s̄c current multiplying a
ν̄μμ current. Such a term affects theD → K differential rate,
modifying the coefficient of the scalar form factor in Eq. (8)

by a factor of jð1þ CðμÞ
S q2=ðmμðms −mcÞÞÞj2 [55], where

ms and mc are the strange and charm quark masses. We
show results for two possible real values of CS such that

ζS ≡ CðμÞ
S

ms −mc
¼ �0.1 GeV−1; ð38Þ

which roughly encompass the range of variation of the
central values of the BES data points from our Standard
Model curve.
Angular variables can also provide sensitive tests of the

Standard Model and constraints on new physics. Figure 12
plots the forward-backward asymmetry, AFB, of the muon
in D → Kμν̄ decay as a function of q2 in the Standard
Model from our form factors (solid black line), ignoring
possible QED corrections. This asymmetry is defined using
the angle θl between the charged lepton momentum in the
W rest frame and the W momentum vector in the D rest
frame. θl is shown in Fig. 12 and takes the range 0 to π.
AFB is then defined as

AðlÞ
FBðq2Þ ¼ −

bl
dΓðlÞ=dq2

; ð39Þ

where

dΓðlÞ

dq2d cos θl
¼ alðq2Þ þ blðq2Þ cos θl þ clðq2Þ cos2 θl:

ð40Þ

FIG. 11. Lepton flavor universality tests in D → K decay. The
solid black curve as a function of q2 shows the Standard Model
ratio of branching fractions for a muon in the final state to that for
an electron obtained from our form factors using Eq. (8). The
width of the curve gives the (very small) uncertainty from our
results. Possible QED effects are not included here. The points,
with error bars, are from the BES experiment [57]. For illustration
the red and blue dashed lines show what the curve would look
like in the presence of a new physics scalar coupling for the μ case
[see Eq. (38) for definition of ζS].
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AFB ¼ 0 for massless leptons because only the helicity zero
component of the W can contribute. For massive leptons
there is an interference term between scalar and vector form
factor contributions [55]. Figure 12 shows that this has a
sizable effect for muons in the final state, particularly close
to q2 ¼ 0.

AðμÞ
FB forD → K decay would be modified in the presence

of a (real) scalar coupling from new physics because this
affects the vector/scalar interference term. Figure 12 shows
the impact of two possible values of this coupling, as in
Eq. (38) and Fig. 11. The impact of the new coupling is
mainly at large q2 values where AFB is small. A positive

value of CðμÞ
S (negative value of ζS) can change the sign of

AFB from that expected in the Standard Model at large q2.

V. DETERMINATION OF jVcsj
Using the measured experimental rates for theD → Klν̄

decay we can determine the CKM element jVcsj. The
accuracy with which this can be done depends on the
accuracy of both the experimental results and the accuracy
of the lattice QCD form factors for the decay process.
We show here that our improved form factor determination
yields a significant improvement in the values of Vcs
obtained. We give three different methods for determining
Vcs. Our preferred approach (Sec. VA) is to use the

experimental differential decay rate and Eq. (8), integrated
over the q2 bins used by the experiment [20]. This is the
most direct approach, enabling use of the q2 region where
the experimental results are most accurate and testing the
q2 dependence of the differential rate at the same time
(although agreement here has already been demonstrated
in Fig. 10). It requires experimental measurement of the
differential rate with a covariance matrix for results in
different bins and this is not always possible. We there-
fore also determine Vcs in Sec. V B from the total rate,
integrated over all q2. In Sec. V C we apply a third method
that uses quoted experimental values from fitting the
differential rate and extrapolating to q2 ¼ 0.
Before giving details of these methods, we first discuss

and estimate two further sources of systematic uncertainty
beyond those of our calculated form factors and the
experimental results:
(1) mu ≠ md.—In determining Vcs we will use our form

factors obtained in QCD with mu ¼ md. The ex-
perimental results, however, correspond to the case
with either valence u quarks (for D0 decay) or
valence d quarks (for Dþ decay). We therefore need
to allow an uncertainty in our calculation for this
mismatch. In determining the form factors at the
physical point in Sec. III D we set the physical value
of the light quark mass, ml, from Eq. (30). We can
test the effect of having a different light quark mass
(corresponding to u or d) by changing this condition.
We take md=mu ≈ 2 [3] so that mu=ms ≈ 2=ð3 ×
27.18Þ and md=ms ≈ 4=ð3 × 27.18Þ and compare to
our original results using Eq. (30). We find a change
in our form factors of, at most, 0.15%. Note that the
calculation we really want to match to experiment
changes only the light valence quark mass to u or d,
leaving the sea the same (with u and d quarks that
match, to a linear approximation in quark mass, two
quarks with mass ml equal to their average). To do
this would require additional lattice calculations so
here we simply take an additional uncertainty of
0.15% on our form factors (across the q2 range) to
account for this. This corresponds to 0.25σ at q2 ¼ 0
[see Eq. (35)].

(2) QED.—Another issue that we must address in
determining Vcs is that of (long-distance) electro-
magnetic corrections. There are QED effects inside
the mesons arising (mainly) from the valence quark
electric charges. There are also effects from photon
radiation, mainly from final-state interactions, that
could be more sizable for the case where a chargedK
is produced. The experimental results include tests
and corrections for radiated photons, to produce a
photon-inclusive rate; this is typically done using
PHOTOS [58] (see, for example, the discussions in
[50,51]). In Eq. (8) we include a factor of ð1þ δEMÞ
to allow for the effects of QED radiation as a

FIG. 12. The forward-backward asymmetry of the muon
produced in D → K decay. This is defined with respect to the
angle θl in theW rest frame indicated in the figure at the top. The
solid black line shows the Standard Model result derived from our
form factors, including the lattice QCD uncertainty but ignoring
any uncertainty from possible QED corrections. For illustration
the red and blue dashed lines show what the curve would look
like in the presence of a new physics scalar coupling for the μ case
[see text and Eq. (38)].
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q2-independent uncertainty, since these effects have
not been calculated. For K → π semileptonic decay,
where the electromagnetic corrections have been
calculated, results range from δEM ≈ 0 for neutral
final-state mesons to δEM ≈ 0.7% [59] for charged
final-state mesons and with small differences be-
tween e and μ leptons in the final state. Here we will
take independent uncertainties of δEM ¼ �1% for
the charged final-state case (D0 → Kþ) and �0.5%
for the neutral final-state case (Dþ → K0). We will
also take independent δEM for the case with final
state μ from that with final state e, since these could
differ. In our final result we will keep the QED
uncertainty as a separate factor so that in the future it
can be adjusted in the light of new information on
these corrections (for example from lattice QCDþ
QED calculations [60]).

A. Using the differential rate

We can use our form factor results across the full
physical q2 range to compare bin by bin in q2 with
experimental values of partial decay rates. For a given
bin ðq2i ; q2iþ1Þ the partial width is given by [from Eq. (8)]

ΔiΓ ¼
Z

q2iþ1

q2i

dΓ
dq2

dq2

¼ G2
FjηEWVcsj2ð1þ δEMÞ

24π3

×
Z

q2iþ1

q2i

dq2
�
jp⃗Kj3ð1 − ϵÞ2

�
1þ ϵ

2

�
jfþðq2Þj2

þ jp⃗Kjð1 − ϵÞ2M2
D

�
1 −

M2
K

M2
D

�
2 3ϵ

8
jf0ðq2Þj2

�
: ð41Þ

The terms containing ϵ≡m2
l=q

2 have almost no impact
here for either l ¼ e or l ¼ μ but we include them
nevertheless. We take GF ¼ 1.1663787ð6Þ × 10−5 GeV−2

[3] from the muon lifetime and ηEW ¼ 1.009ð2Þ [Eq. (9)].
ð1þ δEMÞ allows for uncertainty from electromagnetic
corrections, as discussed above. We perform the integral
on the right-hand side of Eq. (41) numerically for each ΔiΓ
matching those used in the experiment and carefully
including the correlations of the form factor values between
bins. As discussed above we use our form factors deter-
mined using mu ¼ md and include an additional 0.15%
uncertainty to allow for variations between this and the
experimental cases. For all of the kinematic factors in
Eq. (41) we use the experimental meson masses [3] for the
charged or neutral meson cases as appropriate for that set of
experimental data.
Comparison to the experimental results enables us to

determine jηEWVcsj2ð1þ δEMÞ for each bin and obtain a
result as a weighted average across q2 bins. We use experi-
mental results for which a covariance matrix is provided for

the partial rates between q2 bins.We add covariancematrices
for statistical and systematic uncertainties where they are
provided separately (effectively adding the uncertainties in
quadrature). In some cases an overall uncertainty on each
bin is given along with the percentage breakdown into
systematic and statistical uncertainty. We use this, along
with the correlation matrices given, to obtain the separate
covariance matrices and add them.
CLEO results are taken from [50], where both D0 →

K−eþνe and Dþ → K̄0eþνe differential rates are measured
and the correlations between them given. Partial rates were
taken from Table V, and σstati , σsysti , and their covariance
matrices were calculated using these, the percentage error
breakdowns in Tables VII and VIII and the correlation
matrices in Tables XVI and XVII. These covariance
matrices are then easily included in our calculation using
the GVAR package [37]. Our determination of Vcs on a bin-
by-bin basis is shown for the CLEO results in Figs. 13 and
14. The fit for the weighted average gives a χ2=d:o:f. of
0.64 in the D0 case and 1.7 in the Dþ case. In both cases
there are 9 degrees of freedom. The q2 bins with the
minimum total uncertainty are at the small q2 end of the
range, where the experiment is most accurate.
BABAR results are taken from [51]; these are for the

D0 → K−eþν̄e decay normalized by the branching fraction
for D0 → K−πþ. Table II gives the normalized decay
distribution and total correlation matrix. The leading
diagonal values of the matrix give the σi. The distribution
has been normalized so that the sum over all bins equals
unity. A value is also given for

R ¼ BðD0 → K−eþνeÞ
BðD0 → K−πþÞ ; ð42Þ

FIG. 13. Plot of the determination of jηEWVcsj2ð1þ δEMÞ per
q2 bin for CLEO D0 results [50]. The total uncertainty for each
bin is given in black and this is broken down into experimental
(blue) and theoretical (red) contributions, the latter coming from
our form factors. Each data point is centered on the q2 bin it
corresponds to. Note that the uncertainties are correlated between
q2 bins. The purple band gives the weighted average for these
data points, with all correlations included.
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which is included in the correlation matrix. Using
this value, and multiplying by the global average
for BðD0 → K−πþÞ ¼ 0.03950ð31Þ [3], we determine
BðD0 → K−eþνeÞ. This allows us to extract the branching
fractions per bin from the decay distribution and convert
these to partial rates by dividing by the D0 lifetime τD0 ¼
4.101ð15Þ × 10−4 ns [3]. We drop the largest q2 bin from
our weighted average fit (because it is equal to 1 minus the
sum of the others from the normalization constraint). We
include the normalization uncertainty after averaging to
avoid normalization bias. Our determination of Vcs from
the BABAR results is shown in Fig. 15 and has a χ2=d:o:f:
of 0.9 with 9 degrees of freedom.
BES results are taken from [52] for the D0 decay

channel. The data can be found in Table V, and the
breakdown of the percentage errors and correlation matri-
ces for systematic and statistical uncertainty are given in
Tables IX and XI. BES results for theDþ channel are given
in [61] (Table VI). Our determination of Vcs on a bin-by-
bin basis is shown for these two sets of BES results in
Figs. 16 and 17, with χ2=d:o:f: 1.1 (d:o:f: ¼ 18) and 0.9
(d:o:f: ¼ 9), respectively.
The determinations of Vcs from each experiment and

each q2 bin are plotted together as a function of q2 in
Fig. 18. The weighted averaged results for jVcsj for each
experiment are then compared in Fig. 19. The jVcsj result
for each experiment is obtained by dividing the square root
of the weighted average of jVcsj2η2EWð1þ δEMÞ over the q2
bins by ηEW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ δEMÞ
p

.
The results from each experiment are combined to give a

total average for jVcsj which is shown by the purple band
in Figs. 18 and 19. Here we have assumed that correla-
tions between the different experiments can be ignored.

However, we do not include both sets of BES data, since the
correlations between the two sets are not given. We include
the more precise BES D0 results [52] in Fig. 18 and
drop the BES Dþ values. We note that in each q2 bin the
experimental error dominates over that from theory (our
form factors). The fact that there are multiple sets of
uncorrelated experimental results but only one set of lattice
QCD form factors means that in the final average, however,
the theory uncertainty dominates. We obtain a value of

jVcsjdΓ=dq2 ¼ 0.9663ð53Þlattð39Þexpð19ÞηEWð40ÞEM ð43Þ

FIG. 14. Plot of the determination of jηEWVcsj2ð1þ δEMÞ per
q2 bin for CLEO Dþ results [50]. The total uncertainty for each
bin is given in black and this is broken down into experimental
(blue) and theoretical (red) contributions, the latter coming from
our form factors. Each data point is centered on the q2 bin it
corresponds to. Note that the uncertainties are correlated between
q2 bins. The purple band gives the weighted average for these
data points, with all correlations included.

FIG. 15. Plot of the determination of jηEWVcsj2ð1þ δEMÞ per
q2 bin for BABAR D0 results [51]. The total uncertainty for each
bin is given in black and this is broken down into experimental
(blue) and theoretical (red) contributions, the latter coming from
our form factors. Each data point is centered on the q2 bin it
corresponds to. Note that the uncertainties are correlated between
q2 bins. The purple band gives the weighted average for these
data points, with all correlations included.

FIG. 16. Plot of the determination of jηEWVcsj2ð1þ δEMÞ per
q2 bin for BES D0 results [52]. The total uncertainty for each bin
is given in black and this is broken down into experimental (blue)
and theoretical (red) contributions, the latter coming from our
form factors. Each data point is centered on the q2 bin it
corresponds to. Note that the uncertainties are correlated between
q2 bins. The purple band gives the weighted average for these
data points, with all correlations included.
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from using the binned differential rate. The fit to yield the
average has a χ2=d:o:f: of 0.7 for 4 degrees of freedom. The
first uncertainty here is from our lattice QCD form factors,
including an uncertainty for the fact that these are calcu-
lated for the mu ¼ md case. The second uncertainty comes
from the experimental results. The third uncertainty is from
ηEW and the fourth from long-distance QED corrections,
amounting to 0.5% in Vcs for the case of a charged meson
in the final state, and 0.25% for a neutral meson in the final
state, as discussed above. There is some sign in Figs. 18
and 19 that the central values of Vcs for the results with a
charged K− meson in the final state are slightly higher than
those with a neutral K̄0 meson; this is consistent with what

might be expected from QED effects if δEM > 0 but the
uncertainties are too large for this to be clear. The fit to the
average uses this information to arrive at the combined
uncertainty from the EM effects above.

B. Using the total branching fraction

We can also determine Vcs from a comparison of theory
and experiment for the total branching fraction for the
semileptonic decay process. To obtain the total width, Γ,
from the theory side we need to integrate Eq. (8) over
the full physical q2 range. The limits of integration use
the experimental masses for the appropriate leptons and
charged or neutral meson masses. Table IV gives our values
for Γ=ðjηEWVcsj2ð1þ δEMÞÞ for each of the four modes we
consider, i.e., charged and neutral D meson decay to e and
μ in the final state.
We convert the total width to a branching fraction using

the experimental average values for the appropriate D

FIG. 18. Plot of jVcsj per bin for CLEO, BABAR, and BES
results from [50–52]. Each data point is centered on the q2 bin it
corresponds to and the error bars plotted include the uncertainties
from ηEW and δEM. The purple line and band give the result from
our total weighted average for jVcsj2, with all correlations
included. The width of the band includes the uncertainties from
ηEW and δEM as given in Eq. (43).

FIG. 19. Comparison plot of the determination of jVcsj using
the differential decay rate for CLEO, BABAR, and BES results
from [50–52,61] for D0 and Dþ decays. The purple band gives
the total weighted average for Vcs, not including the BES ’17
result. The width of the band includes the uncertainties from ηEW
and δEM as given in Eq. (43).

FIG. 17. Plot of the determination of jηEWVcsj2ð1þ δEMÞ per
q2 bin for BESDþ results [61]. The total uncertainty for each bin
is given in black and this is broken down into experimental (blue)
and theoretical (red) contributions, the latter coming from our
form factors. Each data point is centered on the q2 bin it
corresponds to. Note that the uncertainties are correlated between
q2 bins. The purple band gives the weighted average for these
data points, with all correlations included.

TABLE IV. Total width for D → K semileptonic decay up to a
factor of jηEWVcsj2ð1þ δEMÞ [see Eq. (8)], determined from our
form factors. We give results for all four modes that we consider.
They differ slightly in the parent and daughter meson masses and
in the mass of the lepton in the final state; these affect the
kinematic factors in the differential rate and the end points of
integration for the total width. These values can be combined with
experimental values of the relevant branching fraction and D
meson lifetime to determine jVcsj.

Γ=ðjηEWVcsj2ð1þ δEMÞÞ (ns−1)
Dþ → K̄0μþνμ 88.30(99)
Dþ → K̄0eþνe 90.3(1.0)
D0 → K−μþνμ 87.57(98)
D0 → K−eþνe 89.5(1.0)
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meson lifetime [3]. Comparison to experiment then yields a
determination of jVcsj. There are additional experimental
results for the total branching fraction beyond those used in
the determination of jVcsj from the differential decay rate in
Sec.VA.These come fromBelle [62] forD0 decays to both e
and μ in the final state and fromBES forD0 decays to μ in the
final state [57] (discussed in Sec. IV B in the context of tests
of lepton flavor universality) andDþ decays to μ in the final
state [63]. There are also new results from BES [64] for D0

and Dþ decay to e in the final state, using a new
reconstruction method. In the summary of [64] total branch-
ing fractions are quoted that are the average of the new results
with their earlier values [52,61], accounting for correlations.
It is these averages that we use in the following, denoting
them as “BES21.”Note that there are then branching fraction
results for all four possible modes for D → K decay.
Figure 20 shows the results of the determination of Vcs

using the total branching fraction for each experimental
result. In fitting the experimental results to give a common
(average) jVcsj value we have taken the systematic uncer-
tainties for a given experiment to be 100% correlated
between the different results from that experiment.We obtain
a final result for Vcs from the total branching fraction of

jVcsjB ¼ 0.9686ð54Þlattð39Þexpð19ÞηEWð30ÞEM: ð44Þ

This fit has a χ2=d:o:f: of 1.7 for 9 degrees of freedom.Again
the first uncertainty here is from our form factors (including
an uncertainty from mu ≠ md), the second from the exper-
imental results (including uncertainties from the D meson
lifetime), the third from ηEW, and the fourth is the uncertainty
we allow for QED corrections from δEM. δEM is taken as an

independent uncertainty for the e andμ cases and for charged
and neutral mesons and the fit for the average constrains this
uncertainty based on the data. The χ2=d:o:f: value drops to
1.4 if the BABAR result forD0 → K− is omitted from the fit;
the average value obtained then falls by 0.35σ (where σ is the
total uncertainty).

C. Using f + ð0Þ
Following the approach for K semileptonic decays,

experimental groups have often provided results for the
combination of jVcsj and form factor values at q2 ¼ 0
derived from fitting their differential decay rates. Simply
dividing these results by the lattice QCD form factor result
at q2 ¼ 0 can then give a determination of Vcs. However,
what is generally quoted as a value for jVcsjfþð0Þ is, in our
notation using Eq. (8), in fact jVcsjfþð0ÞηEW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ δEMÞ
p

.
Taking this into account, and using our fþð0Þ result from
Eq. (35), gives results for Vcs from the experimental results
available that are plotted in Fig. 21.
To determine a weighted average for Vcs from

these values we take the HFLAV average [10] for
jVcsjfþð0ÞηEW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ δEMÞ
p

[denoted jVcsjfþð0Þ in [10]
and given as 0.7180(33)]. This gives the purple band in
Fig. 21. The value of Vcs from this approach is then

jVcsjfþð0Þ ¼ 0.9643ð57Þlattð44Þexpð19ÞηEWð48ÞEM: ð45Þ

Again the last two uncertainties come from the uncertainty
on ηEW and QED corrections included in δEM. Since the
HFLAVaverage includes charged and neutral meson results
and μ and e final states, we take the largest uncertainty for
δEM that we use here (1% in the rate) and add this as a
separate uncertainty.

FIG. 20. Comparison plot of the determination of jVcsj using
the total branching fraction. Experimental results are from [63]
for Dþ → K̄0μþνμ [50,64], for Dþ → K̄0eþνe, from [57,62] for
D0 → K−μþνμ, and from [50,51,62,64] for D0 → K−eþνe de-
cays. Note that the BES results for final state e are the quoted
averages for results from [52,61,64]. The purple band gives the
total average for Vcs, assuming 100% correlation of systematic
uncertainties for results from a given experiment. The width of
the purple band encompasses all uncertainties, including those
from ηEW and δEM.

FIG. 21. Comparison plot of the determination of jVcsj using
the extrapolation of experimental results to q2 ¼ 0. Experimental
results are from [61,65] for Dþ → K̄0eþνe, from [57] for
D0 → K−μþνμ, and from [50–52,62] for D0 → K−eþνe. The
purple band gives the weighted average result for Vcs obtained
from the HFLAV weighted average [10] of the experimental
results but including a correction for ηEW and an additional
uncertainty from QED corrections [Eq. (45)].
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VI. DISCUSSION: Vcs

We have determined jVcsj in three different ways, with
results given in Eqs. (43)–(45). The results vary in the
experimental results that are included and the way in which
the lattice QCD form factors enter the calculation. The
agreement between the results is good, with the lowest

(Vfþð0Þ
cs ) and highest (VB

cs) differing by 0.6σ. This is a good
test, at this level of precision, that QCDgives the shape of the
form factors seen in experiment (backing up Fig. 10). The
uncertainties in each value are very similar, ranging from

0.8% in both our preferred approach ofVdΓ=dq2
cs and forVB

cs to

0.9% for Vfþð0Þ
cs . This high accuracy is achievable because of

good statistical precision over a range of lattice spacing
values and light quark masses, with accurately tuned c and s
masses and weak current operators that are normalized fully
nonperturbatively within the same calculation.
Figure 22 compares our new results for Vcs to those from

earlier full lattice QCD calculations. These go back to the
Fermilab/MILC result of 2004 [18], completed before exper-
imental results were available, using the clover action for c
quarks on gluon field configurationswithNf ¼ 2þ 1 flavors
of asqtad sea quarks. TheHPQCD results from 2010 [19] and
2013 [20] use the HISQ action on the same gluon field
configurations; we build on these calculations with the
improvements we have made here. The 2017 ETMC results
[21,22] use the twisted-mass formalism on gluon field
configurations with Nf ¼ 2þ 1þ 1 flavors of sea quarks.
We see good agreement between the results, including
between thosewithNf ¼ 2þ 1 andNf ¼ 2þ 1þ 1 flavors.

Our results show a significant improvement in uncer-
tainty compared to these earlier values, being a factor of 2
more accurate than the previous best result from HPQCD in
2013. We note that the previous results set ηEW to 1 and did
not include an uncertainty to allow for long-distance QED
effects on the experimental results.
Our preferred result for Vcs is

Vcs ¼ 0.9663ð80Þ; ð46Þ
from Eq. (43), adding uncertainties in quadrature. We can
compare this to the result forVud of 0.97370(14) from [3].We
see that Vcs ¼ Vud within the 1σ uncertainty in Eq. (46), in
good agreement with the expectation from the CKM matrix
that this should be true up to effects of order λ4 ≈ 0.002.
We now compare our new result forVcs from semileptonic

D → K decay to the value obtained from Ds leptonic decay
and look at the impact that our improved uncertainty has on
our understanding of the unitarity of the CKM matrix.
Figure 23 plots the �1σ band for our determination of

Vcs from Eq. (46) as the darker blue band. This is compared
to the result (red band) fromDs leptonic decay of 0.983(18)
from the “Leptonic decays of charged pseudoscalar mesons”
review in [3]. This result uses lattice QCD results for theDs
decay constant and includes uncertainties for ηEW and long-
distance QED effects. The “CKM Quark-Mixing Matrix”
review gives a value of 0.992(12) but without including these
effects. This value would then lie in the upper half of the Vcs
leptonic band plotted in Fig. 23. In either case it is clear that
our new result forVcs ismore accurate than that from leptonic
decay and has a lower central value.

FIG. 22. Our jVcsj result compared with other Nf ¼ 2þ 1þ 1
and Nf ¼ 2þ 1 results using lattice QCD. Different symbols
indicate different lattice calculations, while different colors
indicate the method used. Blue indicates use of the differential
rate in q2 bins, red indicates use of the fþð0Þ method, and green
indicates use of the total branching fraction for the decay. Points
marked “HPQCD ’21” come from this work, “ETMC ’17” is
from [21,22], “HPQCD ’13” is from [20], “HPQCD ’10” is from
[19], and “Fermilab/MILC ’04” is from [18]. For comparison we
give at the bottom the value currently quoted in the Particle Data
Tables [3] from semileptonic D → K decay [Eq. (6)]. The blue

band carries our preferred result, VdΓ=dq2
cs , down the plot.

FIG. 23. A comparison of constraints on Vcs and Vcd with the
expectation from CKM unitarity. Red bands show the �1σ range
for the determinationofVcs andVcd from leptonic decays ofDs and
Dþ combined with decay constants from lattice QCD. The
diagonal red band is the constraint from the ratio of leptonic rates
for Ds and Dþ combined with the lattice QCD ratio of decay
constants. The solid light blue band shows the result for Vcd from
theD → πlν̄ decay combinedwith latticeQCDform factor results.
See the text for a discussion of the values used. The darker blue
band shows our new determination here of Vcs from D → Klν̄
with�1σ uncertainties. For comparison the black dashed line gives
the unitarity constraint curve of jVcdj2 þ jVcsj2 þ jVcbj2 ¼ 1.
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Figure 23 also shows the constraints currently available
on Vcd. The “CKM Quark-Mixing Matrix” review in [3]
quotes a value for Vcd from semileptonic D → π decay
from combining experimental results with the form factor
at q2 ¼ 0 determined in Nf ¼ 2þ 1þ 1 lattice QCD by
ETMC [21]. This gives Vcd ¼ 0.2330ð136Þ. The value
quoted in the same review from Dþ leptonic decays is
0.2173(51). This combines experimental results with the
Dþ decay constant determined in Nf ¼ 2þ 1þ 1 lattice
QCD by the Fermilab/MILC collaborations [5]. Another
constraint follows from the ratio of Ds to D leptonic decay
rates [66] combined with the ratio of Ds and D decay
constants. Using ratios of VcsfDs

and VcdfDþ averaged
over experimental results from [3] and the lattice
QCD result for fDs

=fDþ from [5] gives the constraint
jVcdj=jVcsj ¼ 0.2209ð56Þ if we assume that electromag-
netic corrections to the leptonic rates will largely cancel.
The black dashed line in Fig. 23 corresponds to the

unitarity constraint jVcdj2 þ jVcsj2 þ jVcbj2 ¼ 1. Vcb has
little impact on this curve; we use the average value of
0.0410(14) from [3]. Our result for Vcs is in good agree-
ment with the unitarity curve for values of Vcd in the range
given by the leptonic and semileptonic constraints.
Figure 24 gives the same picture for the Vus, Vcs, Vts

column of the CKM matrix, showing constraints in the
jVcsj − jVusj plane. jVcsj values are as for Fig. 23 but
plotted over a smaller range because of the higher accuracy
of jVusj (we scale x and y axis ranges together).
We take jVusj values from the review “Vud, Vus, Cabibbo

angle and CKM unitarity” in [3]. This gives jVusj ¼
0.2252ð5Þ from leptonic decays of Kþ and 0.2231(7) from

K → π semileptonic decay. The leptonic result uses an
average [7] of lattice QCD results for the K decay constants
dominated by that from [5]. The semileptonic result uses an
average [7] of lattice QCD results for the K → π form
factor at q2 ¼ 0 from [67,68]. The current most accurate
lattice QCD results for the form factor are given in [6].
Figure 24 shows the tension developing between leptonic

and semileptonic determinations of Vus [3,6]. The black
dashed line in the figure shows the unitarity constraint
jVusj2 þ jVcsj2 þ jVtsj2 ¼ 1. jVtsj has little impact on this
curve; we use the current most accurate determination of
jVtsj ¼ 0.04189ð93Þ from themeasuredoscillation rate ofBs
mesons [3] andHPQCD’s lattice QCD determination [39] of
the matrix elements of the 4-quark operators that give the
mass difference between the Bs eigenstates. Our improved
accuracy for jVcsj, along with the unitarity curve, is not
sufficient to distinguish between the two values for jVusj.

VII. CONCLUSIONS

We have completed a detailed lattice QCD calculation of
the scalar and vector form factors that parametrize the
strong interaction effects in the D → Klν semileptonic
decay process in the Standard Model. Our calculation
covers the full physical range of momentum transfer.
With high statistics on eight gluon field ensembles, three
with physical light quarks, and a highly improved discre-
tization of QCD that allows nonperturbative normalization
of weak current operators, we have improved significantly
on the precision of previous work.
In Table III we give the parameters, and their uncertain-

ties and correlation matrix, that enable our form factors to
be reconstructed. We give our form factor values at q2 ¼ 0

and q2max in Eq. (35). Our lattice QCD calculations use
mu ¼ md ¼ ml; we take an additional 0.15% uncertainty
on the form factors (uniformly in q2) to allow for the impact
of mu ≠ md in the form factors when we compare to
experimental results. Figure 10 compares the shape param-
eters for our form factors to those inferred from the
experimental differential rate, and shows good agreement.
In Sec. IV B we give results for observables that allow

tests of lepton flavor universality violation. These are the
ratio of branching fractions for D → Klν decay for l ¼ μ
to that for l ¼ e, Rμ=e, and the lepton forward-backward
asymmetry for the μ case (this quantity being very small for
the e case). We obtain [repeating Eq. (37)]

Rμ=e ¼ 0.9779ð2Þlattð50ÞEM ð47Þ
in the Standard Model, including an uncertainty for QED
corrections of 0.5% for theD0 → K− case being studied by
BES [57]. We show what the impact of a new physics
coupling for muons could be in Figs. 11 and 12.
Section V gives our new determinations of Vcs from

combining experimental measurements with our form fac-
tors. We give three different methods based on using the
differential decay rate, binned inq2, using the total branching

FIG. 24. A comparison of constraints on Vcs and Vus with the
expectation from CKM unitarity. Red bands show the �1σ range
for the determination of Vcs and Vus from leptonic decays of Ds
and Kþ combined with decay constants from lattice QCD. The
light blue band shows the result for Vus from K → πlν̄ decay
combined with lattice QCD form factor results. See the text for a
discussion of the values used. The darker blue band shows our
new determination here of Vcs from D → Klν̄ with �1σ
uncertainties. For comparison the black dashed line gives the
unitarity constraint curve, jVusj2 þ jVcsj2 þ jVtsj2 ¼ 1.
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fraction and using experimental results extrapolated to
q2 ¼ 0. The results we obtain [repeating Eqs. (43)–(45)] are

jVcsjdΓ=dq2 ¼ 0.9663ð53Þlattð39Þexpð19ÞηEWð40ÞEM;
jVcsjB ¼ 0.9686ð54Þlattð39Þexpð19ÞηEWð30ÞEM;
jVcsjfþð0Þ ¼ 0.9643ð57Þlattð44Þexpð19ÞηEWð48ÞEM: ð48Þ
Our preferred result is the top one; adding uncertainties in
quadrature this gives [repeating Eq. (46)]

Vcs ¼ 0.9663ð80Þ: ð49Þ
This total 0.83%uncertainty is a significant improvement (by
a factor of 2) on the previous most accurate result [20]. The
uncertainty is reduced by a factor of 4 over the value from [3]
quoted in Eq. (6) in Sec. I. This is the first time that a direct
determination of Vcs has been accurate enough to see a
significant difference (over 4σ) from 1.
As discussed in Sec. I the limitation on the determination

of Vcs from semileptonic decays (unlike for leptonic decay
processes) was the accuracy of the lattice QCD calculation.
Improving the accuracy of the form factors has then allowed
us to leverage a significant improvement in the outcome for
Vcs. There is still room for further improvement, as can be
seen in Eq. (48). The lattice QCD uncertainty is still larger
than that from experiment, but not by a large margin, so a
reduction in the experimental uncertainty would also help. A
significant source of uncertainty is from long-distance QED
corrections to the D → K semileptonic process. Improved
understanding of these is needed and new methods in lattice
QCDþ QED may help here [60]. Further improvements
would include lattice calculations with mu ≠ md.
In Table IV we give the integrated total rates calculated

from our form factors, Γ=ðjηEWVcsj2ð1þ δEMÞÞ, forD → K
semileptonic decay for the four different meson charge and
lepton modes we consider here. These can be used with
improved experimental determinations of the total branching
fractions to improve jVcsj in the future, even if an improved
determination of the differential rates is not available.
Finally, we update the second row and column unitarity

tests using our new value for Vcs in Eq. (49) and results for
other elements as given in Sec. VI and plotted in Figs. 23
and 24. For the second row, using Vcd ¼ 0.2173ð51Þ from
leptonic Dþ decays and Vcb ¼ 0.0410ð14Þ [3] we have

jVcdj2 þ jVcsj2 þ jVcbj2
¼ 0.9826ð22ÞVcd

ð155ÞVcs
ð1ÞVcb

: ð50Þ
For the second column, using a weighted average of
leptonic and semileptonic values of Vus of 0.2245(4) [3]
and Vts ¼ 0.04189ð93Þ [39] gives

jVusj2 þ jVcsj2 þ jVtsj2
¼ 0.9859ð2ÞVus

ð155ÞVcs
ð1ÞVts

: ð51Þ

Both are in good agreement with the value of 1 for unitarity.
Since the total uncertainty on the unitarity relation depends
mainly on that from Vcs, our new result for jVcsj has
enabled a very substantial improvement over earlier results,
giving a total uncertainty on the unitarity tests of 1.6%.
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APPENDIX A: CORRELATOR FITS: FURTHER
DETAILS AND RESULTS

The fits to the correlators that we calculate in lattice QCD
are described in Sec. III C. Here we give more details of
prior choices for the fit parameters, give the table of results
for ground-state parameters, and illustrate some of the tests
of the fit results.

TABLE V. Priors used in the fit on each set. dHi≠0 (H ¼ D=K)
indicates the amplitudes for normal and oscillating D mesons and
for normalKmesons. dK;o

i is the amplitude for oscillatingK, which
we expect to be smaller because the oscillation vanishes at zero
momentum when the quark masses are the same. Parameters
denoted S and V refer to the Jklij parameters for the scalar and
temporal vector currents, respectively. Columns 4 and 5 then give
the priors for the ground-state to ground-state parameter cases
where at least one of the states is an oscillating state. For the cases
where at least one state is an excited state,P½Sklij≠00� ¼ P½Vkl

ij≠00� ¼
0.0ð5Þ in all cases.

Set P½dDi≠0� P½dK;o
i � P½Skl≠nn00 � P½Vkl≠nn

00 �
1 0.15(20) 0.05(5) 0.0(1.0) 0.0(1.0)
2 0.15(10) 0.05(5) 0.0(1.0) 0.0(1.0)
3 0.10(10) 0.05(5) 0.0(1.5) 0.0(1.5)
4 0.20(20) 0.05(5) 0.0(1.5) 0.0(1.5)
5 0.20(20) 0.03(3) 0.0(1.0) 0.0(1.0)
6 0.10(10) 0.05(5) 0.0(1.5) 0.0(1.5)
7 0.05(5) 0.02(2) 0.0(1.0) 0.0(2.0)
8 0.08(10) 0.01(2) 0.0(1.0) 0.0(1.5)
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Section III C discusses how the priors for ground-state
energies and two- and three-point amplitudes can be
estimated from the correlators. Table V gives the prior
values that we use for excited state amplitudes for non-
oscillating and oscillating states. It also lists the priors for
the three-point parameters Jpq00 [see Eq. (20)] for the case
where pq includes oscillating states. The priors for Jpqij
when ij ≠ 00 are 0.0(5) in all cases.
Table VI gives the ground-state parameters from our

preferred fit to the correlators for each gluon field ensemble.
Columns 8 and 9 of the table give the results for

the scalar and vector form factors determined from thematrix
elements as described in Sec. II. These are given as a function
of q2 in lattice units where q2 is determined from theD andK
meson masses and the input lattice spatial momentum for the
K. The results for the form factors on a given gluon field
ensemble are correlated through our fit. We preserve those
correlations through to the next stage of the fit where we
determine the physical curve with uncertainty bands for
fþðq2Þ and f0ðq2Þ, as described in Sec. III D.
A test of our fit results, plotted in Fig. 25, is to work out

the “speed of light” from the energy and mass of the K

TABLE VI. Ground-state parameters determined from our correlator fits for each gluon field ensemble. Columns 3 and 5 give the
ground-stateD Goldstone meson mass and K energy in lattice units, for the q2 value given in lattice units in column 4. Columns 6 and 7
give the matrix elements betweenD andK of the local scalar current and the local temporal vector current [beforemultiplication with ZV
given in column 10 and determined from Eq. (13)]. Columns 8 and 9 give the scalar and vector form factors [determined from Eqs. (10)
and (11)].

Set amval
c aMD ðaqÞ2 aEK hKjSjDi hKjV0

lattjD̂i f0ðq2Þ fþðq2Þ ZV

1 0.8605 1.44857(46) 1.1443(10) 0.37886(17) 2.524(13) 1.792(16) 1.0236(49) 1.0440(87)
0.76263(88) 0.51059(13) 2.236(12) 1.605(14) 0.9066(46) 1.133(29)
0.38113(75) 0.64227(10) 2.033(18) 1.480(21) 0.8243(72) 0.912(14)

−0.00042ð62Þ 0.773970(85) 1.861(54) 1.425(59) 0.755(22) 0.755(22)

2 0.643 1.15450(30) 0.72338(50) 0.303983(49) 2.1519(74) 1.4643(83) 1.0240(31) 1.0199(54)
0.48244(44) 0.408334(36) 1.9015(60) 1.3104(68) 0.9049(26) 1.123(13)
0.24166(38) 0.512611(29) 1.713(10) 1.193(11) 0.8154(49) 0.9029(90)
0.00092(32) 0.616870(24) 1.561(21) 1.093(22) 0.7428(98) 0.7430(98)

3 0.433 0.83391(27) 0.37853(32) 0.218659(54) 1.6558(46) 1.0625(46) 1.0151(24) 1.0056(43)
0.35885(32) 0.230461(51) 1.6207(44) 1.0435(47) 0.9935(24) 1.32(15)
0.18311(26) 0.335833(35) 1.3707(71) 0.8967(80) 0.8403(44) 0.977(15)

−0.07179ð18Þ 0.488663(24) 1.123(24) 0.769(25) 0.689(15) 0.658(14)

4 0.888 1.49339(36) 1.16033(71) 0.41621(17) 2.5532(58) 1.868(10) 1.0147(20) 1.0370(52)
1.10578(70) 0.43447(16) 2.5090(54) 1.8355(97) 0.9971(18) 1.45(11)
0.73402(62) 0.55894(13) 2.2457(94) 1.661(12) 0.8925(37) 1.086(18)
0.16891(50) 0.748140(96) 1.966(30) 1.523(36) 0.781(12) 0.806(14)

5 0.664 1.19124(20) 0.73636(31) 0.333122(92) 2.1645(32) 1.5025(35) 1.0086(13) 1.0233(21)
0.70138(30) 0.347804(88) 2.1261(30) 1.4756(33) 0.9906(12) 1.426(48)
0.46203(27) 0.448268(68) 1.9069(40) 1.3325(41) 0.8885(18) 1.0896(75)
0.09875(22) 0.600748(51) 1.688(16) 1.187(15) 0.7867(75) 0.8191(86)

−0.10483ð19Þ 0.686198(45) 1.571(23) 1.109(21) 0.732(11) 0.7029(97)

6 0.449 0.86434(23) 0.38678(26) 0.24243(10) 1.6898(37) 1.1173(47) 1.0100(19) 1.0005(39)
0.36829(26) 0.253122(99) 1.6594(36) 1.0978(46) 0.9918(19) 1.39(11)
0.24226(23) 0.326027(77) 1.4791(59) 0.9796(73) 0.8841(35) 1.097(21)
0.04974(18) 0.437394(57) 1.282(11) 0.875(12) 0.7661(64) 0.7926(73)

−0.05805ð16Þ 0.499751(50) 1.222(27) 0.879(34) 0.731(16) 0.710(16)

7 0.274 0.56711(21) 0.16562(16) 0.160142(78) 1.1898(39) 0.7371(45) 1.0074(30) 0.9940(56)
0.10378(14) 0.214663(59) 1.0429(45) 0.6534(54) 0.8830(37) 1.066(24)
0.02098(11) 0.287665(44) 0.920(14) 0.584(18) 0.779(12) 0.806(13)

−0.072829ð79Þ 0.370376(34) 0.809(21) 0.516(22) 0.685(18) 0.610(18)
−0.152857ð51Þ 0.440934(29) 0.733(35) 0.497(33) 0.621(29) 0.515(29)

8 0.194 0.42167(21) 0.09183(12) 0.118624(77) 0.9325(40) 0.5501(44) 1.0109(38) 0.9929(74)
0.07976(11) 0.132947(69) 0.8900(36) 0.5284(43) 0.9648(35) 1.241(66)
0.043459(98) 0.175987(52) 0.7804(44) 0.4683(48) 0.8460(46) 0.970(15)
0.002959(79) 0.224011(41) 0.6795(88) 0.4182(94) 0.7366(96) 0.7425(99)

−0.1600027ð18Þ 0.417246(22) 0.566(95) 0.338(72) 0.61(10) 0.401(84)
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meson at the different values of spatial momenta that we
use. Our results show no significant disagreement with the
result of one expected from relativity at the ≈1% level of
our statistical errors in this quantity. There is no sign of
significant discretization effects.
Figure 26 shows the mass difference between the

Goldstone D meson and the non-Goldstone D meson
(denoted D̂) that we use in the temporal vector three-point
correlation functions. We see that the difference in mass is,
as expected, a discretization effect, vanishing as a → 0.
This shows that any effects in our form factors from this
mass difference are easily taken care of in the discretization
effects that we allow in our extrapolation of the form factors
to the a → 0 limit.

Figure 27 plots our results for the renormalization factor
for the temporal vector current, ZV . This is determined from
the matrix elements of the scalar and temporal vector
currents when both the D and K are at rest (zero recoil)
from Eq. (13). Since this renormalization constant matches
the lattice regularisation of QCD to that in the continuum
for a current with no anomalous dimensions, it takes the
form of a perturbative series in αs, up to discretization
effects. Our results for ZV are very similar, not surprisingly,
to those determined for the cs̄ temporal vector current in
Bc → Bs decays in [70]. In that paper a comparison was
made to the results for an ss̄ current in [71], where ZV was
shown to have the expected behavior. The comparison in
[70] shows that the results for ZV for cs̄ and ss̄ differ only
by discretization effects.

Another way to determine ZV is using a symmetric
momentum-subtraction scheme, known as RI-SMOM, on
the lattice. In Fig. 27 we compare results for ZV for the local
vector current determined this way from [26], taking values
at μ ¼ 2 GeV. These ZV values differ from the ones used
here by discretization effects. Hence, as in the paragraph
above, we conclude that using a different prescription for
ZV would give the same results in the continuum limit.

APPENDIX B: OBTAINING PARAMETERS
FOR THE z-EXPANSION FIT FORM USED

BY EXPERIMENTS

We can compare the shape of our vector form factor to
that inferred from the experimental differential rate by
comparing the parameters obtained from the z-expansion
fit. To do this we must use the same q2 to zmapping and the
same form for the z expansion as that used by the experi-
ments. This form is

FIG. 25. For each ensemble, we plot the ratio ðE2
K −

M2
KÞ=jp⃗K j2 from our fit results against jap⃗K j2 to check that

the K meson energy agrees with that expected from the spatial
momentum given to the meson in the lattice calculation. The
points for gluon field configurations with physical sea u=d quark
mass are in black. The ratio agrees with the expected value of 1
throughout the range of momenta and lattice spacing values. The
purple wedge shows 1� jap⃗K=πj2.

FIG. 26. The difference between the non-Goldstone D̂ and
Goldstone D meson masses, from our fit results, as a function of
lattice spacing. The points in black are for gluon field configu-
rations with physical u=d sea quark mass. The results show
clearly that the splitting is a discretization effect and is only a few
MeV even on the coarsest lattices.

FIG. 27. The renormalization factor for the local temporal
vector current, ZV , plotted as a function of lattice spacing. The
points in black correspond to gluon field configurations with
physical u=d sea quark mass. The purple hexagons give results
for ZV values for the local vector current determined in a
symmetric momentum-subtraction scheme on the lattice [26].
The two sets of ZV values differ at finite lattice spacing by
discretization effects.
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fþðq2Þ ¼
1

zðq2; t0 ¼ M2
D�

s
Þϕðq2Þ

XN−1

n¼0

aþn zn; ðB1Þ

where the outer function

ϕðq2; t0Þ ¼
ffiffiffi
π

3

r
mc

�
zðq2; 0Þ
−q2

�
5=2

�
zðq2; t0Þ
t0 − q2

�
−1=2

×

�
zðq2; t−Þ
t− − q2

�
−3=4 tþ − q2

ðtþ − t0Þ1=4
: ðB2Þ

The q2 to z mapping [see Eq. (23)] uses t0 ¼ tþð1 − ð1 −
t−=tþÞ1=2Þ [for tþ=− ¼ ðMD �MKÞ2]. This is the prescrip-
tion that minimizes the maximum value of z over the q2

range of the decay. The parameter mc ¼ 1.25 GeV.
We apply the fit form of Eq. (B1) to our form factors at

the physical point, generating synthetic data from Table III.
We used 20 evenly spaced points but changing the number
of points makes no difference. This gives us the parameters
aþn for this fit form, along with their correlation matrix and
these are the values plotted in Fig. 10.
Figure 28 compares our original vector form factor

and the refitted one and also plots the ratio of the two.

This confirms that our refitting process does not change the
form factor or its uncertainty, but is simply a convenient
way to determine the parameters of Eq. (B1) for compari-
son to experiment.
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