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In this study, the profitability of technical analysis and Bayesian Statistics in trading the 
EUR/USD, GBP/USD, and USD/JPY exchange rates are examined. For this purpose, seven 
thousand eight hundred forty-six technical rules are generated, and their profitability is assessed 
through a data snooping procedure. Then, the most promising rules are combined with a Naïve 
Bayes, a Relevance Vector Machine, a Dynamic Model Averaging, a Dynamic Model 
Selection and a Bayesian regularised Neural Network model. The findings show that technical 
analysis has value in foreign exchange trading, but the profit margins are small. On the other 
hand, Bayesian Statistics seems to increase the profitability of technical rules up to five times. 
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1. Introduction 

Technical analysis is the study of past market data that focuses on forecasting the direction of 
financial asset prices. Its origins can be traced back to the Dow theory in 1900 when Charles 
H. Dow argued that the financial markets follow repetitive trends (Brown et al., 1998). 
Practitioners applied this principle in practice and many technical trading rules were developed 
over the next decades aiming to identify the future direction of financial assets. An industry 
was created based on the application of mathematics in trading. Today thousands of 
professionals trade financial series with mathematical models.  

The most heavily traded assets are foreign exchanges (FX) with a turnover of up to $5.3 trillion 
daily in 2013 (BIS, 2013). The enormous size of the FX market, the competition among market 
participants and the advent of technology have led to a continuous search for more advanced 
and complex trading rules. Researchers and practitioners borrow algorithms from mathematics, 
physics, genetics and computer science in an attempt to model series that have a non-linear and 
non-stationary structure. Some apply simple technical rules (Gençay et al., 2003; Qi and Wu, 
2006; Neely et al., 2009; Cialenco and Protopapadakis, 2011), while others explore complex 
non-linear models (Gehrig and Menkhoff, 2006; Gradojevic 2007; Sermpinis et al., 2015). 
There are also academics that believe FX series follow a random walk and any profitable 
trading rules are due to luck or not adjusting for appropriate risk factors (Meese and Rogoff, 
1983; Kilian and Taylor, 2003, Ivanova et al., 2021).   

This study utilizes the latest developments in time-series modelling and statistics in order to 
discover whether simple technical rules are profitable in FX trading series. It also explores 
whether it is possible to combine simple technical rules with a set of some of the most up-to-
date Bayesian models (Relevance Vector Machine (RVM), Dynamic Model Averaging 
(DMA), Dynamic Model Selection (DMS) and a Bayesian regularised Neural Network (BNN)) 
and derive superior trades. For this purpose, 7,846 rules are generated and applied to three 
exchange rates (EUR/USD, GBP/USD, and USD/JPY). Next, the genuinely profitable trading 
rules are identified based on the Romano et al. (2008) test combined with the balancing 
procedure of Romano and Wolf (2010). These profitable rules are then combined with Naïve 
Bayes (NB), RVM, DMA, DMS and a BNN. It is worth noting that the RVM, DMA, DMS and 
BNN have not been used in a trading application1.  Our results show that superior trading 
performance is achievable by combining a data snooping procedure and Bayesian learning 
models. We find that BNN, DMA, and DMS have the highest performance across the study 
periods. The profitability is robust over the time and the performance does not deteriorate over 
the more recent years.  

The motivation for this study derives from four sources: the Adaptive Market Hypothesis 
(AMH) of Lo (2004), the contradicting reports on the value of technical analysis in trading, the 

 
1 To our best knowledge, RVM has only one related application (Fletcher et al., 2009) on FX carry trade. In this 
paper the RVM is used as a part of a set of AI models and its individual performance is not assessed. The BNN 
also has only one application in financial forecasting in the work of Ticknor (2013). In his study, BNN is not 
evaluated in trading terms. We did not identify any related trading applications of DMA and DMS, although there 
are several studies with them in financial and economic modelling (such as Koop and Korobilis (2012) and Byrne 
et al. (2016)). 
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popularity of Bayesian techniques in financial forecasting, and the increased use of 
computational techniques in trading. The AMH has three main principles: traders need to be 
adaptive, the performance of trading models varies through time, and in competitive 
environments the opportunities for profits are scarce. In other words, in highly efficient markets 
simple trading strategies have small power and traders need to seek complex statistical methods 
that are adaptive to the changing environment. The FX market ‒ the biggest capital market ‒ is 
most competitive and it is heavily affected by the intervention of central banks. It is interesting 
to check the effectiveness of simple trading rules in this environment and if possible, to 
generate Bayesian combinations of simple rules that can beat the market. We also examine if 
the performance of the trading models varies through time and whether their profitability varies 
significantly among different exchange rates. 

Technical analysis is considered a universal trading practice across different markets (Blume 
et al., 1994). Although theories around technical analysis vary, all of them are based on the 
idea of the recurrent nature of patterns in the securities’ price charts. Chartists believe that 
understanding these patterns can facilitate the prediction of future prices (Fama, 1965). This 
approach to prediction of financial markets can be traced back to Dow theory. The theory 
argues that the average values represent net interactions of all market participants over day-to-
day activities and discount all kind of news and events, even the unpredictable ones. It proposes 
three bands of trends known as primary, secondary and minor trends. The primary trends are 
major market movements known as bull and bear market. The secondary trend represents the 
corrections and recoveries over bull and bear markets respectively. Finally, the minor trends 
are daily meaningless fluctuations (Edwards et al., 2007). Several studies, such as Sweeney 
(1988), Brock et al. (1992) and Blume et al. (1994) demonstrate the utility and the profitability 
of technical analysis in equity markets. In these studies, a large universe of simple trading rules 
is generated and their average performance is evaluated on stocks or stocks indices over a large 
period of time.  

In FX market specifically, technical analysis is intensively and widely used by practitioners. 
The surveys of Taylor and Allen (1992), Lui and Mole (1998), Oberlechner (2001) and Gehrig 
and Menkhoff (2006) show that almost all FX professionals use technical analysis in their 
decision-making process. Menkhoff and Taylor (2007) claim that the lack of consensus in FX 
fair value models and the short trading horizons of the FX market might explain the popularity 
of technical analysis. Other academics have treated this popularity with scepticism as it violates 
the efficient market hypothesis – which in its weak form state that historical price movements 
should have no value in predicting the future. More recently, academics and practitioners 
become also aware of the dangers of data snooping bias.  

Data snooping occurs when a given dataset is used more than once for purposes of inference 
and model selection (White, 2000). This bias is prominent in trading applications where 
researchers rely on the same data set to test the significance of different trading rules 
individually.  These individual statistics are generated from the same dataset and relate to each 
other. White (2000) formalises this bias and introduces the Bootstrap Reality Check (BRC), 
which considers the dependence of individual statistics. The introduction of BRC test allows 
researchers to revisit technical analysis from a new angle. Sullivan et al. (1999) claim that, 
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based on the BRC test, technical analysis has no value on the Dow Jones Industrial Average 
(DJIA) index. Hansen (2005) argues that the BRC is too conservative and checks only whether 
there is any significant model. The BRC does not identify all such models. As a solution, 
Hansen (2005) introduces the Superior Predictive Ability (SPA) test, which is less conservative 
and seems more powerful (Hansen and Lunde, 2005). Hsu and Kuan (2005) study technical 
rules after taking into account data snooping with the SPA test and claim that it is possible to 
beat the market with complex rules. Romano and Wolf (2005) and Hsu et al. (2010) improve 
the BRC and the SPA test respectively and introduce two stepwise procedures, namely the 
Step-BRC and Step-SPA. These tests can identify all possible significant models. Further 
improvements in Multiple Hypothesis Testing (MHT) procedures are made by Romano and 
Wolf (2007), Romano et al. (2008), Bajgrowicz and Scaillet (2012) and Hsu et al. (2014). The 
trend in recent data snooping literature is to relax the statistics by controlling the probability of 
making multiple false rejections (falsely “found” profitable strategies) and at the same time 
improve the efficiency of the tests (Kearney et al., 2014). This is beneficial in trading 
applications, where large groups of technical rules are under study and the ability to make true 
rejections is the main concern. Based on the latest tests, Romano and Wolf (2007), Romano et 
al. (2008), Bajgrowicz and Scaillet (2012), Hsu et al. (2014) and Hsu et al. (2016) conclude 
that it is possible to identify genuinely profitable trading rules by using an efficient MHT 
procedure. However, the same studies argue that the profit margins are small and the trading 
performance varies through time.  

Profitability of technical analysis in FX is a long-standing puzzle (Ivanova et al., 2021). Some 
academics suggest returns above risk-free rate can be achieved with technical trading, while 
others relate any positive return with luck or extra risk. Gençay et al. (2003) generate positive 
annualized returns on four currency pairs with a real-time trading based on simple exponential 
Moving Average (MA) models. Baillie and Chang (2011) and recently Elaut et al. (2018) also 
suggest that momentum trading strategies can be applied to capture the volatility of the FX 
market. However, Cialenco and Protopapadakis (2011) argue that simple trading rules do not 
generate statistically significant profitability in fourteen currencies. Meese and Rogoff (1983), 
Baillie and Bollerslev (1989), and Chinn and Meese (1995) claim that major exchange rates 
follow a random walk (at least in the short-run). Yilmaz (2003) suggests that FX prices do not 
always follow a martingale 2  process, especially during the periods of central banks 
interventions. Yang et al. (2008) argue that martingale behaviour cannot be rejected for major 
exchange rates. Contrary to these, Hsu et al. (2010), Hsu et al. (2014) and Hsu et al. (2016) 
argue that technical analysis can beat the FX market. The same statement is made by Neely 
and Weller (2013) who add that traders need to be adaptive in their portfolios.  

Other literature explores the latest developments in statistics and computer science and their 
application in FX trading. Gençay (1998), Jasic and Wood (2004), Gradojevic (2007), 
Sermpinis et al. (2013) and Sermpinis et al. (2015) apply Artificial Neural Networks (ANNs) 
‒ a form of non-linear regression algorithms ‒ to the task of forecasting and trading financial 
series with some success.  Alvarez-Diaz and Alvarez (2003), Pai et al. (2006) and Huang et al. 

 
2 Martingale corresponds to a sequence of random variables where the expected value for the next observation is 
equal to the present one or 𝐸𝐸(𝜁𝜁𝑡𝑡+1|𝜁𝜁1, … , 𝜁𝜁𝑡𝑡) = 𝜁𝜁𝑡𝑡. 
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(2010) develop models inspired by the evolution of species to financial forecasting with good 
results. Allen and Karjalainen (1999) use a genetic algorithm to identify profitable technical 
trading rules for the S&P 500 index. Lin and Pai (2010), Bekiros (2010) and Gradojevic and 
Gençay (2013) apply fuzzy logic to generate trading signals. Other studies, such as Ticknor 
(2013), Gramacy et al. (2014) and Baltas and Karyampas (2018) use Bayesian Statistics in 
financial forecasting problems. The literature in the area is extensive and promising. In the 
papers that have a trading application (see among others, Jasic and Wood, 2004; Gradojevic 
and Gençay, 2013) the proposed complex models significantly outperform simple technical 
rules. An explanation for these results can be offered by the AMH which argues that complex 
models can survive better in informative markets. An alternative explanation for the success of 
quantitative trading strategies in FX market is that central banks prepare/create an environment 
wherein markets move in a predictable way. For instance, Yilmaz (2003) and Inoue and Rossi 
(2019) suggest that an increased predictability of exchange rates can be caused by interventions 
of central banks through conventional and unconventional monetary policies. Using certain 
monetary measures recurrently, may lead to pattern creation in the exchange rates market. 
Trading profits can be realised by either detecting such patterns directly from the FX market 
or by analysing short-term/long-term effects of monetary measures.3  

In a nutshell, the literature in technical analysis, data snooping and computational applications 
in trading is wealthy and contradicting. Studies that do not consider the data snooping bias and 
involve models that require parametrization should be treated with scepticism. The data 
snooping bias should be examined with recent related tests that are not strict. Computational 
techniques seem able to generate profitable trades. However, it is not clear from the previous 
studies if computational models can outperform technical analysis in the highly competitive 
FX market, as the AMH claims.  

The rest of this manuscript is as follows. In Section 2, the MHT procedure and the Bayesian 
models used for trading are studied. Section 3 presents the description of the application our 
trading system is applied and Section 4 exhibits the empirical results for the alternative models. 
Section 5 offers the concluding marks and finally the Appendix includes the technical trading 
pool used in this study and robustness checks. 

2. Methodology 

In this study, a large set of technical trading rules on FX data is generated. The genuine 
profitable rules are identified with the Romano et al. (2008) test as modified based on the 
balancing procedure of Romano and Wolf (2010). Then, the profitable rules are combined with 

 
3 Predicting the direction of changes in a capital market (as in our study) is different from forecasting prices as 
point estimates. The former is a classification case, while the latter is a regression one. In our empirical study, we 
treat the trades as a classification problem with cost-sensitive classes. We appreciate that beating a random walk 
process in a regression analysis is a more difficult task that may bear macroeconomic implications. Rossi (2013) 
reviews the relevant literature on forecasting exchange rates by using a set of macroeconomic variables. The 
author argues that a random walk without drift is the hardest benchmark to beat when it comes to forecasting 
exchange rates with fundamentals. The focus of technical analysis and thereby our methodology is to detect 
patterns in short-term (daily) direction of market moves and exploit those trading opportunities before vanishing. 
Forecasting contemporary/ future exchange rates with fundamental factors remains outside the scope of technical 
analysis and this work. 
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an NB, an RVM, a DMA, a DMS, and a BNN. The next sections contain a short description of 
the data snooping procedure and the Bayesian techniques4.  

2.1 Data Snooping Test 

At the first stage of our modelling, the genuinely profitable trading rules are identified from a 
pool of 7,846 technical rules. For this purpose, the Romano et al. (2008) test is combined with 
the balancing procedure of Romano and Wolf (2010). The benefits of the proposed approach 
are threefold. Firstly, it considers different measures of errors. Secondly, it is balanced since 
each individual hypothesis is treated fairly. Finally, it involves a resampling and subsampling 
approach that considers the dependence structure of the individual test statistics. These facts 
make it highly applicable in trading applications and more efficient compared to the Step-BRC 
and Step-SPA tests (Romano and Wolf, 2005; Hsu et al., 2010).  

The data snooping test is an MHT procedure in which a set of models are tested to identify the 
statistically different ones. As in any statistical test, there is the chance that a hypothesis is 
falsely rejected (Type I error). Familywise Error Rate (FWER) is the probability of having at 
least one false rejection. Traditional data snooping tests are too strict as they are attempting to 
control (asymptotically) the FWER. If the number of hypotheses is very large (as in our case), 
it is very difficult to make true rejections. In the asset management industry, professionals 
diversify their risk by investing in a large portfolio of models. The performance of any bad 
model is diluted by the much larger set of profitable rules. 𝑘𝑘-FWER determines the probability 
of having at least 𝑘𝑘 false rejections. The data snooping approach of Romano et al. (2008) tries 
to control the 𝑘𝑘-FWER.  

Consider the performance of 𝒮𝒮 alternative trading strategies over 𝑇𝑇 sample periods. For each 
trading strategy 𝑠𝑠 (𝑠𝑠 =  1, … ,𝒮𝒮), we test the hypothesis whether the strategy has a performance 
greater than the benchmark (𝜍𝜍). We define the performance metric as the difference 𝜃𝜃𝑠𝑠 between 
the unconditional average 𝜇𝜇𝑠𝑠 of each strategy and unconditional average 𝜇𝜇𝜍𝜍 of the benchmark 
(𝜃𝜃𝑠𝑠 = 𝜇𝜇𝑠𝑠 − 𝜇𝜇𝜍𝜍). Hence for each strategy the null and alternative hypotheses are 𝐻𝐻0,𝑠𝑠:𝜃𝜃𝑠𝑠 ≤  0  
and 𝐻𝐻1,𝑠𝑠:𝜃𝜃𝑠𝑠 > 0 respectively. Following Romano et al. (2008) to evaluate the null hypothesis 
we use a studentised test statistic as:  

Ζ𝑇𝑇,𝑠𝑠 = 𝑤𝑤�𝑇𝑇,𝑠𝑠
𝜎𝜎�𝑇𝑇,𝑠𝑠

                   (1) 

where 𝑤𝑤�𝑇𝑇,𝑠𝑠 and 𝜎𝜎�𝑇𝑇,𝑠𝑠 are the conditional mean and the standard deviation for the excess return 
series, 𝑤𝑤𝑡𝑡 = 𝑟𝑟𝑡𝑡,𝑠𝑠 − 𝑟𝑟𝑡𝑡,𝜍𝜍, given by: 

𝑤𝑤�𝑇𝑇,𝑠𝑠 = 1
𝑇𝑇
Σ𝑡𝑡𝑇𝑇𝑤𝑤𝑡𝑡                                   (2) 

 
4 These algorithms are characterized by their complexity (except for NB).  For the sake of space and as their 
mathematical derivation already exist in the relevant literature, we present the general framework. For the data 
snooping procedure, the reader is referred to Romano et al. (2008), for the FWER control with one sided setup 
and for the balancing procedure to Romano and Wolf (2010). A detailed description of RVM is provided by 
Tipping (2001) while a complete mathematical derivation of DMA and DMS is provided by Raftery et al. (2010). 
The Bayesian training procedure of BNN is described in detail in Ticknor (2013).  
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𝜎𝜎�𝑇𝑇,𝑠𝑠 = � 1
𝑇𝑇−1

∑ �𝑤𝑤𝑡𝑡,𝑠𝑠 − 𝑤𝑤�𝑇𝑇,𝑠𝑠�
2𝑇𝑇

𝑡𝑡=1 .                    (3) 

The 𝑘𝑘-FWER is controlled through the one-sided setup of the 𝑘𝑘-StepM method of Romano and 
Wolf (2005). Firstly, the strategies are sorted in a descending order based on the test statistics. 
After this is done, if 𝑏𝑏𝑘𝑘 is the 𝑘𝑘-largest test statistic, then Ζ𝑇𝑇,𝑏𝑏1 ≥ ⋯ ≥ Ζ𝑇𝑇,𝑏𝑏𝒮𝒮  . Next, the 𝑘𝑘-th 
largest test statistic and the 1 − 𝑎𝑎 (where 𝑎𝑎 is the significance level) percentile of its sampling 
distribution are estimated. The individual hypotheses outside the confidence region are 
rejected. For the hypotheses not rejected, the process is repeated until the number of rejections 
is smaller than the desired 𝑘𝑘. For more details on the Step-M methods and the relevant bootstrap 
approach, see Romano et al. (2008) or Mazzocco and Saini (2012). In order to control the 𝑘𝑘-
FWER, the innovations of Romano and Wolf (2010) are followed. They introduce an 
asymptotically balanced method that controls the average number of false rejections. Implicitly 
this approach considers the dependence structure of the individual test statistics, which leads 
to a more efficient control of false null hypotheses (Type II error). In this application, most 
technical trading rules have some form of weak dependency (for instance, two MA cross-over 
strategies with different fast-MA of 2 and 5 periods but a similar slow-MA of 75 periods).    

The selection of 𝑘𝑘 depends on the problem under study and the practitioner’s approach. If 𝑘𝑘 is 
1, the method can be overly conservative and inefficient. For this study, the 𝑘𝑘 is set to 39 
(roughly 0.5% of the 7,846 technical rules under study5). As a benchmark to the data snooping 
test (𝜍𝜍), a basic random walk model is applied since major exchange rates are widely known to 
follow a random walk (see among others, Meese and Rogoff, 1983; Baillie and Bollerslev, 
1989; and Chinn and Meese, 1995).  

2.2 RVM 

The RVM approach proposed by Tipping (2001), seeks to find the most effective inputs based 
on probabilistic approaches to classification and regression problems. Throughout this process, 
the determined effective points are defined as relevance vectors. This Section summarizes the 
RVM structure.  

Assuming a supervised learning framework, we define a dataset 𝐷𝐷 with 𝜈𝜈 predictors and 𝑇𝑇 
training points, an input series set  𝒙𝒙 = {𝑥𝑥𝑖𝑖: 𝑖𝑖 = 1, … ,𝑇𝑇} and a target series set 𝒚𝒚 = {𝑦𝑦𝑖𝑖: 𝑖𝑖 =
1, … ,𝑇𝑇} . The general predictive formulation can be specified as: 

𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖) + 𝜀𝜀𝑖𝑖                      (4) 

where 𝜀𝜀𝑖𝑖 is the zero-mean Gaussian error term with distribution 𝜀𝜀𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 ∼ 𝒩𝒩(0,𝜎𝜎2), 𝑦𝑦�𝑖𝑖  
is the target point forecast, and 𝑓𝑓 is the transfer function. 

 
5 The choice of 0.5% is based on approximating the set of initial rejections (including both true and false 
discoveries) with the top 5 percent of trading rules and allowing 10% of rejections to be the Type I error. This 
approximation can be improved by alternative statistical approaches to the rejections based on the test statistics 
and the bootstrap p-value. However, this approximation is chosen to find the most profitable trading rules. 
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Given the basis function set 𝝋𝝋(𝒙𝒙) and the weight vector 𝒘𝒘, the RVM’s prediction under the 
linear model assumption can be expressed as: 

𝒚𝒚� = 𝑓𝑓(𝒙𝒙,𝒘𝒘) = ∑ 𝑤𝑤𝑗𝑗𝜑𝜑𝑗𝑗(𝑥𝑥)𝜈𝜈
𝑗𝑗=1 + 𝑤𝑤0                        (5) 

where 𝝋𝝋(𝒙𝒙) = [1,𝐾𝐾(𝒙𝒙, 𝑥𝑥1), … ,𝐾𝐾(𝒙𝒙,𝒙𝒙𝑇𝑇)]′ , 𝑤𝑤0 is the bias, and 𝒘𝒘 = [𝑤𝑤1, … ,𝑤𝑤𝜈𝜈].  

In the context of RVM, Radial Basis Function (RBF) is mostly considered as the basis 
function 𝐾𝐾 . This is due to its simplicity and superior optimization performance (Park and 
Sandberg, 1991). Subsequently, the multivariate Gaussian likelihood of the dataset can be 
written as: 

𝑃𝑃𝑟𝑟(𝒚𝒚|𝒘𝒘,𝜎𝜎2) = (2𝜋𝜋𝜎𝜎2)−𝑇𝑇/2exp �− ‖𝒚𝒚−Φ𝑤𝑤‖2

2𝜎𝜎2
�                  (6) 

where 𝚽𝚽 is the 𝑇𝑇 × (𝑇𝑇 + 1) ‘design’ matrix with Φ𝑛𝑛𝑛𝑛 = 𝐾𝐾(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛−1) and Φ𝑛𝑛1 = 1 .  

Over-fitting can be expected in the maximum-likelihood estimation of 𝒘𝒘 and 𝜎𝜎2 in Eq. (6). To 
overcome this, Tipping (2001) recommends setting prior constraints on parameters 𝒘𝒘  by 
adding a complexity term inspired by the traditional margin concept of Support Vector 
Machine (SVM) modelling. Gaussian priori in RVM context for an individual 𝑤𝑤𝑗𝑗  can be 
expressed as: 

𝑃𝑃𝑟𝑟�𝑤𝑤𝑗𝑗�𝛼𝛼𝑗𝑗� = (𝛼𝛼𝑗𝑗
2𝜋𝜋

)1/2exp (−
𝛼𝛼𝑗𝑗𝑤𝑤𝑗𝑗

2

2
)                    (7) 

Similarly, for the whole set of 𝒘𝒘: 𝑃𝑃𝑟𝑟(𝒘𝒘|𝜶𝜶) = ∏ 𝒩𝒩(𝑇𝑇
𝑖𝑖=1 𝑤𝑤𝑖𝑖|0,𝛼𝛼𝑖𝑖−1), where 𝜶𝜶 = [𝛼𝛼0, … ,𝛼𝛼𝑇𝑇]′ is 

a hyperparameter vector governing the prior defined over the weight 𝒘𝒘 to control deviation of 
each 𝑤𝑤𝑗𝑗 from the zero mean.  

Given priori information controlling the generalisation ability and the likelihood distributions, 
applying Bayes’ rule generates the posterior over 𝒘𝒘 as: 

𝑃𝑃𝑟𝑟(𝒘𝒘|𝒚𝒚,𝜶𝜶,𝜎𝜎2) =
𝑃𝑃𝑃𝑃�𝒚𝒚�𝒘𝒘,𝜎𝜎2�𝑃𝑃𝑃𝑃(𝒘𝒘|𝜶𝜶)

𝑃𝑃𝑃𝑃(𝒚𝒚|𝜶𝜶,𝜎𝜎2)
                    (8) 

In the case of a multivariate Gaussian distribution, the posterior takes the following form: 

𝑃𝑃𝑟𝑟(𝒘𝒘|𝒚𝒚,𝜶𝜶,𝜎𝜎2) = 𝒩𝒩(𝝁𝝁,𝚺𝚺)                     (9) 

The covariance and the mean of the distribution are estimated respectively by the following 
analytical solution of Eq.s (10 and 11): 

𝚺𝚺 = (𝚽𝚽′𝐁𝐁𝚽𝚽 + 𝐀𝐀)−1                     (10) 

𝝁𝝁 = 𝚺𝚺𝚽𝚽′𝑩𝑩𝑩𝑩                     (11) 

where  𝐀𝐀 = (𝛼𝛼0, … ,𝛼𝛼𝑇𝑇) and 𝐁𝐁 = 𝜎𝜎−2𝑰𝑰𝑇𝑇.  
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To estimate the weights, the missing set 𝜶𝜶  in the above equations is treated as a 
hyperparameter. Therefore, the relevance vector learning model approximates the mode for the 
hyperparameter posterior i.e. maximization of 𝑃𝑃𝑟𝑟(𝜶𝜶,𝜎𝜎2) ∝ 𝑃𝑃𝑟𝑟(𝒚𝒚|𝜶𝜶,𝜎𝜎2)𝑃𝑃𝑟𝑟(𝜶𝜶)𝑃𝑃𝑟𝑟(𝜎𝜎2) given 
𝜶𝜶 and 𝜎𝜎2. Assuming uniform hyperperiors, the model optimization can be thought equivalent 
to the maximization of 𝑃𝑃𝑟𝑟(𝒚𝒚|𝜶𝜶,𝜎𝜎2). By Integrating out the weights, the following is derived: 

𝑃𝑃𝑟𝑟(𝒚𝒚|𝜶𝜶,𝜎𝜎2) = ∫𝑃𝑃𝑟𝑟(𝒚𝒚|𝒘𝒘,𝜎𝜎2)𝑃𝑃𝑟𝑟(𝒘𝒘|𝜶𝜶)𝑑𝑑𝒘𝒘                     (12) 

where 𝑃𝑃𝑟𝑟(𝒚𝒚|𝜶𝜶,𝜎𝜎2) can be computed by the following equation: 

𝑃𝑃𝑟𝑟(𝒚𝒚|𝜶𝜶,𝜎𝜎2) = (2𝜋𝜋)−𝑇𝑇/2�𝑩𝑩−𝟏𝟏 + 𝜱𝜱𝑨𝑨−1𝜱𝜱′�−1/2exp �− 1
2
𝒚𝒚′(𝑩𝑩−𝟏𝟏 + 𝜱𝜱𝑨𝑨−1𝜱𝜱′)−1𝒚𝒚�            (13) 

The marginal likelihood for hyperparameters in the Gaussian distribution form is given by: 

𝑃𝑃𝑟𝑟(𝒚𝒚|𝜶𝜶,𝜎𝜎2) = 𝑁𝑁(0,𝑩𝑩−𝟏𝟏 + 𝜱𝜱𝑨𝑨−1𝜱𝜱′)                 (14) 

The estimation of the above hyperparameters is conducted through an iterative procedure 
similar to the gradient ascent on the objective function for Maximum A Posteriori (MAP) 
estimate of the weights (for more details refer to Ghosh and Mujumdar, 2008). The numerical 
approximation is adopted because there is no closed form solution. The MAP estimation is 
dependent on the hyperparameters 𝜶𝜶 and 𝜎𝜎2 in other words 𝐀𝐀 and 𝐁𝐁 in Eq.s (10 and 11). 

Following Tipping (2001) the solution to Eq.s (10 and 11) is estimated through differentiating 
and setting Eq. (14) to zero. After rearranging we yield:   

𝛼𝛼𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤 = 𝛾𝛾𝑚𝑚
𝜇𝜇𝑚𝑚2

                     (15) 

where 𝜇𝜇𝑛𝑛 is the 𝑚𝑚-th posterior mean-weight from the equation set and 𝛾𝛾𝑛𝑛 ≡ 1 − 𝛼𝛼𝑛𝑛Σ𝑛𝑛𝑛𝑛. 

The Σ𝑛𝑛𝑛𝑛 is the 𝑚𝑚-th diagonal element of the covariance 𝚺𝚺 matrix calculated by the updated 𝜶𝜶 
and 𝜎𝜎2. Parameter 𝛾𝛾𝑛𝑛 is interpreted as the degree to which associated 𝑤𝑤𝑛𝑛 is well-determined 
by the training data (MacKay, 1992). When the fit is not appropriate, the 𝑤𝑤𝑛𝑛 is constrained by 
priori with small 𝜎𝜎𝑛𝑛2 . For example, for a high value of 𝛼𝛼𝑛𝑛 , Σ𝑛𝑛𝑛𝑛  will tend to 𝛼𝛼𝑛𝑛−1  and 
consequently 𝛾𝛾𝑛𝑛 approaches zero. On the other hand, when the fit is good, 𝛼𝛼𝑛𝑛 ≈ 0, this leads 
to Σ𝑛𝑛𝑛𝑛 ≈ 0 , and finally 𝛾𝛾𝑛𝑛 ≈ 1 . Consequently, the range for 𝛾𝛾𝑛𝑛  is [0,1] . For the other 
hyperparameter 𝜎𝜎2 differentiation results in the update of the noise variance estimation as: 

(𝜎𝜎2)𝑛𝑛𝑛𝑛𝑤𝑤 = ‖𝑩𝑩−𝚽𝚽𝝁𝝁‖2

𝑇𝑇−Σ𝑚𝑚𝛾𝛾𝑚𝑚
                    (16) 

The learning process advances by re-estimating the hyperparameters and updating the mean 
and covariance of the posterior in each iteration. This continues until the convergence is met at 
an iteration step or until the incorporated stop criteria are activated to avoid reaching redundant 
loops. In practice during the iterative update of the hyperparameters, many 𝛼𝛼𝑗𝑗 s approach 
infinity. In that way 𝑤𝑤𝑗𝑗 s tend to form a delta function around zero. Consequently, many 
elements in 𝒘𝒘  and associated elements in 𝝋𝝋(𝒙𝒙)  would be discarded from the operational 
model. The remaining basis functions that are associated with training points within the sample 
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dataset produce a sparse solution for the RVM model. These remaining examples are the so-
called RVs. Tipping (2001) claims that the above predictive estimations are found to be robust 
by most empirical evidence. The predictive distribution for a given new point 𝑥𝑥∗ complemented 
by a 𝑦𝑦∗ class label is given by: 

𝑃𝑃𝑟𝑟(𝑦𝑦∗|𝑥𝑥∗,𝜶𝜶𝑀𝑀𝑃𝑃 ,𝜎𝜎𝑀𝑀𝑃𝑃2 ) = ∫𝑃𝑃𝑟𝑟(𝑦𝑦∗|𝑥𝑥∗,𝒘𝒘,𝜎𝜎𝑀𝑀𝑃𝑃2 )𝑃𝑃𝑟𝑟(𝒘𝒘|𝒚𝒚,𝜶𝜶𝑀𝑀𝑃𝑃 ,𝜎𝜎𝑀𝑀𝑃𝑃2 )𝑑𝑑𝒘𝒘              (17) 

The Gaussian form is expressed as: 

𝑃𝑃𝑟𝑟(𝑦𝑦∗|𝑥𝑥∗,𝜶𝜶𝑀𝑀𝑃𝑃 ,𝜎𝜎𝑀𝑀𝑃𝑃2 ) = 𝒩𝒩(𝑦𝑦�∗,𝜎𝜎∗2)                  (18) 

where 𝑦𝑦�∗ = 𝝁𝝁′𝜱𝜱(𝑥𝑥∗) is the mean estimate of the target and 𝜎𝜎∗2 = 𝜎𝜎𝑀𝑀𝑃𝑃2 + 𝜱𝜱(𝑥𝑥∗)′𝚺𝚺𝜱𝜱(𝑥𝑥∗) is the 
corresponding uncertainty. The 𝜶𝜶𝑀𝑀𝑃𝑃  and 𝜎𝜎𝑀𝑀𝑃𝑃2  are the most probable hyperparameter values 
obtained from Eq. (13). 

The predictive mean is generated through the reduced basis function and the input explanatory 
variables. The predictive variance confirms that the Out-Of-Sample (OOS) prediction is 
consistently higher than the In-Sample (IS) one due to extra uncertainty caused in the process 
of the weights’ prediction. 

2.3 DMA and DMS 

Financial trading series are dominated by structural breaks. Models with fixed coefficients 
work only for short periods. Time-Varying Parameter (TVP) models consider the parameters 
as a function of time and are estimated using state-space methods such as Kalman filter. Despite 
the benefits of the TVP models over the static methods, the assumption is that the initial set of 
explanatory variables remains relevant over time. This can be undesirable in real environment 
applications.  

The DMA proposed by Raftery et al. (2010) allows selecting different subsets of explanatory 
variables over time along with variable coefficients. Consider a candidate input set 𝑢𝑢 =
1, … ,𝑈𝑈, then the state-space model at time 𝑡𝑡 = 1, … ,𝑇𝑇 for the dependent variable 𝑦𝑦𝑡𝑡 can be 
presented under observational and state equations as: 

𝑦𝑦𝑡𝑡 = 𝐹𝐹𝑡𝑡
(𝑢𝑢)′𝜁𝜁𝑡𝑡

(𝑢𝑢) + 𝜀𝜀𝑡𝑡
(𝑢𝑢),                     (19) 

𝜁𝜁𝑡𝑡
(𝑢𝑢) = 𝜁𝜁𝑡𝑡−1

(𝑢𝑢) + 𝜂𝜂𝑡𝑡
(𝑢𝑢),                      (20) 

�
𝜀𝜀𝑡𝑡

(𝑢𝑢)

𝜂𝜂𝑡𝑡
(𝑢𝑢)�  ~ 𝒩𝒩 �

𝑅𝑅𝑡𝑡
(𝑢𝑢)     0

0     𝑉𝑉𝑡𝑡
(𝑢𝑢)�,                          (21) 

where 𝐹𝐹𝑡𝑡
(𝑢𝑢) in Eq. (19) is a subset from the 𝜈𝜈 potential predictors at each time. The 𝜁𝜁𝑡𝑡

(𝑢𝑢) is a 
𝑝𝑝 × 1 ,𝑝𝑝 ≤ 𝜈𝜈 vector of time-varying regression coefficients evolving over time by Eq. (20). 
From the specification provided, it is immediately visible that the total number of candidate 
models is 𝑈𝑈 = 2𝜈𝜈. Unless 𝜈𝜈 is very small, updating the parameters becomes demanding and 
computationally very slow using a full Bayesian approach. Raftery et al. (2010) approximates 
the solutions of Eq.s (19 to 21) and thus makes the algorithm more efficient. However, the 
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computational burden still increases exponentially when 𝑣𝑣  is large. This makes DMA 
impractical with standard computer processing when 𝜈𝜈 is larger than 20.  

The DMA averages the forecasts across candidate combination of models based on predictive 
likelihood through a recursive updating scheme. The predictive likelihood estimates the ability 
of model 𝑢𝑢 to predict 𝑦𝑦𝑡𝑡. The models containing better predictors receive higher predictive 
likelihood and are associated with higher weights in the averaging process. Respectively, at 
each time 𝑡𝑡 two vectors of weights for the model 𝑢𝑢 are calculated as 𝜔𝜔𝑡𝑡|𝑡𝑡−1,𝑢𝑢 and 𝜔𝜔𝑡𝑡|𝑡𝑡,𝑢𝑢. The 
first quantity denotes the weight of a specific model given information available at time 𝑡𝑡 − 1, 
while the latter one represents the dedicated weight to the specific model after the model update 
at time 𝑡𝑡 . The DMS makes the prediction based on the highest value of weight which is 
calculated through the updating process. This can be mathematical expressed as: 

𝜔𝜔𝑡𝑡|𝑡𝑡,𝑢𝑢 = 𝜔𝜔𝑡𝑡|𝑡𝑡−1,𝑢𝑢 𝐿𝐿𝑢𝑢(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1)
∑ 𝜔𝜔𝑡𝑡|𝑡𝑡−1,𝑙𝑙
𝑈𝑈
𝑙𝑙=1  𝐿𝐿𝑙𝑙(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1)

,                   (22) 

where  𝐿𝐿𝑢𝑢(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1) is the predictive likelihood measured by the realized value of 𝑦𝑦𝑡𝑡. By using 
a forgetting factor 𝛿𝛿, as suggested by Raftery et al. (2010), the weights for the following period 
are formulated as: 

𝜔𝜔𝑡𝑡+1|𝑡𝑡,𝑢𝑢 =
𝜔𝜔𝑡𝑡|𝑡𝑡,𝑢𝑢
𝛿𝛿  

∑ 𝜔𝜔𝑡𝑡|𝑡𝑡,𝑙𝑙
𝛿𝛿𝑈𝑈

𝑙𝑙=1
.                    (23) 

The 𝛿𝛿 controls the ‘forgetting’ of the entire model set and it can take values in the range of 0 <
𝛿𝛿 ≤ 1. Raftery et al. (2010) suggest 𝛿𝛿 = 0.99 as a benchmark, while Koop and Korobilis 
(2012) recommend 𝛿𝛿 ∈ [0.95,0.99]. The recursive calculation starts with a non-informative 
choice for the initial weight 𝜔𝜔0|0,𝑢𝑢 = 1

𝑈𝑈
 for 𝑢𝑢 = 1, … ,𝑈𝑈. The other approximation is used in the 

estimation of the 𝑉𝑉𝑡𝑡
(𝑢𝑢). The second forgetting factor, 𝜆𝜆, explains the information loss over time. 

Representing the variance estimator 𝜁𝜁𝑡𝑡
(𝑢𝑢) by 𝐶𝐶𝑡𝑡

(𝑢𝑢), the conditional variance, 𝑉𝑉𝑡𝑡
(𝑢𝑢)(there is no 

need to be estimated for each individual model), is calculated as: 

𝑉𝑉𝑡𝑡
(𝑢𝑢) = (1 − 𝜆𝜆−1)𝐶𝐶𝑡𝑡−1

(𝑢𝑢) .                      (24) 

In other words, the 𝜆𝜆 controls the amount of shock affecting the coefficients 𝜁𝜁𝑡𝑡
(𝑢𝑢). Identical to 

𝛿𝛿, 𝜆𝜆 may also take values near to one. This determines the rate of which information loses 
effect on the model coefficients. Here, it should be noted that by setting 𝛿𝛿 = 1, the DMA is 
transformed to a TVP model with no change in the subset selection over time. Additionally, by 
setting 𝛿𝛿 = 𝜆𝜆 = 1, the DMA is simplified to conventional Bayesian Model Averaging with no 
time-varying characteristic.  

The term “forgetting factors” stems from the fact that observations at 𝑗𝑗 periods ago have a 
contribution with factor 𝜆𝜆𝑗𝑗 to the model. As a simple analogy, in the case of having 𝜆𝜆 = 0.99 
, it takes 69 periods for the shock from each observation to lose half of its effect on the 
coefficients. The half-life of the shock to the model is reduced to 14 periods for 𝜆𝜆 = 0.95 and 
further to 6 in the case of 𝜆𝜆 = 0.90. The values of the forgetting factors can considerably affect 
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the way models react to the changes of the environment.  Various surveys recommend the direct 
use of 𝛿𝛿 = 𝜆𝜆 = 0.99  as a benchmark (Raftery et al., 2010; Aye et al., 2015). Koop and 
Korobilis (2012) argue that the performance of competing models with different forgetting 
factors are robust and perform efficiently. They also conduct a sensitivity analysis for the 
parameters that shows that the best OOS forecasting results are obtained by setting 𝛿𝛿 = 0.95 
and 𝜆𝜆 = 0.99. The study of Koop and Korobilis (2012) is conducted on macroeconomic data 
and indicates that appropriate selection of parameters under volatile conditions can enhance 
the predictive ability of the DMA and DMS models. In this study, a wider variety of values e.g. 
{0.90,0.95,0.99,1} for the parameters are experimented to accommodate a more rapid update 
of the model specification. This choice accommodates the dynamics and nonlinearities of the 
market. The wide range for parameters also replicates the behaviour of expert traders on the 
market floor that constantly revise their trading strategy and if necessary rapidly switch from 
one approach to another6.  

2.4 BNN 

BNN is specific extension of ANNs that are a class of non-linear models inspired by the work 
and functioning of biological neurones. In the most common set-up, an ANN has at least three 
layers. The first layer is called the input layer (where the technical rules are fed). The last layer 
is called the output layer (where the forecasted value is extracted). An intermediary layer of 
nodes, the hidden layer, separates the input from the output layer. The number of nodes in the 
hidden layer controls the complexity the model is able to fit. In addition, the input and hidden 
layer contain an extra node called the bias node. This node has a fixed value of one and has the 
same function as the intercept in traditional regression models. Normally, each node of one 
layer has connections to all the other nodes of the next layer.   

The training of the network is to adjust its weights so that the network maps the input value of 
the training data to the corresponding target value. It begins with randomly chosen weights and 
proceeds by applying a learning algorithm. The most common procedure is the 
backpropagation of errors (Shapiro, 2000) which looks for the minimum of the error function 
(commonly the Mean Squared Error (MSE) between the actual and forecasted values) in weight 
space using the method of gradient descent. 

Ticknor (2013) modifies the training procedure by applying Bayesian regularisation which 
trains the ANN based on: 

𝛺𝛺 = 𝛾𝛾1𝛦𝛦𝑆𝑆𝑆𝑆 + 𝛾𝛾2𝛦𝛦𝑤𝑤𝑛𝑛                    (25) 

where 𝛦𝛦𝑆𝑆𝑆𝑆 is the sum of the squared errors, 𝛦𝛦𝑤𝑤𝑛𝑛 is the sum of the squared network weights and 
𝛾𝛾1  and 𝛾𝛾2  are objective function parameters. In this framework, the ANN’s weights are 
considered random variables and its density function based on the rule of Bayes is: 

 
6 The reported results in Section 4 are based on the best performance measured in the IS. The IS in the DMA 
and DMS cases is the first 80% of observations. 
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𝑃𝑃𝑟𝑟(𝑤𝑤|𝐷𝐷, 𝛾𝛾1, 𝛾𝛾2,𝑀𝑀) = 𝑃𝑃𝑃𝑃(𝐷𝐷|𝑤𝑤,𝛾𝛾1,𝛭𝛭)𝑃𝑃𝑃𝑃(𝑤𝑤|𝛾𝛾2,𝛭𝛭)
𝑃𝑃𝑃𝑃(𝐷𝐷|𝛾𝛾1,𝛾𝛾2,𝛭𝛭)

                 (26) 

where 𝑤𝑤 is a vector of the network weights, 𝐷𝐷 is a vector with the dataset (technical rules in 
our case) and 𝑀𝑀 is the underlying model (the ANN in this case). Based on Forsee and Hagan 
(1997), the optimization of parameters 𝛾𝛾1 and 𝛾𝛾2 requires solving a Hessian matrix based on 
the Levenberg–Marquardt training algorithm. In order to protect the ANN from over-fitting, 
the early stopping procedure in the IS is applied.  

In BNN, overly complex models are penalized as unnecessary linkage weights and are 
effectively driven to zero. Burden and Winkler (2009) argue that the network calculates and 
trains on the nontrivial weights which converges to a constant as the network grows. 
Parsimonious ANNs limit the training time and the danger of over-fitting. Additionally, they 
do not require the validation step which is otherwise necessary on the traditional back-
propagated ANNs. 

2.5 NB 

The RVM models the posterior 𝑃𝑃𝑟𝑟(𝑦𝑦|𝑥𝑥) from the attribute variable set 𝒙𝒙 to the class label set 
𝒚𝒚 . In the context of probabilistic classification, this approach is termed as discriminative 
learning. In discriminative classifiers, all training observations from any class 𝑦𝑦𝑖𝑖 are considered 
in establishing the model. Despite evidence in favour of discriminative classification (Vapnik, 
1999), there is a reverse approach to the probabilistic classification regarded as generative 
learning. The generative classifiers learn the joint probability 𝑃𝑃𝑟𝑟(𝑥𝑥, 𝑦𝑦), by using Bayes rules 
to calculate 𝑃𝑃𝑟𝑟(𝑦𝑦|𝑥𝑥) . Then, a classification model is obtained, which classifies each data point 
to the label 𝑦𝑦 with the highest posterior probability. Generative learning is particularly useful, 
when there is missing information in the dataset. 

The NB is a simple classifier that allocates each point of the dataset to the most likely class 
according to the generative approach. The model is named naïve because of its simplifying 
assumption that all variables 𝑥𝑥𝑖𝑖 are conditionally independent for a certain class 𝑦𝑦0. For a test 
sample with attribute variables 𝑥𝑥 = 𝑥𝑥0 of 𝜈𝜈 dimension and class label 𝑦𝑦 = 𝑦𝑦0 , the probability 
of each class can be calculated by the observed values of the predictive attributes 𝑥𝑥𝑗𝑗,𝑡𝑡 , 𝑗𝑗 =
1, … , 𝑣𝑣 ;  𝑡𝑡 = 1, … ,𝑇𝑇. By using the Bayes rule, the posterior can be calculated as: 

𝑃𝑃𝑟𝑟(𝑦𝑦 = 𝑦𝑦0|𝑥𝑥 = 𝑥𝑥0) = 𝑃𝑃𝑃𝑃(𝑦𝑦=𝑦𝑦0)𝑃𝑃𝑃𝑃�𝑥𝑥 = 𝑥𝑥0�𝑦𝑦 = 𝑦𝑦0�
𝑃𝑃𝑃𝑃(𝑥𝑥=𝑥𝑥0)                 (27) 

The predicted label is the most probable class given by (27). Under the class-conditional 
independence assumption, we have: 

𝑃𝑃𝑟𝑟(𝑥𝑥 = 𝑥𝑥0|𝑦𝑦 = 𝑦𝑦0) = ∏ 𝑃𝑃𝑟𝑟(𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖,0|𝑦𝑦 = 𝑦𝑦0)𝜈𝜈
𝑖𝑖=1                  (28) 

The conditional distribution 𝑃𝑃𝑟𝑟(𝑥𝑥 = 𝑥𝑥0|𝑦𝑦 = 𝑦𝑦0) may take a multinomial (Gaussian) form for 
discrete (continuous) variables. Based on the training dataset and plugging the empirical 
probabilities in Eq.s (27 and 28), it is easy to make a natural classification as the naïve 
benchmark. 
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In this paper, NB is used as a benchmark for other types of Bayesian probabilistic models. The 
attribute variables are the signals generated by the trading rules from a set of 𝑥𝑥 ∈ {−1, 0, 1}. 
This set represents short, hold or long positions respectively. Similarly, the class label is the 
one-step-ahead direction of the market change. For example, a class label 𝑦𝑦 ∈ {−1, 0, 1} 
represents the fall, no change or rise respectively of the market in the next period.  

3. Empirical Section 

3.1 Dataset 

The proposed methodology is applied to the daily price (open, high, low, and close) and volume 
series for EUR/USD, GBP/USD, and USD/JPY exchange rates. The period under study is the 
start of 2010 until the end of 2016 and it is divided into four trading exercises. In each trading 
exercise, the first three years act as IS and the following year as OOS (i.e. in the first exercise 
the IS covers the years 2010 until 2012 and the year 2013 acts as OOS). 

At the first stage, 7,846 simple trading rules are generated for each of the three exchange rates 
at the IS periods of the four exercises. The trading rules consist of FIlter Rules (FIRs), MAs, 
Support and Resistance levels (S&Rs), Channel Breakouts (CBs), and On-Balance Volume 
indicators (OBVs). It is the same set of rules applied in the studies of Sullivan et al. (1999) and 
Bajgrowicz and Scallet (2012). For a description of these rules see Appendix A. All trading 
rules are generated through the logarithmic returns of the exchange rates.  The summary 
statistics of the logarithmic returns on daily close for the exchange rates under study are 
presented in the Table 1.  

Table 1: Descriptive statistics 

Period Statistic EUR/USD GBP/USD USD/JPY 

2010.01.04 - 
2013.12.31 

Mean (bp) -4.59 -0.28 1.25 
Standard Deviation 

(bp) 62.2 50.9 63.1 

Kurtosis 3.78 3.25 8.91 
Skewness -0.12 -0.07 -0.55 
JB p-value 0.00 0.00 0.00 

ADF p-value 0.00 0.00 0.00 

2011.01.03 - 
2014.12.31 

Mean (bp) -0.97 -0.02 0.38 
Standard Deviation 

(bp) 53.8 43.9 59.3 

Kurtosis 4.28 3.51 9.27 
Skewness -0.14 -0.11 0.06 
JB p-value 0.00 0.00 0.00 

ADF p-value 0.00 0.00 0.00 

2012.01.02 - 
2015.12.31 

Mean (bp) -1.68 -0.13 4.30 
Standard Deviation 

(bp) 54.5 45.5 56.7 

Kurtosis 4.95 3.96 6.51 
Skewness 0.17 0.17 0.05 
JB p-value 0.00 0.00 0.00 

ADF p-value 0.00 0.00 0.00 

2013.01.02 - 
2016.12.30 

Mean (bp) -2.19 -0.04 0.29 
Standard Deviation 

(bp) 54.7 62.1 64.8 

Kurtosis 5.48 4.47 6.81 



15 
 

Note: The mean and standard deviations are reported in basis points. Reported values of zero for the Jarque–Bera 
and augmented Dickey–Fuller (without any lagged difference) tests correspond to p-values less than 1 over 100 
(p<0.01) 

All series exhibit positive kurtosis while the skewness is mixed but generally close to zero. The 
Jarque and Bera (JB) (1980) test reveals that the return series do not follow a normal 
distribution, while the Augmented Dicky-Fuller (ADF) (1979) test shows that they are 
stationary. Each trading rule generates a daily trading signal for the relevant exchange rate and 
IS period. The trading signal can be long (buy), short (sell) or hold (no action). Based on these 
signals, the trading performance of each of the 7,846 rules is generated. As transaction costs, 
we consider three basis points per trade7.  

3.2 Empirical design 

Our empirical study is designed to show the merits of combining Bayesian Statistics with data 
snooping procedures. This Section describes how the models are intertwined to and how their 
corresponding performance is measured. Figure 1 presents the model synthesis used to quantify 
the differences between the alternative predictive models. 

Figure 1: Modelling flowchart 

 
Note: The study utilizes the generated technical trading universe to produce four sets of predictions. In the 
modelling process of this study, the RVM model is fed directly the set of discoveries from the data snooping 
procedure to generate forecasts. The other Bayesian models are fed with top rules based IS accuracy in predicting 

 
7 See among others, www.interactivebrokers.com and www.fxall.com  

Skewness 0.11 -3.42 -0.27 
JB p-value 0.00 0.00 0.00 

ADF p-value 0.00 0.00 0.00 
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the direction of the FX price movement in the following day. The Bayesian models are benchmarked against the 
average of survivors from the test and the average of top rules’ performances. The performance is measure in 
terms of excess return and Sharpe ratio. 

In the first step, the technical trading pool is generated. Then, the data snooping test is 
conducted with a zero-rate benchmark8. The survivals of the test are considered as the potential 
pool of superior models. We measure the number of survivors and their profitability within the 
IS and OOS in Section 4.1. In the next step we want to check if the Bayesian models are able 
to learn from the market and replicate an experienced trader’s behaviour. The three main 
methods — BNN, DMA, and DMS — are computationally demanding and combining them 
with all the identified trading rules is not feasible9.  Thus, for BNN, DMA, DMS and NB the 
best 5, 10 and 15 technical rules are used as inputs based on accuracy in the IS10. For RVM, 
the algorithm requires a large set of potential predictors in order to identify the optimum 
relevant subset of inputs. Therefore, it is fed with all the identified genuine profitable technical 
rules. The performance of the best 5, 10, and 15 rules are also measured without using any 
learning algorithm.  

4. Trading Application 

We assess the behaviour of the technical trading pool at different stages. First we see how many 
rules are able to statistically generate a positive test statistics as in Eq.s (1 to 3). Then trading 
portfolios are constructed based on the significant ones. The portfolios are studied for their 
number of constituents, and the corresponding IS and OOS profitability. Three main exchange 
rates and their average as a portfolio of major pairs are studied over exercises with length of 
one calendar year. 

4.1 Genuine Technical Rules 

The equal weight11 trading performance of the identified genuine technical rules is presented 
below.  

Table 2: Properties of data-snooping test survivors 

 
8 We chose this benchmark since the mean return on the studied assets are approximately zero for all cases. 
9 For example, for DMA and the EUR/USD in the first forecasting exercise, the algorithm would have to estimate 
2839 combinations. This task is feasible with the help of supercomputers (which were not available in this project), 
but it is unrealistic from a trading perspective where speed is essential. For an up-to-date personal computer (Intel 
core-i5 3470 64-bit processor with 8 GB memory), DMA needs around 30 minutes to produce the results for one 
experiment with fifteen inputs (out of the twelve similar experiments, for each of the three exchange rates). This 
is increased to twenty-one hours for twenty inputs. Similarly, in BNNs, when the number of inputs is very large 
their algorithm becomes insufficient, they become prone to overfitting and their forecasting performance is 
crippled (Zhang et al., 1998). 
10 We repeat the same practice with the top performers based on excess return, Sharpe ratio and Sortino ratio 
within the IS. The results with these metrics are presented in Appendix B. 
11 The equal weight corresponds to investing the 1/𝐶𝐶 of the total wealth to each of the 𝐶𝐶 trading rules identified 
from the data snooping procedure. The portfolio construction approach as presented in Bajgrowicz and Scallet 
(2012) has also been explored. In Bajgrowicz and Scallet (2012), the buy and sell signals counter each other while 
the neutral signs are considered risk free investments. The portfolios derived from this approach do not change 
the view of Table 1. However, as the scope of this study is to check the efficiency of technical analysis in FX and 
whether Bayesian techniques can improve their trading performance, the annualized averages are presented. 
Following this approach, the results of Table 2 can also be compared with the results of Section 4.2 where the best 
trading rules are combined with the Bayesian techniques.  



17 
 

Period Asset IS Performance OOS Performance Surviving Rules Count 

2013 
EUR/USD 3.07% (0.29) -1.23% (-0.72) 839 
GBP/USD 1.1% (0.29) 0.21% (0.05) 788 
USD/JPY 3.24% (0.07) -3.37% (-0.65) 870 

2014 
EUR/USD 5.71% (1.01) 3.69% (0.96) 819 
GBP/USD 5.67% (2.62) 4.41% (1.56) 368 
USD/JPY 6.7% (0.58) 6.19% (1.07) 439 

2015 
EUR/USD 3.18% (1.45) 2.21% (0.41) 1144 
GBP/USD 6.42% (1.85) 1.47% (0.27) 1047 
USD/JPY 12.5% (2.13) -6.58% (-0.94) 523 

2016 
EUR/USD 10.31% (0.25) 2.04% (0.41) 1147 
GBP/USD 4.85% (0.14) 1.91% (0.22) 981 
USD/JPY 8.77% (1.43) -1.31% (-0.33) 337 

Total Average 5.96% (1.01) 0.8% (0.19) 775.17 
Note: The table presents the excess annualized returns (above the risk-free rate) of the technical rules after 
transaction costs. The values in parentheses correspond to the Sharpe ratios. Trading rules correspond to the 
number of genuine trading rules identified in the in-sample by the Romano et al. (2008) test combined with the 
balancing procedure of Romano and Wolf (2010).  

From Table 2, we note that in all cases the data snooping procedure was able to identify 
genuinely profitable trading rules based on the IS observations. The number of significant rules 
corresponds roughly to 5%-15% of the total number of trading rules under study. The average 
trading performance of the genuine trading rules is positive in all IS cases and in most OOS 
cases.  

These results allow us to argue that technical analysis seems to have value on the exchange 
rates and periods under study. There are genuine profitable simple technical rules in the IS. It 
is possible for investors and researchers to identify these rules with the help of recent 
developments in SI. This performance supports AMH which argues that investors need to be 
adaptive in highly competitive trading environments. These results agree with Hsu et al. 
(2010), Neely and Weller (2013) and Hsu et al. (2014) that argue that technical analysis has 
some value. However, in line with the previous studies, we note that the performance of these 
rules is volatile probably due to the time-varying market conditions. we also note that the profit 
margins are low, and the OOS trading performance is not always above the risk-free rate12.  

4.2 Bayesian Trading  

Although technical rules seem unreliable for trading, Bayesian techniques can offer an 
advantage to investors. Arguably, they could combine different trading signals and derive 
strongly positive trading performances. Complex models should be capable of encompassing 
the simple trading rules. Additionally, these models should be able to offer an advantage to 
highly competitive markets. More specifically, the dynamic nature of DMS and DMA and the 
non-linear adaptive nature of BNN should be able to handle the changing trends of the FX 
series under study. By using the flowchart in Figure 1, in this Section we present our empirical 
results for the studied Bayesian models. A Simple Average (SA) of the best rules is also 
estimated as a naïve benchmark. In Tables 3 to 5, the trading performance of all the Bayesian 

 
12 As risk free rate, the effective federal funds rate is considered. The interest rate at which US depository 
institutions trade federal funds with each other overnight. These rates are obtained from Federal Reserve Bank of 
St. Louis. 
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methods in the OOS are presented for three major exchange rates and Table 6 replicates the 
same practice for an equal-weight portfolio of the studied pairs. The Giacomini and White 
(2006) test with a buy and hold strategy as benchmark is applied to all models13.  In Appendix 
C, we present the performance of our models under the Model Confidence Set (MCS) of 
Hansen et al. (2011). 

Table 3: Trading performance for EUR/USD 
Model 2013 2014 2015 2016 Average 

BNN (15) 6.12%** (0.59) 5.37%** (0.4) 5.37%** (0.64) 7.28%** (0.76) 6.04%** (0.6) 
DMA (15) 5.3%** (0.57) 6.15%** (0.48) 6.01%** (0.62) 6.74%** (0.65) 6.05%** (0.58) 
DMS (15) 4.8%** (0.47) 5.4%** (0.44) 6.12%** (0.68) 6.8%** (0.74) 5.78%** (0.58) 
BNN (10) 6.48%** (0.6) 6.42%** (0.51) 6%** (0.77) 6.01%** (0.65) 6.23%** (0.63) 
DMA (10) 6.89%** (0.62) 6.08%** (0.44) 6.85%** (0.71) 5.07%** (0.56) 6.22%** (0.58) 
DMS (10) 5.02%** (0.48) 4.24%** (0.37) 6.97%** (0.69) 5.29%** (0.73) 5.38%** (0.57) 
BNN (5) 6.01%** (0.59) 3.77%** (0.36) 5.08%** (0.7) 6.21%** (0.69) 5.27%** (0.59) 
DMA (5) 4.34%** (0.44) 3.86%** (0.32) 7.79%** (0.8) 6.36%** (0.64) 5.59%** (0.55) 
DMS (5) 3.74%** (0.5) 3.99%** (0.35) 6.23%** (0.57) 4.5%** (0.4) 4.62%** (0.46) 

RVM 4.35%** (0.5) 3.28%** (0.31) 4.41%** (0.63) 4.24%** (0.47) 4.07%** (0.48) 
NB (15) 1.8%** (0.3) 1.72%** (0.17) 1.18%** (0.27) 3.33%** (0.41) 2.01%** (0.29) 
NB (10) 2.09%** (0.33) 2.74%** (0.26) 0.86%** (0.25) 3.18%** (0.38) 2.22%** (0.31) 
NB (5) 1.06%** (0.18) 1.82%** (0.18) 4.23%** (0.42) 2.28%** (0.36) 2.35%** (0.29) 
SA (15) -1.44% (-0.14) 0.16% (0.08) -0.99% (-0.12) -1.32%** (-0.12) -0.9% (-0.08) 
SA (10) 1.17% (0.2) 1.89% (0.19) -2.18% (-0.22) -2.46%** (-0.2) -0.4% (-0.01) 
SA (5) -2.88% (-0.22) 0.27% (0.09) 0.26%* (0.19) 0.21%** (0.17) -0.54% (0.06) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample accuracy. The RVM is selecting the most relevant rules endogenously. All returns are after transaction 
costs. The values in bold correspond to the best performing combination for each exercise. The Giacomini and 
White (2006) test is applied to all models. * and ** present significance at 10%, and 5% level respectively.  The 
benchmark of the test is a buy and hold strategy. 

Table 4: Trading performance for GBP/USD 
Model 2013 2014 2015 2016 Average 

BNN (15) 7.29%** (0.75) 6.29%** (0.76) 6.17%** (0.71) 6.01%** (0.64) 6.44%** (0.72) 
DMA (15) 6.66%** (0.65) 6.53%** (0.72) 7.19%** (0.79) 7.78%** (0.83) 7.04%** (0.75) 
DMS (15) 5.2%** (0.56) 5.57%** (0.69) 6.22%** (0.68) 6.4%** (0.67) 5.85%** (0.65) 
BNN (10) 6.38%** (0.61) 5.21%** (0.65) 4.55%** (0.48) 5.83%** (0.57) 5.49%** (0.58) 
DMA (10) 3.89%** (0.38) 4.03%** (0.5) 5.68%** (0.62) 5.36%** (0.51) 4.74%** (0.5) 
DMS (10) 3.92%** (0.37) 4.48%** (0.57) 6.01%** (0.62) 4.39%** (0.42) 4.7%** (0.5) 
BNN (5) 4.89%** (0.42) 5.16%** (0.61) 5.14%** (0.53) 5.03%** (0.52) 5.06%** (0.52) 
DMA (5) 4.57%** (0.43) 3.64%** (0.37) 5.96%** (0.64) 4.7%** (0.48) 4.72%** (0.48) 
DMS (5) 4.6%** (0.44) 3%** (0.45) 6.07%** (0.64) 3.21%** (0.36) 4.22%** (0.47) 

RVM 4.61%** (0.41) 4.19%** (0.43) 3.72%** (0.39) 4.27%** (0.48) 4.2%** (0.43) 
NB (15) 3.82%** (0.38) 1.88%** (0.19) 3.44%** (0.37) 2.85%** (0.31) 3%** (0.31) 
NB (10) 2.43%** (0.33) 2.62%** (0.28) 2.55%** (0.31) 3.05%** (0.29) 2.66%** (0.3) 
NB (5) 2.7%** (0.32) 2.42%** (0.26) 1.85%** (0.27) 2.78%** (0.26) 2.44%** (0.28) 
SA (15) -0.53% (-0.15) 2.4% (0.24) 1.58% (0.19) 1.02% (0.09) 1.12% (0.09) 
SA (10) 0.8% (0.12) 2.22% (0.2) 1.66% (0.23) 1.98% (0.18) 1.67% (0.18) 
SA (5) 1.92% (0.3) 0.71% (0.09) -0.48% (-0.07) -0.13% (-0.05) 0.51% (0.07) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample accuracy. The RVM is selecting the most relevant rules endogenously. All returns are after transaction 
costs. The values in bold correspond to the best performing combination for each exercise The Giacomini and 

 
13 Our Giacomini and White (2006) tests realizations are robust when the benchmark is a random walk model.  
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White (2006) test is applied to all models. * and ** present significance at 10%, and 5% level respectively.  The 
benchmark of the test is a buy and hold strategy. 

Table 5: Trading performance for USD/JPY 
Model 2013 2014 2015 2016 Average 

BNN (15) 6.15%** (0.68) 6%** (0.62) 4.23%** (0.43) 6.84%** (0.69) 5.81%** (0.61) 
DMA (15) 5.18%** (0.53) 6.03%** (0.67) 5.4%** (0.58) 6.08%** (0.63) 5.67%** (0.6) 
DMS (15) 4.14%** (0.43) 5.42%** (0.56) 4.91%** (0.53) 5.67%** (0.6) 5.04%** (0.53) 
BNN (10) 5.03%** (0.54) 5.74%** (0.63) 4.85%** (0.51) 6%** (0.62) 5.41%** (0.58) 
DMA (10) 4.43%** (0.47) 5.97%** (0.64) 4.67%** (0.46) 5.36%** (0.55) 5.11%** (0.53) 
DMS (10) 5.09%** (0.55) 4.06%** (0.41) 4.79%** (0.42) 4.92%** (0.49) 4.72%** (0.47) 
BNN (5) 4.1%** (0.46) 4.91%** (0.5) 5.99%** (0.62) 6.78%** (0.71) 5.45%** (0.57) 
DMA (5) 3.84%** (0.38) 5%** (0.53) 4.42%** (0.45) 7.33%** (0.76) 5.15%** (0.53) 
DMS (5) 5.62%** (0.6) 3.04%** (0.32) 4.83%** (0.46) 5.7%** (0.59) 4.8%** (0.49) 

RVM 5.22%** (0.54) 4.75%** (0.49) 4.01%** (0.41) 5.47%** (0.56) 4.86%** (0.5) 
NB (15) 3.07%** (0.34) 3.06%** (0.36) 2.77%** (0.27) 2.12%** (0.23) 2.76%** (0.3) 
NB (10) 2.18%** (0.22) 2.92%** (0.28) 3.58%** (0.39) 1.87%** (0.2) 2.64%** (0.27) 
NB (5) 2.44%** (0.26) 2.12%** (0.24) 2.09%** (0.17) 1.61%** (0.18) 2.07%** (0.21) 
SA (15) -1.16% (-0.21) 0.1% (0.06) 0.21% (0.03) 0.86% (0.09) 0% (-0.01) 
SA (10) -0.2% (-0.09) -3.63%* (-0.42) -1.72% (-0.15) -2.09% (-0.23) -1.91% (-0.22) 
SA (5) -2.24% (-0.3) -2.28%* (-0.25) -2.75% (-0.21) -3.33% (-0.4) -2.65% (-0.29) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample accuracy. The RVM is selecting the most relevant rules endogenously. All returns are after transaction 
costs. The values in bold correspond to the best performing combination for each exercise. The Giacomini and 
White (2006) test is applied to all models. * and ** present significance at 10%, and 5% level respectively.  The 
benchmark of the test is a buy and hold strategy. 

Table 6: Trading performance for the equal-weight portfolio 
Model 2013 2014 2015 2016 Average 

BNN (15) 6.52%** (0.67) 5.89%** (0.59) 5.26%** (0.59) 6.71%** (0.7) 6.09%** (0.64) 
DMA (15) 5.71%** (0.58) 6.24%** (0.62) 6.2%** (0.66) 6.87%** (0.7) 6.25%** (0.64) 
DMS (15) 4.71%** (0.49) 5.46%** (0.56) 5.75%** (0.63) 6.29%** (0.67) 5.55%** (0.59) 
BNN (10) 5.96%** (0.58) 5.79%** (0.6) 5.13%** (0.59) 5.95%** (0.61) 5.71%** (0.6) 
DMA (10) 5.07%** (0.49) 5.36%** (0.53) 5.73%** (0.6) 5.26%** (0.54) 5.36%** (0.54) 
DMS (10) 4.68%** (0.47) 4.26%** (0.45) 5.92%** (0.58) 4.87%** (0.55) 4.93%** (0.51) 
BNN (5) 5%** (0.49) 4.61%** (0.49) 5.4%** (0.62) 6.01%** (0.64) 5.26%** (0.56) 
DMA (5) 4.25%** (0.42) 4.17%** (0.41) 6.06%** (0.63) 6.13%** (0.63) 5.15%** (0.52) 
DMS (5) 4.65%** (0.51) 3.34%** (0.37) 5.71%** (0.56) 4.47%** (0.45) 4.54%** (0.47) 

RVM 4.73%** (0.48) 4.07%** (0.41) 4.05%** (0.48) 4.66%** (0.5) 4.38%** (0.47) 
NB (15) 2.9%** (0.34) 2.22%** (0.24) 2.46%** (0.3) 2.77%** (0.32) 2.59%** (0.3) 
NB (10) 2.23%** (0.29) 2.76%** (0.27) 2.33%** (0.32) 2.7%** (0.29) 2.51%** (0.29) 
NB (5) 2.07%** (0.25) 2.12%** (0.23) 2.72%** (0.29) 2.22%** (0.27) 2.28%** (0.26) 
SA (15) -1.04% (-0.17) 0.89% (0.13) 0.27% (0.03) 0.19% (0.02) 0.07% (0) 
SA (10) 0.59% (0.08) 0.16% (-0.01) -0.75% (-0.05) -0.86% (-0.08) -0.21% (-0.02) 
SA (5) -1.07% (-0.07) -0.43% (-0.02) -0.99% (-0.03) -1.08% (-0.09) -0.89% (-0.06) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample accuracy. The RVM is selecting the most relevant rules endogenously. All returns are after transaction 
costs. The values in bold correspond to the best performing combination for each exercise. The Giacomini and 
White (2006) test is applied to all models. * and ** present significance at 10%, and 5% level respectively.  The 
benchmark of the test is a buy and hold strategy. 

Tables 3 to 6 show that all Bayesian combinations are capable of producing positive returns 
and Sharpe ratios, after transaction costs for the exchange rates and the periods under study. 
The DMA and the BNN seem to outperform their Bayesian counterparts and the SAs. This can 
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be explained by the dynamic nature and time-varying coefficients of DMA and the highly non-
linear features of BNN. On the other hand, the RVM that explores the whole set of genuine 
rules presents a marginally better performance than NB. DMS presents a consistently lower 
trading performance than the relevant DMA models. In trading, model averaging almost always 
works better than model selection and thus these results are not surprising. In general, we find 
that the trading performance increases three to four times with DMA and BNN, compared to 
the pool of surviving technical rules (see Table 2). It is also worth noting that all Bayesian 
combinations are statistically different from the buy and hold strategy based on the Giacomini 
and White (2006) test.  

Based on these results, Bayesian Statistics have value in trading and can considerably increase 
the profitability of the underlying trading systems.  The models under study (DMA, DMS, 
BNN and RVM) are characterized by their complexity but can offer investors substantially 
increased returns. Similar to the concept of AMH, in highly competitive markets (such as FX) 
simple rules have a small value. Traders should seek complex non-linear models that can offer 
them an advantage over their competitors. DMA and DMS search all possible input 
combinations and select the optimal subset at each step, while BNN imitates the work of 
biological neurons and maps the non-linear dataset through Bayesian statistics. Unlike the 
simple technical rules that can be estimated by hand, none of the three Bayesian models can be 
used without the help of computer processors. However, complexity is always translated to an 
increased computational burden. This study was limited to subsets of the genuine profitable 
technical rules for DMA, DMS and BNN. While this protects the models from over-fitting, 
applying the whole set of genuine rules might have led to better results.  

 

4.3 Trade Analysis 

In this section we present a comparison of different trading strategies in terms of annualized 
number of trades.   

Table 7: Annualised out of sample trades’ count.  
Model EUR/USD GBP/USD USD/JPY Portfolio 

All survivors 26.02 23.22 26.37 25.20 

BNN (15) 24 30 19 24.33 

DMA (15) 96.5 60 66.5 74.33 

DMS (15) 118 82.5 106.25 102.25 

BNN (10) 17 26 21 21.33 

DMA (10) 90 47 68.5 68.50 

DMS (10) 111 74.5 104.75 96.75 

BNN (5) 4.5 15.5 17 12.33 

DMA (5) 57 54.5 75 62.17 

DMS (5) 92.25 77 90.75 86.67 

RVM 45.67 33.75 61 46.81 

NB (15) 49.5 29.5 34 37.67 
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NB (10) 35.5 41 37 37.83 

NB (5) 25 28.5 54 35.83 

SA (15) 18.05 22.57 15.53 18.72 

SA (10) 19.1 22.28 19.25 20.21 

SA (5) 15.98 20.95 23 19.98 
Note: The table presents the average number of trades for the different portfolios under study. The all survivors’ 
row refers to the set of true discoveries based on the data-snooping procedure as presented in Section 4.1. The 
combinations of Bayesian models with the three fixed levels (5/10/15) columns refer to the trading strategies 
presented in Section 4.2. All values are averages for the number of trades by each strategy over a year. 

Table 7 presents the summary of the number of annualised trades taking place across the 
different exchange rates and periods under study. The average number of trades varies 
considerably between the models and exchange rates under study. A higher number of trades 
is associated to a higher transaction cost which should translate into lower profitability. From 
Tables 3 to 7, we note that higher annualized number of trades is not always synonymous to 
lower profitability. Models with the same set of inputs have substantial differences in the 
number of trades and profitability. A finding that illustrates that the performance of our models 
is driven by their properties.  
 
5. Conclusions 

In this study, we explore the utility of technical analysis and Bayesian statistics in trading. The 
motivation for this research is the AMH which states that complex models should have an 
advantage in highly competitive markets. For this purpose, 7,846 technical rules are generated 
for the EUR/USD, GBP/USD and the USD/JPY exchange rates. Then, the genuinely profitable 
trading rules are identified with the help of the Romano et al. (2008) data snooping test 
combined with the balancing procedure of Romano and Wolf (2010). Finally, the profitable 
rules are combined with NB, RVM, DMA, DMS and BNN models.  

In the results, we find that our data-snooping procedure identifies 5% to 15% of the technical 
rules as genuinely profitable. However, the generated portfolios based on them, present small 
annualized returns (≤ 1% per annum) and Sharpe ratios over the OOS. When subsets of these 
rules are combined with the Bayesian models, we find that all Bayesian techniques increase 
the trading performance of the simple technical rules to 6% per annum after transactions costs 
and risk-free rate. Among the competing models, the DMA and the BNN clearly outperform 
their benchmarks.  

The promising trading performance of our models can be attributed to the proposals of AMH, 
that investment strategies may perform well in certain criteria and poorly otherwise, and/or 
from monetary policy changes. Our findings are in line with the previous studies that argue 
exchange rates may not always follow the martingale process (see among others, Yilmaz, 2003; 
and Inoue and Rossi, 2019). These results allow us to argue that market efficiency is a variable, 
and it is possible to benefit from short-term market inefficiencies with technical analysis and 
Bayesian Statistics. 



22 
 

Our results should go forward to convince traders and academics, to explore the recent 
development in statistics for procedures capable of providing an advantage in financial 
markets. These procedures might be characterized by complexity and are therefore 
inappropriate for high-frequency trading or large experiments. Nevertheless, the complex 
procedures in this paper can provide an edge in comparison to the traditional trading models.   
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Appendices 

A. Technical trading rules 

Technical trading strategies involve using quotes for open, high, low and close prices along 
with the trading volumes of every ticker under study. Their purpose is to recognize patterns or 
trends in the price charts. In this paper, 7,846 rules are studied, including filter rules, moving 
averages, support and resistance levels, channel breakouts, and on-balance volumes indicators. 
Short descriptions of these rules are presented in the following subsections. 

A.1 Filter Rules (FRs) 

The filter strategy is based on making a financial decision to undertake a long or short position 
when the security price moves a certain amount e.g. 𝑥𝑥 percent upward or downward. A buy 
order is placed when the 𝑥𝑥 percentage upward movement is seen in the market and this position 
is held until the price falls 𝑥𝑥 percent where the position is first neutralized. Then a short position 
is opened and kept until a subsequent upward movement is seen. Movements that are smaller 
than the filter level in either direction are discarded as noise. 

Tuning the FIRs is at the analyst’s discretion. The definition of upward/downward movement, 
the holding process and liquidating/closing the position can be subjective. Upward (downward) 
movements are recognized as an uptrend when the price exceeds the last high (low) by 𝑥𝑥 
percent. The last high (low) can be defined either as the highest (lowest) close price observed 
in a long (short) position; or the maximum (minimum) close price over the last 𝑑𝑑 days. The 
position holding can also be modified. Another case is considered in which the position is 
opened by the FIR and held for ℎ days where signals over this period are ignored. The strategy 
may also include a neutral position where positions are closed in case of 𝑦𝑦 percent backward 
movement compared to extrema level. The filter level for liquidating the position must be less 
than the filter level for opening a position.  

Considering the following sets of possible 𝑥𝑥, 𝑦𝑦: 

𝑥𝑥 ∈  {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50} 𝑖𝑖𝑖𝑖 % 

𝑦𝑦 ∈ {0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 7.5, 10, 15, 20} 𝑖𝑖𝑖𝑖 %,  

(#𝑥𝑥 = 24, #𝑦𝑦 = 12)  

Then, the number of 𝑥𝑥 − 𝑦𝑦 combinations, given that 𝑦𝑦 < 𝑥𝑥, are #(𝑥𝑥 − 𝑦𝑦) = 185. 

For these combinations, we experiment with the following 𝑑𝑑,ℎ:   

𝑑𝑑 ∈ {1, 2, 3, 4, 5, 10, 15, 20}, (#𝑑𝑑 = 8) 
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ℎ ∈ {5, 10, 25, 50}, (#ℎ = 4) 

Based on the above, in this application we examine a total of 497 filter rules as calculated 
below: 

#𝐹𝐹 = #𝑥𝑥 + #𝑥𝑥 × #𝑑𝑑 + #𝑥𝑥 × #ℎ + #(𝑥𝑥 − 𝑦𝑦) = 24 + 192 + 96 + 185 = 49     (A.1)  

A.2 Moving averages (MAs) 

In technical trading MAs play an integral role. Trends are not considered robust until they are 
reflected in MAs. When a change in price is also visible in the MAs, it means that the news or 
change source is important enough to last over a period of time and can be taken into account. 
Uptrends start to form when a fast MA exceeds the slow MA. The fast MA can simply be the 
price quote or a short-term average. The long positions are kept so long as the price remains 
above the MA benchmark. When the price falls below the MA, the downtrend is initiated. At 
this point the previous position is liquidated and a sell position is opened. The new position 
remains open until another upward penetration is observed. MA crossover-based strategies may 
appear from a wide variation. In this paper, simple forms of MA crossover along with some 
filter and delays are taken into account. A common application of MA is having a fast and slow 
MA and looking for their crossovers signalling/which signal up and downtrends. 

A buy signal can be generated when the fast MA goes beyond the slow MA.  The fast and slow 
MAs come with parameters 𝑖𝑖 and 𝑚𝑚  respectively showing the number of days taken into 
consideration (𝑖𝑖 < 𝑚𝑚). Similarly, a sell signal is created when the fast MA drops below the 
slow MA, which suggests the formation of a downtrend. The fast and slow MA strategy can be 
accompanied by a band (𝑏𝑏) filter to avoid the noise in trend detection. Trends are deemed solid 
only if the fast MA can exceed the slow MA by 𝑏𝑏 percent. Alternatively, the time lag 𝑙𝑙 is 
considered between opening a position and taking any action. During the lag period, all signals 
are ignored. Another innovation is holding each position for a fixed period of  ℎ days no matter 
what the signals are after the opening of the positions. In our application, we consider 
innovations separately and impose only one filter at a time. 

We consider the following sets of possible 𝑖𝑖,𝑚𝑚: 

𝑖𝑖 ∈ {2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250}, (#𝑖𝑖 = 15) 

𝑚𝑚 ∈ {2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200}, (#𝑚𝑚 = 14)  

Then, the number of 𝑖𝑖 −𝑚𝑚 combinations, given are 𝑚𝑚 < 𝑖𝑖 are #(𝑖𝑖 −𝑚𝑚) = 105. 

For these combinations, we experiment with the following 𝑏𝑏, 𝑙𝑙,ℎ:   

𝑏𝑏 ∈ {0.1, 0.5, 1, 1.5, 2, 3, 4, 5} 𝑖𝑖𝑖𝑖 %, (#𝑏𝑏 = 8) 

𝑙𝑙 ∈ {2, 3, 4, 5}, (#𝑙𝑙 = 4) 

ℎ ∈ {5, 10, 25, 50}, (#ℎ = 4) 
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The band filter is set at 1% . A 10-day holding period is applied to all combinations of MA 
crossovers. For the fast and slow MA we set respectively 𝑖𝑖 = 1, 2, 5  and 𝑚𝑚 =50, 150, 200. We 
also include 9 cases of double-filters. Based on the above, in this application we examine in 
total 2049 MA rules as calculated below: 

#𝑀𝑀𝑀𝑀 = #𝑖𝑖 + #(𝑖𝑖 −𝑚𝑚) + #𝑏𝑏 × �#𝑖𝑖 + #(𝑖𝑖 −𝑚𝑚)� + #𝑙𝑙 × �#𝑖𝑖 + #(𝑖𝑖 −𝑚𝑚)� + #ℎ ×
�#𝑖𝑖 + #(𝑖𝑖 −𝑚𝑚)� + 9 = 15 + 105 + 960 + 480 + 480 + 9 = 2049       (A.2) 

A.3 Support and Resistance (S&R) levels 

The S&R trading rules are based on the premise that the price should remain in a trading range 
capped by a resistance and floored by a support level. Breaching these levels suggests that a 
stock or an exchange rate would move in the same direction. The S&R rules are constructed 
similarly to the FIRs. The only difference is that trading signals are generated when the rate 
under study breaks the support or resistance barriers by a certain percentage. The S&R levels 
can be defined as the intra-day low and intra-day high quotes over the past 𝑖𝑖 days. Another 
variation in the definition of the S&R is to calculate the support and resistance level based on 
the minimum and maximum closing prices over the past 𝑒𝑒 days. Alternative S&Rs are set by 
using a fixed band filter for noise removal: the holding period ℎ, the 𝑙𝑙-day lag before making 
any decisions, a combination of a fixed holding period on a position, and a delay in decision 
making before undergoing any new positions.  

Based on the above, we consider the following possible sets: 

𝑖𝑖 ∈ {5, 10, 15, 20, 25, 50, 100, 150, 200, 250}, (#𝑖𝑖 = 10) 

𝑒𝑒 ∈ {2, 3, 4, 5, 10, 20, 25, 50, 100, 200}, (#𝑒𝑒 = 10) 

𝑏𝑏 ∈ {0.1, 0.5, 1, 1.5, 2, 3, 4, 5} 𝑖𝑖𝑖𝑖 %, ( #𝑏𝑏 = 8) 

𝑙𝑙 ∈ {2, 3, 4, 5}, (#𝑙𝑙 = 4) 

ℎ ∈ {5, 10, 25, 50}, (#ℎ = 4) 

In accordance with these sets, we examine a total of 1220 S&R rules as calculated below:  

#𝑆𝑆&𝑅𝑅 = [(#𝑖𝑖 + #𝑒𝑒) × (1 + #ℎ)] + [(#𝑖𝑖 + #𝑒𝑒) × (1 + #ℎ) × #𝑏𝑏] + [(#𝑖𝑖 + #𝑒𝑒) × #ℎ ×
#𝑙𝑙] = 100 + 800 + 320 = 1220           (A.3) 

A.4 Channel Breakout (CBs) 

Based on the principles of S&R, practitioners can detect time-varying support and resistance 
levels that drift together within a certain range. This creates the so-called trading channel. Once 
a trading channel is formed, then a CB rule can be applied. The premise behind the CB rule is 
that once the trading channel is breached, there will be a substantial trend towards the same 
direction. A channel is formed when the highest observed price remains within a 𝑐𝑐%  range 
above the lowest price over the past 𝑖𝑖 days. The trend is considered significant, when the price 
breaks one of the channel borders, which generates a buy (sell) order after an upward 
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(downward) breakout. As in the previous categories discussed in Sections A.1.1 to A.1.3, we 
also consider CB alternatives with a fixed filter band 𝑏𝑏 and holding period ℎ.    

Here we look at the following possible sets: 

𝑖𝑖 ∈ {5, 10, 15, 20, 25, 50, 100, 150, 200, 250}, (#𝑖𝑖 = 10) 

𝑐𝑐 ∈ {0.5, 1, 2, 3, 5, 7.5, 10, 15} 𝑖𝑖𝑖𝑖 %, (#𝑐𝑐 = 8) 

𝑏𝑏 ∈ {0.1, 0.5, 1, 1.5, 2, 3, 4, 5} 𝑖𝑖𝑖𝑖 %, (#𝑏𝑏 = 8) 

ℎ ∈ {5, 10, 25, 50}, (#ℎ = 4) 

Given 𝑏𝑏 < 𝑐𝑐 , the number of 𝑐𝑐 − 𝑏𝑏 combinations are #(𝑐𝑐 − 𝑏𝑏) = 43. 

In this application we examine in total 2040 CB rules:  

#𝐶𝐶𝐶𝐶 = #𝑖𝑖 × #𝑐𝑐 × #ℎ + #𝑖𝑖 × #(𝑐𝑐 − 𝑏𝑏) × #ℎ = 320 + 1720 = 2040      (A.4) 

A.5 On-Balance Volumes (OBVs) 

In the technical trading context, prices and trading volumes are expected to move together. 
Trading volumes confirm the potential significance of price moves. In case of major economic 
events or important news, increased trading volumes reflect decisions in favour of or against 
the price change. Therefore, monitoring the volumes and their changes can be a useful source 
of information for the practitioner. The OBV line is simply a running total of positive and 
negative volumes. In other words, if the closing price is above (below) the prior close price, 
then the current OBV is the sum (difference) of the previous OBV and the current volume. 
When the volume is not increasing during bullish days, it is a sign that buying pressure is 
weakening and the upward trend is probably not sustainable. OBVs are usually used with MAs 
to generate trading signals. In this scenario, the average OBV is calculated and then combined 
with slow and fast MAs. In our application, we use the MAs as in Section A.1.2, excluding the 
9 double-filter cases. Based on these, we examine a total of 2040 OBV rules as calculated 
below: 

#𝑂𝑂𝐶𝐶𝑉𝑉 = #𝑖𝑖 + #(𝑖𝑖 −𝑚𝑚) + #𝑏𝑏 × �#𝑖𝑖 + #(𝑖𝑖 −𝑚𝑚)� + #𝑙𝑙 × �#𝑖𝑖 + #(𝑖𝑖 −𝑚𝑚)� + #ℎ ×
�#𝑖𝑖 + #(𝑖𝑖 −𝑚𝑚)� = 15 + 105 + 960 + 480 + 480 = 2040        (A.5) 

A.6 Trading universe 

The Trading Universe (𝑇𝑇𝑈𝑈)  consists of the total number of trading rules reported in the 
previous subsections: 

#𝑇𝑇𝑈𝑈 = #𝐹𝐹 + #𝑀𝑀𝑀𝑀 + #𝑆𝑆&𝑅𝑅 + #𝐶𝐶𝐶𝐶 + #𝑂𝑂𝐶𝐶𝑉𝑉 = 497 + 2,049 + 1,220 + 2,040 + 2,040
= 7,846 

 

B. Robustness checks 
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In this appendix, as robustness tests we present the results of our Bayesian models when their 
inputs were selected based on the top rule selection metric of in-sample excess return (Tables 
A.1 to A.4), Sharpe ratio (Tables A.5 to A.8), and Sortino ratio (Tables A.9 to A.12).  

Table A.1: Trading performance for EUR/USD – Excess return metric 
Model 2013 2014 2015 2016 Average 

BNN (15) 6%** (0.58) 5.04%** (0.33) 4.9%** (0.68) 6.05%** (0.51) 5.5%** (0.53) 
DMA (15) 5.49%** (0.59) 3.43%** (0.32) 6.49%** (0.69) 5.28%** (0.49) 5.17%** (0.52) 
DMS (15) 4.99%** (0.49) 3.25%** (0.24) 4.36%** (0.56) 5.94%** (0.44) 4.64%** (0.43) 
BNN (10) 6.51%** (0.63) 5.38%** (0.34) 5.29%** (0.66) 6.01%** (0.5) 5.8%** (0.53) 
DMA (10) 4.26%** (0.44) 3.82%** (0.3) 4.54%** (0.58) 6.28%** (0.52) 4.73%** (0.46) 
DMS (10) 5.06%** (0.55) 3.14%** (0.26) 4.22%** (0.54) 5.8%** (0.41) 4.56%** (0.44) 
BNN (5) 5.91%** (0.57) 3.01%** (0.22) 4.77%** (0.58) 5.12%** (0.41) 4.7%** (0.45) 
DMA (5) 4.55%** (0.46) 6.97%** (0.41) 4.95%** (0.61) 5.46%** (0.47) 5.48%** (0.49) 
DMS (5) 6.86%** (0.67) 3.26%** (0.29) 3.92%** (0.49) 3.35%** (0.38) 4.35%** (0.46) 

RVM 4.35%** (0.5) 3.28%** (0.31) 4.41%** (0.63) 4.24%** (0.47) 4.07%** (0.48) 
NB (15) 1.31%** (0.26) 1.96%** (0.26) 1.74%** (0.37) 3.02%** (0.33) 2.01%** (0.31) 
NB (10) 1.58%** (0.29) 1.79%** (0.26) 1.52%** (0.36) 1.8%** (0.26) 1.67%** (0.29) 
NB (5) 0.63%** (0.14) 2.04%** (0.28) 2.14%** (0.4) -2.66%** (-0.24) 0.54%** (0.15) 
SA (15) -0.68%* (-0.11) 1.78% (0.22) -1.08% (-0.28) 1.08%** (0.18) 0.28% (0) 
SA (10) -2.11%* (-0.18) -0.82% (-0.11) -1.46%* (-0.07) 1.24%** (0.2) -0.79% (-0.04) 
SA (5) -0.6%* (-0.08) -0.7% (-0.07) 1.24%* (0.34) -0.32%** (-0.08) -0.1% (0.03) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
the in-sample excess return. The RVM is selecting the most relevant rules endogenously. All returns are after 
transaction costs. The values in bold correspond to the best performing combination for each exercise. The 
Giacomini and White (2006) test is applied to all models. * and ** present significance at 10%, and 5% level 
respectively.  The benchmark of the test is a buy and hold strategy. 

 

Table A.2: Trading performance for GBP/USD – Excess return metric 
Model 2013 2014 2015 2016 Average 

BNN (15) 6.48%** (0.66) 5.14%** (0.61) 6.9%** (0.7) 7.54%** (0.8) 6.52%** (0.69) 
DMA (15) 5.95%** (0.63) 5.29%** (0.63) 7.24%** (0.81) 7.4%** (0.78) 6.47%** (0.71) 
DMS (15) 5.04%** (0.48) 5.05%** (0.58) 6.92%** (0.72) 6.17%** (0.66) 5.8%** (0.61) 
BNN (10) 5%** (0.5) 5.87%** (0.67) 5.84%** (0.63) 5.95%** (0.61) 5.67%** (0.6) 
DMA (10) 5.63%** (0.57) 3.85%** (0.42) 4.79%** (0.49) 5.61%** (0.62) 4.97%** (0.53) 
DMS (10) 5.67%** (0.59) 3.04%** (0.33) 4.42%** (0.46) 5.2%** (0.5) 4.58%** (0.47) 
BNN (5) 5.28%** (0.51) 4.16%** (0.45) 5.35%** (0.6) 6.02%** (0.64) 5.2%** (0.55) 
DMA (5) 4.87%** (0.51) 3.64%** (0.39) 4.17%** (0.45) 4.87%** (0.51) 4.39%** (0.47) 
DMS (5) 4.18%** (0.4) 3%** (0.31) 3.05%** (0.32) 3.91%** (0.41) 3.54%** (0.36) 

RVM 4.61%** (0.41) 4.19%** (0.43) 3.72%** (0.39) 4.27%** (0.48) 4.2%** (0.43) 
NB (15) 3.78%** (0.39) 4.04%** (0.43) 4.09%** (0.43) 4.02%** (0.48) 3.98%** (0.43) 
NB (10) 2.7%** (0.28) 3%** (0.41) 3.8%** (0.39) 3.43%** (0.37) 3.23%** (0.36) 
NB (5) 1.56%** (0.21) 2.42%** (0.33) 2%** (0.22) 2.3%** (0.26) 2.07%** (0.26) 
SA (15) -0.05% (-0.02) 0.06% (0.04) -0.99% (-0.13) 0.34%* (0.07) -0.16% (-0.01) 
SA (10) -0.77% (-0.08) 0.9% (0.14) -1.92% (-0.24) 1.25%* (0.14) -0.14% (-0.01) 
SA (5) -3.1% (-0.4) 0.71% (0.11) 1.25% (0.14) 1.99%* (0.18) 0.21% (0.01) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
the in-sample excess return. The RVM is selecting the most relevant rules endogenously. All returns are after 
transaction costs. The values in bold correspond to the best performing combination for each exercise. The 
Giacomini and White (2006) test is applied to all models. * and ** present significance at 10%, and 5% level 
respectively.  The benchmark of the test is a buy and hold strategy. 
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Table A.3: Trading performance for USD/JPY – Excess return metric 

Model 2013 2014 2015 2016 Average 
BNN (15) 6.01%** (0.63) 6.12%** (0.64) 6.58%** (0.69) 5.09%** (0.52) 5.95%** (0.62) 
DMA (15) 6.96%** (0.74) 5.54%** (0.58) 6.36%** (0.67) 7.32%** (0.75) 6.55%** (0.69) 
DMS (15) 6.19%** (0.63) 5.91%** (0.62) 6.44%** (0.68) 6.04%** (0.62) 6.15%** (0.64) 
BNN (10) 4.88%** (0.51) 5.06%** (0.53) 4.9%** (0.53) 5.82%** (0.59) 5.17%** (0.54) 
DMA (10) 4.45%** (0.48) 6.76%** (0.73) 4.21%** (0.45) 8.3%** (0.86) 5.93%** (0.63) 
DMS (10) 3.86%** (0.4) 2.75%** (0.33) 3.09%** (0.33) 7.11%** (0.7) 4.2%** (0.44) 
BNN (5) 5.09%** (0.55) 6.36%** (0.7) 5.43%** (0.56) 5.23%** (0.54) 5.53%** (0.59) 
DMA (5) 5.88%** (0.64) 5.4%** (0.56) 4.5%** (0.48) 7.07%** (0.74) 5.71%** (0.61) 
DMS (5) 4.74%** (0.49) 4.45%** (0.47) 3.91%** (0.4) 6.07%** (0.62) 4.79%** (0.5) 

RVM 5.22%** (0.54) 4.75%** (0.49) 4.01%** (0.41) 5.47%** (0.56) 4.86%** (0.5) 
NB (15) 2.04%** (0.25) 2.24%** (0.2) 2.7%** (0.26) 2.04%** (0.21) 2.26%** (0.23) 
NB (10) 2.86%** (0.29) 1.37%** (0.14) 0.32%** (0.07) 2.15%** (0.2) 1.68%** (0.18) 
NB (5) 3.85%** (0.42) 2.48%** (0.26) 2.26%** (0.25) 2.6%** (0.24) 2.8%** (0.29) 
SA (15) 0.98% (0.15) 0.44% (0.1) -0.93% (-0.12) -0.62% (-0.11) -0.03% (0.01) 
SA (10) 3.54% (0.4) 2.46%* (0.25) -1.45% (-0.16) -2.96% (-0.28) 0.4% (0.05) 
SA (5) 2.72% (0.31) 1.88%* (0.17) -1.77% (-0.19) -2.63% (-0.24) 0.05% (0.01) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
the in-sample excess return. The RVM is selecting the most relevant rules endogenously. All returns are after 
transaction costs. The values in bold correspond to the best performing combination for each exercise. The 
Giacomini and White (2006) test is applied to all models. * and ** present significance at 10%, and 5% level 
respectively.  The benchmark of the test is a buy and hold strategy. 

Table A.4: Trading performance for the equal-weight portfolio – Excess return metric 

Model 2013 2014 2015 2016 Average 
BNN (15) 6.16%** (0.62) 5.43%** (0.53) 6.13%** (0.69) 6.23%** (0.61) 5.99%** (0.61) 
DMA (15) 6.13%** (0.65) 4.75%** (0.51) 6.7%** (0.72) 6.67%** (0.67) 6.06%** (0.64) 
DMS (15) 5.41%** (0.53) 4.74%** (0.48) 5.91%** (0.65) 6.05%** (0.57) 5.53%** (0.56) 
BNN (10) 5.46%** (0.55) 5.44%** (0.51) 5.34%** (0.61) 5.93%** (0.57) 5.54%** (0.56) 
DMA (10) 4.78%** (0.5) 4.81%** (0.48) 4.51%** (0.51) 6.73%** (0.67) 5.21%** (0.54) 
DMS (10) 4.86%** (0.51) 2.98%** (0.31) 3.91%** (0.44) 6.04%** (0.54) 4.45%** (0.45) 
BNN (5) 5.43%** (0.54) 4.51%** (0.46) 5.18%** (0.58) 5.46%** (0.53) 5.14%** (0.53) 
DMA (5) 5.1%** (0.54) 5.34%** (0.45) 4.54%** (0.51) 5.8%** (0.57) 5.19%** (0.52) 
DMS (5) 5.26%** (0.52) 3.57%** (0.36) 3.63%** (0.4) 4.44%** (0.47) 4.23%** (0.44) 

RVM 4.73%** (0.48) 4.07%** (0.41) 4.05%** (0.48) 4.66%** (0.5) 4.38%** (0.47) 
NB (15) 2.38%** (0.3) 2.75%** (0.3) 2.84%** (0.35) 3.03%** (0.34) 2.75%** (0.32) 
NB (10) 2.38%** (0.29) 2.05%** (0.27) 1.88%** (0.27) 2.46%** (0.28) 2.19%** (0.28) 
NB (5) 2.01%** (0.26) 2.31%** (0.29) 2.13%** (0.29) 0.75%** (0.09) 1.8%** (0.23) 
SA (15) 0.08% (0.01) 0.76% (0.12) -1% (-0.18) 0.27% (0.05) 0.03% (0) 
SA (10) 0.22% (0.05) 0.85% (0.09) -1.61% (-0.16) -0.16% (0.02) -0.18% (0) 
SA (5) -0.33% (-0.06) 0.63% (0.07) 0.24% (0.1) -0.32% (-0.05) 0.06%* (0.02) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample excess return. The RVM is selecting the most relevant rules endogenously. All returns are after 
transaction costs. The values in bold correspond to the best performing combination for each exercise. The 
Giacomini and White (2006) test is applied to all models. * and ** present significance at 10%, and 5% level 
respectively.  The benchmark of the test is a buy and hold strategy. 
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Table A.5: Trading performance for EUR/USD – Sharpe ratio metric 
Model 2013 2014 2015 2016 Average 

BNN (15) 5.96%** (0.55) 7.49%** (0.62) 6.08%** (0.72) 6.19%** (0.59) 6.43%** (0.62) 
DMA (15) 5.4%** (0.55) 5.72%** (0.59) 5.23%** (0.65) 4.14%** (0.37) 5.12%** (0.54) 
DMS (15) 2.63%** (0.26) 6.12%** (0.49) 5.86%** (0.69) 4.01%** (0.42) 4.66%** (0.47) 
BNN (10) 5.01%** (0.52) 5.38%** (0.48) 7.27%** (0.74) 7.44%** (0.7) 6.28%** (0.61) 
DMA (10) 6.02%** (0.58) 6.18%** (0.55) 6.98%** (0.72) 5.8%** (0.42) 6.25%** (0.57) 
DMS (10) 5.43%** (0.58) 6.03%** (0.55) 4.44%** (0.63) 5.93%** (0.4) 5.46%** (0.54) 
BNN (5) 4.82%** (0.48) 6.32%** (0.52) 4.82%** (0.71) 5.57%** (0.54) 5.38%** (0.56) 
DMA (5) 4.99%** (0.48) 7.09%** (0.53) 4.59%** (0.54) 5.14%** (0.39) 5.45%** (0.49) 
DMS (5) 4.09%** (0.52) 5.17%** (0.53) 4.3%** (0.61) 5.02%** (0.38) 4.65%** (0.51) 

RVM 4.35%** (0.5) 3.28%** (0.31) 4.41%** (0.63) 4.24%** (0.47) 4.07%** (0.48) 
NB (15) 1.82%** (0.31) 2%** (0.15) 3.07%** (0.49) 2.77%** (0.28) 2.42%** (0.31) 
NB (10) 2.18%** (0.35) 3.04%** (0.18) 2.72%** (0.47) 1.49%** (0.11) 2.36%** (0.28) 
NB (5) 1.1%** (0.18) 1.11%** (0.13) 2.27%** (0.44) 1.82%** (0.25) 1.58%** (0.25) 
SA (15) -2.22% (-0.21) 2.26% (0.17) -0.64% (-0.2) -1.44%** (-0.1) -0.51% (-0.09) 
SA (10) -0.19% (0.06) 1.6% (0.14) -3.12% (-0.37) -3.01%** (-0.29) -1.18% (-0.12) 
SA (5) -0.09% (-0.02) 1.95% (0.12) -2.37% (-0.22) -2.69%** (-0.22) -0.8% (-0.09) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample Sharpe ratio. The RVM is selecting the most relevant rules endogenously. The best rules are selected 
based on in-sample Sharpe ratio. All returns are after transaction costs. The values in bold correspond to the best 
performing combination for each exercise. The Giacomini and White (2006) test is applied to all models. * and 
** present significance at 10%, and 5% level respectively.  The benchmark of the test is a buy and hold strategy. 

Table A.6: Trading performance for GBP/USD – Sharpe ratio metric 

Model 2013 2014 2015 2016 Average 
BNN (15) 3.7%** (0.38) 4.21%** (0.49) 6.29%** (0.68) 3.15%** (0.36) 4.34%** (0.48) 
DMA (15) 3.76%** (0.36) 4.09%** (0.49) 4.44%** (0.48) 5.09%** (0.52) 4.35%** (0.46) 
DMS (15) 3.02%** (0.32) 3.59%** (0.34) 5.37%** (0.57) 4.82%** (0.52) 4.2%** (0.44) 
BNN (10) 4.74%** (0.45) 5.14%** (0.57) 3.11%** (0.32) 5.31%** (0.56) 4.58%** (0.48) 
DMA (10) 6.22%** (0.65) 5.67%** (0.61) 5.04%** (0.51) 5.98%** (0.64) 5.73%** (0.6) 
DMS (10) 3.69%** (0.38) 4.5%** (0.48) 5.3%** (0.57) 4.44%** (0.49) 4.48%** (0.48) 
BNN (5) 6.12%** (0.63) 4.94%** (0.53) 5.02%** (0.54) 5.28%** (0.57) 5.34%** (0.57) 
DMA (5) 3.98%** (0.41) 5.57%** (0.56) 4.32%** (0.46) 5.34%** (0.59) 4.8%** (0.51) 
DMS (5) 4.16%** (0.42) 5.42%** (0.57) 3.41%** (0.39) 4.09%** (0.43) 4.27%** (0.45) 

RVM 4.61%** (0.41) 4.19%** (0.43) 3.72%** (0.39) 4.27%** (0.48) 4.2%** (0.43) 
NB (15) 1.67%** (0.2) 0.77%** (0.15) 1.22%** (0.17) 3.6%** (0.37) 1.82%** (0.22) 
NB (10) 3.09%** (0.34) 1.15%** (0.2) 3.39%** (0.42) 3.18%** (0.34) 2.7%** (0.33) 
NB (5) 1.1%** (0.13) 1.94%** (0.23) 2.52%** (0.26) 2.79%** (0.25) 2.09%** (0.22) 
SA (15) -2.48% (-0.26) -0.86% (-0.11) -2.58% (0.31) -0.17% (-0.04) -1.52% (-0.03) 
SA (10) -3.32% (-0.39) 1% (0.14) 2.61% (0.27) 2.58% (0.27) 0.72% (0.07) 
SA (5) 0.08% (-0.03) -2.49% (-0.29) -1.32% (-0.21) 0.36%* (0.05) -0.84% (-0.12) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample Sharpe ratio. The RVM is selecting the most relevant rules endogenously.  The best rules are selected 
based on in-sample Sharpe ratio. All returns are after transaction costs. The values in bold correspond to the best 
performing combination for each exercise. The Giacomini and White (2006) test is applied to all models. * and 
** present significance at 10%, and 5% level respectively.  The benchmark of the test is a buy and hold strategy. 
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Table A.7: Trading performance for USD/JPY – Sharpe ratio metric 
Model 2013 2014 2015 2016 Average 

BNN (15) 5.7%** (0.6) 5.88%** (0.61) 5.51%** (0.5) 4.9%** (0.48) 5.5%** (0.55) 
DMA (15) 6.29%** (0.65) 3.22%** (0.35) 4.02%** (0.41) 6.54%** (0.67) 5.02%** (0.52) 
DMS (15) 4.3%** (0.46) 5.06%** (0.53) 3.26%** (0.3) 5.28%** (0.54) 4.48%** (0.46) 
BNN (10) 5.47%** (0.57) 5.35%** (0.57) 5.7%** (0.62) 6.71%** (0.7) 5.81%** (0.62) 
DMA (10) 5.51%** (0.61) 5.88%** (0.6) 5.7%** (0.59) 5.91%** (0.58) 5.75%** (0.6) 
DMS (10) 4.93%** (0.52) 4.31%** (0.46) 4.85%** (0.47) 4.82%** (0.49) 4.73%** (0.49) 
BNN (5) 4.84%** (0.5) 3.42%** (0.4) 4.36%** (0.45) 4.55%** (0.43) 4.29%** (0.45) 
DMA (5) 7.22%** (0.76) 6.03%** (0.64) 6.19%** (0.63) 4.69%** (0.43) 6.03%** (0.62) 
DMS (5) 6.65%** (0.69) 2.11%** (0.25) 2.72%** (0.28) 4.63%** (0.45) 4.03%** (0.42) 

RVM 5.22%** (0.54) 4.75%** (0.49) 4.01%** (0.41) 5.47%** (0.56) 4.86%** (0.5) 
NB (15) 3.62%** (0.34) 3.24%** (0.36) 0.45%** (0.06) 1.28%** (0.15) 2.15%** (0.23) 
NB (10) 4.24%** (0.46) 2.18%** (0.24) 0.3%** (0.04) 2.44%** (0.21) 2.29%** (0.24) 
NB (5) 3.45%** (0.42) 1.15%** (0.11) -1.59%** (-0.19) -1.37%** (-0.16) 0.41%** (0.05) 
SA (15) 3.74% (0.4) 0.8% (0.05) -1.52% (-0.17) -3.1% (-0.35) -0.02% (-0.02) 
SA (10) 4.07% (0.45) 1.65% (0.18) 1.04% (0.1) -1.82% (-0.21) 1.24% (0.13) 
SA (5) 3.09% (0.32) 2.31% (0.25) -2.96% (-0.31) -2.79%* (-0.3) -0.09% (-0.01) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample Sharpe ratio. The RVM is selecting the most relevant rules endogenously. The best rules are selected 
based on in-sample Sharpe ratio. All returns are after transaction costs. The values in bold correspond to the best 
performing combination for each exercise. The Giacomini and White (2006) test is applied to all models. * and 
** present significance at 10%, and 5% level respectively.  The benchmark of the test is a buy and hold strategy. 

Table A.8: Trading performance for the equal-weight portfolio – Sharpe ratio metric 

Model 2013 2014 2015 2016 Average 
BNN (15) 5.12%** (0.51) 5.86%** (0.57) 5.96%** (0.63) 4.75%** (0.48) 5.42%** (0.55) 
DMA (15) 5.15%** (0.52) 4.34%** (0.48) 4.56%** (0.51) 5.26%** (0.52) 4.83%** (0.51) 
DMS (15) 3.32%** (0.35) 4.92%** (0.45) 4.83%** (0.52) 4.7%** (0.49) 4.44%** (0.45) 
BNN (10) 5.07%** (0.51) 5.29%** (0.54) 5.36%** (0.56) 6.49%** (0.65) 5.55%** (0.57) 
DMA (10) 5.92%** (0.61) 5.91%** (0.59) 5.91%** (0.61) 5.9%** (0.55) 5.91%** (0.59) 
DMS (10) 4.68%** (0.49) 4.95%** (0.5) 4.86%** (0.56) 5.06%** (0.46) 4.89%** (0.5) 
BNN (5) 5.26%** (0.54) 4.89%** (0.48) 4.73%** (0.57) 5.13%** (0.51) 5.01%** (0.53) 
DMA (5) 5.4%** (0.55) 6.23%** (0.58) 5.03%** (0.54) 5.06%** (0.47) 5.43%** (0.54) 
DMS (5) 4.97%** (0.54) 4.23%** (0.45) 3.48%** (0.43) 4.58%** (0.42) 4.31%** (0.46) 

RVM 4.73%** (0.48) 4.07%** (0.41) 4.05%** (0.48) 4.66%** (0.5) 4.38%** (0.47) 
NB (15) 2.37%** (0.28) 2%** (0.22) 1.58%** (0.24) 2.55%** (0.27) 2.13%** (0.25) 
NB (10) 3.17%** (0.38) 2.12%** (0.21) 2.14%** (0.31) 2.37%** (0.22) 2.45%** (0.28) 
NB (5) 1.88%** (0.24) 1.4%** (0.16) 1.07%** (0.17) 1.08%** (0.11) 1.36%** (0.17) 
SA (15) -0.32% (-0.02) 0.73% (0.04) -1.58% (-0.02) -1.57%* (-0.16) -0.68% (-0.04) 
SA (10) 0.19% (0.04) 1.42% (0.15) 0.18% (0) -0.75%* (-0.08) 0.26% (0.03) 
SA (5) 1.03% (0.09) 0.59% (0.03) -2.22% (-0.25) -1.71%* (-0.16) -0.58% (-0.07) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample Sharpe ratio. The RVM is selecting the most relevant rules endogenously. The best rules are selected 
based on three measures of in-sample Sharpe ratio. All returns are after transaction costs. The values in bold 
correspond to the best performing combination for each exercise The Giacomini and White (2006) test is applied 
to all models. * and ** present significance at 10%, and 5% level respectively.  The benchmark of the test is a 
buy and hold strategy. 
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Table A.9: Trading performance for EUR/USD – Sortino ratio metric 
Model 2013 2014 2015 2016 Average 

BNN (15) 5.24%** (0.56) 5.25%** (0.32) 4.6%** (0.58) 6.48%** (0.75) 5.4%** (0.55) 
DMA (15) 4.74%** (0.49) 5.31%** (0.39) 5.74%** (0.57) 6.51%** (0.58) 5.57%** (0.51) 
DMS (15) 4.25%** (0.38) 4.8%** (0.37) 5.84%** (0.59) 6.55%** (0.68) 5.36%** (0.51) 
BNN (10) 5.63%** (0.54) 5.63%** (0.49) 6%** (0.68) 5.79%** (0.64) 5.76%** (0.59) 
DMA (10) 6.72%** (0.62) 6.03%** (0.39) 6.51%** (0.68) 5.03%** (0.49) 6.07%** (0.55) 
DMS (10) 4.05%** (0.41) 3.48%** (0.3) 6.39%** (0.69) 4.6%** (0.72) 4.63%** (0.53) 
BNN (5) 5.77%** (0.59) 3.62%** (0.26) 4.89%** (0.65) 5.88%** (0.61) 5.04%** (0.53) 
DMA (5) 4.2%** (0.37) 3.24%** (0.27) 7.59%** (0.73) 5.9%** (0.57) 5.23%** (0.49) 
DMS (5) 3.38%** (0.43) 3.96%** (0.32) 6.04%** (0.5) 4.49%** (0.34) 4.47%** (0.4) 

RVM 4.35%** (0.5) 3.28%** (0.31) 4.41%** (0.63) 4.24%** (0.47) 4.07%** (0.48) 
NB (15) 0.88%** (0.29) 0.82%** (0.17) 0.65%** (0.22) 2.74%** (0.35) 1.27%** (0.26) 
NB (10) 1.11%** (0.25) 2.45%** (0.2) -0.14%** (0.19) 2.55%** (0.32) 1.49%** (0.24) 
NB (5) 0.81%** (0.09) 0.91%** (0.08) 4.07%** (0.39) 1.38%** (0.33) 1.79%** (0.22) 
SA (15) -2.12% (-0.14) 0.04% (0.03) -1.74% (-0.19) -1.37%** (-0.19) -1.3% (-0.13) 
SA (10) 0.59%* (0.12) 0.91% (0.14) -2.24% (-0.28) -3.08%** (-0.21) -0.96% (-0.06) 
SA (5) -3.69% (-0.24) -0.44% (0.03) -0.72%* (0.16) 0.07%** (0.14) -1.19% (0.02) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample Sortino ratio. The RVM is selecting the most relevant rules endogenously. The best rules are selected 
based on in-sample Sortino ratio. All returns are after transaction costs. The values in bold correspond to the best 
performing combination for each exercise. The Giacomini and White (2006) test is applied to all models. * and 
** present significance at 10%, and 5% level respectively.  The benchmark of the test is a buy and hold strategy. 

 

Table A.10: Trading performance for GBP/USD – Sortino ratio metric 
Model 2013 2014 2015 2016 Average 

BNN (15) 6.84%** (0.74) 6.27%** (0.72) 5.41%** (0.64) 5.88%** (0.61) 6.1%** (0.68) 
DMA (15) 6.01%** (0.59) 6.21%** (0.68) 7.16%** (0.74) 7.07%** (0.74) 6.61%** (0.69) 
DMS (15) 4.67%** (0.48) 5.16%** (0.65) 6.14%** (0.6) 6.32%** (0.61) 5.57%** (0.59) 
BNN (10) 6.27%** (0.54) 5.21%** (0.61) 3.78%** (0.46) 4.88%** (0.49) 5.03%** (0.53) 
DMA (10) 2.98%** (0.28) 3.27%** (0.42) 4.97%** (0.6) 4.85%** (0.48) 4.02%** (0.45) 
DMS (10) 3.17%** (0.37) 4.09%** (0.5) 5.92%** (0.6) 3.62%** (0.41) 4.2%** (0.47) 
BNN (5) 4.78%** (0.42) 5.05%** (0.57) 4.98%** (0.49) 4.19%** (0.5) 4.75%** (0.49) 
DMA (5) 3.62%** (0.34) 3.22%** (0.32) 5.56%** (0.56) 4.34%** (0.46) 4.18%** (0.42) 
DMS (5) 4.19%** (0.4) 2.4%** (0.45) 5.16%** (0.55) 2.3%** (0.35) 3.51%** (0.43) 

RVM 4.61%** (0.41) 4.19%** (0.43) 3.72%** (0.39) 4.27%** (0.48) 4.2%** (0.43) 
NB (15) 2.92%** (0.32) 1.54%** (0.19) 3.36%** (0.34) 1.92%** (0.31) 2.43%** (0.29) 
NB (10) 2.42%** (0.24) 2.24%** (0.27) 2.27%** (0.21) 2.59%** (0.24) 2.38%** (0.24) 
NB (5) 2.61%** (0.31) 1.96%** (0.18) 1.55%** (0.26) 1.98%** (0.25) 2.03%** (0.25) 
SA (15) -0.85% (-0.24) 1.77% (0.22) 1.31% (0.18) 0.97%* (0.08) 0.8% (0.06) 
SA (10) 0.17% (0.06) 1.83% (0.14) 0.7% (0.19) 1.39%** (0.15) 1.02% (0.14) 
SA (5) 1.66% (0.29) 0.58% (0.01) -0.76% (-0.14) -0.54%* (-0.12) 0.23% (0.01) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample Sortino ratio. The RVM is selecting the most relevant rules endogenously. The best rules are selected 
based on in-sample Sortino ratio. All returns are after transaction costs. The values in bold correspond to the best 
performing combination for each exercise. The Giacomini and White (2006) test is applied to all models. * and 
** present significance at 10%, and 5% level respectively.  The benchmark of the test is a buy and hold strategy. 
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Table A.11: Trading performance for USD/JPY – Sortino ratio metric 
Model 2013 2014 2015 2016 Average 

BNN (15) 5.89%** (0.59) 5.5%** (0.56) 4.02%** (0.36) 6.8%** (0.61) 5.55%** (0.53) 
DMA (15) 5.08%** (0.5) 5.03%** (0.61) 4.97%** (0.55) 5.61%** (0.55) 5.17%** (0.55) 
DMS (15) 3.66%** (0.42) 5.37%** (0.46) 4.01%** (0.44) 5.49%** (0.59) 4.63%** (0.48) 
BNN (10) 4.9%** (0.51) 5.05%** (0.58) 4.35%** (0.43) 5.77%** (0.53) 5.01%** (0.51) 
DMA (10) 3.51%** (0.45) 5.38%** (0.62) 4.14%** (0.43) 5.31%** (0.51) 4.58%** (0.5) 
DMS (10) 4.48%** (0.49) 3.18%** (0.38) 3.94%** (0.34) 4%** (0.4) 3.9%** (0.4) 
BNN (5) 4.06%** (0.4) 4.45%** (0.41) 5.56%** (0.57) 6.67%** (0.61) 5.18%** (0.5) 
DMA (5) 2.93%** (0.3) 4.89%** (0.52) 3.9%** (0.36) 7.13%** (0.74) 4.71%** (0.48) 
DMS (5) 5.13%** (0.52) 2.89%** (0.25) 4.19%** (0.41) 5.35%** (0.55) 4.39%** (0.43) 

RVM 5.22%** (0.54) 4.75%** (0.49) 4.01%** (0.41) 5.47%** (0.56) 4.86%** (0.5) 
NB (15) 2.55%** (0.31) 2.38%** (0.28) 2.26%** (0.25) 1.76%** (0.16) 2.24%** (0.25) 
NB (10) 1.86%** (0.14) 2.68%** (0.23) 3.29%** (0.37) 1.77%** (0.12) 2.4%** (0.21) 
NB (5) 2.06%** (0.24) 1.55%** (0.14) 1.52%** (0.08) 1.15%** (0.11) 1.57%** (0.14) 
SA (15) -1.52% (-0.28) 0.1%* (0.02) -0.5% (0.01) -0.13% (-0.01) -0.51% (-0.06) 
SA (10) -0.73% (-0.18) -4.09% (-0.48) -2.7% (-0.22) -2.28% (-0.32) -2.45% (-0.3) 
SA (5) -2.9% (-0.39) -2.54% (-0.28) -2.81% (-0.24) -3.77% (-0.49) -3% (-0.35) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample Sortino ratio. The RVM is selecting the most relevant rules endogenously. The best rules are selected 
based on in-sample Sortino ratio. All returns are after transaction costs. The values in bold correspond to the best 
performing combination for each exercise. The Giacomini and White (2006) test is applied to all models. * and 
** present significance at 10%, and 5% level respectively.  The benchmark of the test is a buy and hold strategy. 

 

 

Table A.12: Trading performance for the equal-weight portfolio – Sortino ratio metric 
Model 2013 2014 2015 2016 Average 

BNN (15) 5.99%** (0.63) 5.67%** (0.53) 4.68%** (0.53) 6.39%** (0.66) 5.68%** (0.59) 
DMA (15) 5.27%** (0.53) 5.52%** (0.56) 5.96%** (0.62) 6.4%** (0.62) 5.79%** (0.58) 
DMS (15) 4.19%** (0.43) 5.11%** (0.5) 5.33%** (0.55) 6.12%** (0.63) 5.19%** (0.52) 
BNN (10) 5.6%** (0.53) 5.29%** (0.56) 4.71%** (0.52) 5.48%** (0.55) 5.27%** (0.54) 
DMA (10) 4.4%** (0.45) 4.89%** (0.48) 5.2%** (0.57) 5.06%** (0.49) 4.89%** (0.5) 
DMS (10) 3.9%** (0.42) 3.59%** (0.39) 5.42%** (0.54) 4.07%** (0.51) 4.24%** (0.47) 
BNN (5) 4.87%** (0.47) 4.37%** (0.41) 5.15%** (0.57) 5.58%** (0.57) 4.99%** (0.51) 
DMA (5) 3.58%** (0.33) 3.78%** (0.37) 5.68%** (0.55) 5.79%** (0.59) 4.71%** (0.46) 
DMS (5) 4.23%** (0.45) 3.09%** (0.34) 5.13%** (0.48) 4.05%** (0.41) 4.12%** (0.42) 

RVM 4.73%** (0.48) 4.07%** (0.41) 4.05%** (0.48) 4.66%** (0.5) 4.38%** (0.47) 
NB (15) 2.12%** (0.3) 1.58%** (0.21) 2.09%** (0.27) 2.14%** (0.27) 1.98%** (0.27) 
NB (10) 1.79%** (0.21) 2.46%** (0.23) 1.81%** (0.26) 2.3%** (0.23) 2.09%** (0.23) 
NB (5) 1.83%** (0.21) 1.47%** (0.13) 2.38%** (0.24) 1.5%** (0.23) 1.8%** (0.21) 
SA (15) -1.5% (-0.22) 0.63% (0.09) -0.31% (0) -0.17% (-0.04) -0.34% (-0.04) 
SA (10) 0.01% (0) -0.45% (-0.07) -1.41% (-0.11) -1.32% (-0.12) -0.79% (-0.07) 
SA (5) -1.64% (-0.12) -0.8% (-0.08) -1.43% (-0.08) -1.41% (-0.16) -1.32% (-0.11) 

Note: The table presents the annualized return and Sharpe Ratio for the top rules out of the data-snooping 
procedure survivors. The SA, NB, DMA, DMS, DMA and BNN select the best 5, 10, 15 technical rules based on 
in-sample Sortino ratio. The RVM is selecting the most relevant rules endogenously. The best rules are selected 
based on in-sample Sortino ratio. All returns are after transaction costs. The values in bold correspond to the best 
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performing combination for each exercise. The Giacomini and White (2006) test is applied to all models. * and 
** present significance at 10%, and 5% level respectively.  The benchmark of the test is a buy and hold strategy. 

We note from the Tables above that the ranking of our models is similar to the ones presented 
in Tables 3 to 6 in the main text. The performance of our models is robust to the selection of 
their inputs.  

C. MCS test results 

The MCS procedure constructs a set of models that contains the best model with a given level 
of confidence. This set of models is constructed through a series of tests where the null 
hypothesis of equal predictive ability is not rejected at a certain confidence level. For more 
details on the MCS procedure, see Hansen et al. (2011). Table A.13 presents the MCS p-values 
for all models, FX rates and years under study. 

Table A.13: MCS test results  
EUR/USD GBP/USD 

Model 2013 2014 2015 2016 2013 2014 2015 2016 
BNN (15) 1.0000* 0.8845* 0.8466* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 
DMA (15) 0.8445* 0.9221* 0.9441* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 
DMS (15) 0.6772* 0.8033* 0.9578* 1.0000* 0.7976* 0.9010* 1.0000* 1.0000* 
BNN (10) 1.0000* 1.0000* 0.9116* 0.7013* 0.8855* 0.8877* 0.7425* 1.0000* 
DMA (10) 1.0000* 1.0000* 1.0000* 0.6550* 0.4773* 0.5019* 0.8655* 0.9833* 
DMS (10) 0.7223* 0.7102* 1.0000* 0.6617* 0.4555* 0.6221* 0.9773* 0.7688* 
BNN (5) 0.8550* 0.4310* 0.8047* 0.7291* 0.7014* 0.8553* 0.8122* 0.8988* 
DMA (5) 0.6012* 0.3935* 1.0000* 0.9219* 0.6012* 0.4119* 0.8948* 0.8076* 
DMS (5) 0.6001* 0.3891* 0.9842* 0.5717* 0.6001* 0.3927* 1.0000* 0.5938* 

RVM 0.6600* 0.3843* 0.6450* 0.5998* 0.6944* 0.6043* 0.5543* 0.7653* 
NB (15) 0.2341* 0.2138* 0.2007* 0.4498* 0.4712* 0.2138* 0.5076* 0.3100* 
NB (10) 0.2553* 0.3054* 0.0023 0.4311* 0.3788* 0.3133* 0.3134* 0.5980* 
NB (5) 0.1681* 0.1911* 0.5853* 0.3543* 0.3775* 0.3012* 0.2043* 0.3211* 
SA (15) 0.0015 0.0005 0.0000 0.0003 0.0022 0.2943* 0.1589* 0.0931 
SA (10) 0.0850 0.1653* 0.0000 0.0000 0.0688 0.2015* 0.0834 0.1390* 
SA (5) 0.0002 0.0013 0.0012 0.0014 0.1233* 0.0567 0.0011 0.0001 

USD/JPY equal-weight portfolio 
Model 2013 2014 2015 2016 2013 2014 2015 2016 

BNN (15) 1.0000* 0.8913* 0.8017* 1.0000* 1.0000* 0.8839* 0.8753* 1.0000* 
DMA (15) 0.7744* 0.9122* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 
DMS (15) 0.5833* 0.7321* 0.9932* 0.8655* 0.8934* 0.8022* 1.0000* 1.0000* 
BNN (10) 0.7332* 0.7743* 0.9730* 0.9437* 1.0000* 0.8054* 0.8530* 0.7345* 
DMA (10) 0.5903* 0.7659* 0.9745* 0.8498* 0.9883* 0.9745* 1.0000* 0.7033* 
DMS (10) 0.6938* 0.7102* 0.8833* 0.7833* 0.8815* 0.6492* 1.0000* 0.6432* 
BNN (5) 0.5437* 0.5003* 1.0000* 1.0000* 1.0000* 0.6648* 0.8797* 0.9341* 
DMA (5) 0.2743* 0.7011* 0.8663* 1.0000* 0.8555* 0.6683* 1.0000* 0.9566* 
DMS (5) 0.6822* 0.2944* 0.8932* 0.8690* 0.8641* 0.5633* 1.0000* 0.6733* 

RVM 0.6291* 0.4768* 0.6450* 0.8035* 0.7822* 0.6012* 0.7632* 0.6854* 
NB (15) 0.2553* 0.2831* 0.5422* 0.3005* 0.4167* 0.3455* 0.3457* 0.2436* 
NB (10) 0.2016* 0.2235* 0.5844* 0.2018* 0.3039* 0.3656* 0.3543* 0.2301* 
NB (5) 0.2245* 0.1976* 0.3832* 0.1937* 0.2638* 0.2801* 0.3721* 0.1918* 
SA (15) 0.0005 0.0005 0.0043 0.0839 0.0055 0.1123* 0.0045 0.0007 
SA (10) 0.0001 0.0000 0.0001 0.0000 0.0739 0.0733 0.0012 0.0000 
SA (5) 0.0000 0.0000 0.0000 0.0000 0.0012 0.0035 0.0004 0.0000 

Note: The table reports the p-values of the MCS (Hansen et al., 2011) tests in terms of the MSE criterion for all cases. Low 
p-values indicate that it is unlikely that the model will belong to the set of the ‘best’ models. * denotes that the model 
examined belongs to the set of ‘best’ models at 90% confidence level.  
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From the results in Table A.13, we note that NB, DMA, DMS, DMA and BNN are consistently 
included in the best set of models extracted by the MCS test based on the MSE. On the other 
hand, SA appears in many cases not to be included in the MCS sets. Our results are robust 
when the MAE criterion in the MCS procedure is applied. These results are available upon 
request.   


