Dual-band Microstrip Patch Antenna for Fully-Wireless Smart Stent

Zhang, J., Das, R. , Abbasi, Q. H. , Mirzai, N., Mercer, J. and Heidari, H. (2021) Dual-band Microstrip Patch Antenna for Fully-Wireless Smart Stent. In: 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Singapore, 04-10 Dec 2021, pp. 1035-1036. ISBN 9781728146706 (doi: 10.1109/APS/URSI47566.2021.9703759)

[img] Text
246940.pdf - Accepted Version



Cardiovascular diseases (CVDs) remain the dominant cause of mortality globally and are of an increasing trend. Generally, coronary stent placement is a pervasive treatment to combat CVDs. However, the cardiovascular stent employed as the passive expanded support in the blocked artery frequently introduce a postoperative complication called in-stent restenosis. The innovative self-reported stents integrated with biosensors can offer effective diagnosis and treatment of in-stent restenosis. In addition, the use of biotelemetry is essential in the interaction with physiological signals in the vessel's lumen, ensuring continuous monitoring of internal conditions within a vessel. This paper presents two compact dual-band microstrip antennas with encapsulation and without encapsulation that can implement power and data transmission. In particular, the 1.4 GHz Wireless Medical Telemetry Service (WMTS) band and 2.45 GHz Industrial Scientific and Medical (ISM) band have been allocated for wireless power transfer and biotelemetry, respectively. The proposed stent antennas employ meander slots on the radiating patch, which can achieve an ultra-small volume of 5 × 5 × 0.64 mm 3 . Moreover, the antenna configurations, reflection coefficient values, and surface current distribution plots are compared between the encapsulated and unencapsulated antennas.

Item Type:Conference Proceedings
Glasgow Author(s) Enlighten ID:Mercer, Dr John and Abbasi, Professor Qammer and Heidari, Professor Hadi and Mirzai, Mr Nosrat and Zhang, Jungang and Das, Dr Rupam
Authors: Zhang, J., Das, R., Abbasi, Q. H., Mirzai, N., Mercer, J., and Heidari, H.
College/School:College of Medical Veterinary and Life Sciences
College of Medical Veterinary and Life Sciences > School of Cardiovascular & Metabolic Health
College of Science and Engineering > School of Engineering
College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Published Online:16 February 2022
Copyright Holders:Copyright © 2021 IEEE
Publisher Policy:Reproduced in accordance with the publisher copyright policy
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record