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Abstract— This paper describes a systematic approach to the
robustness analysis of linear periodically time-varying (LPTV)
systems. The method uses the technique known as Lifting
to transform the original time-varying uncertain system into
linear fractional transformation (LFT) form. The stability and
performance robustness of the system to structured parametric
uncertainty can then be analysed non-conservatively using
the structured singular value µ. The method is applied to
analyse the stability robustness of an attitude control law
for a spacecraft controlled by magnetic torquer bars, whose
linearised dynamics can naturally be written in linear pe-
riodically time-varying form. The proposed method allows
maximum allowable levels of uncertainty, as well as worst-case
uncertainty combinations to be computed. The destabilising
effect of these uncertain parameter combinations is verified in
time-domain simulations.

I. INTRODUCTION

Many different engineering applications, from helicopter
rotors and the dynamics of beams and plates, to the mo-
tion of ships and spacecraft, may be modelled as LPTV
(Linear Periodically Time-Varying) systems, (Dugundji &
Wendell 1983, Spyrou 1997, Verdult, et al. 2004, Psiaki
2001). Rigorous analysis of the stability and robustness
properties of such systems is thus an important problem,
which requires dedicated system theoretic tools. In the
literature, Floquet theory has frequently been used to study
the nominal stability of LPTV systems (Chen 1984, Khalil
2002, Rugh 1996), see for example Dugundji & Wendell
(1983). Previous work onrobust stability analysis of LPTV
systems has considered robustness to unstructured complex
uncertainty using theν-gap metric, (Cantoni 1998, Cantoni
& Glover 1998, Cantoni & Glover 2000) and to complex
and nonlinear/time varying uncertainty using IQC’s (In-
tegral Quadratic Constraints), (Kao, et al. 2001). In this
paper, we consider the problem of analysing the robustness
of LPTV systems to structured (i.e diagonal) LTI (Linear
Time-Invariant) uncertainty, which may be real, complex
or mixed. We show how a technique known as Lifting,
(Chen & Francis 1995, Ma & Iglesias 2002a), can be used
to cast the original uncertain LPTV system in the form of
an LFT (Linear Fractional Transformation). Stability and
performance robustness of the resulting system can then
be analysed non-conservatively using standardµ-analysis
methods. A significant advantage of the proposed approach
over methods based on theν-gap metric and IQC is that
a worst-case destabilising uncertainty may be computed

from the µ lower bound which can be used to check
the (possible) conservatism of the analysis results. For the
case of purely real parametric uncertainty, this means that
the original time-varying system may be simulated with
the worst-case uncertain parameters to verify the predicted
instability or performance degradation. We note that the idea
of using the Lifting technique in the context of robustness
analysis first appeared in Ma & Iglesias (2002b) where
it was applied to the problem of analysing the robustness
of limit cycles in nonlinear (but time-invariant) models of
biochemical networks, see also Ma & Iglesias (2002a) and
Kim, et al. (2006b). The application of Lifting described
in this paper was first proposed and applied to a simple
numerical example in Kim, et al. (2006a).

In contrast to the extremely simple numerical examples
considered in Cantoni (1998), Cantoni & Glover (1998),
Cantoni & Glover (2000), Kao et al. (2001) and Kim
et al. (2006a), in this paper the proposed analysis method
is applied to a highly realistic attitude control system for
a small satellite. In recent years, the demand for small
satellites has increased significantly due to their cheaper
cost to build, relatively smaller launcher requirements, and
potential for high performance when appropriately coordi-
nated (Carpenter, et al. 2003). For this type of spacecraft,ac-
tuation based on magnetic torque is especially attractive due
to its reduced mass and power consumption when compared
to wheel based actuators or gas jet thrusters, (Psiaki 2001).
Interestingly, the resulting linearised equations of motion
for this type of spacecraft can be naturally written as a
periodically time-varying system. In the recent literature
several papers have addressed the resulting attitude con-
troller design problem (Psiaki 2001, Alfriend 1975, Junkins,
et al. 1981, Wísniewski & Blanke 1999, Lovera, et al. 2002,
Silani & Lovera 2005). In Psiaki (2001), a magnetic torquer
attitude controller was designed for a small spacecraft using
time-varying linear quadratic full state feedback. Robustness
of the control law to parametric model uncertainties was
evaluated using a trial-and-error simulation based approach.
In this paper we perform a systematic robustness analysis
of this controller to multiple uncertain parameters such as
inertia, inclination angles and altitude. The results of our
study show that the original robustness properties claimed
for the controller in Psiaki (2001) are rather optimistic.

The paper is organised as follows: In section II, the
magnetic torque attitude controller for the spacecraft, and



the resulting robustness analysis problem are described.
In Section III, the linearised closed-loop dynamics of the
system are written in standard linear fractional form using
Lifting techniques. The robustness analysis of the attitude
controller is described in detail in Section IV. Finally,
Section V presents some conclusions.

II. PROBLEM FORMULATION

Spacecraft attitude is generally defined relative to a set
of local-level coordinates. The local-level reference frame
is defined as follows: the+z axis points toward nadir, the
y axis is perpendicular to both the nadir vector and the
orbital velocity at each instant, the positive direction ofy
is given by the negative orbit normal, and the+x axis is
defined by the right-hand rule. The other reference frame of
interest is the body frame which is fixed to the spacecraft
- the attitude is then defined as the relative angle from the
local-level coordinates to the body frame (Psiaki 2001).

With the above conventions, the spacecraft attitude kine-
matics and dynamics are given by (Psiaki 2001, Shuster
1993, Wertz 1986)

q̇ =
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, (2)

ωB
LLi

is the ith component ofωB
LL for i = 1, 2, 3, ω

B
LL is

the angular rate of spacecraft with respect to the local frame
described in the body frame,ω is the spacecraft angular
rate with respect to the inertia frame described in the body
frame, I is the inertia matrix,m is the magnetic dipole
moment of the torque rods (the control input) andb is the
Earth’s magnetic field written in the body frame.b can also
be written in the local-level frame, (Psiaki 2001), as follows
:

b(t) :=





b1(t)
b2(t)
b3(t)



 =
µf

a3





cos (ω0t) sin (im)
− cos (im)

2 sin (ω0t) sin (im)



 (3)

where µf is the dipole strength of the earth’s magnetic
field and is equal to7.9× 1015 Wb-m, a is the semi-major
axis of the orbit,ω0 is the orbital rate,t is time which is
measured from zero at the ascending node crossing of the
magnetic equator,im is the orbit inclination angle,ngg is
the gravity gradient torque, andnd is the summation of
all other external disturbances such as aerodynamic drag
torque, solar radiation torque, higher frequencies in the
Earth’s magnetic field, etc.

Since 1 is nonlinear and rather complicated for the
purposes of control law design, it is usually linearised with
the assumption of a circular-orbit around the equilibrium
nadir-pointing attitude. The other assumptions required for

validity of the linearised model are as follows: roll (φ), pitch
(θ) and yaw (ψ) attitude angles are small, the corresponding
angular rates, i.e.̇φ, θ̇ and θ̇, are small, and the control
input m is small. With these assumptions, and includ-
ing the nominal term of the gravity gradient torque, the
nonlinear equation of motion can be linearised as follows
(Wertz 1986):

ẋs = Asxs +Bs(t)u (4)

where

xs :=
[

φ θ ψ φ̇ θ̇ ψ̇
]T

(5a)

u := m (5b)

As :=

[

03×3,
diag[−4ω2

0
σ1, 3ω

2

0
σ2, ω

2

0
σ3],

I3×3

0 0 ω0 (1 − σ1)
0 0 0

−ω0 (1 + σ3) 0 0









(5c)

Bs(t) :=

[

03×3

B2(t)

]

(5d)

B2(t) :=





0 b3(t)/I1 −b2(t)/I1
−b3(t)/I2 0 b1(t)/I2
b2(t)/I3 −b1(t)/I3 0



 (5e)

In the above,03×3 is a3×3 zero matrix, the inertia matrix
is about the principal axis, hence,I := diag[I1 I2 I3], σi :=
(Ij−Ik)/Ii for (i, j, k) = (1, 2, 3), (2, 3, 1) and(3, 1, 2),
ω0 is the orbital rate which for a circular orbit is given by

ω0 =

√

µ⊕

a3
(6)

In the above,µ⊕ is the Earth’s gravitation constant and is
equal to3.986005×1014 m3/s2 while a is equal toR⊕+h,
whereR⊕ is the radius of the Earth, 6378.14 km, andh is
the altitude of the spacecraft. Note thatBs(t) is a periodic
matrix with periodT equal to2π/ω0, i.e.,Bs(t) = Bs(t+
T ) for all t ∈ [0,∞) . To add integral action in the control
law, the integrals of the attitude errors are defined by

z :=
[

∫ t

0
φ(τ)dτ

∫ t

0
θ(τ)dτ

∫ t

0
ψ(τ)dτ

]T

(7)

and augmented with thexs as follows:

ẋ = Ax +B(t)u (8)

where

x :=
[

zT xT
s

]T
(9a)

A :=

[

03×3 [I3×3 03×3]
03×3 As

]

(9b)

B(t) :=

[

03×3

Bs(t)

]

(9c)

and I3×3 is a 3 × 3 identity matrix. To avoid confusion
between the identity and inertia matrices, in this paperIk×k

with a positive integerk represents ak× k identity matrix,
while I is the inertia matrix andIi for i = 1, 2, 3 is the
diagonal element of the inertia matrix. A periodic linear



quadratic regulator (LQR) controller was designed for (8)
in (Psiaki 2001). The control law is given by:

u(t) = −α0R
−1B̄T (t)Pssx(t) (10)

whereα0 is a positive real scalar,R is a positive definite
weighting matrix for the control input in the LQR cost
function, B̄(t) is the same asB(t) except that the inertia
is replaced by the nominal value, i.e., eachIi in (5e) is
replaced byĪi for i = 1, 2, 3, the relation between the
actual and the nominal inertia is given byIi := Īi(1+ δIi

),
where δIi

is the uncertainty in each term of the inertia
matrix for i = 1, 2, 3. The control gain,Pss, is the solution
of the following algebraic Riccati equation:

ĀTPss+ PssĀ− PssBavgPss+Q = 0 (11)

where

Bavg =
1

T

∫ T

0

B̄(τ)R−1B̄T (τ)dτ (12)

Ā is also of the same form ofA with the nominal values of
the inertia matrix, the inclination angle and the altitude,and
Q is a positive semi-definite matrix weight on the state. As
a result, the controller gainPss is a constant matrix based on
the fixed nominal altitude, inclination angle and the inertia
matrix. More details of the controller design can be found
in Psiaki (2001). The final closed loop system is given by

ẋ = Acl(t)x (13)

where

Acl(t) =
[

A− α0B(t)R−1B̄T (t)Pss
]

(14)

Note thatAcl(t) = Acl(t + T ), i.e., it is a periodic matrix
with a period ofT .

III. L INEAR FRACTIONAL TRANSFORMATION

A. Transformation to Time-Varying LFT-Form

For brevity in the exposition, the weighing matrix for
the control input,R, is assumed to be a positive scalar
multiplied by the identity matrix, i.e.R = rI3×3. Then,
the closed loop system is given by

ẋ(t) =
[

A(δI) −
α0

r
B(t; δI , δim

)B̄T (t; δim
)Pss

]

x(t)

(15)
where each matrix is written with arguments to emphasise
its dependencies on time and on the uncertain parameters,
δI and δim

. δI represents the uncertainty in the diagonal
elements of the inertia matrix (δI1

, δI2
, andδI3

), while δim

represents the uncertainty in the spacecraft’s orbit inclina-
tion angleim. Note that for physical reasons the inclination
angle uncertainty is modelled as additive uncertainty (im =
īm + δim

where īm is the nominal value of the inclination
angle) whereas the inertia uncertainty is multiplicative (i.e.,
Ii = Īi(1 + δIi

)).
Transformation of (15) to the form of a time-varying LFT

is straightforward, except for the second term in the bracket

which contains sinusoidal terms inim. To see this, note that
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(16)

To write the closed loop system in an LFT form the
uncertain parameters in each element of (16) must be
identified and isolated. To do this, we first of all note that
the numerator of the first element in the diagonal can be
simplified as follows:

b2
2
(t) + b2

3
(t) =

(µf

a3

)2
[

cos2 im + 4 sin2(ω0t) sin2 im
]

=
(µf

a3

)2
{[

4 sin2(ω0t) − 1
]

sin2 im + 1
}

=
(µf
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)2
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2 sin2(ω0t) +
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−
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2 sin2(ω0t) −
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2

]

cos (2im)

}

(17)

Similarly, the numerators of the other two diagonal terms
are

b2
1
(t) + b2

3
(t) =

(µf

a3

)2
{

1

2

[

3 sin2(ω0t) + 1
]

−
1

2

[

3 sin2(ω0t) + 1
]

cos (2im)

}

(18a)

b2
1
(t) + b2

2
(t) =

(µf

a3

)2

×
[

1 +
1

2
sin2(ω0t)(−1 + cos (2im))

]

(18b)

The off-diagonal numerator terms are given by

b1(t)b2(t) = −
(µf

a3

)2 1

2
cos (ω0t) sin (2im) (19a)

b1(t)b3(t) =
(µf

a3

)2
[

1

2
sin (2ω0t)

−
1

2
sin (2ω0t) cos (2im)

]

(19b)

b2(t)b3(t) = −
(µf

a3

)2

sin (ω0t) sin (2im) (19c)

In (17), (18), and (19), for a fixedω0, i.e. a fixed altitude, the
only uncertain term is the inclination angle, i.e.im. Note
that in (17), (18), and (19) the inclination angle appears
as eithersin(2im) or cos(2im), which can be expanded as
follows:

sin [2 (̄im + δim
)] = sin (2̄im) cos (2δim

)

+ cos (2̄im) sin (2δim
) (20a)

cos [2 (̄im + δim
)] = cos (2̄im) cos (2δim

)

− sin (2̄im) sin (2δim
) (20b)

where the magnitude of the uncertainty in the inclination
angle, i.e. |δim

|, is assumed to be strictly less than 45
degrees, which is large enough to cover all practical cases.
By this assumption the cosine of the uncertainty is non-
negative as follows:

cos (2δim
) =

√

1 − sin2 (2δim
) (21)
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Fig. 1. Magnitude of thecos(2δim
) approximation error for the second

and the fourth order polynomials as a function of the inclination angle.

To allow the uncertainties in (20) to be written in the form
of polynomials, we define:

δs ≡ sin (2δim
) (22)

Then, by the binomial expansion (21) can be written as

cos (2δim
) =

√

1 − δ2s = 1−
1

2
δ2s −

1

6
δ4s −

1

16
δ6s +. . . (23)

In (Psiaki 2001), the robustness of the controller was
evaluated by trial and error for inclination angles with
uncertainty of up to 30 degrees. As shown in Figure 1,
the approximation errors atδim

= 30 degrees for the
second-order and the fourth-order polynomials of (23) are
approximately 0.15 and 0.03, respectively. Note that, while
the higher order polynomial makes the approximation error
smaller, the price that has to be paid for this is an increase
in the computation time required to calculate the bounds on
µ. For this problem, the approximation for (23) was chosen
as:

cos (2δim
) ≈ 1 −

1

2
δ2s (24)

which gives an approximation error of less than 0.01 up to
15 degrees. Substituting (22) and (24) into (20) gives

sin (2̄im) + cos (2̄im) δs

−
1

2
sin (2̄im) δ2s (25a)

cos (2̄im) − sin (2̄im) δs

−
1

2
cos (2̄im) δ2s (25b)

With the uncertain parameters written in the above form,
all sources of uncertainty can now be ”pulled out” of the
closed loop equation of motion and placed in a diagonal
uncertainty matrix∆ given by

∆ = diag[δI1
I4×4, δI2

I4×4, δI3
I4×4, δsI9×9] (26)

Then, the uncertain closed loop system (15) can be written

in standard LFT form as:

ẋ = ALFT(t)x +BLFT(t)w (27a)

z = CLFT(t)x +DLFT(t)w (27b)

w = ∆z (27c)

whereALFT(t) = ALFT(t + T ), BLFT(t) = BLFT(t + T ),
CLFT(t) = CLFT(t+T ), andDLFT(t) = DLFT(t+T ) for all
t ∈ [0,∞).

Remark 3.1: Recall the definition of the inertia element:
Ii = Īi(1 + δIi

) for i = 1, 2, 3. Since the inertia matrix
must always be positive definite, the inertia uncertainty
parameters cannot be smaller than -1 and also the following
inequality has to be satisfied:Ii ≤ Ij + Ik, where(i, j, k)
are (1, 2, 3), (2, 3, 1) and (3, 2, 1).

Remark 3.2: By definition, the magnitude of the incli-
nation angle error,δs, has to be less than 1. In addition,
because of the approximation of trigonometric functions
in the inclination angle uncertainty, it cannot be greater
than a certain number which is strictly less than 1. For
the first-order approximation, it should be less than 0.5,
which corresponds to aδim

equal to 15 degrees, so that the
magnitude of the error remains less than 0.01.

B. Transformation to Time Invariant LFT-Form

Although (27) is in the form of an LFT, it is still a time-
varying system. To transform this periodically time-varying
system into a time-invariant form, a procedure known as
Lifting, employed. Firstly, (27) is sampled with the sampling
time, ∆t, where∆t is equal toT/nh andnh is a positive
integer. Then, a linear time-invariant switching system is
obtained as follows:

ẋd(t) = ALFT(tk)xd(t) +BLFT(tk)wd(tk) (28a)

zd(tk) = C(tk)xd(tk) +D(tk)wd(tk) (28b)

wd(tk) = ∆zd(tk) (28c)

for t in the interval of[tk, tk + ∆t) and k a non-negative
integer. Secondly, (28) is discretised using a sample and
hold for each time interval as follows:

xd(k + 1) = Φxd(k) + Γ(k)wd(k) (29a)

zd(k) = H(k)xd(k) + J(k)wd(k) (29b)

wd(k) = ∆zd(k) (29c)

where each matrix is defined appropriately, andwd(k) and
zd(k) are equal towd(tk) andzd(tk), respectively. Because
of the periodicity of the system, the following is satisfied:
Γ(k + nh) = Γ(k), H(k + nh) = H(k), andJ(k + nh) =
J(k). Thirdly, the technique known as Lifting is applied
to the above discrete-time system. Setting the initialk for
(29) equal to 0 without loss of generality, the input and the
output are redefined as follows:

wd =
{

wd(0), wd(1), wd(2), . . .
}

(30a)

zd =
{

zd(0), zd(1), zd(2), . . .
}

(30b)



TABLE I

SPACECRAFTCONFIGURATION PARAMETERS : ALL OF THEM ARE TAKEN FROM Psiaki (2001)

Nominal Values Configuration A Configuration B
Eccentricity 0 0
Altitude (h̄) [km] 600 657
Inclination (̄im) [degree] 90 57
Ī = diag[Ī1, Ī2, Ī3] [kg·m2] [8.7, 10, 6.5] [250, 250, 10]
State Weighting (Q) diag[1.5 × 10−8, 1.5 × 10−7, 1.5 × 10−8, 0.1, 1.0, 0.1, 1.0, 1.0, 0.1] diag[1.5 × 10−8I3×3, 0.01I3×3, 1.0I3×3]
Control Weighting (R) 6.2 × 107I3×3 4.9 × 104I3×3

Control Scaling Factor (α0) 2500 8130
Maximum Control Input (umax) 0.03 0.1
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Fig. 2. µ upper bounds for configurations A and B at each altitude. The maximum among theµ-upper bound peaks at each altitude is 77.93 at 750
km for configuration A and 24.73 at 557 km for configuration B.

and

wd(k) = [wd(k), wd(k + 1), . . . ,

. . . , wd(k + nh − 2), wd(k + nh − 1)]
T (31a)

zd(k) = [zd(k), zd(k + 1), . . . ,

. . . , zd(k + nh − 2), zd(k + nh − 1)]
T (31b)

Then, the lifted system is given by

xd(k + nh) = Φ̃xd(k) + Γ̃wd(k) (32a)

zd(k) = H̃xd(k) + J̃wd(k) (32b)

wd(k) = ∆̄zd(k) (32c)

where and∆̄ is a block diagonal matrix with∆ repeated
nh-times, as follows:

∆̄ = diag[∆, ∆, . . . ,∆] (33)

Since each uncertainty appears in each∆, by defining the
row re-ordering matrixV such that

V ∆̄ = ∆̃V, (34)

andV TV = I, we have

∆̃ = diag[δI1
I4nh×4nh

, δI2
I4nh×4nh

,

δI3
I4nh×4nh

, δsI9nh×9nh
]

(35)

Finally, the continuous time-invariant LFT form is obtained
by transforming the lifted system, (32), into a corresponding
time-invariant continuous system using a standard technique
such as zero-order hold or Tustin’s method (Franklin, et al.
1994).

Remark 3.3: To reduce the approximation error involved
in the lifting procedure, the number of samples,nh, should
be chosen as large as possible. However, the bigger the
number of samples, the more times each uncertain param-
eter is repeated in the∆ matrix, and the more difficult the
resultingµ bound calculation becomes. Here, we use a trick
- to reduce the approximation error in the system matrix,
i.e. Φ̃, nh was set equal to 3000 (since this has no impact
on the dimension of∆), while a value ofnh equal to 10
was used for̃Γ, H̃, andJ̃ to minimise the dimension of∆.

IV. ROBUSTNESSANALYSIS

Having transformed the closed-loop system to the ap-
propriate form, in this section a systematic analysis of
the robustness of the control law is performed using the
structured singular valueµ. The results of this analysis are
verified by simulations of the original closed loop system
with the uncertain parameters fixed at the ”worst-case”
values predicted byµ.

A. µ-Analysis

Our robustness analysis is applied for the two different
configurations of the spacecraft considered in Psiaki (2001)
- parameter values for each configuration are shown in Table
I. These two configurations were chosen to demonstrate the
control design scheme in Psiaki (2001). Configuration A
corresponds to the case where the magnetic torquer bar is
used for three-axis stabilisation of a small-size spacecraft,
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which in a practical sense is the most likely application
of magnetic torquer control. Configuration B again cor-
responds to a small-size spacecraft, however, in this case
its yaw motion is neutrally stable and the resulting closed
loop response is slower than that of Configuration A. More
details about each configuration can be found in Psiaki
(2001) and the references therein. In order to demonstrate
the proposed robustness analysis method and compare the
results with the ones from a heuristic search as shown
in Psiaki (2001), the same two configurations are used as
examples in this paper.

The control gainPss is obtained by solving (11) with the
nominal values given in the table. The robustness analysis is
performed with respect to the uncertainties in the elements
of the inertia matrix and the inclination angle for a fixed
altitude. Then, this analysis is repeated over a range from
100 km below to 150 km above the nominal altitude in a
10 km gridding.

Upper bounds onµ were computed using the standard
algorithms in the MATLABµ-toolbox (Balas, et al. 2001)
and are shown in Figure 2 for each configuration. For
configurations A and B, the maximum peaks of the upper
bounds are 77.93 and 24.73, respectively. That is, for all
values ofδIi

andδs in the range of±0.0128 (= 1/77.93)
and ±0.0404 (= 1/24.73) the closed loop dynamics are
stable. These results indicate that the controller may have
rather poor robustness properties. To be sure whether this is
in fact the case, however, lower bounds onµ must also be
computed, for two reasons. Firstly, we need to assess the
level of conservatism in the upper bounds, and secondly
we need to extract the worst-case destabilising uncertainty
combinations from the lower bounds and check whether
they satisfy the physical constraints discussed in Remarks
3.1 and 3.2. In this paper we used the realµ lower bound
algorithm of Ferreres & Biannic (2001) to calculate the peak
of the lower bound over a continuous frequency interval.
The peaks of the lower bounds for each configuration at
each altitude are shown in Figure 3. Since the peaks of the
upper and lower bounds are quite tight, we are thus assured

that the analysis results are not conservative. However,
we still need to check that the worst-case uncertainty
combinations computed by theµ-analysis correspond to
physically allowable values. For configuration A, the worst-
case (i.e. smallest) destabilising values for the inertia matrix
uncertainties are extracted from the peak of theµ lower
bound as follows:δI1

= −0.0128, δI2
= 0.0128, and

δI3
= −0.0128. For these values, the inertia matrix is

still positive definite and satisfies the inequality condition.
Hence, the peak of the lower bound is a physically valid
bound. However, for the configuration B, the uncertainties
extracted from theµ lower bound are given byδI1

=
−0.0404, δI2

= 0.0404, and δI3
= −0.0404, and thus the

inequality condition,I2 ≤ I1 + I3, is not satisfied. In such
cases the result fromµ-analysis should be interpreted as
providing a worst-case direction in the uncertain parameter
space, which should be scaled-down until the parameter
values become physically possible, and then checked via
time-domain simulations. Similar arguments apply for the
inclination angle uncertainty, since in this case, it must
be checked whether the magnitude of the uncertainty is
within the allowable approximation error specified in the
LFT modelling stage. In this case, for each configuration,
the worst-case uncertainties inδim

are±1.47 degrees and
±4.64 degrees, respectively, and thus they are well within
the±15 degree range required to guarantee an approxima-
tion error smaller than0.01.

B. Time-Domain Simulation Results

In Psiaki (2001), since there is a nonlinear magnitude
limitation in the magnetic dipole moment, an anti-windup
scheme is implemented in the controller. That is, the control
input u(t) or equivalentlym(t) is equal to the following:

u(t) =

{

unominal(t) if β ≤ 1

(1/β)unominal(t) if β > 1
(36)

whereunominal is equal to the original control input without
saturation, i.e. (10), and

β = max
i={1, 2, 3}

|(unominal)i|

umax
, (37)

(unominal)i is the ith component ofunominal. In this section,
we simulate the original linearised time-varying closed-
loop system (not the transformed LFT) with the above
nonlinear saturation and anti-windup logic and the un-
certain parameters fixed at their worst-case values found
by µ-analysis. A full nonlinear simulation would require
implementation of the full nonlinear equations of motion,
together with external disturbance such as theJ2 term
of the gravity gradient torque, aerodynamic drag, solar
radiation pressure, etc. This was considered unnecessary,
however, since uncertainty combinations that destabilisethe
linearised system will obviously also destabilise the full
nonlinear system, at least locally.

The initial roll, pitch and yaw attitude angles for each
configuration were fixed at [3, -3, 3] degrees for configura-
tion A and [30, -30, 30] degrees for configuration B. Initial
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Fig. 4. Attitude angle time histories with no uncertainties for each
configuration.
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Fig. 5. Attitude angle time histories with the worst perturbation for each
configuration.

rates are equal to zero for both cases. Figure 4 shows the
stable closed loop responses in the case of zero uncertainty
for both configurations A and B. For configuration A, at an
altitude of 750 km, the worst uncertainty for the inertia
matrix is given by δI1

= −0.0129, δI2
= 0.0129, and

δI3
= 0.0129 and for the inclination angleδim

by 1.48
degrees. As shown in Figure 5, the response of the closed
loop system is unstable for this uncertainty combination. For
configuration B, the worst-case uncertainty at the altitude
807 km,δI1

= 0.0412, δI2
= −0.0412, andδI3

= −0.0412
is scaled down byδIi

× 0.04 to make the inertia terms
physically possible. With this level of uncertainty, the time-
varying system is still unstable as shown in Figure 5.

Finally, it is interesting to note that the above analysis
contrasts markedly with the robustness results for this
controller presented in Psiaki (2001). In that paper, the
authors used a gridding based approach often adopted in
the aerospace industry, where a ”finite representative set
of parameter variations” were investigated, and the authors
concluded that, for configuration A, the closed loop system

remained stable for variations in inertia levels of±30%
with variations of inclination angle of±30 degrees. For
configuration B, the authors reported that instability oc-
curred for similar levels of uncertainty only in the case
of ”very large state perturbations” which caused ”extreme
levels of saturation to occur”. The need for rigorous and
reliable methods for the robustness analysis of time-varying
feedback control systems is clearly demonstrated by the
large discrepancies between these two sets of results.

V. CONCLUSIONS

A systematic approach to the robustness analysis of linear
periodically time-varying (LPTV) systems was described.
The method uses the technique known as Lifting to trans-
form the original time-varying uncertain system into linear
fractional transformation (LFT) form. The stability and per-
formance robustness of the system to structured parametric
uncertainty can then be analysed non-conservatively using
the structured singular valueµ. The method was applied to
analyse the robustness of an attitude control law for a space-
craft controlled by magnetic torque rods, whose linearised
dynamics can naturally be written in linear periodically
time-varying form. The proposed method allows maximum
allowable levels of uncertainty, as well as worst-case uncer-
tainty combinations to be computed. The destabilising effect
of these uncertain parameter combinations was verified in
time-domain simulations.
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