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We initiate a detailed analysis of C∗-diagonals in classifiable C∗-algebras, answering

natural questions concerning topological properties of their spectra and uniqueness

questions. Firstly, we construct C∗-diagonals with connected spectra in all classifiable

stably finite C∗-algebras, which are unital or stably projectionless with continuous

scale. Secondly, for classifiable stably finite C∗-algebras with torsion-free K0 and trivial

K1, we further determine the spectra of the C∗-diagonals up to homeomorphism. In

the unital case, the underlying space turns out to be the Menger curve. In the stably

projectionless case, the space is obtained by removing a non-locally-separating copy

of the Cantor space from the Menger curve. Thirdly, we show that each of our classi-

fiable C∗-algebras has continuum many pairwise non-conjugate such Menger manifold

C∗-diagonals.

1 Introduction

Classification of C∗-algebras is a research program initiated by the work of Glimm,

Dixmier, Bratteli, and Elliott. After some recent major breakthroughs, the combination

of work of many mathematicians over several decades has culminated in the complete

classification of unital separable simple nuclear Z-stable C∗-algebras satisfying the

Universal Coefficient Theorem as introduced by Rosenberg and Schochet in (see [16,
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Constructing Menger Manifold C∗-Diagonals 18993

32–34, 40, 59, 64 67] and the references therein). Further classification results cover

the stably projectionless case as well (see for instance [17–19, 29–31]). All in all, the

final result classifies all separable simple nuclear Z-stable C∗-algebras satisfying the

UCT (which we refer to as “classifiable C∗-algebras” in this paper) by their Elliott

invariants. The ideas and methods developed along the way not only transformed our

understanding of C∗-algebras but also initiated new developments in related areas,

leading to a fruitful interplay. For instance, the classification program for C∗-algebras

has served as an inspiration for the classification of Cantor minimal systems up to orbit

equivalence [26–28], and recent developments in C∗-algebra classification have triggered

interest in approximation properties [38, 39], which are also interesting from the point

of view of dynamical systems due to their link to important dynamical notions such as

mean dimension [20, 51, 52, 57, 58].

Further connections between classification of C∗-algebras and generalized

topological dynamics (in the form of topological groupoids and their induced orbit

structures) have been established in [47], where it was shown that every classifiable

C∗-algebra has a Cartan subalgebra. The interest here stems from the observation in

[41, 62] that once a Cartan subalgebra has been found, it automatically produces an

underlying topological groupoid such that the ambient C∗-algebra can be written as

the corresponding groupoid C∗-algebra. In a broader context, the notion of Cartan sub-

algebras in C∗-algebras has attracted attention recently due to its close connection to

continuous orbit equivalence for topological dynamical systems, leading to interactions

with geometric group theory [44–46], as well as links to the UCT question [4, 5].

The goal of this paper is to start a more detailed analysis of the Cartan subal-

gebras and the corresponding groupoids constructed in [47]. This can be viewed as the

1st step of the long-term program of generalizing the work in [26–28] on Cantor minimal

systems to dynamical systems on bigger classes of topological spaces, based on the new

insights gained in recent breakthroughs in C∗-algebra classification. In this context, it

is interesting that, as explained below, the Menger curve appears naturally in our study

of Cartan subalgebras in classifiable C∗-algebras. This makes sense from a topological

perspective because just as the Cantor space is universal among zero-dimensional

spaces, the Menger curve is universal among one-dimensional spaces. As explained

below, the constructions in the present paper produce groupoids acting minimally on

the Menger curve. These groupoids arise in our study of Cartan subalgebras in inductive

limit C∗-algebras just as AF equivalence relations arise naturally as groupoid models for

AF algebras. Given the importance of AF equivalence relations in the classification of

Cantor minimal systems up to orbit equivalence [26–28], and because AF equivalence
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18994 X. Li

relations and Bratteli diagrams lead to a systematic way to construct Cantor minimal

systems through Bratteli–Vershik models [36], it is an intriguing question whether the

groupoids models constructed in this paper help to shed light on the open question

whether the Menger curve admits minimal homeomorphisms [35, 65].

Let us now present the main results of this paper and explain the context in

more detail. The construction in [47] produces Cartan subalgebras in all the C∗-algebra

models from [15, 22, 32, 33, 66], which exhaust all possible Elliott invariants of classi-

fiable stably finite C∗-algebras. Actually, we obtain C∗-diagonals in this case (i.e., the

underlying topological groupoid has no non-trivial stabilizers). Together with groupoid

models that have already been constructed in the purely infinite case (see [65] and also

[48, Section 5]), this produces Cartan subalgebras in all classifiable C∗-algebras. An

alternative approach to constructing groupoid models, based on topological dynamics,

has been developed in [10–13, 61] and covers large classes of classifiable C∗-algebras.

In special cases, groupoid models have also been constructed in [3]. The advantage of

the construction in [47] is that it is very concrete, allowing us to extract information

about the C∗-diagonals and their spectra. For instance, this produced C∗-diagonals of

the Jiang–Su algebra Z [37] of cove ring dimension one, which is optimal in the sense

that this is the smallest possible value. A motivating question for the present paper is

whether the construction in [47] produces a one-dimensional C∗-diagonal of Z, which is

distinguished in some sense or put differently (see [7,Problem 3]):

Question 1.1. Does the Jiang–Su algebra Z have any distinguished (one-dimensional)

Cartan subalgebras?

Note that such uniqueness questions cannot have an affirmative answer without

restrictions such as bounds on the dimension because every classifiable C∗-algebra is

Z-stable, so that taking tensor products produces Cartan subalgebras whose spectra

have arbitrarily large covering dimension (see [48, Proposition 5.1]). Instead of fixing the

covering dimension, an even stronger restriction would be to fix the homeomorphism

type of the spectrum and to look for a unique or distinguished Cartan subalgebra whose

spectrum coincides with a given topological space. This leads to the question what we

can say about the spectra of Cartan subalgebras of classifiable C∗-algebras. In general,

not much is known. Before the work in [47], it was for instance not even known whether

Z has any Cartan subalgebra with one-dimensional spectrum. Another example is the

following question (see [7, Problem 11]):
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Constructing Menger Manifold C∗-Diagonals 18995

Question 1.2. Does the CAR algebra have a Cartan subalgebra with connected

spectrum?

This question is motivated by a construction, due to Phillips and Wassermann

[60], of uncountably many pairwise non-conjugate MASAs (which are not Cartan

subalgebras) in the CAR algebra whose spectra are all homeomorphic to the unit

interval. In this context, we would like to mention that Kumjian [42] had constructed

a Cartan subalgebra in an AF algebra with spectrum homeomorphic to the unit circle.

The following are the main results of this paper, which shed some light on the above-

mentioned questions.

Theorem 1.3. Every classifiable stably finite C∗-algebra, which is unital or stably

projectionless with continuous scale (in the sense of [29, 30, 49, 50]) has a C∗-diagonal

with connected spectrum.

Theorem 1.4. Every classifiable stably finite unital C∗-algebra with torsion-free K0

and trivial K1 has continuum many pairwise non-conjugate C∗-diagonals whose spectra

are all homeomorphic to the Menger curve.

The Menger curve is also known as Menger universal curve, Menger cube,

Menger sponge, Sierpinski cube or Sierpinski sponge. It was constructed by Menger [54]

as a universal one-dimensional space, in the sense that every separable metrizable space

of dimension at most one embeds into it. Anderson [1, 2] characterized the Menger curve

by abstract topological properties. The reader may consult [53] for more information

about the Menger curve, including a concrete construction.

In order to obtain a version of Theorem 1.4 in the stably projectionless setting,

we need to replace the Menger curve M by another Menger manifold (a topological

space locally homeomorphic to M ) of the form M \ ι(C), where ι is an embedding of

the Cantor space C into M such that ι(C) is a non-locally-separating subset of M , in the

sense that for every connected open subset U of M , U \ ι(C) is still connected. Up to

homoemorphism, the space M \ ι(C) does not depend on the choice of ι (see [53]), and we

denote this space by M\C :=M \ ι(C).

Theorem 1.5. Every classifiable stably projectionless C∗-algebra with continuous

scale, torsion-free K0, and trivial K1 has continuum many pairwise non-conjugate

C∗-diagonals whose spectra are all homeomorphic to M\C.
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18996 X. Li

Note that in Theorems 1.4 and 1.5, we not only obtain C∗-diagonals but also

actually construct principal groupoid models, that is, unlike in the general setting of

[41, 62], we do not need twists (see Theorems 6.13 and 6.14).

Theorem 1.3 answers Question 1.2. Note that in the stably projectionless case,

the absence of projections only guarantees the absence of compact open subsets in

the spectrum, but it does not automatically lead to a single connected component (see

[47, Section 8]). Theorems 1.4 and 1.5 show that the uniqueness question for Cartan

subalgebras in classifiable C∗-algebras has a negative answer even if we fix the

homeomorphism type of the spectrum and thus answers Question 1.1 in this sense. At

the same time, the results in this paper pose the very interesting challenge of identifying

a suitable framework to develop classification results for Cartan subalgebras (in the

spirit of [7, Problem 4]). Interestingly, as far as Cartan subalgebras are concerned, the

situation for classifiable C∗-algebras is very different from the corresponding one for

von Neumann algebras. Theorems 1.4 and 1.5 also tell us that in general, it seems that

there is not much we can say about the map on K-theory induced by the natural inclusion

of a Cartan subalgebra (see Remark 5.14, which sheds some light on [7, Problem 8]).

In particular, Theorem 1.4 applies to all infinite-dimensional unital separable

simple AF algebras, for instance all UHF algebras, and to Z. Theorem 1.5 applies in

particular to the Razak–Jacelon algebra W and the stably projectionless version Z0

of the Jiang–Su algebra of [30, Definition 7.1]. Even restricted to these special cases,

Theorems 1.4 and 1.5 yield new results (and we do not need the full strength of the

classification theorem for all classifiable C∗-algebras; the results in for instance [63]

suffice).

The constructions we develop in order to prove our main theorems work in

general but only produce C∗-diagonals with the desired properties under the conditions

we impose in our main theorems. There are several reasons: in [47], C∗-diagonals are

constructed in all classifiable C∗-algebras using the method of cutting down by suitable

elements. This procedure, however, might not preserve connectedness. This is why

Theorem 1.3 only covers unital C∗-algebras and stably projectionless C∗-algebras with

continuous scale. Note that, however, this class of C∗-algebras covers all classifiable

C∗-algebras up to stable isomorphism. The reason we further restrict to the case of

torsion-free K0 and trivial K1 in Theorems 1.4 and 1.5 is two-fold: it is shown in [47]

that the spectra of the C∗-diagonals constructed in [47] will have dimension at least two

as soon as torsion appears in K-theory. This rules out M or M\C as the spectrum in

general. Even more serious is the obstruction that the path-lifting property established

in Proposition 4.2 for the connecting maps at the groupoid level, which plays a crucial
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Constructing Menger Manifold C∗-Diagonals 18997

role in establishing Theorems 1.4 and 1.5, does not hold anymore in the case where K0

contains torsion or K1 is non-trivial.

In order to prove our main results, the strategy is to adjust the constructions

of C∗-algebra models in [15, 22, 32, 33, 66], which arise as inductive limits of simpler

building blocks and which exhaust all possible Elliott invariants, in such a way that

the new, modified constructions produce C∗-algebra models with C∗-diagonals having

various desired properties. The reader may find the corresponding versions of our main

results in Theorems 3.7, 6.13, and 6.14, which do not depend on general classification

results for all classifiable C∗-algebras. These versions in combination with general

classification results then yield our main theorems as stated above. To construct Cartan

subalgebras in inductive limit C∗-algebras, an important tool has been developed in

[47]. However, in [47], we were merely interested in existence results for C∗-diagonals,

whereas the present work requires several further modifications as well as a finer

analysis of the construction of C∗-diagonals in [47] in order to ensure topological

properties of the spectrum such as connectedness as well as abstract topological

properties characterizing M or further properties characterizing M\C. At the technical

level, a crucial role is played by a new path-lifting property (see Proposition 4.2) of the

connecting maps at the groupoid level. This is particularly powerful in combination

with inverse limit descriptions of the spectra of the C∗-diagonals we construct. Further

fine-tuning of the construction is required to produce C∗-diagonals for which we can

completely determine the spectra up to homeomorphism. In order to show that the

construction yields continuum many pairwise non-conjugate C∗-diagonals, the key idea

is to exploit connectedness not only of the spectra but also of (parts of) the groupoid

models themselves. This aspect of the construction seems to be interesting on its own

right because many important groupoid models that have been previously studied (for

instance for AF algebras, Kirchberg algebras, or coming from Cantor minimal systems)

have totally disconnected unit spaces.

Important building blocks leading to the C∗-algebra models in [15, 22, 32,

33, 66] are given by one-dimensional non-commutative CW complexes and their gen-

eralizations. Therefore, as a starting point, we develop a complete classification of

C∗-diagonals in one-dimensional non-commutative CW complexes. Roughly speaking,

the conjugacy class of C∗-diagonals in these building blocks encodes a particular set

of data that can be used to construct the ambient non-commutative CW complex and

that we can view as a one-dimensional CW complex in the classical sense (i.e., a graph).

We refer to Theorem 2.15 for more details. Our classification theorem generalizes the

corresponding results for C∗-diagonals in dimension drop algebras in [6]. It also puts
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18998 X. Li

into context the observation in [6] that in special cases, these C∗-diagonals are classified

up to conjugacy by the homeomorphism type of their spectra (see Theorem 2.17 for a

generalization and Remark 2.18 and Example 2.19 for a clarification).

Several of the ideas and techniques leading to our main theorems already feature

in the discussion of C∗-diagonals in one-dimensional non-commutative CW complexes.

However, even though a good understanding of these C∗-diagonals played an important

role in developing our main results, the actual classification results for this class of

C∗-diagonals are not needed in the proofs of Theorems 1.3, 1.4, and 1.5.

2 Classification of C∗-Diagonals in One-Dimensional NCCW Complexes

We set out to classify C∗-diagonals in one-dimensional non-commutative CW (NCCW)

complexes up to conjugacy. The reader may find more about NCCW complexes in [9,

14, 15, 21, 63]. Let us start by introducing notations and some standing assumptions.

Throughout this section, β0, β1 : F → E denote *-homomorphisms between finite-

dimensional C∗-algebras F and E. Let F = ⊕
i∈I Fi and E = ⊕

p∈P Ep denote the

decompositions of F and E into matrix algebras and DFi, DEp the canonical C∗-diagonals

of diagonal matrices. The one-dimensional NCCW complex A = A(E, F,β0,β1) is given

by A = {
(f , a) ∈ C([0, 1], E)⊕ F: f (r) = βr(a) for r = 0, 1

}
. For r = 0, 1, we write βp

r for the

composition F
βr−→ E � Ep where the 2nd map is the canonical projection. We also write

β
p,i
r := β

p
r |Fi for the restriction of βp

r to Fi ⊆ F. Throughout this section, we make the

following assumptions:

(A1) For all i, p and r = 0, 1, βp,i
r is given by the composition

Fi
1⊗idFi−→ 1mr(p,i) ⊗ Fi ⊆ Mmr(p,i) ⊗ Fi � Ep. (1)

(A2) (β0,β1) : F → E ⊕ E is injective.

In (1), an arrow � denotes a *-homomorphism of multiplicity 1, that is, which preserves

ranks of projections and which sends diagonal matrices to diagonal matrices (in our

case DMmr(p,i) ⊗ DFi to DEp). Note that (A1) implies that βr sends DF to DE.

There is no loss of generality assuming (A1) and (A2): up to unitary equivalence,

every *-homomorphism F → E is of the form as in (1), so that we can always replace

β
p,i
r by a map of the form (1) without changing the isomorphism class of A. And if (A2)

does not hold, then A decomposes as A = A′ ⊕ F ′ where A′ is a one-dimensional NCCW

complex for which (A2) holds and F ′ = ker (β0,β1). Then the study of C∗-diagonals in
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Constructing Menger Manifold C∗-Diagonals 18999

A′ ⊕ F ′ reduces to the study of C∗-diagonals in A′ and F ′, and C∗-diagonals in F ′ are well

understood.

(A2) allows us to identify A with the sub-C∗-algebra {f ∈ C([0, 1], E): (f (0), f (1)) ∈
im (β0,β1)} of C([0, 1], E). We will do so frequently without explicitly mentioning it.

Before we start to develop our classification results, we give an overview. If

we let X i := Spec DFi, X := Spec DF and Yp := Spec DEp, Y := Spec DE, then for

r = 0, 1, βr corresponds to a collection (bp
r )p of maps bp

r : Yp
r → X for some Yp

r ⊆ Yp.

Viewing Yp as edges, X as vertices and b p
0, bp

1 as source and target maps, these data

give rise to a collection of directed graphs �p, or one-dimensional CW complexes in the

classical sense. (Strictly speaking, this is only correct when A is unital; in the non-unital

case, we obtain non-compact one-dimensional CW complexes obtained by removing

finitely many points from compact one-dimensional CW complexes.) Moreover, given a

permutation σ =∐
σp of Y =∐

Yp, we obtain twisted graphs �p
σ with the same edge set

Yp, the same vertex set X , the same source map bp
0, and twisted target map bp

1 ◦σp. Now

it turns out that every C∗-diagonal of a one-dimensional NCCW complex corresponds to

a permutation σ as above, and for two such permutations σ and τ , the corresponding

C∗-diagonals are conjugate if and only if the collections of oriented graphs (�
p
σ )p and

(�
p
τ )p are isomorphic in the sense that there exist isomorphisms of the individual graphs

which are either orientation-preserving or orientation-reversing for each p. We refer to

Theorem 2.15 for more details.

As a 1st step, we provide models for C∗-diagonals in A up to conjugacy. Given a

permutation matrix σ in E, set

Aσ := A(E, F,β0, Ad (σ ) ◦ β1) =
{
(f , a) ∈ C([0, 1], E)⊕ F: f (0) = β0(a), f (1) = σβ1(a)σ

∗} .

Moreover, define

Bσ := {
(f , a) ∈ Aσ : f (t) ∈ DE ∀ t ∈ [0, 1]

}
.

Note that given (f , a) ∈ Aσ , the condition f (t) ∈ DE for all t ∈ [0, 1] implies a ∈ DF

by (A1) and (A2). The following observation is a straightforward generalization of

[6, Proposition 5.1].

Lemma 2.1. Bσ is a C∗-diagonal of Aσ .

Conversely, it turns out that up to conjugacy, every C∗-diagonal of A is of this

form.
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19000 X. Li

Proposition 2.2. For every C∗-diagonal B of A, there exists a permutation matrix σ ∈ E

such that (A, B) ∼= (Aσ , Bσ ), that is, there exists an isomorphism A
→∼Aσ sending B

onto Bσ .

Proof. For a subset S ⊆ [0, 1], let AS := {
f |S: f ∈ A

} ⊆ C(S, E) and BS := {
f |S: f ∈ B

} ⊆ AS.

It is easy to see (compare [6, Proposition 4.1]) that for every t ∈ (0, 1), B{t} is a

C∗-diagonal of A{t} = E, and that B{0,1} is a C∗-diagonal of A{0,1}. By (A2), (β0,β1) defines

an isomorphism F
∼→A{0,1}. Hence, (β0,β1)

−1(B{0,1}) is a C∗-diagonal of F. Thus, there is a

unitary uF ∈ U(F) such that uF(β0,β1)
−1(B{0,1})u∗F = DF. Applying (β0,β1) on both sides,

we get

(β0(uF),β1(uF))(B{0,1})(β0(uF),β1(uF))
∗ = (β0,β1)(DF) ⊆ DE ⊕ DE.

Here we used that (A1) implies βr(DF) ⊆ DE for r = 0, 1. Therefore, for r = 0, 1,

ur := βr(uF)+ (1E − βr(1F)) is a unitary in E such that urB{r}u∗r = βr(uF)B{r}βr(uF)
∗ ⊆ DE.

Using [6, Corollary 2.5 and Lemma 3.4], it is straightforward to find u : [0, 1
2 ] → U(E)

with u(0) = u0 and u|(0,1/2] ∈ C((0, 1
2 ], U(E)) such that Ad (u) induces an isomor-

phism A[0,1/2]
→∼A[0,1/2] sending B[0,1/2] to

{
f ∈ A[0,1/2]: f (t) ∈ DE ∀ t ∈ [0, 1

2 ]
}
. Similarly, find

v : [ 1
2 , 1] → U(E) satisfying v(1) = u1 and v|[1/2,1) ∈ C([ 1

2 , 1), U(E)) such that Ad (v)

induces A[1/2,1]
→∼A[1/2,1] sending B[1/2,1] to

{
f ∈ A[1/2,1]: f (t) ∈ DE ∀ t ∈ [ 1

2 , 1]
}
.

Now consider σ = u(1
2 )v(

1
2 )
∗ ∈ U(E). We have σDEσ ∗ = u(1

2 )v(
1
2 )
∗DEv(1

2 )u(
1
2 )
∗ =

u(1
2 )B{1/2}u(

1
2 )
∗ = DE. Thus, σ normalizes DE. This implies that σ is the product of a

unitary in DE and a permutation matrix in E. By multiplying u by a suitable unitary in

C([0, 1
2 ], U(DE)), we can arrange that σ is given by a permutation matrix in E. Define

w : [0, 1] → U(E) by w(t) := u(t) for t ∈ [0, 1
2 ] and w(t) := σv(t) for t ∈ [ 1

2 , 1].

Then w(t)B{t}w(t)∗ ⊆ DE for all t ∈ [0, 1]. Hence, Ad (w) induces an isomorphism

A
→∼Aσ , (f , a) �→ (wfw∗, uFau∗F) sending B to Bσ =

{
f ∈ Aσ : f (t) ∈ DE ∀ t ∈ [0, 1]

}
. �

By Proposition 2.2, the classification problem for C∗-diagonals in A reduces to

the classification problem for Cartan pairs of the form (Aσ , Bσ ). Our next goal is to

further reduce to the situation where no index in P is redundant. Let A = A(E, F,β0,β1)

be a one-dimensional NCCW complex and B = {f ∈ A: f (t) ∈ DE ∀ t ∈ [0, 1]}.

Definition 2.3. An index q ∈ P is called redundant if there exists q̄ ∈ P with q̄ 
= q and

j ∈ I, r, s ∈ {0, 1} such that β q̄,j
r and β

q,j
s are isomorphisms and β

p,j• = 0 for all p /∈ {q, q̄}
and • = 0, 1.
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Constructing Menger Manifold C∗-Diagonals 19001

Note that we must have β q̄,i
r = 0 and β

q,i
s = 0 for all i 
= j.

Given a redundant index q as above, assume first that r = s, say r = s = 0

(the case r = s = 1 is treated analogously). Set β̌p• := β
p• for all p 
= q, q̄ and • = 0, 1,

β̌
q̄
0 := β

q̄
1 , write γ = β

q̄,j
0 (β

q,j
0 )−1, and set β̌

q̄
1 := γβ

q
1 . Set Ě := ⊕

p∈P\{q} Ep and let

β̌• : F → Ě be given by β̌• = (β̌
p• )p∈P\{q} for • = 0, 1. Let Ǎ := A(Ě, F, β̌0, β̌1) and

B̌ :=
{
f ∈ Ǎ: f (t) ∈ DĚ ∀ t ∈ [0, 1]

}
. The following is straightforward to check.

Lemma 2.4. We have an isomorphism A
→∼Ǎ, (f p)p �→ (f̌ p)p, where for f p ∈ C([0, 1], Ep),

f̌ p = f p if p 
= q, q̄, f̌ q̄(t) = f q̄(1 − 2t) for t ∈ [0, 1
2 ], and f̌ q̄(t) = γ (f q(2t − 1)) for t ∈ (1

2 , 1].

This isomorphism sends B to B̌.

If r 
= s, say r = 0 and s = 1 (the other case is analogous), define β̌p• := β
p• for all

p 
= q, q̄ and • = 0, 1, β̌ q̄
0 := β

q
0 , and β̌ q̄

1 := γβ
q̄
1 , where γ := β

q,j
1 (β

q̄,j
0 )−1, set Ě :=⊕

p∈P\{q} Ep,

β̌• := (β̌
p• )p∈P\{q} for • = 0, 1, Ǎ := A(Ě, F, β̌0, β̌1) and B̌ :=

{
f ∈ Ǎ: f (t) ∈ DĚ ∀ t ∈ [0, 1]

}
.

Then the following analogue of Lemma 2.4 is straightforward:

Lemma 2.5. We have an isomorphism A
→∼Ǎ, (f p)p �→ (f̌ p)p, where for f p ∈ C([0, 1], Ep),

f̌ p := f p if p 
= q, q̄, f̌ q̄(t) = f q(2t) for t ∈ [0, 1
2 ], and f̌ q̄(t) = γ (f q̄(2t− 1)) for t ∈ (1

2 , 1]. This

isomorphism sends B to B̌.

Definition 2.6. We say that A is in reduced form if no index in P is redundant.

Lemmas 2.4 and 2.5 allow us to assume that A is in reduced form from now on.

In the following, let us develop direct sum decompositions so that we can reduce our

discussion to individual summands, that is, to the case where A is indecomposable. Let

∼P be the equivalence relation on P generated by q ∼P q̄ if there are i ∈ I, r, s ∈ {0, 1} such

that βq,i
r 
= 0 and β

q̄,i
s 
= 0. Let P = ∐

l∈L Pl be the decomposition of P into equivalence

classes with respect to ∼P. For each l ∈ L, let El := ⊕
p∈Pl

Ep, Il := {i ∈ I : β
p,i• 
= 0

for some • = 0, 1 and p ∈ Pl} and Fl := ⊕
i∈Il

Fi. Define β•;l := (β
p,i• )p∈Pl, i∈Il :

⊕
i∈Il

Fi →⊕
p∈Pl

Ep for • = 0, 1. Set Al := A(El, Fl,β0;l,β1;l). The following is straightforward.

Lemma 2.7. We have A =⊕
l∈L Al, and for each l ∈ L, Al cannot be further decomposed

into (non-trivial) direct summands. Moreover, the decomposition A = ⊕
l∈L Al is the

unique direct sum decomposition of A into indecomposable direct summands.
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19002 X. Li

Remark 2.8. The direct sum decomposition in Lemma 2.7 is compatible with

C∗-diagonals in the sense that if B = {f ∈ A: f (t) ∈ DE ∀ t ∈ [0, 1]}, then under the

direct sum decomposition A = ⊕
l∈L Al from Lemma 2.7, we have B = ⊕

l∈L Bl, where

Bl =
{
f ∈ Al: f (t) ∈ DEl ∀ t ∈ [0, 1]

}
.

Corollary 2.9. Every isomorphism Aσ

→∼Aτ restricts to isomorphisms Aσ ;l
→∼Aτ ;λ(l) for all

l ∈ L, where Aσ ;l and Aτ ;λ(l) are the direct summands of Aσ and Aτ provided by Lemma

2.7, and λ : L
→∼L is a permutation of L.

If the isomorphism Aσ

→∼Aτ above sends Bσ onto Bτ , then for all l ∈ L, the

isomorphism Aσ ;l
→∼Aτ ;λ(l) above must send Bσ ;l onto Bσ ;λ(l), where Bσ ;l and Bσ ;λ(l) are as in

Remark 2.8.

Here, we are implicitly using that the equivalence relations ∼P does not depend

on σ , τ , that is, they coincide for A, Aσ , and Aτ . This is because σ and τ decompose as

σ = (σp), τ = (τp) for permutation matrices σp, τp in Ep.

Lemma 2.7 and Corollary 2.9 allow us to reduce our discussion to the case where A is

indecomposable. So let us assume that we have p1 ∼P p2 for all p1, p2 ∈ P.

Let us now describe the center Z(A) and its spectrum Spec Z(A). Let ∼Z be the

equivalence relation on [0, 1] × P generated by (r, q) ∼Z (s, q̄) if r, s ∈ {0, 1} and there

exists i ∈ I with β
q,i
r 
= 0 and β

q̄,i
s 
= 0. Note that on (0, 1) × P, ∼Z is trivial. We

write [·]Z for the canonical projection map [0, 1] × P � ([0, 1] × P)/∼Z
. Let [0, 1] ×• P :={

(t, p) ∈ [0, 1]× P: βq
r is unital for all (r, q) ∈ [t, p]Z if t ∈ {0, 1}}.

Lemma 2.10. The center of A is given by

Z(A) = {
(f p) = (gp · 1Ep) ∈ C([0, 1], Z(E)) =

⊕
p

C([0, 1], Z(Ep)) : (2)

gp ∈ C[0, 1], gq(r) = gq̄(s) if (r, q) ∼Z (s, q̄), gq(r) = 0 if (r, q) /∈ [0, 1]×• P
}
.

We have a homeomorphism ([0, 1] ×• P)/∼Z

→∼Spec Z(A) sending [t, q] to the character

Z(A) → C, (f p) = (gp · 1Ep) �→ gq(t). Here [0, 1] is given the usual topology and P the

discrete topology.

Proof. If f = (f p) lies in Z(A), then f p lies in Z(C([0, 1], Ep)) = C([0, 1], Z(Ep)) for all

p, hence f p = gp · 1Ep for some gp ∈ C[0, 1]. Moreover, if a ∈ F satisfies (f (0), f (1)) =
β0(a),β1(a)), then a ∈ Z(F), that is, a = (αi ·1Fi) with αi ∈ C. Now gq(r)·1Eq = f q(r) = β

q
r (a)
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Constructing Menger Manifold C∗-Diagonals 19003

and β
q,i
r (αi · 1Fi) = αiβ

q,i
r (1Fi) imply that gq(r) = αi if βq,i

r 
= 0. Hence, gq(r) = αi = gq̄(s)

if both β
q,i
r 
= 0 and β

q̄,i
s 
= 0. In addition, we see that gq(r) = 0 and (αi) = 0 if βq

r is not

unital. This shows “⊆” in (2). For “⊇”, let f = (gp · 1Ep) satisfy gp ∈ C[0, 1], gq(r) = gq̄(s)

if (r, q) ∼Z (s, q̄) and gq(r) = 0 if (r, q) /∈ [0, 1] ×• P. For i ∈ I take any (r, q) ∈ {0, 1} × P

with β
q,i
r 
= 0 and set αi := gq(r). This is well defined by our assumption on (gp). Let

a := (αi · 1Fi) ∈ F. Then it is straightforward to see that (f (0), f (1)) = (β0(a),β1(a)).

Hence, f ∈ A, and thus f ∈ Z(A).

The 2nd part describing Spec Z(A) is an immediate consequence. �

In the following, we will always identify Spec Z(A) with ([0, 1]×• P)/∼Z
using the

explicit homeomorphism from Lemma 2.10.

Let us show that the points in ∂ := {
[r, p]Z ∈ Spec Z(A): (r, p) ∈ {0, 1} × P

}
are special.

Suppose that A is in reduced form, that is, no index in P is redundant. Further

assume that A is indecomposable, so that for all p1, p2 ∈ P, we have p1 ∼P p2.

Let σ and τ be permutation matrices in E. Let φ : Aσ

→∼Aτ be an isomorphism.

We denote its restriction to Z(Aσ ) also by φ, and let φ∗Z be the induced homeo-

morphism Spec Z(Aτ )
→∼Spec Z(Aσ ). Let ∂σ := {

[r, p]Z ∈ Spec Z(Aσ ): (r, p) ∈ {0, 1} × P
}

and

∂τ := {
[r, p]Z ∈ Spec Z(Aτ ): (r, p) ∈ {0, 1} × P

}
.

Lemma 2.11. We have φ∗Z(∂τ ) = ∂σ unless #P = 1 = #I and β0, β1 are isomorphisms.

Proof. Assume that φ∗Z[r, p]Z = [t, q̄]Z for some (r, p) ∈ {0, 1} × P, (t, q̄) ∈ (0, 1)× P. Let

I[r,p]Z := {
i ∈ I : βq,i

s 
= 0 for some (s, q) ∼Z (r, p)
}
.

φ induces the following commutative diagram with exact rows:

Here the map Aτ →
⊕

i∈I[r,p]Z
Fi sends f ∈ Aτ to the uniquely determined a ∈ ⊕

i∈I[r,p]Z
Fi

with f q(s) = β
q
s (a) for all (s, q) ∈ [r, p]Z. Eq̄ ∼= ⊕

i∈I[r,p]Z
Fi implies that #I[r,p]Z = 1, say

I[r,p]Z = {i}.
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19004 X. Li

Moreover, for every sufficiently small open neighborhood U of [t, q̄]Z in Spec Z(Aσ ), U \{
[t, q̄]Z

}
is homeomorphic to (0, 1)�(0, 1), while for every sufficiently small neighborhood

V of [r, p]Z in Spec Z(Aτ ), V \{[r, p]Z
}

is homeomorphic to
∐
(s,q)∈[r,p]Z (0, 1). Hence, we must

have #[r, p]Z = 2.

Furthermore, if U and V are as above, then for all u ∈ U, Aσ / 〈ker (u)〉 has the

same dimension as Aσ /
〈
ker ([t, q̄]Z)

〉
, whereas Aτ / 〈ker (v)〉 has the same dimension as

Aτ /
〈
ker ([r, p]Z)

〉
for all v ∈ V only if βq,i

s is an isomorphism Fi→∼Eq for all (s, q) ∈ [r, p]Z.

Now if there exists (s, q) ∈ [r, p]Z with q 
= p, then q (and equivalently p) would be a

redundant index in P, which is impossible because A is in reduced form. Hence, we

must have [r, p]Z = {(0, p), (1, p)}. However, this implies that {p} is an equivalence class

with respect to ∼P. Since A is indecomposable, we must have P = {p}, and thus I = I[r,p]Z .

Thus, indeed, #P = 1 = #I, and β0, β1 are isomorphisms. �

It is straightforward to deal with the remaining case where #P = 1 = #I and β0,

β1 are isomorphisms:

Lemma 2.12. If #P = 1 = #I and β0, β1 are isomorphisms, then for all ṫ ∈ (0, 1),

Aτ → Aτ , f �→ f̃ , with f̃ (t) := β0β
−1
1 f (t+(1− ṫ)) for t ∈ [0, ṫ] and f̃ (t) := f (t− ṫ) for t ∈ [ṫ, 1],

is an isomorphism sending Bτ onto Bτ such that the induced map Spec Z(Aτ )
→∼Spec Z(Aτ )

sends [ṫ]Z to [0]Z = [1]Z.

Here we identify [0, 1]× P with [0, 1], so that there is no need to carry around the

P-coordinate.

Corollary 2.13. If (Aσ , Bσ ) ∼= (Aτ , Bτ ), then there exists an isomorphism Aσ

→∼Aτ sending

Bσ onto Bτ such that the induced map Spec Z(Aτ )
→∼Spec Z(Aσ ) sends ∂τ to ∂σ .

Let A = A(E, F,β0,β1) and B = {f ∈ A: f (t) ∈ DE ∀ t ∈ [0, 1]}. To describe Spec B,

let Y := Spec DE, Yp := Spec DEp, X := Spec DF, X i = Spec DFi, and for r = 0, 1, let

Yr = Spec (DE · βr(1F) · DE) = {
y ∈ Y: y(βr(1F)) = 1

}
. Let b r be the map Yr → X dual

to βr|DF : DF → DE, that is, b r(y) = y ◦ βr. We have Y = ∐
p Yp, X = ∐

i X i, and with

Yp
r := Yp ∩ Yr, the restriction bp

r := b r|Yp
r

is dual to βp
r |DF : DF → DEp.

Define an equivalence relation ∼B on [0, 1] × Y by setting (r, y) ∼B (s, ȳ) if

r, s ∈ {0, 1}, y ∈ Yr, ȳ ∈ Ys and b r(y) = bs(ȳ). Note that on (0, 1) × Y, ∼B is trivial.

We write [·]B for the canonical projection map [0, 1]×Y � ([0, 1]×Y)/∼B
. Set [0, 1]×•Y :={

(t, y) ∈ [0, 1]× Y: y ∈ Yt if t ∈ {0, 1}}. Let �̄ : ([0, 1]×Y)/∼B
� ([0, 1]× P)/∼Z

, [t, y] �→ [t, p]

for y ∈ Yp be the canonical projection. The following is straightforward:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/23/18992/6366398 by G
lasgow

 U
niversity Library user on 21 D

ecem
ber 2022



Constructing Menger Manifold C∗-Diagonals 19005

Lemma 2.14. We have a homeomorphism ([0, 1] ×• Y)/∼B

→∼Spec B sending [t, y] to the

character

B→ C, f �→
⎧⎨
⎩y(f (t)) if t ∈ (0, 1);

b t(y)
(
(β0,β1)

−1(f (0), f (1))
)

if t ∈ {0, 1} .

Here [0, 1] is given the usual topology and Y the discrete topology.

Moreover, with respect to this description of Spec B and the description of

Spec Z(A) from Lemma 2.10, the map � : Spec B → Spec Z(A) induced by the canonical

inclusion Z(A) ↪→ B is given by the restriction of �̄ to dom� := �̄−1(Spec Z(A)).

We are now ready for our main classification theorem. Let A = A(E, F,β0,β1)

be in reduced form. Let σ = (σp) and τ = (τp) be permutation matrices in E. Write

σ β1 := Ad (σ ) ◦ β1 and τ β1 := Ad (τ ) ◦ β1, and let σbp
1 : σY

p
1 → X , τbp

1 : τY
p
1 → X be the

maps dual to σ β
p
1, τ β

p
1 : DF → DEp.

Theorem 2.15. We have (Aσ , Bσ ) ∼= (Aτ , Bτ ) if and only if there exist

• a permutation ρ of P and for each p ∈ P a bijection �p : Yp→∼Yρ(p),

• a permutation κ of I and for each i ∈ I a bijection �i : X i→∼X κ(i) giving rise to

the bijection � =∐
i �

i : X =∐
i X i→∼∐

i X κ(i) = X ,

• a map o : P→ {±1}
such that for every p ∈ P, we have commutative diagrams

(3)

if o(p) = +1,

(4)

if o(p) = −1.
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19006 X. Li

Proof. “⇐”: the commutative diagrams (3) and (4) induce commutative diagrams

if o(p) = +1,

if o(p) = −1.

Applying the groupoid C∗-algebra construction, and using [47, Proposition 5.4]

(see also [5, Lemmas 3.2 and 3.4]), we obtain the commutative diagram

(5)

where θp = (�p ×�p)∗ is the map induced by �p ×�p, ξ = (�×�)∗ is the map induced

by �×�, and the right vertical map is given by βρ(p)0 if o(p) = +1 and σ β
ρ(p)
1 if o(p) = −1.

Similarly, we obtain a commutative diagram

(6)

where the right vertical map is given by σ β
ρ(p)
1 if o(p) = +1 and β

ρ(p)
0 if o(p) = −1.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/23/18992/6366398 by G
lasgow

 U
niversity Library user on 21 D

ecem
ber 2022



Constructing Menger Manifold C∗-Diagonals 19007

Now denote by θ the isomorphism E
→∼E given by

⊕
p θ

p : E =⊕
p Eρ(p)→∼⊕

p Ep = E.

For f = (f p) ∈ C([0, 1], E), f p ∈ C([0, 1], Ep), define f̃ ∈ C([0, 1], E by f̃ := (f̃ p), f̃ p := f p if

o(p) = +1 and f̃ p := f p ◦(1− id) if o(p) = −1. We claim that Aσ → Aτ , (f , a) �→ (θ(f̃ ), ξ(a))

is an isomorphism sending Bσ to Bτ . All we have to show is that this map is well defined

because we can construct an inverse by replacing θ by θ−1 and ξ by ξ−1, and the map

clearly sends Bσ to Bτ . To see that it is well defined, we compute

(θ(f̃ )(0))p = θp(f̃ ρ(p)(0)) = θp(f ρ(p)(0)) = θp(β
ρ(p)
0 (a))

(5)= β
p
0 (ξ(a)) if o(p) = +1,

(θ(f̃ )(0))p = θp(f̃ ρ(p)(0)) = θp(f ρ(p)(1)) = θp(σ β
ρ(p)
1 (a))

(5)= β
p
0 (ξ(a)) if o(p) = −1.

Similarly, θ(f̃ )(1) = τ β1(ξ(a)). This shows that (f̃ , ξ(a)) ∈ Aτ , as desired.

“⇒”: by Lemmas 2.4 and 2.5, we may assume that A is in reduced form, that is, no index

in P is redundant. By Corollary 2.9, we may assume that A is indecomposable, that is,

we have p1 ∼P p2 for all p ∈ P. Let φ : Aσ

→∼Aτ be an isomorphism with φ(Bσ ) = Bτ . Let φ∗B
be the induced homeomorphism Spec Bτ

→∼Spec Bσ and φ∗Z the induced homeomorphism

Spec Z(Aτ )
→∼Spec Z(Aσ ). By Corollary 2.13, we may assume that φ∗Z(∂τ ) = ∂σ . We have a

commutative diagram

where the maps �τ and �σ are the ones from Lemma 2.14. φ∗Z restricts to a homeomor-

phism Spec Z(Aτ )\ ∂τ
→∼Spec Z(Aσ )\ ∂σ . As Spec Z(Aτ )\ ∂τ ∼= (0, 1)×P and Spec Z(Aσ )\ ∂σ ∼=

(0, 1)× P, there must exist a permutation ρ of P and for each p ∈ P a homeomorphism λp

of (0, 1) such that φ∗Z([t, p]Z) = [λp(t), ρ(p)]Z. Set o(p) := +1 if λp is orientation preserving

and o(p) := −1 if λp is orientation reversing. For fixed p, �−1
τ ((0, 1) × {p}) = (0, 1) × Yp

and �−1
σ ((0, 1)× {ρ(p)}) = (0, 1)× Yρ(p), so that we obtain the commutative diagram

It follows that there exists a bijection �p : Yp→∼Yρ(p) such that φ∗B([t, y]B) = [λp(t),�p(y)]B
for all y ∈ Yp.
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Now consider ∂B τ := {
[r, y]B: r ∈ {0, 1} , y ∈ Yr

}
, and define ∂Bσ analogously.

φ∗B restricts to a bijection ∂B τ

→∼∂Bσ because ∂B τ = Spec Bτ \ �−1
τ (Spec Z(Aτ ) \ ∂τ ) and

similarly for ∂Bσ . In addition, we have a bijection ∂B τ

→∼X sending [0, y]B to b0(y) and

[1, y]B to τb 1(y), and an analogous bijection ∂Bσ

→∼X . Thus, we obtain a bijection X→∼X ,

which fits into the commutative diagram

(7)

As this bijection X→∼X corresponds to an isomorphism F
→∼F, which fits into the

commutative diagram

there must exist a permutation κ of I and bijections �i : X i→∼X κ(i) such that the bijection

X→∼X in (7) is given by � :=∐
i �

i :
∐

i X i→∼∐
i X κ(i).

Now take p ∈ P with o(p) = +1. For y ∈ Yp, [0,�p(y)]B is mapped under the right

vertical map in (7) to bρ(p)
0 (�p(y)). At the same time [0,�p(y)]B = limt↘ 0 [λp(t),�p(y)]B =

limt↘ 0 φ
∗
B([t, y]B) = φ∗B([0, y]B). By commutativity of (7), the right vertical map in (7) sends

φ∗B([0, y]B) to �(bp
0(y)). Hence, � ◦ bp

0 = bρ(p)
0 ◦ �p. Similarly, � ◦ τb p

1 = σbρ(p)
1 ◦ �p. If

o(p) = −1, then an analogous argument shows that � ◦ bp
0 = σbρ(p)

1 ◦ �p and � ◦ τbp
1 =

bρ(p)
0 ◦�p. �

In [6], the authors identify particular one-dimensional NCCW complexes A

(certain dimension drop algebras) with the property that given any two C∗-diagonals B1

and B2 of A, we have (A, B1)
∼= (A, B2) if and only if Spec B1

∼= Spec B2 (i.e., B1
∼= B2). As the

latter is obviously a necessary condition, this can be viewed as a rigidity result. Moving

toward a rigidity result in our general setting, let us first prove a weaker statement.

Theorem 2.16. Suppose that A is a one-dimensional NCCW complex such that for all

(r, p) ∈ {0, 1} × P, #{i ∈ I : βp,i
r 
= 0} ≤ 1. Given two C∗-diagonals B1 and B2 of A, we have

(A, B1)
∼= (A, B2) if and only if there exists an isomorphism B1

→∼B2 sending Z(A) onto

Z(A).
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Proof. “⇒” is clear. Let us prove “⇐”. By Proposition 2.2, it suffices to show that given

permutation matrices σ and τ in E, (Bσ , Z(Aσ ))
∼= (Bτ , Z(Aτ )) implies that (Aσ , Bσ ) ∼=

(Aτ , Bτ ). As in the proof of Theorem 2.15, we may assume that A is in reduced form

and that A is indecomposable. Suppose that we have an isomorphism φ : Bσ
→∼Bτ with

φ(Z(Aσ )) = Z(Aτ ). Let φ∗ : Spec Bτ
→∼Spec Bσ be the homeomorphism induced by φ. Define

∂B τ and ∂Bσ as in the proof of Theorem 2.15. Using Lemma 2.12 as for Theorem 2.15,

we can without loss of generality assume that φ∗(∂B τ ) = ∂Bσ .

As in the proof of Theorem 2.15 we get a bijection � : X→∼X , which fits into a

commutative diagram

It remains to show that there exists a permutation κ of I and bijections �i : X i→∼X κ(i)

such that � = ∐
i �

i. This follows from the observation—which is a consequence of our

assumption—that [r, y]B, [s, ỹ]B in ∂B τ are mapped to elements in X i for the same index

i ∈ I if and only if we have for all open neighborhoods U and V of [r, y]B and [s, ỹ]B that

�τ(U ∩ dom�τ) ∩�τ(V ∩ dom�τ) 
= ∅.
Now the rest of the proof proceeds in exactly the same way as the proof of

Theorem 2.15. �

Now let us present a strong rigidity result in our general context.

Theorem 2.17. Suppose that A is a one-dimensional NCCW complex such that

• β0 and β1 are unital,

• for all i ∈ I, there exists exactly one (r, p) ∈ {0, 1} × P such that βp,i
r 
= 0,

• for all (r, p) ∈ {0, 1} × P, there exists exactly one i ∈ I such that βp,i
r 
= 0,

• for all these triples (r, p, i), we have mr(p, i) 
= 2,

• the map defined on such triples sending (r, p, i) to mr(p, i) must be injective.

Then given any two C∗-diagonals B1 and B2 of A, we have (A, B1)
∼= (A, B2) if and only if

Spec B1
∼= Spec B2.

Proof. “⇒” is clear. To prove “⇐”, by Proposition 2.2, it suffices to show that for

any two permutation matrices σ and τ in E, Bσ ∼= Bτ implies that (Aσ , Bσ ) ∼= (Aτ , Bτ ).

Let φ : Bσ
→∼Bτ be an isomorphism and φ∗ : Spec Bτ

→∼Spec Bσ its dual map. Our
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19010 X. Li

condition mr(p, i) = 1 or mr(p, i) ≥ 3 implies that φ∗(∂B τ ) = ∂Bσ , where ∂B τ ={
[r, y]B: (r, y) ∈ {0, 1} × Y

}
and similarly for ∂Bσ . Thus, φ∗ induces a permutation � :

X→∼X , which must be of the desired form as in the proof of Theorem 2.15 by our

assumptions on β
p,i
r . Similarly, φ∗ induces homeomorphisms (0, 1) × Y = Spec Bτ \

∂B τ

→∼Spec Bσ \ ∂Bσ = (0, 1) × Y as in the proof of Theorem 2.15, again using our

assumptions on β
p,i
r . Now proceed in exactly the same way as the proof of Theorem

2.15. �

Remark 2.18. The hypotheses of Theorem 2.17 are for instance satisfied in the case of

stabilized dimension drop algebras in the sense of [6], that is, where P = {p}, I = {
i0, i1

}
,

E = Ep = Mm ⊗ Mn ⊗ Mo, Fi0 = Mm ⊗ Mo, Fi1 = Mn ⊗ Mo, β0 = β
p,i0
0 : Mm ⊗ Mo →

Mm ⊗ 1n ⊗Mo ⊆ Ep is given by id⊗ 1n ⊗ id, β1 = β
p,i1
1 : Mn ⊗Mo → 1m ⊗Mn ⊗Mo ⊆ Ep

is given by 1m ⊗ id⊗ id, and m, n ≥ 3, m 
= n.

The conclusion of Theorem 2.17 is also shown to be true in [6] using ad hoc

methods in the case where exactly one of m or n is equal to 2 or when (m, n, o) = (2, 2, 1).

However, contrary to what is claimed in [6, Theorem 7.8], the conclusion of Theorem 2.17

is not true in case m = n and m, n ≥ 3. The problem is that [6, Remark 7.7] is not true in

this case, as the following example shows.

Example 2.19. Let ν ≥ 6 be an integer and suppose that ν is not prime, so that ν has a

divisor δ ∈ {3, . . . , ν − 3}. Let M be a ν × ν-matrix with two identical rows and pairwise

distinct columns such that each row and each column has exactly δ ones, and zeros

everywhere else. Such a matrix has been constructed for example in [56]. Now consider

the matrices

Mσ :=
(

2ν
δ
·M 0

0 2ν
δ
·M

)
, Mτ :=

(
2ν
δ
·M 0

0 ( 2ν
δ
·M)t

)

Then each row and each column of Mσ and Mτ has sum equal to 2ν. The columns

of Mσ are pairwise distinct, whereas Mτ has two identical rows and two identical

columns. Hence, we cannot find permutation matrices P and Q such that Mσ = PMτQ

or Mσ = PMt
τQ. Thus, Mσ and Mτ are not congruent in the language of [6]. However, it

is straightforward to see that the bipartite graphs �σ and �τ attached to Mσ and Mτ

are isomorphic (though not in a way which either consistently preserves orientation

or consistently reverses orientation), where the bipartite graphs �• = (V, E•, E• →
V × V), for • = σ , τ , are defined as follows: let V := {1, . . . , 2ν} × {0, 1}, E• :=
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Constructing Menger Manifold C∗-Diagonals 19011

{
(v0, v1,μ): v0, v1 ∈ {1, . . . , 2ν} , μ ∈ {

1, . . . , (M•)v0,v1

}}
for • = σ , τ , and define E• → V ×

V, (v0, v1,μ) �→ ((v0, 0), (v1, 1)). This shows that [6, Remark 7.7] is not true.

This leads to an example of a one-dimensional NCCW complex in the same form

as in Remark 2.18 with m = n = 2ν, o = 1, and permutation matrices σ , τ ∈ Ep such

that Bσ ∼= Bτ but (Aσ , Bσ ) 
∼= (Aτ , Bτ ): For Y = Spec DE, X = Spec DF, we have canonical

identifications Y ∼= {1, . . . , 2ν}×{1, . . . , 2ν}, X = X i0�X i1 with X i0 ∼= {1, . . . , 2ν} and X i1 ∼=
{1, . . . , 2ν} such that the maps b • dual to β• are given by b 0 : Y → X i0 ⊆ X , (y0, y1) �→ y0

and b1 : Y → X i1 ⊆ X , (y0, y1) �→ y1. Let σ be the permutation of Y such that for

all x0, x1 ∈ X , we have #
{
y ∈ Y: (b0(y), b 1(σ (y))) = (x0, x1)

} = (Mσ )x0,x1
, and let τ be

a permutation of Y with the analogous property for Mτ instead of Mσ . The proof of [6,

Proposition 6.9] gives a precise recipe to find such σ and τ . Now let σ be the permutation

matrix in E given by σȳ,y = 1 if and only if ȳ = σ−1(y), and define τ similarly. Then

�σ
∼= �τ implies that Spec Bσ ∼= Spec Bτ , hence Bσ ∼= Bτ , while we cannot have (Aσ , Bσ ) ∼=

(Aτ , Bτ ) since otherwise Theorem 2.15 would imply that Mσ and Mτ would have to be

congruent in the sense of [6].

3 Construction of C∗-Diagonals with Connected Spectra

We set out to construct C∗-diagonals with connected spectra in classifiable stably finite

C∗-algebras.

3.1 Construction of C∗-diagonals in classifiable stably finite C∗-algebras

We recall the construction in [47, Section 4], which is a modified version of the

constructions in [15, 22, 32] (see [47, Section 2]). The construction provides a model

for every classifiable stably finite C∗-algebra, which is unital or stably projectionless

with continuous scale, with prescribed Elliott invariant E = (G0, G+0 , u, T, r, G1) as in

[47, Theorem 1.2] or E = (G0, {0} , T, ρ, G1) as in [47, Theorem 1.3], in the form of

an inductive limit lim−→n

{
An,ϕn

}
. In addition, the crucial point in [47] is to identify

C∗-diagonals Bn of An, which are preserved under the connecting maps and which

satisfy the hypothesis of [47, Theorem 1.10] so that lim−→n

{
Bn,ϕn

}
becomes a C∗-diagonal

of lim−→n

{
An,ϕn

}
. Here An =

{
(f , a) ∈ C([0, 1], En)⊕ Fn: f (r) = βn,r(a) for r = 0, 1

}
where

En =
⊕

p Ep
n, Ep

n = M{n,p}, Fn =
⊕

i Fi
n, Fi

n = Pi
nM∞(C(Zn))P

i
n for a distinguished index

i , Zn is a path-connected space with base point θ i
n, Pi

n is a projection corresponding to

a vector bundle over Zn of dimension [n, i ], Pi
n(θ

i
n) is up to conjugation by a permutation

matrix given by 1[n,i ], Fi
n = M[n,i] for i 
= i , F̂n =

⊕
F̂i

n, F̂i
n = M[n,i ], F̂i

n = Fi
n if i 
= i ,

πn : Fn � F̂n is given by πn = ev
θ i

n
⊕⊕

i
=i idFi
n
, and βn,• = β̂n,• ◦ πn, where β̂n,• : F̂n → En
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19012 X. Li

is of the same form as in (1). In the stably projectionless case, we can (and will) always

arrange that for all n, there exists exactly one index p̀ such that βp̀
n,0 is unital and β

p̀
n,1 is

non-unital, while βp
n,• is unital for all other p 
= p̀.

The connecting maps ϕ := ϕn : An → An+1 are determined by ϕC : An
ϕ−→

An+1 → C([0, 1], En+1) and ϕF : An
ϕ−→ An+1 → Fn+1. ϕC(f , a) is of block diagonal form,

with block diagonal entries of the form

f p ◦ λ, (8)

for a continuous map λ : [0, 1]→ [0, 1] with λ−1({0, 1}) ⊆ {0, 1}, where f p is the image of

f under the canonical projection C([0, 1], En) � C([0, 1], Ep
n) (see [47, Equation (16)]), or of

the form

[0, 1]→ Eq
n+1, t �→ τ(t)a(x(t)), (9)

where x : [0, 1]→ Zn is continuous and τ(t) : Pn(x(t))M∞Pn(x(t)) ∼= Pn(θ
i
n)M∞Pn(θ

i
n) is an

isomorphism depending continuously on t, with θ i
n in the same connected component as

x(t), and τ(t) = id if x(t) = θ i
n (see [47, Equation (17)]). Moreover, we can always arrange

the following conditions:

∀ p, q ∃ a block diagonal entry in C([0, 1], Eq
n+1) of the form f p ◦ λp as in (8)

with λp(0) = 0, λp(1) = 1. (10)

∀ λ as in (8) and r ∈ {0, 1} , λ(r) /∈ {0, 1} ⇒ λ(r∗) ∈ {0, 1} , where r∗ = 1− r. (11)

∀ x as in (9), if im (x) ⊆ Zi
n, then x(0) = θ i

n or x(1) = θ i
n. (12)

Note that a crucial (though basic) modification of the constructions in [15, 22, 32] is to

push unitary conjugation all into βn+1,•, so that ϕC can be arranged to be always of this

block diagonal form (see [47, Remark 4.1] for details).

ϕF(f , a) is up to permutation given by

ϕF(f , a) =
(
ϕF,C(f ) 0

0 ϕF,F (a)

)
, where ϕF,F(a) = (ϕj,i(ai))j for Fn =

⊕
i

Fi
n, Fn+1 =

⊕
j

Fj
n+1.

(13)
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Constructing Menger Manifold C∗-Diagonals 19013

Moreover, with π := πn+1, π ◦ ϕj,i is given by the composition

Fi
n = F̂i

n

1⊗id
F̂i
n−→ 1m(j,i) ⊗ F̂i

n ⊆ Mm(j,i) ⊗ F̂i
n � F̂j

n+1 if i 
= i , (14)

π ◦ ϕj,i is given by

(
π◦ϕj,i

θ 0

0 π◦ϕj,i
Z

)
(15)

where π ◦ ϕj,i
θ is given by the composition

Fi
n

ev
θi
n−→ F̂i

n

1⊗id
F̂i
n−→ 1m(j,i ) ⊗ Fi

n ⊆ Mm(j,i ) ⊗ Fi
n � F̂j

n+1, (16)

and π ◦ϕj,i
Z consists of block diagonals of a similar form as π ◦ϕj,i

θ , but starting with evz

instead of ev
θ i

n
, for z ∈ Z ⊆ Zn \

{
θ i

n

}
. As in (1), the arrow � denotes a *-homomorphism

of multiplicity 1 sending diagonal matrices to diagonal matrices. It is convenient to

collect π ◦ ϕj,i for all j into a single map π ◦ ϕ−,i : Fi
n → F̂n+1 given by

Fi
n = F̂i

n → (1m(j,i) ⊗ F̂i
n)j ⊆

( ⊕
j

Mm(j,i)

)
⊗ F̂i

n � F̂n+1 if i 
= i , (17)

and in a similar way, we obtain π ◦ ϕ−,i
θ : Fi

n → F̂n+1 given by

Fi
n

ev
θi
n−→ F̂i

n → (1m(j,i ) ⊗ F̂i
n)j ⊆

( ⊕
j

Mm(j,i )

)
⊗ F̂i

n � F̂n+1. (18)

3.2 Modification (conn)

We modify the construction described in Section 3.1 to obtain C∗-diagonals with

connected spectra. We start with the inductive limit decomposition as in [47, Section 2]

and construct C∗-algebras Fn as in [47, Section 3,4]. Now the original construction

recalled in Section 3.1 produces
•
An and •

ϕn−1 inductively on n. Suppose that the original

construction starts with the C∗-algebra
•
A1 of the form as in Section 3.1. Let us explain

how to modify it. We will use the same notation as in Section 2. Let [1, I] := ∑
i[1, i].

Choose an index p and define Ep

1 := M{1,p}+[1,I]. View
•
Ep

1 and F̂1 as embedded into Ep

1 via
•
Ep

1 ⊕ F̂1 = M{1,p} ⊕ (
⊕

i M[1,i]) ⊆ M{1,p} ⊕ M[1,I] ⊆ Ep

1 . Define Ep
1 := •

Ep
1 for all p 
= p and

E1 :=⊕
p Ep

1 . Let dl, 1 ≤ l ≤ [1, I], be the rank-one projections in DM[1,I] and w ∈ M[1,I] the

permutation matrix such that wdlw
∗ = dl+1 if 1 ≤ l ≤ [1, I]−1 and wd[1,I]w

∗ = d1. Define
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19014 X. Li

β
p
1,r := •

β
p
1,r for r = 0, 1, p 
= p, βp

1,0 := (
•
β
p

1,0,π) and β
p

1,1 := Ad (1 •
Ep

1
, w) ◦ (βp

1,1,π1) as maps

F1 →
•
Ep

1 ⊕ F̂1 ⊆ Ep

1 . Now define A1 := {
(f , a) ∈ C([0, 1], E1)⊕ F1: f (r) = β1,r(a) for r = 0, 1

}
.

Now suppose that our new construction produced

A1
ϕ1−→ A2

ϕ2−→ . . .
ϕn−1−→ An.

Let
•
An+1 and •

ϕn : An →
•
An+1 be given by the original construction as recalled in

Section 3.1. In order to modify
•
An+1 and •

ϕn, we use the same notation for •
ϕ := •

ϕn as in

Section 3.1. Let [n+1, J] :=∑
j[n+1, j]. Choose an index q. Define Eq

n+1 := M{n+1,q}+[n+1,J].

View
•
Eq

n+1 and F̂n+1 as embedded into Eq

n+1 via
•
Eq

n+1 ⊕ F̂n+1 = M{n+1,q} ⊕ (
⊕

j M[n+1,j]) ⊆
M{n+1,q} ⊕M[n+1,J] ⊆ Eq

n+1. Define Eq
n+1 := •

Eq
n+1 for all q 
= q and En+1 := ⊕

q Eq
n+1. Set

β
q
r := •

β
q
r for r = 0, 1, q 
= q and β

q

0 := (
•
β
q

0 ,π) as a map Fn+1 →
•
Eq

n+1 ⊕ F̂n+1 ⊆ Eq

n+1. Let us

now define β1. Consider the descriptions of π ◦ •ϕj,i for i 
= i in (7) and (10) and of π ◦ •ϕj,i
θ

in (9) and (11). Let di
l , 1 ≤ l ≤ ∑

j m(j, i), be the rank-one projections in
⊕

j DMm(j,i) and

wi, wi
θ ∈ M[n+1,J] permutation matrices such that, if we identify di

l ⊗ f with its image

in Eq

n+1 under the compositions of the embeddings
( ⊕

j Mm(j,i)

) ⊗ F̂i
n � F̂n+1 from (10),

(11) and F̂n+1 =
⊕

j M[n+1,j] ⊆ M[n+1,J] from above, we have wi(di
l ⊗ f)(wi)∗ = di

l+1 ⊗ f if

1 ≤ l ≤∑
j m(j, i)− 1, wi(di

l ⊗ f)(wi)∗ = di
1 ⊗ f if l =∑

j m(j, i), wi
θ (d

i
l ⊗ f)(wi

θ )
∗ = di

l+1 ⊗ f

if 1 ≤ l ≤ ∑
j m(j, i ) − 1 and wi

θ (d
i
l ⊗ f)(wi

θ )
∗ = di

1 ⊗ f if l = ∑
j m(j, i ), for all f ∈ DF̂i

n.

Let ei be the unit of
( ⊕

j Mm(j,i)

) ⊗ F̂i
n, viewed as a projection in M[n+1,J] via the above

embedding into M[n+1,J], and let ei
θ be the unit of

( ⊕
j Mm(j,i )

)⊗ F̂i
n, viewed as a projection

in M[n+1,J] via the above embedding into M[n+1,J]. Let eF,C and eF,F be the projections in

F̂n+1 corresponding to the decomposition of •
ϕF (or rather π ◦ •ϕF ) in (6) so that 1F̂n+1

=
eF,C+eF,F , and set eZ := eF,F−(

∑
i
=i e

i)−ei
θ . Now define wF,F := (

∑
i
=i e

iwiei)+ei
θw

i
θ e

i
θ +eZ

and

w :=
(
eF,C 0

0 wF,F

)
(19)

with respect to the decomposition of •ϕF in (6). Set

β
q

1 := Ad
(

1•
Eqn+1

0

0 w

)
◦

( •
β
q

1 0
0 π

)
: Fn+1 →

•
Eq

n+1 ⊕ F̂n+1 ⊆ Eq

n+1.

Finally, define An+1 := {
(f , a) ∈ C([0, 1], En+1)⊕ Fn+1: f (r) = βr(a) for r = 0, 1

}
and

ϕ = ϕn : An → An+1 by ϕF := •
ϕF , ϕq

C := •
ϕ

q
C for q 
= q, and

ϕ
q

C :=
( •
ϕ
q

C 0

0 π◦ •ϕF

)
: An → C([0, 1],

•
Eq

n+1 ⊕ F̂n+1) ⊆ C([0, 1], Eq

n+1). (20)
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Constructing Menger Manifold C∗-Diagonals 19015

By construction, ϕn is well defined, that is, ϕn(f , a) satisfies the defining boundary

conditions for An+1 for all (f , a) ∈ An. Proceeding in this way, we obtain an inductive

system
{
An,ϕn

}
n.

Lemma 3.1. A := lim−→n

{
An,ϕn

}
is a classifiable C∗-algebra with Ell(A) ∼= E , where

E = (G0, G+0 , u, T, r, G1) as in [47, Theorem 1.2] or E = (G0, {0} , T, ρ, G1) as in [47, Theorem

1.3]. In the latter case, A has continuous scale.

If we set Bn := {
(f , a) ∈ An: f (t) ∈ DEn ∀ t ∈ [0, 1], a ∈ DFn

}
, then B :=

lim−→n

{
Bn,ϕn

}
is a C∗-diagonal of A.

Here DFn is the C∗-diagonal of Fn defined in [47, Section 6.1].

Proof. A is classifiable and unital or stably projectionless with continuous scale

for the same reasons why the original construction recalled in Section 3.1 yields

C∗-algebras with these properties (see [15, 22, 32, 47] for details). We also have Ell(A) ∼= E
for the same reasons as for the original construction. This is straightforward for K-

theory, as An+1 and
•
An+1 have the same K-theory and ϕn induces the same map on

K-theory as •
ϕn. It is also straightforward to see that modification (conn) yields the

desired trace simplex and pairing between K0 and traces. Indeed, we can think of our

modification taking place already at the 1st stage of the construction summarized in

[47, Section 2], where a non-simple C∗-algebra with the prescribed Elliott invariant is

constructed. And that this non-simple C∗-algebra has the desired trace simplex and

pairing is enforced in the construction summarized in [47, Section 2] by making sure

that for the analogues of •ϕC and •
ϕF , the block diagonal entries of the form t �→ τ(t)a(x(t))

as in (2) and •
ϕF,F as in (6) take up larger and larger portions of C([0, 1],

•
En+1). But our

modification only increases these portions.

Finally, the connecting maps ϕn are of the same form as in [47, Section 4], and

hence admit groupoid models as in [47, Section 6]. Hence, B is indeed a C∗-diagonal of A

by the same argument as in [47, Section 5–7]. �

3.3 Building block C∗-diagonals with path-connected spectra

Let us now show that modification (conn) yields C∗-diagonals with connected spectra.

We need the following notations: let Yn := Spec DEn,
•
Yp

n := Spec D
•
Ep

n, Yp
n := Spec DEp

n so

that Yn = Yp
n �

∐
p
=p

•
Yp

n , Xn := Spec DF̂n, Xn := Spec DF̂n, X i
n := Spec DF̂i

n, and F (0)
n :=

Spec DFn. We have F (0)
n
∼= (Zn×X i

n)�(
∐

i
=i

{
θ i

n

}×X i
n). π : Fn � F̂n restricts to DFn � DF̂n,

which induces Xn ↪→ F (0)
n given by X i

n ↪→ {
θ i

n

} × X i
n, x �→ (θ i

n, x) with respect to the
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identification of F (0)
n we just mentioned. We identify Xn with a subset of F (0)

n in this

way. Let b p
n,r : Yp

n,r→ Xn, where Yp
n,r := dom b p

n,r ⊆ Yp
n , be the map inducing βp

n,r, define

bn,r : Yn,r → Xn correspondingly, and let
•
bp

n,r :
•
Yp

n,r → Xn, with
•
Yp

n,r := dom
•
bp

n,r ⊆
•
Yp

n,

be the map inducing
•
β
p
n,r. Let∼ be the equivalence relation on ([0, 1]×Yn)�F (0)

n generated

by (r, y) ∼ bn,r(y) ∈ Xn ⊆ F (0)
n for r ∈ {0, 1} and y ∈ Yn,r. We write [·] for the canonical

projection map ([0, 1] × Yn) � F (0)
n �

(
([0, 1] × Yn) � F (0)

n
)
/∼ and identify F (0)

n with its

image under [·]. Set [0, 1] ×• Yn := {
(t, y) ∈ [0, 1]× Yn: y ∈ Yn,t if t ∈ {0, 1}}. The following

generalization of Lemma 2.14 is straightforward:

Lemma 3.2. We have a homeomorphism
(
([0, 1]×• Yn)�F (0)

n
)
/∼
→∼Spec Bn sending [t, y]

(for (t, y) ∈ [0, 1] × Yn) to the character Bn → C, (f , a) �→ y(f (t)) and x ∈ F (0)
n to the

character Bn → C, (f , a) �→ x(a).

Moreover, we always have Yp
n =

•
Yp

n � Xn, Yp
n,r =

•
Yp

n,r � Xn and

bp

n,0 =
•
bp

n,0 � idXn
. (21)

For n = 1, b 1,1 is given by bp

1,1|Yp

1,1
= •

bp

1,1, and if
{
xl

}
1≤l≤[1,I] = X1 according to the

enumeration of rank-one projections in DM[1,I] in Section 3.2, we have

bp

1,1(xl) = xl−1 if 2 ≤ l ≤ [1, I] and bp

1,1(x1) = x[1,I]. (22)

Now we need to describe the groupoid model p := pn for ϕn. Let us drop the index

n + 1 and write Y := Yn+1, X := Xn+1 and so on. By construction of Eq, we have a

decomposition Yq = •
Yq � X . Moreover, according to the decomposition of π ◦ •ϕF in

Section 3.1 (see (6)–(9) in combination with the definition of ei, ei
θ , eZ , eF,C in Section 3.1),

we have a decomposition of X ⊆ Yq as X = (
∐

i
=i X [ei])� (X [ei
θ ]�X [eZ ])�X [eF,C], where

X [e] = {x ∈ X : x(e) = 1}. Define Yq
conn := (

∐
i
=i X [ei])�X [ei

θ ] and Yq

rest := X [eZ ]�X [eF,C]. We

have Yq
conn ⊆ Yq

r for r = 0, 1. According to the construction of βq

0 := β
q

n+1,0 in Section 3.2,

b0 := b n+1,0 sends x ∈ Yq
conn to x ∈ X . To describe b 1 := bn+1,1 on Yq

conn, note that we

have an identification

( ∐
i
=i

X [ei]
)
� X [ei

θ ] ∼−→
(∐

i
=i

( ∐
j

M(j, i)× X i
n

))
�

(∐
j

M(j, i )× X i
n

)

=
( ∐

i
=i

Mi × X i
n

)
� (Mi × X i

n) (23)
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Constructing Menger Manifold C∗-Diagonals 19017

corresponding to the decomposition of π ◦ •ϕF in Section 3.1 (see (6)–(11) in combination

with the definition of ei, ei
θ , eZ , eF,C in Section 3.1), where Mi = ∐

j M(j, i) and

Mi = ∐
j M(j, i ). With respect to (16), if Mi = {

μi
1, . . . ,μi∑

j m(j,i)

}
corresponding to the

enumeration of rank-one projections in
⊕

j DMm(j,i) in Section 3.2, we have

b1(μ
i
l , x) = (μi

l−1, x) if 2 ≤ l ≤
∑

j

m(j, i) and b1(μ
i
1, x) = (μi∑

i m(j,i), x) ∀ x ∈ X i
n,

(24)

according to the construction of βq

1 := β
q

n+1,1 in Section 3.2. We also have Yq

rest ⊆ Yq
r for

r = 0, 1, and b r sends x ∈ Yq

rest to x ∈ X for r = 0, 1 according to the construction of βq
r

in Section 3.2.

On (
∐

i
=i X [ei])� X [ei
θ ], using the identification (16), we have

p(μ, x) = x ∈ X i
n ∀ μ ∈Mi, x ∈ X i

n (25)

according to the descriptions of the components of π ◦ •ϕF in (7), (9), (10), and (11).

Furthermore, note that condition (3) implies that we have embeddings

Yn = Yp
n �

∐
p
=p

•
Yp

n ↪→ Yq
r , r = 0, 1, (26)

sending Yn,r into b−1
r ((

∐
i
=i X [ei])�X [ei

θ ]) such that the following diagram commutes for

r = 0, 1:

(27)

Proposition 3.3. The C∗-diagonals Bn as in Lemma 3.1 have path-connected spectra

for all n = 1, 2, 3, . . . .

Proof. In the following, for two points x1 and x2, we write x1 ∼conn x2 if there exists a

continuous path from x1 to x2, in a space that will be clear from the context or specified

otherwise. We start with the observation that given x ∈ F (0)
n \Xn, that is, x ∈ (Zn\

{
θ i

n

}
)×

X i
n, since Zn is path connected, we have x ∼conn x ∈

{
θ i

n

}
×X i

n ⊆ Xn. Hence, to show that

Spec Bn is path connected, it suffices to show that [[0, 1]×• Yn] is path connected. Let us
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19018 X. Li

prove inductively on n that [[0, 1] ×• Yn] ⊆ Spec Bn is path connected. Note that we can

always make the following reduction: for all (t, y) ∈ [0, 1]× Yn, we have y ∈ Yn,0 because

βn,0 is always unital, and [t, y] ∼conn [0, y]. Moreover, given r ∈ {0, 1} and y ∈ Yn,r, since

bn,0 : Xn ⊆ Yp

n,0 → Xn is surjective by (14), there exists ȳ ∈ Xn ⊆ Yp

n,0 such that

bn,0(ȳ) = bn,r(y) and thus [0, ȳ] = [r, y]. Hence, it is enough to show for y, ȳ ∈ Xn ⊆ Yp

n,0

that [0, y] ∼conn [0, ȳ].

For n = 1, this follows from the observation that we have [0, xl+1] ∼conn [1, xl+1] =
[0, xl] for all 1 ≤ l ≤ [1, I] − 1 because of (15). Now let us assume that [[0, 1] ×• Yn] is

path connected, and let us show that [[0, 1]×• Yn+1] is path connected. We use the same

notation as in the description of p above (we also drop the index n + 1). It suffices to

show that for all y, ȳ ∈ X ⊆ Yq

0 that [0, y] ∼conn [0, ȳ]. We further reduce to y, ȳ ∈ Yq
conn:

If y ∈ X [eZ ], then there exists r ∈ {0, 1} and ỹ ∈ Yr with b r(ỹ) = b 0(y) (= y), and by

(5), we must have b r∗(ỹ) ∈ p−1(Xn) ∩ X = (
∐

i
=i X [ei]) � X [ei
θ ] = Yq

conn, where r∗ = 1 − r.

Hence, [0, y] = [r, ỹ] ∼conn [r∗, ỹ] = [0, y′] for some y′ ∈ Yq
conn. If y ∈ X [eF,C], then there

must exist r ∈ {0, 1} and ỹ ∈ Yr with b r(ỹ) = b 0(y) (= y), and by (4), we must have

b r∗(ỹ) ∈ p−1(Xn) ∩ X = (
∐

i
=i X [ei]) � X [ei
θ ] = Yq

conn (here X is viewed as a subset of

Spec Bn+1), where r∗ = 1− r. Hence, [0, y] = [r, ỹ] ∼conn [r∗, ỹ] = [0, y′] for some y′ ∈ Yq
conn.

Moreover, given y ∈ Yq
conn (for which we have b0(y) = y ∈ X ), there exists by (20)

y′ ∈ Yn,0 ⊆ Y0 such that p(b 0(y
′)) = p(b 0(y)). Viewing b0(y

′) as an element in Yq
conn,

let us now show that

[0, b0(y
′)] = [0, b 0(y)] : (28)

Under the bijection (16), we have y = (μ, x) and b0(y
′) = (μ′, x), where x = p(b0(y

′)) =
p(b0(y)). Hence, (21) follows from the following claim:

Under the bijection (23), we have [0, (μ, x)] ∼conn [0, (μ′, x)] for all μ,μ′ ∈Mi, x ∈ X i
n.

(29)

This in turn follows from the observation that for all l ∈
{
1, . . . , (

∑
j m(j, i))− 1

}
and

x ∈ X i
n, we have [0, (μl+1, x)] ∼conn [1, (μl+1, x)] = [0, (μl, x)]. The last equation follows

from (17). So we have [0, y] ∼conn [0, b 0(y
′)] = [0, y′]. Hence, it suffices to show [0, y] ∼conn

[0, ȳ] in [[0, 1]×• Yn+1] ⊆ Spec Bn+1 for all y, ȳ ∈ Yn,0.

By induction hypothesis, we have [0, y] ∼conn [0, ȳ] in [[0, 1] ×• Yn] ⊆ Spec Bn.

Hence, there exist (rk, yk) ∈ {0, 1} × Yn, 0 ≤ k ≤ K, such that (r0, y0) = (0, y), (rK , yK) =
(0, ȳ) and for all 0 ≤ k ≤ K − 1, we have [rk, yk] = [rk+1, yk+1] in Spec Bn or yk = yk+1,
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Constructing Menger Manifold C∗-Diagonals 19019

rk+1 = r∗k (where r∗k = 1 − rk). Clearly, in the latter case, we have [rk, yk] ∼conn [r∗k, yk] =
[rk+1, yk+1] in [[0, 1] ×• Yn+1] ⊆ Spec Bn+1. To treat the former case, we need to show

that [rk, yk] = [rk+1, yk+1] in Spec Bn (i.e., bn,rk
(yk) = bn,rk+1

(yk+1)) implies [rk, yk] ∼conn

[rk+1, yk+1] in [[0, 1] ×• Yn+1] ⊆ Spec Bn+1, where we view yk and yk+1 as elements of Yq
rk

and Yq
rk+1 using (19). We have

p(b rk
(yk))

(27)= bn,rk
(yk) = b n,rk+1

(yk+1) = p(b rk+1
(yk+1)).

Thus, viewing b rk
(yk), b rk+1

(yk+1) as elements of Yq
conn, we have b rk

(yk) = (μ, x) and

b rk+1
(yk+1) = (μ′, x) for some μ,μ′ ∈ Mi and x ∈ X i

n with respect to (16). Hence, (22)

implies that, in [[0, 1]×• Yn+1] ⊆ Spec Bn+1, we have

[rk, yk] = [0, b rk
(yk)] = [0, (μ, x)] ∼conn [0, (μ′, x)] = [0, b rk+1

(yk+1)] = [rk+1, yk+1]. �

Remark 3.4. The proof of (22) yields that for all y, ȳ ∈ Yq
conn with p [0, y] = p [0, ȳ],

there exists a continuous path ξ in [[0, 1] ×• Yn+1] with ξ(0) = [0, y], ξ(1) = [0, ȳ] and

p ◦ ξ ≡ p [0, y] = p [0, ȳ].

Corollary 3.5. In the unital case, modification (conn) yields C∗-diagonals with con-

nected spectra.

Proof. The C∗-diagonal is given by B = lim−→n

{
Bn,ϕn

}
, so that its spectrum is Spec B ∼=

lim←−n

{
Spec Bn, pn

}
. In the unital case, Bn is unital for all n, so that Spec Bn is compact

for all n. By Proposition 3.3, Spec Bn is path connected, in particular connected. Now

our claim follows from the general fact that inverse limits of compact connected spaces

are again connected (see for instance [23, Theorem 6.1.20]). �

In the stably projectionless case, we cannot argue as for Corollary 3.5 because

it is no longer true in general that inverse limits of locally compact, non-compact,

connected spaces are again connected. Instead, by conjugating βn+1,• by suitable

permutation matrices and adjusting ϕ accordingly, we can always arrange that the λs in

(1) are monotonous and that, in addition to (3)–(5), we have the following:

∀ λ, corresponding block diagonal entry f p ◦ λ in ϕC(f , a) as in (8), r as in (11) with

λ(r) /∈ {0, 1} (11*)
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19020 X. Li

∃ a block diagonal entry f p ◦ λ∗ in ϕC(f , a) as in (8) with λ∗(r∗) = λ(r), λ∗(r) = λ(r∗)∗,

unless p = p̀, in which case λ(r∗) = 0;

∀ λ, r as in (11) with t := λ(r) /∈ {0, 1} and the corresponding block diagonal entry

f p ◦ λ in (8), (11×)

we have that f p(t) appears as exactly one block diagonal entry in ϕF,C(f ) in (13).

Proposition 3.6. In the stably projectionless case, modification (conn) with the above-

mentioned adjustments yields C∗-diagonals with connected spectra.

Proof. The C∗-diagonal is given by B = lim−→n

{
Bn,ϕn

}
, so that its spectrum is Spec B ∼=

lim←−n

{
Spec Bn, pn

}
. Let pn,∞ : Spec B � Spec Bn be the canonical map from the inverse

limit structure of Spec B, and denote by pn,n̄ : Spec Bn̄+1 � Spec Bn the composition

p n̄ ◦ . . . ◦ pn. Now define for each N ≥ 1 the intervals Iy := [0, 1] for y ∈ Y1,1, Iy :=
[0, 1− 1

N ] for y /∈ Y1,1, and the subset KN,1 := [(
⋃

y∈Y1
Iy × {y})�F (0)

1 ] ⊆ Spec B1. Now it is

straightforward to check by induction on n that p−1
1,n(KN,1) = (

⋃
y∈Y[Iy×{y}])∪(

⋃
x∈X[Zn×

{x}]) where Y is a subset of Yn, Iy is of the form [0, 1], [0, t] or [t, 1] for some t ∈ [0, 1],

X is a subset of X i
n, for all ỹ ∈ Y with Iỹ 
= [0, 1] there exists y ∈ Y with Iy = [0, 1]

and [Iỹ ×
{
ỹ
}
] ∩ [Iy × {y}] 
= ∅, and for all x ∈ X there exists y ∈ Y with Iy = [0, 1] and

[Zn×{x}]∩ [Iy×{y}] 
= ∅. Now we proceed inductively on n to show that p−1
1,n(KN,1) is path

connected for all n. The case n = 1 is checked as in Proposition 3.3. For the induction

step, first reduce as in Proposition 3.3 to showing that
⋃

y[Iy × {y}] is path connected,

where the union is taken over all y ∈ Y with Iy = [0, 1]. Further reduce as in Proposition

3.3 to the statement that for all y, ȳ ∈ Y with Iy = [0, 1], Iȳ = [0, 1] and y, ȳ ∈ Yq
conn

that [0, y] ∼conn [0, ȳ] in p−1
1,n(KN,1). Here the case y ∈ X [eZ ] is treated as in Proposition

3.3, while the case y ∈ X [eF,C] uses (11*) and (11×). Now use the induction hypothesis

as in Proposition 3.3 to show that we indeed have [0, y] ∼conn [0, ȳ] in p−1
1,n(KN,1) for all

y, ȳ ∈ Y with Iy = [0, 1], Iȳ = [0, 1] and y, ȳ ∈ Yq
conn. As p1,n is proper, p−1

1,n(KN,1) is

compact. Hence, it follows that KN := p−1
1,∞(KN,1)

∼= lim←−n

{
p−1

1,n(KN,1), pn

}
is connected

(see for instance [23, Theorem 6.1.20]). Therefore, Spec B = ⋃
N KN is connected as it is

the increasing union of connected subsets. �

All in all, we obtain the following

Theorem 3.7. For every prescribed Elliott invariant (G0, G+0 , u, T, r, G1) as in [47,

Theorem 1.2], our construction produces a twisted groupoid (G,�) with the same
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Constructing Menger Manifold C∗-Diagonals 19021

properties as in [47, Theorem 1.2] (in particular, C∗r (G,�) is a classifiable unital C∗-
algebra with Ell(C∗r (G,�)) ∼= (G0, G+0 , u, T, r, G1)) such that G has connected unit space.

For every prescribed Elliott invariant (G0, T, ρ, G1) as in [47, Theorem 1.3], our

construction produces a twisted groupoid (G,�) with the same properties as in [47,

Theorem 1.3] (in particular, C∗r (G,�) is classifiable stably projectionless with continuous

scale, and Ell(C∗r (G,�)) ∼= (G0, {0} , T, ρ, G1)) such that G has connected unit space.

This theorem, in combination with classification results for all classifiable C∗-
algebras, implies Theorem 1.3.

4 Further Modification of the Construction Leading to the Path-Lifting Property

Let us now present a further modification of the construction recalled in Section 3.1,

which will allow us to produce C∗-diagonals with Menger manifold spectra. We focus

on constructing classifiable C∗-algebras (unital or stably projectionless with continuous

scale) with torsion-free K0 and trivial K1. In that case, the construction recalled in

Section 3.1 simplifies because Fn = F̂n for all n, so that we can (and will) think of An as

a sub-C∗-algebra of C([0, 1], En).

4.1 Modification (path)

Suppose that we are given a tuple E = (G0, G+0 , u, T, r, G1) as in [47, Theorem 1.2] or

E = (G0, {0} , T, ρ, G1) as in [47, Theorem 1.3], which we want to realize as the Elliott

invariant of a classifiable C∗-algebra, with G0 torsion-free and G1 = {0}. As explained

in [47, Section 2], the construction recalled in Section 3.1 proceeds in two steps. First,

an inductive system { •An, ◦ϕn} is constructed so that lim−→n
{ •An, ◦ϕn} has the desired Elliott

invariant, but is not simple, and then a further modification yields an inductive system

{ •An, •ϕn} such that lim−→n
{ •An, •ϕn} has the same Elliott invariant and in addition is simple.

The 1st step in our modification (path) is as in the previous modification (conn) (see

Section 3.2) and produces the 1st building block A1. Now suppose that we have produced

A1
ϕ1−→ A2

ϕ2−→ . . .
ϕn−1−→ An,

and that the 1st step of the original construction as in [47, Section 2] yields ◦
ϕn : An →•

An+1. We modify ◦
ϕn in two steps, first to •

ϕn : An →
•
An+1, then to ϕn : An → An+1. Let

us start with the 1st step. We use the same notation as in Section 3.1 and Section 3.2.
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19022 X. Li

Recall the description of βp,i
n,r in (1); it is a composition of the form

Fi
n

1⊗id
Fi
n−→ 1mr(p,i) ⊗ Fi

n ⊆ Mmr(p,i) ⊗ Fi
n � Ep

n.

Here and in the sequel, an arrow � denotes a *-homomorphism of multiplicity 1

sending diagonal matrices to diagonal matrices as before. Let ψn : Fn → Fn+1 be as in

[47, Section 2]. The map

ψ
j,i
n : Fi

n ↪→ Fn
ψn−→ Fn+1 � Fj

n+1

is given by the following composition:

Fi
n

1⊗id
F̂i
n−→ 1m(j,i) ⊗ Fi

n ⊆ Mm(j,i) ⊗ Fi
n � Fj

n+1.

By choosing G′ in [47, Section 2] suitably and because of [47, Inequality (2)], we can

always arrange that there exist pairwise distinct indices
{
jp
0

}
p ∪

{
jp
1

}
p
=p̀ such that we

have m(jp
r , i) ≥ mr(p, i) for all p, i, r = 0, 1 (p 
= p̀ if r = 1). Then for suitable embeddings

Ep
n � Fjp•

n+1 sending DEp
n into DFjp•

n+1, ψ jp• is of the form Fn → Ep
n ⊕ F̄jp•

n+1 � Fjp•
n+1, for

some finite-dimensional algebra F̄jp•
n+1, where the 1st map is given by

(
β

p
n,• 0

0 ψ̄ j
p•

)
for some

map ψ̄ jp• : Fn → F̄jp•
n+1. Let εjp•

β :=
(
β

p
n,•(1Fn ) 0

0 0

)
, viewed as a projection in Fjp•

n+1 via the 2nd

embedding Ep
n ⊕ F̄jp•

n+1 � Fjp•
n+1.

We start discussing the connecting map and will drop indices whenever conve-

nient. ◦ϕ := ◦
ϕn : An →

•
An+1 is given by ◦

ϕF : An

◦
ϕ−→ •

An+1 → Fn+1, ◦ϕF(f , a) = ψ(a), and ◦
ϕC :

An

◦
ϕ−→ •

An+1 → C([0, 1],
•
En+1),

◦
ϕC(f , a) =

(
�(f ) 0

0 �F (a)

)
. Let ε� be the smallest projection

in D
•
E such that �(f )(t) = ε� ·�(f )(t) · ε� for all t ∈ [0, 1], and let εC,F ∈ D

•
E be such that

�F(1Fn
) ≡ εC,F . We have a decomposition ε� =

∑
q,p ε

q,p
� , εq,p

� = ε+q,p+ εq,p
+ + ε−q,p+ εq,p

− into

pairwise orthogonal projections in D
•
E such that, for all q, p,

ε+q,p ·�(f ) · ε+q,p = e+q,p ⊗ f p, ε
q,p
+ ·�(f ) · εq,p

+ = eq,p
+ ⊗ f p,

ε−q,p ·�(f ) · ε−q,p = e−q,p ⊗ f p ◦ (1− id), ε
q,p
− ·�(f ) · εq,p

− = eq,p
− ⊗ f p ◦ (1− id),
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Constructing Menger Manifold C∗-Diagonals 19023

for some finite-rank projections e+q,p, eq,p
+ , e−q,p, eq,p

− encoding multiplicities of block

diagonal entries in �. In the unital case, we can always arrange

rk e+q,p, rk eq,p
+ , rk e−q,p, rk eq,p

− ≥ 1 ∀ q, p. (30)

In the stably projectionless case, we can always arrange that

rk e+q,p, rk eq,p
+ , rk e−q,p, rk eq,p

− ≥ 1 ∀ q 
= q̀, p 
= p̀, and rk e+q̀,p̀ ≥ 1, (31)

as well as rk e+q,p, rk eq,p
+ , rk e−q,p, rk eq,p

− = 0 for all q = q̀, p 
= p̀ or q 
= q̀, p = p̀, and

rk eq̀,p̀
+ , rk e−q̀,p̀, rk eq̀,p̀

− = 0.

β
q,j
r is a composition as in (1) of the form Fj

1⊗id
Fj−→ 1mr(q,j) ⊗ Fj ⊆ Mmr(q,j) ⊗ Fj �

•
Eq.

By replacing
•
Eq by Mn+1,q+N·[n+1,J] containing

•
Eq ⊕ F⊕N in the canonical way, and by

replacing βq
r by βq

r ⊕ idF⊕N as in modification (conn), we can arrange that, for all q, p,

m0(q, jp
0) ≥ rk e+q,p, m1(q, jp

1) ≥ rk eq,p
+ , m1(q, jp

0) ≥ rk e−q,p, m0(q, jp
1) ≥ rk eq,p

− .

By further enlarging
•
Eq as above, and by conjugating βq

r by suitable permutation matri-

ces if necessary, we can arrange that there exist a decomposition εC,F = (
∑

q,p ε
q,p) +

(
∑

q,p ε̄q,p) + εconst into pairwise orthogonal projections in D
•
E such that for all q, p and

r = 0, 1,

β
q
r ◦ (εjps

β · ψ jps · εjps
β ) = ε+q,p · (βq

r ◦ (εjps
β · ψ jps · εjps

β )) · ε+q,p + εq,p
+ · (βq

r ◦ (εjps
β · ψ jps · εjps

β )) · εq,p
+

+ ε−q,p · (βq
r ◦ (εjps

β · ψ jps · εjps
β )) · ε−q,p + εq,p

− · (βq
r ◦ (εjps

β · ψ jps · εjps
β )) · εq,p

−

+ εq,p · (βq
r ◦ (εjps

β · ψ jps · εjps
β )) · εq,p + ε̄q,p · (βq

r ◦ (εjps
β · ψ jps · εjps

β )) · ε̄q,p,
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19024 X. Li

and pairwise orthogonal finite-rank projections eq,p, eq,p
(�) , eq,p

(�)
, ēq,p, e(�)

q,p, e(�)

q,p encoding

multiplicities of block diagonal entries in �, such that we have, for all q, p,

ε+q,p · (βq
0 ◦ (ε

jp0
β · ψ jp0 · εjp0

β )) · ε+q,p = e+q,p ⊗ βp
n,0, εq,p · (βq

0 ◦ (ε
jp0
β · ψ jp0 · εjp0

β )) · εq,p

= eq,p ⊗ βp
n,0 + eq,p

(�)
⊗ βp

n,0,

ε−q,p · (βq
1 ◦ (ε

jp0
β · ψ jp0 · εjp0

β )) · ε−q,p = e−q,p ⊗ βp
n,0, εq,p · (βq

1 ◦ (ε
jp0
β · ψ jp0 · εjp0

β )) · εq,p

= eq,p ⊗ βp
n,0 + eq,p

(�) ⊗ βp
n,0,

ε
q,p
− · (βq

0 ◦ (ε
jp1
β · ψ jp1 · εjp1

β )) · εq,p
− = eq,p

− ⊗ βp
n,1, ε̄q,p · (βq

0 ◦ (ε
jp1
β · ψ jp1 · εjp1

β )) · ε̄q,p

= ēq,p ⊗ βp
n,1 + e(�)

q,p ⊗ βp
n,1,

ε
q,p
+ · (βq

1 ◦ (ε
jp1
β · ψ jp1 · εjp1

β )) · εq,p
+ = eq,p

+ ⊗ βp
n,1, ε̄q,p · (βq

1 ◦ (ε
jp1
β · ψ jp1 · εjp1

β )) · ε̄q,p

= ēq,p ⊗ βp
n,1 + e(�)

q,p ⊗ βp
n,1,

and ε · (βq
r ◦ (εjps

β · ψ jps · εjps
β )) · ε = 0 for all remaining choices of r, s ∈ {0, 1} and

ε ∈
{
ε+q,p, εq,p

+ , ε−q,p, εq,p
− , ε̄q,p, εq,p

}
. In the stably projectionless case, we have ε̄q,p̀ = 0 for

all q by arrangement. Moreover, we can always arrange that

rk eq̀,p̀
(�)
+ rk eq̀,p̀

(�) ≥ 1. (32)

Now define •
ϕ = •

ϕn : An →
•
An+1 by setting •

ϕ
j
F : An

•
ϕ−→ •

An+1 → Fn+1 � Fj
n+1 and

•
ϕC : An

•
ϕ−→ •

An+1 � C([0, 1],
•
En+1) as follows:

•
ϕ

jpr
F (f , a) :=

(
f p(

1
2 ) 0

0 ψ̄ j
p
r (a)

)
, and •

ϕ
j
F(f , a) := ◦

ϕ
j
F(f , a) for j /∈ {

jp
0, jp

1

}
; (33)

•
ϕC =

∑
q,p

(
ε+q,p · •ϕC · ε+q,p + εq,p

+ · •ϕC · εq,p
+ + ε−q,p · •ϕC · ε−q,p + εq,p

− · •ϕC · εq,p
−

+ εq,p · •ϕC · εq,p + ε̄q,p · •ϕC · ε̄q,p

)
+ εconst · •ϕC · εconst; (34)
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ε+q,p · •ϕC(f , a) · ε+q,p := e+q,p ⊗ f p ◦ (1
2 + 1

2 · id), ε
q,p
+ · •ϕC(f , a) · εq,p

+ := eq,p
+ ⊗ f p ◦ (1

2 · id),
ε−q,p · •ϕC(f , a) · ε−q,p := e−q,p ⊗ f p ◦ (1− 1

2 · id), ε
q,p
− · •ϕC(f , a) · εq,p

− := eq,p
− ⊗ f p ◦ (12− 1

2 · id);
εq,p · •ϕC(f , a) · εq,p := eq,p ⊗ f p(1

2 )+ eq,p
(�)
⊗ f p ◦ (1

2 − 1
2 · id)+ eq,p

(�) ⊗ f p ◦ (1
2 · id),

ε̄q,p · •ϕC(f , a) · ε̄q,p := ēq,p ⊗ f p(1
2 )+ e(�)

q,p ⊗ f p ◦ (1
2 + 1

2 · id)+ e(�)

q,p ⊗ f p ◦ (1− 1
2 · id);

εconst · •ϕC · εconst := εconst · ◦ϕC · εconst.

Let us now continue with the 2nd step and modify •
ϕn to ϕn : An → An+1. This 2nd

step in our modification proceeds exactly in the same way as modification (conn), with

the following difference: the embeddings Ep
n ⊆ Fjp•

n+1 lead to the embedding (
⊕

p Ep
n) ⊕

(
⊕

p
=p̀ Ep
n) ⊆ (

⊕
p F

jp0
n+1) ⊕ (

⊕
p
=p̀ F

jp1
n+1) ⊆ Fn+1 ⊆ Eq

n+1, where Eq

n+1 and the embedding

Fn+1 ⊆ Eq

n+1 are constructed as in modification (conn). Let eEE ∈ Eq

n+1 be the image of

the unit of (
⊕

p Ep
n)⊕ (

⊕
p
=p̀ Ep

n) under the above embedding. Let wEE be a permutation

matrix in Eq

n+1 inducing the flip automorphism on Ep
n ⊕ Ep

n (i.e., the automorphism

Ep
n⊕Ep

n
→∼Ep

n⊕Ep
n, (e, e′) �→ (e′, e)) for all p 
= p̀. Using the same notation as in modification

(conn), note that eEE ≤ eF,C, and define wF,C := eEE ·wEE · eEE + (eF,C − eEE). Define wF,F

as in modification (conn). Now replace w defined by (12) in modification (conn) by

w :=
(

wF,C 0
0 wF,F

)
. Furthermore, define β

q

n+1, An+1 and ϕn in the same way as in

modification (conn).

Now it is straightforward to check that ϕn is well defined, that is, ϕn(f , a)

satisfies the defining boundary conditions for An+1 for all (f , a) ∈ An. Proceeding

recursively in this way, we obtain an inductive system
{
An,ϕn

}
n.

Lemma 4.1. A = lim−→n

{
An,ϕn

}
is a classifiable C∗-algebra with Ell(A) ∼= E .

In the stably projectionless case A has continuous scale. If we define Bn :={
(f , a) ∈ An: f (t) ∈ DEn ∀ t ∈ [0, 1], a ∈ DFn

}
, then B := lim−→n

{
Bn,ϕn

}
is a C∗-diagonal

of A.

Proof. A is classifiable and unital or stably projectionless with continuous scale for

the same reasons why the original construction recalled in Section 3.1 yields classifiable

C∗-algebras with these properties (see [15, 22, 32, 47] for details). Indeed, to see for

instance that A is simple, note that with ϕN,n denoting the composition

An
ϕn−→ An+1 → . . .→ AN−1

ϕN−1−→ AN ,
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19026 X. Li

we have for f ∈ An ⊆ C([0, 1], En) and t ∈ [0, 1] that (ϕN,n(f ))
q(t) = 0 for some q

only if f p(t̄) = 0 for all t̄ ∈
{

t+k
2N−n : 0 ≤ k ≤ 2N−n − 1

}
for all p in the unital case and

for all p 
= p̀ in the stably projectionless case, and similarly for p = p̀ in the stably

projectionless case. Hence, we see that for all p, t̄ runs through subsets of [0, 1], which

become arbitrarily dense in [0, 1]. This shows simplicity of A.

It is clear that An has the same K-theory as
•
An and that ϕn induces the same map

on K-theory as •
ϕn. To see that •ϕn induces the same K-theoretic map as ◦

ϕn, we construct

a homotopy between ◦
ϕn and •

ϕn as follows: for s ∈ [0, 1], define •
ϕs : An →

•
An+1 by setting

•
ϕ

j
s,F : An →

•
An+1 → Fj

n+1 and •
ϕs,C : An →

•
An+1 → C([0, 1], En+1) as

•
ϕ

jp0
s,F(f , a) :=

(
f p(s·12 ) 0

0 ψ̄
j
p
0 (a)

)
, •
ϕ

jp1
s,F(f , a) :=

(
f p(1−s·12 ) 0

0 ψ̄
j
p
1 (a)

)
, •
ϕ

j
s,F(f , a) := ◦

ϕ
j
F(f , a) for j /∈ {

jp
0, jp

1

}
;

•
ϕs,C =

∑
q,p

(
ε+q,p · •ϕs,C · ε+q,p + εq,p

+ · •ϕs,C · εq,p
+ + ε−q,p · •ϕs,C · ε−q,p + εq,p

− · •ϕs,C · εq,p
−

+ εq,p · •ϕs,C · εq,p + ε̄q,p · •ϕs,C · ε̄q,p

)
+ εconst · •ϕs,C · εconst;

ε+q,p · •ϕs,C(f , a) · ε+q,p := e+q,p ⊗ f p ◦ (s · 1
2 + (1− s · 1

2 ) · id),
ε

q,p
+ · •ϕs,C(f , a) · εq,p

+ := eq,p
+ ⊗ f p ◦ ((1− s · 1

2 ) · id),
ε−q,p · •ϕs,C(f , a) · ε−q,p := e−q,p ⊗ f p ◦ (1− (1− s · 1

2 ) · id),
ε

q,p
− · •ϕs,C(f , a) · εq,p

− := eq,p
− ⊗ f p ◦ (1− s · 1

2 − (1− s · 1
2 ) · id);

εq,p · •ϕs,C(f , a) · εq,p := eq,p ⊗ f p(s · 1
2 )+ eq,p

(�)
⊗ f p ◦ (s · 1

2 − s · 1
2 · id)+ eq,p

(�) ⊗ f p ◦ (s · 1
2 · id),

ε̄q,p · •ϕs,C(f , a) · ε̄q,p := ēq,p ⊗ f p(1− s · 1
2 )+ e(�)

q,p ⊗ f p ◦ (1− s · 1
2 + s · 1

2 · id)
+ e(�)

q,p ⊗ f p ◦ (1− s · 1
2 · id);

εconst · •ϕs,C · εconst := εconst · ◦ϕC · εconst.

Then s �→ •
ϕs is a continuous path connecting ◦

ϕn with •
ϕn. Hence, ◦ϕn and •

ϕn induce the

same map on K-theory.

The same argument as for modification (conn) (see Lemma 3.1) shows that our

modification (path) yields a C∗-algebra A with the desired trace simplex and prescribed

pairing between K0 and traces.

Finally, the connecting maps ϕn are of the same form as in [47, Section 4], and

hence admit groupoid models as in [47, Section 6]. Hence, B is indeed a C∗-diagonal of A

by the same argument as in [47, Section 5–7]. �
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4.2 Groupoid models for building blocks and connecting maps

Before we establish the path-lifting property for our connecting maps, let us first

develop a groupoid model for them. Suppose that modification (path) gives us the

inductive system

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . . ,

with An =
{
(f , a) ∈ C([0, 1], En)⊕ Fn: f (r) = βn,r(a) for r = 0, 1

}
for finite-dimensional

algebras En and Fn as in Section 4.1 (we use the same notation as in Section 3.1). To

describe the connecting map ϕ := ϕn, we describe

ϕ
q
C : An

ϕ−→ An+1 → C([0, 1], En+1)�C([0, 1], Eq
n+1) and ϕ

j
F : An

ϕ−→ An+1 → Fn+1 � Fj
n+1.

For q 
= q, ϕq
C is given by the following composition:

(f , a) �→ (
1m+(q,p) ⊗ f p ◦ λ+, 1m+(q,p) ⊗ f p ◦ λ+, 1m−(q,p) ⊗ f p ◦ λ−, 1m−(q,p) ⊗ f p ◦ λ−)p,

(1m(q,p) ⊗ f p(1
2 ))p, (1m(q,p) ⊗ f p(1

2 ))p, (1mq,i ⊗ ai)i
)

∈ C
(
[0, 1],

( ⊕
p

(Mm+(q,p) ⊕Mm+(q,p) ⊕Mm−(q,p) ⊕Mm−(q,p))⊗ Ep
n
)

⊕ ( ⊕
p

(Mm(q,p) ⊕Mm(q,p))⊗ Ep
n
)⊕ (⊕

i

Mmq,i ⊗ Fi
n

))

� C([0, 1], Eq
n+1). (35)

Here λ+ = 1
2+ 1

2 ·id, λ+ = 1
2 ·id, λ− = 1− 1

2 ·id and λ− = 1
2− 1

2 ·id. The last arrow is induced

by an embedding
( ⊕

p(Mm+(q,p) ⊕Mm+(q,p) ⊕Mm−(q,p) ⊕Mm−(q,p))⊗ Ep
n
)⊕ ( ⊕

p(Mm(q,p) ⊕
Mm(q,p)) ⊗ Ep

n
) ⊕ ( ⊕

i Mmq,i ⊗ Fi
n

)
� Eq

n+1 of multiplicity 1 sending diagonal matrices to

diagonal matrices as in (1). Note that m+(q, p) = rk e+q,p + rk e(�)

q,p, m+(q, p) = rk eq,p
+ +

rk eq,p
(�) , m−(q, p) = rk e−q,p + rk e(�)

q,p and m−(q, p) = rk eq,p
− + rk eq,p

(�)
. By (1)–(3), we have

m+(q, p), m+(q, p), m−(q, p), m−(q, p) ≥ 1 ∀q, p in the unital case; (36)

m+(q, p), m+(q, p), m−(q, p), m−(q, p) ≥ 1 ∀q 
= q̀, p 
= p̀,

m+(q̀, p̀) ≥ 1 and m+(q̀, p̀) or m−(q̀, p̀) ≥ 1 in the stably projectionless case.
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19028 X. Li

ϕ
q

C is of a similar form, but has an additional component given by ϕF(f , a) going into

C([0, 1], Fn+1) ⊆ C([0, 1], Eq

n+1) (see the 2nd step of modification (path)).

ϕ
j
F is given by the following composition:

(f , a) �→
⎧⎨
⎩(f

p(1
2 ), (1m(j,i) ⊗ ai)i) ∈ Ep

n ⊕
⊕

i Mm(j,i) ⊗ Fi
n � Fj

n+1 if j = jp• ,

(1m(j,i) ⊗ ai)i ∈
⊕

i Mm(j,i) ⊗ Fi
n � Fj

n+1 if j /∈ {
jp
0, jp

1

}
.

(37)

Recall that βn,r = (β
p,i
n,r)p,i and that βp,i

n,r is a composition of the form

Fi
n

1⊗id
Fi
n−→ 1mr(p,i) ⊗ Fi

n ⊆ Mmr(p,i) ⊗ Fi
n � Ep

n. (38)

The groupoid morphism bn,r inducing βn,r is given on Ep
n,r, the intersection of the domain

En,r of b n,r with Ep
n , by

bp
n,r : Ep

n,r
∼=

∐
i

Mr(p, i)× F i
n→

∐
i

F i
n = Fn, (39)

where En, Ep
n , Fn, and F i

n are groupoid models for En, Ep
n, Fn and Fi

n. Now a groupoid

model for (An, Bn) is given by Gn := (
([0, 1] ×• En) � Fn

)
/∼, where [0, 1] ×• En :={

(t, γ ) ∈ [0, 1]× En: γ ∈ En,t if t = 0, 1
}
, and ∼ is the equivalence relation on ([0, 1]×• En)�

Fn generated by (r, γ ) ∼ b n,r(γ ) for all r = 0, 1, γ ∈ En,r. For details, we refer to

[47, Section 6.1]. Note that we have Gn = [[0, 1] ×• En] just as in Section 2, that is, the

extra copy of Fn is not needed; it is just convenient to describe the groupoid model pn

for ϕn.

Let us now describe a groupoid model p := pn for the connecting map ϕn (see

[47, Section 6.2] for details). Let Hn be the subgroupoid of Gn+1 given by Hn := (
([0, 1]×•

En+1[p ]) � Fn+1[p ]
)
/∼, where, with λμ := λ+ if μ ∈ M+(q, p), λμ := λ+ if μ ∈ M+(q, p),

λμ := λ− if μ ∈ M−(q, p), λμ := λ− if μ ∈ M−(q, p), λμ ≡ 1
2 if μ ∈ M(q, p) �M(q, p),

En+1[p ] =∐
q E

q
n+1[p ], and we have identifications

Eq
n+1[p ] ∼= (∐

p

(M+(q, p)�M+(q, p)�M−(q, p)�M−(q, p))× Ep
n
)

(40)

� ( ∐
p

(M(q, p)�M(q, p))× Ep
n
)� (∐

i

Mq,i × F i
n

)
if q 
= q,
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Constructing Menger Manifold C∗-Diagonals 19029

and similarly for Eq

n+1[p ], but with an additional copy of Fn+1[p ], and for r = 0, 1, we

have with respect to (11):

Eq
n+1,r[p ] = {

(μ, γ ) ∈ Eq
n+1[p ] : γ ∈ Ep

n,λμ(r)
if μ ∈M+(q, p)�M+(q, p)

�M−(q, p)�M−(q, p)
}
,

En+1,r[p ] =
∐

q

Eq
n+1,r[p ]; [0, 1]×• En+1[p ] := {(t, (μ, γ )) ∈ [0, 1]

× En+1[p ]: (μ, γ ) ∈ En+1,t[p ] if t ∈ {0, 1}}.

Now p is given by p [t, (μ, γ )] = [λμ(t), γ ] for γ ∈ Ep
n and p(μ, γ ) = γ for γ ∈ F i

n. Moreover,

there are identifications

F j
n+1[p ] ∼= Ep

n �
( ∐

i

M(j, i)× F i
n

)
if j = jp• ; F j

n+1[p ] ∼=
∐

i

M(j, i)× F i
n if j /∈ {

jp
0, jp

1

}
,

(41)

such that p(μ, γ ) = γ for (μ, γ ) ∈M(j, i)× F i
n, and

p(γ ) = [ 1
2 , γ ] ∀ γ ∈ Ep

n ⊆ F jp•
n+1[p ] and p [t, γ ] = p(γ ) ∀ γ ∈ Fn+1[p ] ⊆ Eq

n+1[p ], t ∈ [0, 1].

(42)

We will often work with the identifications (11) and (12) without explicitly mentioning

them.

That ϕn(f , a) satisfies the defining boundary condition for An+1 for all (f , a) ∈ An

translates to the following compatibility conditions for b • and p : we have a commuta-

tive diagram

(43)
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19030 X. Li

For every μ ∈M+(q, p)�M+(q, p)�M−(q, p)�M−(q, p), r, s ∈ {0, 1} with λμ(r) = s, the

restriction of (14) to {μ} × Ep
n,s ⊆ Eq

n+1,r[p ] fits into the following commutative diagram

(44)

where we identify {μ} × Ep
n,s and

∐
j(

∐
i M(j, i) × F i

n) with subsets of Eq
n+1,r[p ] and∐

j F
j
n+1[p ] via (11) and (12), and the lower vertical arrows on the left and right are given

by the canonical projection maps.

Moreover, for all q, p, we have b r(μ, γ ) = γ ∈ Ep
n ⊆ F jpr

n+1[p ] for all μ ∈M+(q, p)�
M+(q, p) and b r(μ, γ ) = γ ∈ Ep

n ⊆ F jp
r∗

n+1[p ] for all μ ∈M−(q, p)�M−(q, p), where r ∈ {0, 1}
satisfies λμ(r) = 1

2 , and r∗ = 1 − r, b r(μ, γ ) = γ ∈ Ep
n ⊆ F jp0

n+1[p ] for all μ ∈M(q, p) and

r = 0, 1, and b r(μ, γ ) = γ ∈ Ep
n ⊆ F jp1

n+1[p ] for all μ ∈M(q, p) and r = 0, 1. On Fn+1 ⊆ Eq

n+1,

b0 is given by id and b1 is of a similar form as in Section 3.3 and in addition sends

Ep
n ⊆ F jp0

n+1 identically onto Ep
n ⊆ F jp1

n+1 and Ep
n ⊆ F jp1

n+1 identically onto Ep
n ⊆ F jp0

n+1 for all

p 
= p̀.

Finally, the restriction of (14) to
∐

i Mq,i × F i
n ⊆ Eq

n+1,r[p ] fits into the following

commutative diagram

4.3 The path-lifting property for connecting maps

We now establish a path-lifting property for p = pn.
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Proposition 4.2. Suppose that ξn : [0, 1]→ Gn is a continuous path with the following

properties:

(P1) There exist 0 = t0 < t1 < . . . < tD < tD+1 = 1, D ≥ 0, such that for all

0 ≤ d ≤ D and I = [td, td+1], there exist γn,I ∈ En and a continuous,

monotonous function ωn,I : I → [0, 1] with stop values at ωn,I(I) ∩ Z[ 1
2 ], that

is, such that, for all t ∈ I, ξn(t) = [ωn,I(t), γn,I ].

(P2) There exist d and t ∈ I = [td, td+1] such that ωn,I(t) ∈
{
0, 1

2 , 1
}

is a stop value

of ωn,I .

Let ξ0
n+1, ξ1

n+1 ∈ Hn satisfy p(ξ rn+1) = ξn(r) for r = 0, 1. Then there exists a continuous

path ξn+1 : [0, 1]→ Hn with properties (P1) and (P2) such that ξn+1(r) = ξ rn+1 for r = 0, 1

and p ◦ ξn+1 = ξn.

Variation: suppose that ξn has properties (P1) and (P2), with the following exception:

(P3a) ωn,[t0,t1](0) ∈ {0, 1} is not a stop value for ωn,[t0,t1],

(P3b) there exist w0
n+1 ∈ {0, 1} ,μ0

n+1, γ 0
n such that ξ0

n+1 = [w0
n+1, (μ0

n+1, γ 0
n )] and

ωn,[td,td+1](t) ∈ im (λμ0
n+1

) for all t ∈ [0, t] ∩ [td, td+1] if td < t, where

t := min
{
t > 0: t ∈ [td, td+1], ωn,[td,td+1](t) ∈

{
0, 1

2 , 1
}}

.

Then we can arrange that ξn+1 has (P3a). We allow for a similar variation for ωn,[tD,tD+1](1)

instead of ωn,[t0,t1](0).

Here w is called a stop value of ωn,I if ωn,I takes the constant value w on some

closed subinterval of I with positive length (see for instance [24]).

Proof. By assumption, there are 0 = r0 ≤ t0 < r1 < t1 < . . . < rc < tc < rc+1 ≤ tc+1 = 1,

c ≥ 0, such that for every interval I of the form [tb, rb+1], we have ξn(t) = [ωn,I(t), γn,I ] for

all t ∈ I for some γn,I ∈ Gn and ωn,I ≡ 0, 1
2 or 1, and every interval of the form [rb, tb] of

positive length splits into finitely many subintervals I for which there are γn,I ∈ En and

continuous maps ωn,I : I → [0, 1] as in (P1) and (P2) such that ξn(t) = [ωn,I(t), γn,I ] for all

t ∈ I. Moreover, for 1 ≤ b ≤ c and I ⊆ [rb, tb] as above, ωn,I does not take the values 0, 1
2 or

1 on (rb, tb). Set ξn+1[0] := ξ0
n+1, ξn+1[c + 1] := ξ1

n+1, and write ξn+1[0] = [w[0], (μ[0], γ [0])],

ξn+1[c+ 1] = [w[c+ 1], (μ[c+ 1], γ [c+ 1])]. If w[0] ∈ (0, 1), we arrange t0 > 0 by replacing

t0 by 1
2 · r1 if necessary. If w[c + 1] ∈ (0, 1), we arrange rc+1 < 1 by replacing rc+1 by

1
2 · (tc + 1) if necessary. As a result, if w[0] ∈ (0, 1), we must have t0 > 0, and either ωn,I

does not take the values 0, 1
2 , or 1 on I ∩ [r0, t0) for each I ⊆ [r0, t0] as above, or ωn,[r0,t0] is

constant with value 0, 1
2 or 1. If w[0] ∈ {0, 1}, then we must have t0 = 0. For the variation,
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we must have t0 > 0, and for each I ⊆ [r0, t0] as above, ωn,I does not take the values 0, 1
2 ,

or 1 on I∩(r0, t0), ωn,I(0) ∈ {0, 1} is not a stop value, and w[0] ∈ {0, 1}. A similar statement

holds for w[c + 1].

For 1 ≤ b ≤ c, take sb ∈ (rb, tb) and choose ξn+1[b] = [w[b], (μ[b], γ [b])] ∈ Hn such

that p(ξn+1[b]) = ξn(sb). Such ξn+1[b] exist because of (7). Define s0 := 0 and sc+1 := 1.

Now let 0 ≤ b ≤ c + 1. Suppose that ξn(sb) is of the form [w, γ ] with w /∈ {0, 1}, which is

always the case if 1 ≤ b ≤ c. Let I ⊆ [rb, tb] be as above. Define γn+1,I := γ [b]. If λμ[b] = λ+,

define ωn+1,I := −1 + 2 · ωn,I , if λμ[b] = λ+, define ωn+1,I := 2 · ωn,I , if λμ[b] = λ−, define

ωn+1,I := 2−2·ωn,I , and if λμ[b] = λ−, define ωn+1,I := 1−2·ωn,I . If b = 0, I = [r0, t0], t0 > 0,

that is, w[0] ∈ (0, 1), and if ωn,I ≡ 0, 1
2 or 1, set γn+1,I := (μ[0], γ [0]) and let ωn+1,I be a

continuous path as in (P1) with ωn+1,I(0) = w[0], ωn+1,I(0) = 1 ((P2) is then automatic).

Such a path exists by [24, Lemma 2.10]. Define γn+1,I and ωn+1,I similarly for b = c + 1,

I = [rc+1, tc+1], rc+1 < 1 and ωn,I ≡ 0, 1
2 , or 1. For the variation, note that (P3b) implies

that we can define γn+1,I and ωn+1,I for I ⊆ [r0, t0] and I ⊆ [rc+1, tc+1] as above in the

same way as for I ⊆ [rb, tb], where ξn(sb) is of the form [w, γ ] with w /∈ {0, 1}. Now set

ξn+1(t) := [ωn+1,I(t), γn+1,I ] for all t ∈ I.

Next, consider I = [tb, rb+1] for 0 ≤ b ≤ c. First assume that ωn,I ≡ 1
2 . Let

γn,I = γ . Set w := ωn+1,[rb,tb](tb), w̄ := ωn+1,[sb+1,tb+1](sb+1) and let γn+1,[sb,tb](tb) = (μ, γ ),

γn+1,[rb+1,tb+1](sb+1) = (μ̄, γ ). Note that w, w̄ ∈ {0, 1}. If [w, (μ, γ )] = [w̄, (μ̄, γ )], then set

ωn+1,I ≡ w and γn+1,I := (μ, γ ). If [w, (μ, γ )] 
= [w̄, (μ̄, γ )], then b w(μ, γ ) = γ jp0 ∈ Ep
n ⊆ F jp0

n+1

and b w̄(μ̄, γ ) = γ jp1 ∈ Ep
n ⊆ F jp1

n+1 for p 
= p̀ (or with jp
0 and jp

1 swapped), where γ jpr denotes

the copy of γ in F jpr
n+1. Let ωn+1,I be a continuous path as in (P1) such that ωn+1,I(tb) = 0,

ωn+1,I(sb+1) = 1 (such a path exists by [24, Lemma 2.10], and (P2) is automatic), and

define γn+1,I := γ jp0 . Set ξn+1(t) := [ωn+1,I(t), γn+1,I ] for all t ∈ I. Then by (13), we have

p(ξn+1(t)) = [ 1
2 , γ ] = ξn(t) for all t ∈ I, as well as ξn+1(tb) = [0, γ jp0 ] = [w, (μ, γ )]

since b0(γ
jp0 ) = γ jp0 and ξn+1(rb+1) = [1, γ jp0 ] = [0, γ jp1 ] = [w̄, (μ̄, γ )] as b 1(γ

jp0 ) = γ jp1 =
b0(γ

jp1 ).

Now assume that ωn,I ≡ 0. Set w := ωn+1,[rb,tb](tb), w̄ := ωn+1,[rb+1,tb+1](rb+1)

and let γn+1,[rb,tb](tb) = (μ, γ ), γn+1,[rb+1,tb+1](rb+1) = (μ̄, γ̄ ). We have ξn(t) = [0, γn,I ] =
p [w, (μ, γ )] = p [w̄, (μ̄, γ̄ )] for all t ∈ I. Note that w, w̄ ∈ {0, 1}. Now [w, (μ, γ )] =
[0, b w(μ, γ )] and [w̄, (μ̄, γ̄ )] = [0, b w̄(μ̄, γ̄ )], where we view bw(μ, γ ) and b w̄(μ̄, γ̄ ) as

elements of Eq
conn (the analogue of Yq

conn in Section 3.3). We have p [0, b w(μ, γ )] =
p [w, (μ, γ )] = p [w̄, (μ̄, γ̄ )] = p [0, b w̄(μ̄, γ̄ )], so that by the analogue of Remark 3.4 for

Eq
conn instead of Yq

conn, after possibly splitting I into finitely many subintervals, we can

find γn+1,I and ωn+1,I as in (P1) and (P2) such that, if we define ξn+1(t) := [ωn+1,I(t), γn+1,I ]
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Constructing Menger Manifold C∗-Diagonals 19033

for all t ∈ I, then we have p(ξn+1(t)) = p [0, b w(μ, γ )] = p [w, (μ, γ )] = ξn(t) for all t ∈ I,

and ξn+1(tb) = [0, bw(μ, γ )] = [w, (μ, γ )], ξn+1(rb+1) = [0, b w̄(μ̄, γ̄ )] = [w̄, (μ̄, γ̄ )].

The case ωn,I ≡ 1 is similar. �

5 Constructing C∗-Diagonals with Menger Manifold Spectra

Suppose that modification (path) produces the C∗-algebra A = lim−→n

{
An,ϕn

}
with

prescribed Elliott invariant E as in Section 4.1 and the C∗-diagonal B = lim−→n

{
Bn,ϕn

}
of A as in Lemma 4.1. In the following, we write Xn := Spec Bn, X := Spec B. Note

that X is metrizable, Hausdorff and compact (in the unital case) or locally compact

(in the stably projectionless case), X ∼= lim←−n

{
Xn, pn

}
, and dim X ≤ 1 (see [47]). Our

goal now is to determine X further. Let pn,∞ : X → Xn be the map given by the

inverse limit structure of X and pn,N : XN+1 → Xn the composition pn,N := pn ◦
. . . ◦ pN . Moreover, the groupoid model Gn for An in Section 4.2 yields descriptions

Xn
∼= (

([0, 1] ×• Yn) � Xn

)
/∼, where Yn = E (0)n , Xn = F (0)

n , and with Yn,r := Yn ∩ En,r,

[0, 1]×•Yn := {
(t, y) ∈ [0, 1]× Yn: y ∈ Yn,t if t = 0, 1

}
, and ∼ is the equivalence relation on

([0, 1]×• Yn)� Xn generated by (r, y) ∼ b n,r(y) for all r = 0, 1, y ∈ Yn,r.

Proposition 5.1. The C∗-diagonal B has path-connected spectrum X.

Proof. Let η = (ηn)n, ζ = (ζn)n be two points in X. The induction start in the proof of

Proposition 3.3 shows that there exists a continuous path ξ1 : [0, 1]→ X1 with ξ1(0) = η1,

ξ1(1) = ζ1. Using [24, Lemma 2.10], it is straightforward to see that ξ1 can be chosen with

property (P1) and (P2). Applying Proposition 4.2 recursively, we obtain continuous paths

ξn : [0, 1] → Xn with ξn(0) = ηn, ξn(1) = ζn and pn ◦ ξn+1 = ξn. Hence, ξ(t) := (ξn(t))n
defines a continuous path [0, 1]→ X ∼= lim←−n

{
Xn, pn

}
with ξ(0) = η and ξ(1) = ζ . �

Proposition 5.2. The spectrum X of B is locally path connected.

Proof. Consider a point c = ([wn, yn])n ∈ X with wn ∈ [0, 1], yn ∈ Yn, and an open set

V of X with c ∈ V. First suppose that there is n such that wn /∈ {0, 1} for all n ≥ n. Then

there exists n ≥ n, an open interval In ⊆ (0, 1), α, e ∈ Z≥0 such that α
2e < wn < α+1

2e ,

[ α2e , α+1
2e ] ⊆ In and p−1

n,∞[In ×
{
yn

}
] ⊆ V. It is straightforward to see that if there exists an

open interval In+m ⊆ (0, 1) of length at least 1
2e−m with wn+m ∈ In+m and 1

2 /∈ In+m such

that [In+m×
{
yn+m

}
] ⊆ p−1

n,n+m[In×
{
yn

}
], then there exists an open interval In+m+1 ⊆ (0, 1)

of length at least 1
2e−m−1 with wn+m+1 ∈ In+m+1 and such that [In+m+1 ×

{
yn+m+1

}
] ⊆

p−1
n,n+m+1[In ×

{
yn

}
]. Thus, there exists m ≤ e− 1 and an open interval In+m ⊆ (0, 1) with
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wn+m, 1
2 ∈ In+m such that [In+m×

{
yn+m

}
] ⊆ p−1

n,n+m[In×
{
yn

}
]. Hence, U := p−1

n+m,∞[In+m×{
yn+m

}
] satisfies c ∈ U ⊆ V. Set n̄ := n +m, so that U = p−1

n̄,∞[In̄ ×
{
yn̄

}
]. Now assume

that for all n there is n ≥ n such that wn ∈ {0, 1}. Then, since V is open, there exists

n̄ ≥ n and, for every (r, y) ∼ (wn̄, yn̄), half-open intervals I(r, y) containing r such that

U :=⋃
(r,y)∼(wn̄,yn̄)

p−1
n̄,∞[I(r, y)× {y}] ⊆ V.

We claim that in both cases above, U is path connected. Let η = (ηn), ζ = (ζn) ∈ U.

We construct a path ξn̄ : [0, 1]→ Xn̄ with (P1) and (P2) such that ξn̄(0) = ηn̄ and ξn̄(1) = ζn̄.

Let us treat the 1st case (wn̄ /∈ {0, 1}). We have ηn̄ = [w0
n̄, yn̄], ζn̄ = [w1

n̄, yn̄]. Define ξn̄ as

in (P1), with D = 1, t1 = 1
2 , for I = [t0, t1] = [0, 1

2 ], γn̄,I := yn̄, ωn̄,I : [0, 1
2 ]→ [0, 1] as in (P1)

with ωn̄,I(0) = w0
n̄, ωn̄,I(

1
2 ) = 1

2 , and for I = [t1, t2] = [ 1
2 , 1], γn̄,I := yn̄, ωn̄,I : [ 1

2 , 1]→ [0, 1]

as in (P1) with ωn̄,I(
1
2 ) = 1

2 , ωn̄,I(1) = w1
n̄ (such paths exist by [24, Lemma 2.10] and have

(P2)). In the 2nd case (wn̄ ∈ {0, 1}), let ηn̄ = [w0
n̄, y0

n̄], ζn̄ = [w1
n̄, y1

n̄]. There must exist

r0, r1 ∈ {0, 1} with (r0, y0
n̄) ∼ (wn̄, yn̄) ∼ (r1, y1

n̄). Define ξn̄ as in (P1), with D = 1, t1 = 1
2 ,

for I = [t0, t1] = [0, 1
2 ], γn̄,I := y0

n̄, ωn̄,I : [0, 1
2 ] → [0, 1] as in (P1) with ωn̄,I(0) = w0

n̄,

ωn̄,I(
1
2 ) = r0, and for I = [t1, t2] = [ 1

2 , 1], γn̄,I := y1
n̄, ωn̄,I : [ 1

2 , 1] → [0, 1] as in (P1) with

ωn̄,I(
1
2 ) = r1, ωn̄,I(1) = w1

n̄ (such paths exist by [24, Lemma 2.10] and have (P2)). Now

apply Proposition 4.2 to obtain paths ξn and thus a path ξ connecting η and ζ as for

Proposition 5.1. �

Corollary 5.3. X is a Peano continuum in the unital case and a generalized Peano

continuum in the stably projectionless case (see for instance [8, Chapter I, Section 9] for

the definition of a generalized Peano continuum).

Our next goal is to show that we can always arrange X to have no local cut points.

In the following, we keep the same notations as in Section 4.2. First, we observe that in

modification (path) because multiplicities in the original C∗-algebra models in [15, 22,

32] can be chosen bigger than a fixed constant, by conjugating by suitable permutation

matrices, we can always arrange the following conditions for all n:

(nlc1) For all p and m = m+, m+, m−, or m−, we either have
∑

q m(q, p) = 0

or
∑

q m(q, p) ≥ 2, and
∑

q(m(q, p) + m(q, p)) ≥ 2; and for all i, we have∑
q mq,i ≥ 2;

(nlc2) For all p, m = m+, m+, m−, or m−, λ = λ+, λ+, λ−, or λ− correspondingly,

r, s ∈ {0, 1} with λ(r) = s, rank-one projections d ∈ DMm(p,i) and δ the image

of d ⊗ 1Fi
n

under � in the description (9) of βp
n,s, and rank-one projections

d ∈ DMm(q,p), there exists a rank-one projection d′ ∈ DMm(q′,p) orthogonal to
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d, and orthogonal projections f, f′ ∈ DFn+1 such that, if � is the image of d⊗ δ
under � in the description (6) of ϕC, then

d⊗ (δ ·βp
n,s(a) · δ)=d⊗ (δ · f p(s) · δ) � � · ϕq

C(f , a)(r) ·�=�·βr(f · ϕF(f , a) · f)·�

for all (f , a) ∈ An with respect to the description (6) of ϕC, and similarly for

d′ and f′.

On the groupoid level, with the same notation as in Section 4.2, (nlc)2 means that for

all γ ∈ M(p, i) × F i
n ↪→ Ep

n,s, μ ∈ M(q, p), where M = M+,M+,M− or M−, λμ(r) = s,

there exists ν ∈M(q′, p) such that b r(μ, γ ) 
= b r(ν, γ ), that is, [r, (μ, γ )] 
= [r, (ν, γ )], and

λμ = λν .

Proposition 5.4. If we arrange (nlc1), (nlc2) in modification (path), then we obtain a

C∗-diagonal B whose spectrum X has no local cut points (i.e., for all c ∈ X and open

connected sets V ⊆ X containing c , V \ {c} is still connected).

Proof. Let c , V, and U be as in Proposition 5.2. It suffices to show that U \ {c} is path

connected. Let η, ζ ∈ U \ {c} and ξ a path in U connecting η and ζ as in the proof of

Proposition 5.2. If ξ hits c , our goal is to modify ξ to obtain a path in U from η to ζ ,

which avoids c . First of all, we may assume that ξ hits c only once, that is, there exists

ť ∈ [0, 1] such that ξ(ť) = c and ξ(t) 
= c for all t ∈ [0, 1] \ {
ť
}
. Otherwise, we could

define tmin := min {t ∈ [0, 1]: ξ(t) = c}, tmax := max {t ∈ [0, 1]: ξ(t) = c}, and concatenate

ξ |[0,tmin] with ξ |[tmax,1] (and re-parametrize to get a map defined on [0, 1]). Let ξn be as in

the proof of Proposition 5.2, obtained from Proposition 4.2, and let γn,I and ωn,I be as in

(P1) for ξn. Choose n such that, with cn = [wn, yn], we have [wn, yn] 
= ηn = [w0
n, y0

n] and

[wn, yn] 
= ζn = [w1
n, y1

n].

If w0
n /∈ {0, 1}, then either yn 
= y0

n, in which case ωn([0, ť]) :=⋃
I ωn,I(I∩[0, ť]) must

contain either [0, w0
n] or [w0

n, 1], or wn 
= w0
n, in which case ωn([0, ť]) must contain the

interval between wn and w0
n. If w0

n ∈ {0, 1} and wn /∈ {0, 1}, then ωn([0, ť]) must contain

the interval between wn and w0
n (or 1 − w0

n). If w0
n, wn ∈ {0, 1}, then since [wn, yn] 
=

[w0
n, y0

n], we must have ωn([0, ť]) = [0, 1]. We conclude that in any case, ωn([0, ť])∩Z[ 1
2 ] 
= ∅

and ωn([0, ť])∩(Z[ 1
2 ])c 
= ∅. Similarly, with ωn([ť, 1]) :=⋃

I ωn,I(I∩ [ť, 1]), ωn([ť, 1])∩Z[ 1
2 ] 
= ∅

and ωn([ť, 1])∩ (Z[ 1
2 ])c 
= ∅. By increasing n, we can arrange that 0, 1

2 , or 1 ∈ ωn([0, ť]) and

ωn([0, ť]) ∩ (Z[ 1
2 ])c 
= ∅, as well as 0, 1

2 , or 1 ∈ ωn([ť, 1]) and ωn([ť, 1]) ∩ (Z[ 1
2 ])c 
= ∅. If we

now let 0 = r0 ≤ t0 < r1 < t1 < . . . < rc < tc < rc+1 ≤ tc+1 = 1 be as in the proof of

Proposition 4.2, then we must have ť ∈ (r1, tc).
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First assume that wn 
= 0, 1
2 , 1 and wn+1 
= 0, 1. Then ť ∈ I ⊆ [rb, tb], and ť

must lie in the interior of I. Let sb and ξn+1[b] = [w[b], (μ[b], y[b])] be as in the proof of

Proposition 4.2. By condition (nlc1), we can find μ̄[b] 
= μ[b] with λμ̄[b] = λμ[b], so that we

can replace ξn+1[b] by [w[b], (μ̄[b], y[b])] since we still have pn[w[b], (μ̄[b], y[b])] = ξn(sb).

Now let γn+1,I := (μ̄[b], y[b]) and follow the recipe in the proof of Proposition 4.2 to get

ωn+1,I . Recursive application of Proposition 4.2 gives us the desired path, which will not

hit c in (rb, tb) by construction, on [tb−1, rb] and [tb, rb+1], we have ωn,I ≡ 0, 1
2 or 1, so that

we will not hit c there, either, and on the rest of [0, 1], we keep our path ξ and hence will

not hit c there, either.

Secondly, assume that wn = 0, 1
2 , or 1 and wn+1 
= 0, 1. Then ť ∈ I = [rb, tb], and

ť must lie in the interior of I. Let γn+1,I = (μ, y). We must have λμ ≡ wn. By condition

(nlc1), there exists μ̄ 
= μ with λμ̄ = λμ. Now replace γn+1,I by (μ̄, y) and follow the recipe

in the proof of Proposition 4.2 to get ωn+1,I . Recursive application of Proposition 4.2

gives us the desired path, which will not hit c in I by construction, and on [0, 1] \ I, we

keep our path ξ and hence will not hit c there, either.

Thirdly, assume wn ∈
{
0, 1

2 , 1
}

and wn+1 ∈ {0, 1}. By increasing n if necessary,

we may assume wn ∈ {0, 1}. We have ť ∈ I := [tb, rb+1]. If ť ∈ (tb, rb+1), then choose a

different path between [w, (μ, y)] and [w̄, (μ̄, ȳ)] (here we are using the same notation

as in the proof of Proposition 4.2). There are always two such paths only overlapping

at their end points (see Remark 3.4 and the proof of Proposition 3.3 it refers to).

Complete the construction of ξ on [tb, rb+1] using Proposition 4.2 repeatedly. Keep ξ

on [0, 1] \ (tb, rb+1). This yields the desired path which does not hit c anymore. Now

assume that ť = tb < rb+1. By condition (nlc2), there exists ν with λν = λμ such that

[w, (ν, y)] 
= [w, (μ, y)]. Construct a path as in the proof of Proposition 4.2 connecting

[w, (ν, y)] and [w̄, (μ̄, ȳ)] not hitting cn+1 = [wn+1, yn+1]. This is possible because there

are always two paths connecting these points and only overlapping at their end points

(see Remark 3.4 and the proof of Proposition 3.3 it refers to). On the interval İ before

tb, redefine ξn+1 by setting γn+1,İ := (ν, y) and following the recipe in the proof of

Proposition 4.2 for ωn+1,İ . On the interval Ï before İ, either ωn,Ï ≡ 1
2 , in which case simply

following the recipe in the proof of Proposition 4.2 for ωn+1,Ï will make sure that we do

not hit c , or ωn,Ï ≡ w, in which case we construct ξn+1 on Ï avoiding cn+1 using as before

that Remark 3.4 (and the proof of Proposition 3.3 it refers to) always provides two paths

we can choose from to connect end points as required. Complete the construction of ξ on

I, İ, and Ï using Proposition 4.2 repeatedly, and keep ξ on the remaining part of [0, 1]. This

yields the desired path not hitting c . Finally, suppose that ť = tb = rb+1 (this can happen
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due to our re-parametrization). By condition (nlc2), there exist ν, ν̄ with λν = λμ, λν̄ = λμ̄

and [w, (ν, y)] 
= [w, (μ, y)], [w̄, (ν̄, ȳ)] 
= [w̄, (μ̄, ȳ)]. As in the previous cases, we can

construct a path connecting [w, (ν, y)] and [w̄, (ν̄, ȳ)] not hitting [wn+1, yn+1]. Complete

the construction of ξ on I using Proposition 4.2 repeatedly. On the two intervals before

and after tb = rb+1, construct ξ as in the previous case so that we do not hit c there. On

the remaining part of [0, 1], keep the path ξ , which does not hit c by assumption. This

yields the desired path not hitting c . �

Next, we show that we can always arrange X so that no non-empty open subset

of X is planar. For this purpose, we observe that in modification (path), with the same

notations as in Section 4.2, for the same reasons why we can always arrange (nlc1) and

(nlc2), we can always arrange the following conditions for all n:

(nop1) For all p,
∑

q m+(q, p) ≥ 1 and
∑

q m+(q, p) ≥ 1, and
∑

q m(q, p) ≥ 9 or∑
q m(q, p) ≥ 9;

(nop2) The analogue of (nlc2), implying on the groupoid level that for all γ ∈ Ep
n,0,

there exist νi+ ∈ M+(qi, p), i = 1, 2, 3, such that b0(ν
i+, γ ) are pairwise

distinct, that is, [0, (νi+, γ )] are pairwise distinct, and for all γ ∈ Ep
n,1, there

exist ν+i ∈ M+(qi, p), i = 1, 2, 3, with b 1(ν
+
i , γ ) pairwise distinct, that is,

[1, (ν+i , γ )] pairwise distinct.

Proposition 5.5. If we arrange (nop1) and (nop2) in modification (path), then we obtain

a C∗-diagonal B whose spectrum X has the property that no non-empty open subset of

X is planar.

Proof. Let ∅ 
= V ⊆ X be open. A similar argument as in the beginning of the proof

of Proposition 5.2 shows that there exists n and an open subset Un of Xn such that

[ 1
2 , y] ∈ Un for some y ∈ En and p−1

n,∞(Un) ⊆ V. By condition (nop1), there exist

μij, 1 ≤ i, j ≤ 3 with λμij ≡ 1
2 and [0, (μij, y)] = [1, (μkl, y)] for all i, j, k, l. Let

ξ
ij
n+1(t) := [ωn+1(t), (μ

ij, y)], where ωn+1 : [0, 1] → [0, 1] is as in (P1), with ωn+1(0) = 0,

ωn+1(1) = 1 and ωn+1(0), ωn+1(1) are not stop values (ωn+1 exists by [24, Lemma 2.10]

and automatically has (P2)). Set yn+1 := (μ11, y). By condition (nop2), we can find νi+,

i = 1, 2, 3, such that λ
νi+ =

1
2 · id and, with y0

n+2,i := (νi+, yn+1), we have that [0, y0
n+2,i] are

pairwise distinct for i = 1, 2, 3. Similarly, by condition (nop2), we can find ν+j , j = 1, 2, 3,

such that λν+i
= 1

2 + 1
2 · id and, with y1

n+2,j := (ν+j , yn+1), we have that [1, y1
n+2,j] are

pairwise distinct for j = 1, 2, 3. By the variation of Proposition 4.2, we can find a path
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ξ
ij
n+2 satisfying (P1), (P2) and (P3a) such that ξ ij

n+2(0) = [0, y0
n+2,i], ξ

ij
n+2(1) = [1, y1

n+2,j] and

pn+1 ◦ ξ ij
n+2 = ξ

ij
n+1. Now define recursively y0

N,i and y1
N,j for all N ≥ n + 2 by setting

y0
N+1,i := (μ+, y0

N,i) for some μ+ with λμ+ = 1
2 · id and y1

N+1,j := (μ+, y1
N,j) for some μ+ with

λμ+ = 1
2 + 1

2 · id. We can find such μ+ and μ+ by the 1st part of condition (nop1). By the

variation of Proposition 4.2, we can find paths ξ
ij
N satisfying (P1), (P2), and (P3a) such

that ξ ij
N (0) = [0, y0

N,i], ξ
ij
N (1) = [1, y1

N,j] and pN−1 ◦ ξ ij
N = ξ

ij
N−1 for all N ≥ n + 2. This gives

rise to paths ξ ij, 1 ≤ i, j ≤ 3, with ξ ij(t) := (ξ
ij
N (t))N . As pn,∞(ξ ij(t)) = pn(ξ

ij
n+1(t)) ∈ Un for

all t ∈ [0, 1], we must have im (ξ ij) ⊆ p−1
n,∞(Un) ⊆ V for all i, j. Now define v0

i := ([0, y0
N,i])N

and v1
j := ([1, y1

N,j])N . By construction, we have im (ξ i,j) ∩ im (ξk,l) = {v0
i } if i = k and

j 
= l, im (ξ i,j) ∩ im (ξk,l) = {v1
j } if i 
= k and j = l, and im (ξ i,j) ∩ im (ξk,l) = ∅ if i 
= k and

j 
= l. As im (ξ i,j) is a compact, connected, locally connected metric space, it is arcwise

connected (see for instance [68, Section 31]). Hence, we can find arcs ξ (i→j) such that

ξ (i→j)(0) = v0
i , ξ (i→j)(1) = v1

j , and im (ξ (i→j)) ⊆ im (ξ i,j) for i, j ∈ {1, 2, 3}. Then we still

have that im (ξ (i→j)) ∩ im (ξ (k→l)) = {v0
i } if i = k and j 
= l, im (ξ (i→j)) ∩ im (ξ (k→l)) = {v1

j }
if i 
= k and j = l, and im (ξ (i→j)) ∩ im (ξ (k→l)) = ∅ if i 
= k and j 
= l. Now let K3,3 be the

bipartite graph consisting of vertices ei(0), ej(1), 1 ≤ i, j ≤ 3, and edges e(i→j), 1 ≤ i, j ≤ 3,

connecting ei(0) to ej(1) for all i, j, such that we have e(i→j) ∩ e(k→l) = {
ei(0)

}
if i = k and

j 
= l, e(i→j) ∩ e(k→l) = {
ej(1)

}
if i 
= k and j = l, and e(i→j) ∩ e(k→l) = ∅ if i 
= k and j 
= l. By

construction, we obtain a continuous map K3,3 → V, which is a homeomorphism onto

its image by sending ei(0) to v0
i , ej(1) to v1

j , and e(i→j) to ξ (i→j). Since K3,3 is not planar

by [43], this shows that V is not planar. �

Corollary 5.6. Suppose that we are in the unital case and that we arrange (nlc1),

(nlc2), (nop1), and (nop2) in modification (path). Then we obtain a C∗-diagonal B whose

spectrum X is homeomorphic to the Menger curve.

Proof. Anderson characterized the Menger curve as the (up to homeomorphism) unique

one-dimensional Peano continuum with no local cut points and for which no non-empty

open subset is planar (see [1, 2]). Our result thus follows from Corollary 5.3 combined

with Propositions 5.4 and 5.5. �

Our next goal is to identify X = Spec B in the stably projectionless case. We

show that X ∼= M \ ι(C), where ι is an embedding of the Cantor space C into the

Menger curve M such that ι(C) is a non-locally-separating subset of M . By [53], the

homeomorphism type of M \ ι(C) does not depend on the choice of ι, and hence we

denote the space by M\C := M \ ι(C). More precisely, we will show that the Freudenthal
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compactification X
F

of X is homeomorphic to M , that the space of Freudenthal ends

EndF(X) is homeomorphic to C, and that EndF(X) is a non-locally-separating subset

of X
F
. It follows that X is homeomorphic to M\C. We refer the reader to [25] and [8,

Chapter I, Section 9] for details about the Freudenthal compactification. We follow the

exposition in [8, Chapter I, Section 9].

First of all, in the stably projectionless case, we define Xn := (
([0, 1]×Yn)�Xn

)
/∼,

where we extend the equivalence relation describing Xn (see the beginning of Section 5)

trivially from ([0, 1]×• Yn)�Xn to ([0, 1]×Yn)�Xn. By our arrangement, for all n, there

exists exactly one index p̀ such that βp̀
n,0 is unital and β

p̀
n,1 is non-unital, while β

p
n,• is

unital for all other p 
= p̀. This means that Yn,0 = Yn and Yn \ Yn,1 = Y p̀
n \ Y p̀

n,1. Hence,

Xn\Xn =
{
[1, yn] : yn ∈ Y p̀

n\Y p̀
n,1

}
. Let p̄n : Xn+1 → Xn be the unique continuous extension

of pn. Every yn+1 ∈ Y q̀
n+1 \ Y q̀

n+1,1 is of the form yn+1 = (μ, yn) for some yn ∈ Y p̀
n \ Y p̀

n,1,

μ ∈M+(q̀, p̀), and we have p̄n[1, yn+1] = [1, yn]. Define X := lim←−n

{
Xn, p̄n

}
.

Lemma 5.7. idX extends to a homeomorphism X
→∼X

F
.

Proof. For y /∈ Yn,1, define Iy := [0, 1
3 ], and for y ∈ Yn,1, set Iy := [0, 1]. Define Kn :=

p−1
n,∞[

⋃
y∈Yn

Iy × {y}]. Then Kn is compact because Kn
∼= lim←−N

{
p−1

n,N [
⋃

y∈Yn
Iy × {y}], pN

}
and pn,N is proper (see [47, Section 7]). Every yn+1 /∈ Yn+1,1 is of the form yn+1 =
(μ, yn) for some yn /∈ Yn,1 with λμ = 1

2 + 1
2 · id, so that pn[t, yn+1] = [ 1

2 + t
2 , yn] /∈

[[0, 1
3 ] × {

yn

}
] for all t ∈ [0, 1]. Hence, p−1

n [
⋃

yn∈Yn
Iyn
× {

yn

}
] ⊆ [

⋃
y∈Yn+1,1

[0, 1] ×
{y}] ⊆ int([

⋃
y∈Yn+1

Iy × {y}]). Thus, Kn ⊆ int(Kn+1) for all n. Moreover, X \ Kn =
p−1

n,∞[
⋃

y /∈Yn,1
(1

3 , 1) × {y}] = ⋃
y /∈Yn,1

p−1
n,∞[(1

3 , 1) × {y}]. Using Proposition 4.2, the same

argument as for Proposition 5.1 shows that p−1
n,∞[(1

3 , 1) × {y}] is path connected, and

we obtain
{
[1, y]: y /∈ Yn,1

}→∼�0(X \ Kn), [1, y] �→ p−1
n,∞[(1

3 , 1) × {y}]. This induces a

homeomorphism X \ X = lim−→n

{{
[1, yn]: yn /∈ Yn,1

}
, pn

}→∼ lim←−n
�0(X \ Kn) = EndF(X) and

hence a (set-theoretic) bijection X
→∼X

F
extending idX . For this description of EndF(X),

we are using that X is a generalized Peano continuum (see Corollary 5.3). It is now

straightforward to see that this bijection is a homeomorphism. �

To study properties of X, we need the following observation.

Remark 5.8. In X, the analogue of Proposition 4.2 holds for a path ξn with ξn(0) ∈
Xn \ Xn, ξn(1) ∈ Xn, and ξ0

n+1 ∈ Xn+1 \ Xn+1, ξ1
n+1 ∈ Xn+1 with p(ξ rn+1) = ξn(r) for r = 0, 1.

We also have the analogue of the variation, but we only need (P3a) because (P3b) is
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19040 X. Li

automatic in the present situation since we must have λμ0
n+1
= 1

2 + 1
2 · id, and we get the

additional statement that if ξn(t) ∈ Xn ∀ t ∈ (0, 1], then ξn+1(t) ∈ Xn+1 ∀ t ∈ (0, 1].

Proposition 5.9. X is compact, path connected, and locally path connected. If we

arrange (nlc1) and (nlc2) in modification (path), then X has no local cut points. If we

arrange (nop1) and (nop2) in modification (path), then no non-empty subset of X is

planar.

Proof. Clearly, X is compact. To see that X is path connected, consider η, ζ ∈ X. If

both η and ζ lie in X, then Proposition 5.1 provides a path connecting them. If η ∈
X \ X and ζ ∈ X, we produce a path connecting them as in the proof of Proposition

5.1 using the analogue of Proposition 4.2 from Remark 5.8. If both η and ζ lie in X \ X,

just connect them to some point in X and concatenate the two paths. To see that X is

locally path connected, we follow the same strategy as for Proposition 5.2. We only need

to consider c = ([1, yn])n ∈ X \ X. Choose U in the proof of Proposition 5.2 of the form

U = p−1
n,∞[I × {

yn

}
], where I is a half-open interval containing 1

2 and 1. Then the same

proof as for Proposition 5.2, using the analogue of Proposition 4.2 from Remark 5.8,

shows that U is path connected. To show that X has no local cut points if (nlc1) and

(nlc2) hold, we again only need to consider c = ([1, yn])n ∈ X \X. Choose U as before and

take η, ζ ∈ U \ {c}. If both η and ζ lie in X, then Proposition 5.4 yields a path in U \ {c}
connecting η and ζ because U ∩ X is of the form as in Proposition 5.4. If η ∈ X \ X and

ζ ∈ X, then we can construct a path ξ in U with ξ(0) = η, ξ(1) = ζ , and ξ(t) ∈ X for all

t ∈ (0, 1], using the analogue of the variation in Proposition 4.2 from Remark 5.8. Then

ξ(t) 
= c for all t ∈ (0, 1], and we also have ξ(0) = η 
= c . If both η and ζ lie in X \ X,

then pick a point u ∈ U ∩ X, connect η and ζ to u in U \ {c} as in the previous case, and

concatenate the two paths. Finally, to see that no non-empty open subset of X is planar

if (nlc1) and (nlc2) hold, just observe that every non-empty open subset V of X gives rise

to a non-empty open subset V ∩ X of X, and apply Proposition 5.5 to V ∩ X. �

The same reasoning as for Corollary 5.6 yields

Corollary 5.10. If we arrange (nlc1), (nlc2), (nop1), and (nop2) in modification (path),

then X is homeomorphic to the Menger curve.

Lemma 5.11. If (nlc1) holds, then X \ X is homeomorphic to the Cantor space.
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Proof. (nlc1) implies that we always have m+(q̀, p̀) ≥ 2, so that for all yn /∈ Yn,1,

#p−1
n [1, yn] ≥ 2. Now it is straightforward to see that X\X = lim−→n

{{
[1, yn]: yn /∈ Yn,1

}
, pn

}
is homeomorphic to the Cantor space. �

Proposition 5.12. X \ X is a non-locally-separating subset of X, that is, for every

connected open subset V ⊆ X, V \ (X \ X) = V ∩ X is connected.

Proof. V is open and connected, hence locally path connected by Proposition 5.9 and

thus path connected. Take η, ζ ∈ V ∩X and a continuous path ξ : [0, 1]→ X with ξ(0) = η

and ξ(1) = ζ . It is straightforward to see that we can find 0 = t0 < t1 < . . . < tl < tl+1 = 1

and for each 0 ≤ k ≤ l an open subset Uk ⊆ V as in the proof that X and X are locally

path connected (see Propositions 5.2 and 5.9) such that ξ([tk, tk+1]) ⊆ Uk for all 0 ≤ k ≤ l.

Set ξ [0] := ξ(0), ξ [1] := ξ(1), and for 1 ≤ k ≤ l, set ξ [tk] := ξ(tk) if ξ(tk) ∈ X and pick some

ξ [tk] ∈ Uk−1 ∩ Uk ∩ X otherwise. Since Uk ∩ X is an open set of the form as in the proof

of Proposition 5.2, it is path connected, so that we can find paths connecting ξ [tk] and

ξ [tk+1] in Uk ∩ X for all 0 ≤ k ≤ l. Now concatenate these paths to obtain a path in V ∩ X

connecting η and ζ . �

All in all, we obtain the following consequence.

Corollary 5.13. Suppose that we are in the stably projectionless case and that we

arrange (nlc1), (nlc2), (nop1), and (nop2) in modification (path). Then we obtain a C∗-
diagonal B whose spectrum X is homeomorphic to M\C.

Remark 5.14. The K-groups of C(M) and C0(M\C) are given as follows: we have

K0(C(M)) = Z[1], K1(C(M)) ∼=⊕∞
i=1 Z (see for instance [47, Equation (32)]), and it follows

that K0(C0(M\C)) ∼= {0}, K1(C0(M\C)) ∼=
⊕∞

i=1 Z.

6 Constructing Continuum Many Non-conjugate C∗-Diagonals with Menger Mani-

fold Spectra

Let us present two further modifications of our constructions of C∗-diagonals in

classifiable C∗-algebras, which will allow us to produce continuum many pairwise non-

conjugate C∗-diagonals in all our classifiable C∗-algebras. First of all, we recall the

construction of the groupoid model Ḡ for the pair (A, B), where A is our classifiable

C∗-algebra with prescribed Elliot invariant E as in Section 4.1 and B the C∗-diagonal of

A produced by modification (path). Let Gn, Hn, and pn be as in Section 4.2. Following
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[47, Section 5], we define Gn,0 := Gn, Gn,m+1 := p−1
n+m(Gn,m) ⊆ Hn+m for all n and

m = 0, 1, . . . , Ḡn := lim←−m

{
Gn,m, pn+m

}
for all n. Moreover, the inclusions Hn ↪→ Gn+1

induce embeddings with open image in : Ḡn ↪→ Ḡn+1, allowing us to define Ḡ :=
lim−→

{
Ḡn, in

}
. We will identify Ḡn with its image in Ḡ. As explained in [47, Section 5], Ḡ is

a groupoid model for (A, B) in the sense that we have a canonical isomorphism A
→∼C∗r (Ḡ)

sending B to C0(Ḡ
(0)). In the following, we let pn+m,∞ : Ḡn � Gn,m be the canonical

projection from the inverse limit structure of Ḡn, and pn+m,n+m̄ : Gn,m̄+1 � Gn,m denotes

the composition pn+m ◦ . . . ◦ pn+m̄.

6.1 Constructing closed subgroupoids

Recall the description of βp,i
n,r in (9). We observe that in modification (path), with the same

notations as in Section 4.2, we can always arrange the following condition for all n by

adding id
Fj

n+1
to β

q
n+1,•, enlarging Eq

n+1 accordingly, and conjugation β
q
n+1,• by suitable

permutation matrices as in modification (conn) without changing the properties or

Elliott invariant of the classifiable C∗-algebra we construct:

(clsg) For all q, p, m =m+, m+, m− or m− and λ = λ+, λ+, λ− or λ− correspondingly,

r, s ∈ {0, 1} with λ(r) = s, d ∈ DMm(q,p), if we denote by D(p, i) the set of rank-

one projections in DMms(p,i) and by D(q, j) the set of rank-one projections in

DMmr(q,j), then there is an injective map
∐

i D(p, i) ↪→ ∐
j D(q, j), d(p, i) �→

d(q, j) and d ∈ DMm(j,i) attached to each pair d(p, i) and d(q, j) such that, if

we denote by δ(p, i) the image of d(p, i) ⊗ 1Fi
n

under � in the description of

β
p
n,s in (9), by � the image of d ⊗ δ(p, i) under � in the description (6) of ϕC,

and by δ the image of d ⊗ 1Fi
n

under � in the description of ϕj
F |Fi

n
as in (8),

we have that for all (f , a) ∈ An

d(p, i)⊗ a � δ(p, i) · f p(s) · δ(p, i)

under � in the description of βp
n,s in (9),

d⊗ (δ(p, i) · f p(s) · δ(p, i)) � � · ϕq
C(f , a)(r) ·� = � · βr(ϕF(f , a)) ·�

under � in the description (6) of ϕC, and

d(q, j)⊗ δ · ϕj
F(a) · δ � � · βr(ϕF(f , a)) ·�

under � in the description of βq
n+1,r in (9).
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On the groupoid level, with the same notation as in Section 4.2, (clsg) means that in

(15), if we start at
∐

i Ms(p, i) × F i
n, go up to Ep

n,s, follow the horizontal arrows to Eq
n+1,r

and go down to
∐

j Mr(q, j) × F j
n+1, we get a map of the form (μ(p, i), γ i

n) �→ (μ(q, j), γ̃ i
n)

such that the assignment μ(p, i) �→ μ(q, j) is injective (and γ i
n �→ γ̃ i

n corresponds to the

composition a �→ d(j, i)⊗ a � δ(j, i) · ϕj
F(a) · δ(j, i) as in the description of ϕj

F |Fi
n

in (8)).

Lemma 6.1. If we arrange (clsg) in modification (path), then Hn is a closed subgroupoid

of Gn+1.

Proof. We make use of the descriptions of Hn and Gn+1 in Section 4.2. Suppose

[tk,μk, γk] ∈ Hn converges in Gn+1 to [t, γn+1] ∈ Gn+1. Our goal is to show that [t, γn+1]

lies in Hn. As there are only finitely many possibilities for (μk, γk), we may assume that

(μk, γk) = (μ, γ ) is constant (independent of k), and thus γn+1 = (μ, γ ). If t ∈ (0, 1), then

we have [t, γn+1] ∈ Hn. Now suppose that t ∈ {0, 1}. If μ ∈M(q, p) �M(q, p), γ ∈ Ep
n , or

μ ∈ M(q, i), γ ∈ F i
n, then (μ, γ ) ∈ Eq

n+1,t and hence [t, γn+1] ∈ Hn. Finally, assume that

μ ∈ M+(q, p) �M+(q, p) �M−(q, p) �M−(q, p) and γ ∈ Ep
n . Let λ = λ+, λ+, λ−, or λ−

accordingly. Since [t, (μ, γ )] ∈ Gn+1, s(μ, γ ) and r(μ, γ ) must be mapped to elements in∐
j Mt(q, j)×X j

n+1 with the same Mt(q, j)-component in (15), which then implies by (clsg)

that s(γ ) and r(γ ) are mapped to elements in
∐

i Mλ(t)(p, i)×X i
n with the same Mλ(t)(p, i)-

component in (15), which in turn implies that γ ∈ Ep
n,λ(t) and thus [t, (μ, γ )] ∈ Hn. �

Corollary 6.2. If we arrange (clsg) in modification (path), then Ḡn is a clopen subset of

Ḡ for all n = 1, 2, . . . .

Proof. An easy induction on m shows that Gn,m is an open subset of Gn+m: Gn,1 = Hn

is open in Gn+1 by construction (see [47, Section 6.2]), and for the induction step, use the

recursive definition of Gn,m together with continuity of pn+m and the observation that

Hn+m is open in Gn+m+1. Hence, for all n, Ḡn = p−1
n+m,∞(Gn,m) is an open subset of Ḡn+m

for all m = 0, 1, . . . . By definition of the inductive limit topology, this shows that Ḡn is

open in Ḡ.

To see that Ḡn is closed in G, let (gk)k be a sequence in Ḡn converging to

g ∈ Ḡ. Suppose g /∈ Ḡn. Then let m ≥ 1 be minimal with g ∈ Ḡn+m. We have

gk ∈ Ḡn = p−1
n+m,∞(Gn,m) ⊆ p−1

n+m,∞(Hn+m−1) for all k. Since Hn+m−1 is closed in Gn+m by

Lemma 6.1, we must have g ∈ p−1
n+m,∞(Hn+m−1) = p−1

n+m,∞(Gn+m−1,1) = Ḡn+m−1. But this

contradicts minimality of m. Hence, g ∈ Ḡn, and thus Ḡn is closed in Ḡ. �
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6.2 Modification (sccb)

We now present a further modification (path), which works in a similar way as

modification (conn) or the 2nd step in modification (path) and for the same reasons

will not change the properties or Elliott invariant of the classifiable C∗-algebra we

construct. Let us use the same notations as in Section 4.2. Suppose that the 1st step

in modification (path) produces the 1st building block A1. For all d ∈ DFi
1 choose a

permutation matrix wi,d ∈ Fi
1 such that wi,ddw∗i,d = d and wi,dd̂w∗i,d 
= d̂ for all d̂ ∈ DFi

1

with d̂ 
= d. Let w := (wi,d)i,d. Choose an index q̃ and replace Eq̃
1 by M{1,q̃}+∑

i,d[1,i],

β
q̃
1,0 by

(
β

q̃
1,0 0
0 id(⊕

i,d Fi
1

)
)

and β
q̃
1,1 by

(
β

q̃
1,1 0
0 Ad (w)◦id(⊕

i,d Fi
1

)
)

. Now suppose that we have

produced A1
ϕ1−→ A2

ϕ2−→ . . .
ϕn−1−→ An, and that the next step of modification (path)

yields ϕn : An → An+1. We use the description of ϕj
F |Fi

n
in (8). Let D(j, i) be the set

of one-dimensional projections in DMm(j,i). For each d ∈ D(j, i), define a permutation

wj,i,d ∈ Fj
n+1 such that, identifying d′⊗f (for d′ ∈ D(j, i′) and f ∈ DFi′

n) with its image under

� in the description of ϕj
F |Fi′

n
in (8), we have wj,i,d(d⊗f)w∗j,i,d = d⊗f and, for all d̂ ∈ D(j, î)

with d̂ 
= d, wj,i,d(d̂ ⊗ f)w∗j,i,d = ď ⊗ f for some ď ∈ D(j, î) with ď 
= d̂, for all f ∈ DFî
n.

Set w := (wj,i,d)j,i,d. Choose an index q̃ and replace Eq̃
n+1 by M{n+1,q̃}+∑

j,i,d[n+1,j], β
q̃
n+1,0

by

(
β

q̃
n+1,0 0

0 id(⊕
j,i,d F

j
n+1

)
)

, and β
q̃
n+1,1 by

(
β

q̃
n+1,1 0

0 Ad (w)◦id(⊕
j,i,d F

j
n+1

)
)

. Modify An+1 and ϕn

accordingly as in modification (conn) or the 2nd step of modification (path). Recursive

application of this procedure completes modification (sccb).

Lemma 6.3. After modification (path) combined with modification (sccb), we have the

following: for all η ∈ F i
1, there exists a continuous path ξ : [0, 1] → G1 of the form

ξ(t) = [ω(t), γ ] with (P1) and (P2) such that ω(0) = 0, ω(1) = 1, ξ(0) = η, and ζ := ξ(1) lies

in F i
1 and satisfies s(ζ ) = s(η) but r(ζ ) 
= r(η) or r(ζ ) = r(η) but s(ζ ) 
= s(η). For all n ≥ 1,

j and η ∈ F j
n+1 \ F j

n+1[p ], there exists a continuous path ξ : [0, 1] → Gn+1 of the form

ξ(t) = [ω(t), γ ] with (P1) and (P2) such that ω(0) = 0, ω(1) = 1, ξ(0) = η, and ζ := ξ(1) lies

in F j
n+1 and satisfies s(ζ ) = s(η) but r(ζ ) 
= r(η) or r(ζ ) = r(η) but s(ζ ) 
= s(η).

Proof. Let us start with the 1st part (n = 1). Suppose that s(η) = x and r(η) = y

with x, y ∈ X i
1. We think of x corresponding to d, y corresponding to d̂ and take ν

corresponding to (i, d) in the notation of modification (sccb). Let γ := (ν, η) ∈ E q̃
1 , let

ω be as in (P1) and (P2) with ω(0) = 0 and ω(1) = 1, and define ξ(t) := [ω(t), γ ]. Then

we have ξ(0) = [0, (ν, η)] = η as b 1,0(ν, η) = η, s(ξ(1)) = s[1, (ν, η)] = [1, (ν, x)] = x = s(η)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/23/18992/6366398 by G
lasgow

 U
niversity Library user on 21 D

ecem
ber 2022
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as b1,1(ν, x) = x, but r(ξ(1)) = r[1, (ν, η)] = [1, (ν, y)] 
= y = r(η) as b1,1(ν, y) 
= y by

construction.

Now we treat the 2nd part. First suppose that s(η) = (μ, x) and r(η) = (μ̂, y)

with μ ∈ M(j, i), μ̂ ∈ M(j, î), x ∈ X i
n, y ∈ X î

n. We think of μ corresponding to d, μ̂

corresponding to d̂ and take ν corresponding to (j, i, d) in the notation of modification

(sccb). Let γ := (ν, η) ∈ E q̃
n+1, let ω be as in (P1) and (P2) with ω(0) = 0 and ω(1) = 1,

and define ξ(t) := [ω(t), γ ]. Then we have ξ(0) = [0, (ν, η)] = η as bn+1,0(ν, η) = η,

s(ξ(1)) = s[1, (ν, η)] = [1, (ν, (μ, x))] = (μ, x) = s(η) as bn+1,1(ν, (μ, x)) = (μ, x), but

r(ξ(1)) = r[1, (ν, η)] = [1, (ν, (μ̂, y))] = (μ̌, y) 
= (μ̂, y) = r(η) as bn+1,1(ν, (μ̂, y)) = (μ̌, y)

for some μ̌ ∈ M(j, î) with μ̌ 
= μ̂ by construction. Now suppose that s(η) = (μ̂, x) and

r(η) = y with μ̂ ∈ M(j, i), x ∈ X i
n and y ∈ Ep

n ⊆ F j
n+1 (or the other way round, with s

and r swapped). We think of μ̂ corresponding to d̂ and take ν corresponding to (j, i, d)

for some d 
= d̂ in the notation of modification (sccb). Let γ := (ν, η) ∈ E q̃
n+1, let ω be

as in (P1) and (P2) with ω(0) = 0 and ω(1) = 1, and define ξ(t) := [ω(t), γ ]. Then we

have ξ(0) = [0, (ν, η)] = η as b n+1,0(ν, η) = η, r(ξ(1)) = r[1, (ν, η)] = [1, (ν, y)] = y = r(η)

as bn+1,1(ν, y) = y, but s(ξ(1)) = s[1, (ν, η)] = [1, (ν, (μ̂, x))] = (μ̌, x) 
= (μ̂, x) = s(η) as

bn+1,1(ν, (μ̂, x)) = (μ̌, x) for some μ̌ ∈M(j, î) with μ̌ 
= μ̂ by construction. �

Proposition 6.4. If we combine modification (path) with modification (sccb) and

arrange condition (clsg), then the following holds: let η̌ ∈ Ḡ, and let n ≥ 0 be such

that η̌ ∈ Ḡn+1 \ Ḡn. Suppose that pn+1,∞(η̌) is not of the form [t, γ ] for some t ∈ (0, 1)

and γ ∈ En+1 with γ /∈ En+1,0 and γ /∈ En+1,1. Then there exist η, ζ ∈ Ḡ such that

η̌ ∼conn η ∼conn ζ in Ḡ, and s(ζ ) = s(η) but r(ζ ) 
= r(η) or r(ζ ) = r(η) but s(ζ ) 
= s(η).

Proof. Write η̌ = (η̌n). We have η̌n+1 = [t, γ ] for some γ in En+1,r for r = 0 or 1. Construct

a path in Gn+1 connecting [t, γ ] with [r, γ ], and, using Proposition 4.2, lift it to a path in

Ḡn+1 connecting η̌ to an element η = (ηn) ∈ Ḡn+1 with ηn+1 = [r, γ ]. Corollary 6.2 implies

that Ḡn+1 \ Ḡn is clopen. Since η̌ lies in Ḡn+1 \ Ḡn and η̌ ∼conn η, it follows that η lies

in Ḡn+1 \ Ḡn, too. Therefore, if n = 0, we must have η1 = ηn+1 ∈ F1, and if n ≥ 1, we

must have ηn+1 ∈ Fn+1 \ Fn+1[p ]. In both cases, Lemma 6.3 provides an element ζn+1

such that ζn+1 ∈ F j
n+1 if ηn+1 ∈ F j

n+1, and s(ζn+1) = s(ηn+1) but r(ζn+1) 
= r(ηn+1) or

r(ζn+1) = r(ηn+1) but s(ζn+1) 
= s(ηn+1), together with a path ξn+1 in Gn+1 with (P1) and

(P2) connecting ηn+1 and ζn+1. Since η lies in Ḡn+1, we must have ηN+1 = (μN , ηN) for all

N ≥ n+ 1. Define ζ ∈ Ḡ by setting ζN+1 := (μN , ζN) for all N ≥ n+ 1 and ζ := (ζN)N≥n+1.

Then ζ inherits the property from ζn+1 that s(ζ ) = s(η) but r(ζ ) 
= r(η) or r(ζ ) = r(η)

but s(ζ ) 
= s(η). Now apply Proposition 4.2 recursively to construct paths ξN , N ≥ n+ 1,
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which connect ηN and ζN and satisfy pN ◦ ξN+1 = ξN . It follows that ξ(t) := (ξN(t))N≥n+1

defines the desired path connecting η and ζ . �

We now start to study connected components of Ḡ.

Lemma 6.5. After modification (path), Ḡn has only finitely many connected compo-

nents for all n.

Proof. Given γ ∈ En, let Iγ := [0, 1] if γ ∈ En,0 and γ ∈ En,1, Iγ := [0, 1) if γ ∈ En,0 and

γ /∈ En,1, Iγ := (0, 1] if γ /∈ En,0 and γ ∈ En,1, and Iγ := (0, 1) if γ /∈ En,0 and γ /∈ En,1.

Using Proposition 4.2 as in the proof of Proposition 5.1, it is straightforward to see

that p−1
n,∞[Iγ×{γ }] is path connected in Ḡn. Moreover, it is clear that Ḡn =

⋃
γ∈En

p−1
n,∞[Iγ×

{γ }]. �

The following is an immediate consequence of Lemma 6.5 and Corollary 6.2.

Corollary 6.6. If we arrange condition (clsg) in modification (path), then the connected

components in Ḡ are open.

Proposition 6.7. If we combine modification (path) with modification (sccb) and

arrange condition (clsg), then the only connected components of Ḡ that are also

bisections (i.e., source and range maps restrict to bijections) are precisely of the form

p−1
n,∞[(0, 1)× {γ }] ⊆ Ḡn for some n and γ ∈ En with γ /∈ En,0 and γ /∈ En,1.

Proof. Let us first show that sets of the form p−1
n,∞[(0, 1) × {γ }] for γ as in the

proposition are indeed connected components and bisections. First of all, an application

of Proposition 4.2 as in the proof of Proposition 5.1shows that p−1
n,∞[(0, 1) × {γ }] is path

connected, hence connected. If C is a connected subset of Ḡ containing p−1
n,∞[(0, 1)×{γ }],

then we must have C ⊆ Ḡn because Ḡn is clopen by Corollary 6.2. Moreover, [(0, 1)×{γ }] ⊆
pn,∞(C). As [(0, 1)×{γ }] is a connected component in Gn, it follows that pn,∞(C) ⊆ [(0, 1)×
{γ }] and thus C ⊆ p−1

n,∞(pn,∞(C)) ⊆ p−1
n,∞[(0, 1)× {γ }]. This shows that p−1

n,∞[(0, 1)× {γ }] is

a connected component. It is also a bisection: let η, ζ ∈ p−1
n,∞[(0, 1)×{γ }] with s(η) = s(ζ ).

(The case of equal range is analogous.) Write η = (ηN)N , ζ = (ζN)N . It follows that ηn = ζn.

So we have for all N ≥ n that s(ηN) = s(ζN) and pn,N(ηN) = pn,N(ζN). Since pn,N is a

fibrewise bijection (see [47, Sections 6.2 and 7]), it follows that ηN = ζN for all N ≥ n and

hence η = ζ .
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Now let C be a connected component in Ḡ. As Ḡn is clopen for each n by Corollary

6.2, there exists n such that C ⊆ Ḡn+1 and C 
⊆ Ḡn, so that we must have C ⊆ Ḡn+1 \ Ḡn.

Suppose that C is not of the form p−1
n+1,∞[(0, 1)× {γ }] for some γ as in the proposition. It

follows that C must contain some element η̌ as in Proposition 6.4, and hence it follows

that there exist η, ζ ∈ Ḡ such that η̌ ∼conn η ∼conn ζ in Ḡ, and s(ζ ) = s(η) but r(ζ ) 
= r(η)

or r(ζ ) = r(η) but s(ζ ) 
= s(η). As C is a connected component, we must have η, ζ ∈ C.

Thus, C cannot be a bisection. �

Let Cbi be the set of connected components of Ḡ, which are bisections. For two

bisections U and V in Ḡ, we define the product U · V only if s(U) = r(V), and in this

case U · V := {uv: u ∈ U, v ∈ V} is another bisection. Let
〈
Cbi

〉
be the smallest collection

of bisections in Ḡ closed under products and containing Cbi, that is, the set of all finite

products of elements in Cbi.

Lemma 6.8. If we combine modification (path) with modification (sccb) and arrange

condition (clsg) as well as

{n, p} > 4[n, i] ∀ n, p, i, (45)

then
〈
Cbi

〉 = {
p−1

n,∞[(0, 1)× {γ }]: n ∈ Z≥1, γ ∈ En

}
.

Proof. Clearly,
{
p−1

n,∞[(0, 1)× {γ }]: n ∈ Z≥1, γ ∈ En

}
is a collection of bisections in Ḡ

closed under products and containing Cbi. This shows “⊆”. To prove “⊇”, we show that

for all n, p and γ ∈ Ep
n with s(γ ) = ys and r(γ ) = yr that p−1

n,∞[(0, 1) × {γ }] ∈ 〈
Cbi

〉
. Recall

that b p
n,• is given by a composition of the form Ep

n,•
→∼∐

i(M•(p, i)×F i
n) �

∐
i F i

n = Fn (see

(9)). Let us denote the induced bijections Yp
n,•
→∼∐

i(M•(p, i) × X i
n) by y �→ (y)•. Suppose

that (y∗)• = (μ∗•, x∗•), with x∗• ∈ X i∗•
n , for ∗ = r, s and • = 0, 1. We claim that there

exists y ∈ Yp
n such that (y)• /∈ {

μ∗•
} × X i∗•

n for all ∗ = r, s and • = 0, 1. Indeed, since

#
{
y ∈ Yp

n : (y)• ∈
{
μ∗•

} × X i∗•
n

} = #X i∗•
n = [n, i∗•] for all ∗ = r, s and • = 0, 1, we have that

#
{
y ∈ Yp

n : (y)• ∈
{
μ∗•

}× X i∗•
n for some ∗ = r, s, • = 0, 1

} = [n, is0]+ [n, ir0]+ [n, is1]+ [n, ir1] ≤
4 max

{
[n, i∗•]: ∗ = r, s, • = 0, 1

}
< {n, p} = #Yp

n by condition (1). Now take y with these

properties, and let γ1, γ2 ∈ Ep
n be such that s(γ1) = ys, r(γ1) = y, s(γ2) = y, r(γ2) = yr.

Then γ1, γ2 /∈ En,0 and γ1, γ2 /∈ En,1, so that p−1
n,∞[(0, 1) × {

γi

}
] ∈ Cbi for i = 1, 2. It follows

that p−1
n,∞[(0, 1)× {γ }] = p−1

n,∞[(0, 1)× {
γ2

}
] · p−1

n,∞[(0, 1)× {
γ1

}
] ∈ 〈

Cbi

〉
. �
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Definition 6.9 (Compare [55, Definition 3.1]). Let Y be a finite set. We call a multisec-

tion in
〈
Cbi

〉
the image of an injective map Y×Y → 〈

Cbi

〉
, (x, y) �→ Ux,y such that Ux,y ·Uy′,z

is only defined if y = y′, and in that case Ux,y ·Uy,z = Ux,z. We call #Y the degree of
{
Ux,y

}
.

Corollary 6.10. In the situation of Lemma 6.8, multisections in
〈
Cbi

〉
are precisely of

the form p−1
n,∞[(0, 1)× {γ }] for some n, p and γ ∈ Ep

n .

As it is clear that the degree can be read off from a multisection, Lemma 6.8

implies the following.

Corollary 6.11. Suppose that we combine modification (path) with modification (sccb)

and arrange (clsg), (1) to obtain classifiable C∗-algebras A and A′ with the same

prescribed Elliott invariant together with C∗-diagonals B and B′. Let Ḡ and Ḡ′ be the

groupoid models for (A, B) and (A′, B′) and Yp
n(Ḡ), Yp

n(Ḡ′) the analogues of Yp
n above for

Ḡ, Ḡ′. If Ḡ ∼= Ḡ′ as topological groupoids (i.e., if (A, B) ∼= (A′, B′)), then we must have{
#Yp

n(Ḡ)
}

n,p =
{
#Yp

n(Ḡ′)
}

n,p.

Let us now construct, for every sequence m = (mn) of non-negative integers a

groupoid model Ḡ(m) for our classifiable C∗-algebra such that for any two sequences m

and n, we have Ḡ(m) 
∼= Ḡ(n) if m 
= n. First combine modification (path) with modification

(sccb) and arrange (clsg), (1) to obtain a classifiable C∗-algebra A with prescribed Elliott

invariant E as in Section 4.1 and C∗-diagonal B. Now we modify the construction. For all

n ≥ 1, choose a direct summand Fj
n of Fn such that, for all n ≥ 1, we have Fj

n+1 
= Fjpr
n+1

for all p and r = 0, 1. Given a sequence m = (mn), we modify (A, B) by adding id
(Fjn

n )⊕mn

to β
p
n,• for all p and enlarging Ep

n correspondingly. In this way, we obtain for each m a

classifiable C∗-algebra A(m) with the same prescribed Elliott invariant E and the same

properties as A, together with a C∗-diagonal B(m) of A(m). Let Ḡ(m) be the groupoid

model of (A(m), B(m)).

Proposition 6.12. If m 
= n, then Ḡ(m) 
∼= Ḡ(n), that is, (A(m), B(m)) 
∼= (A(n), B(n)).

Proof. Let Ḡ := Ḡ(m) and Ḡ′ := Ḡ(n). Suppose that mn = nn for all n ≤ N − 1 and that

mN 
= nN , say mN < nN . As the 1st N − 1 steps of the construction coincide, we have{
#Yp

n(Ḡ): n ≤ N − 1, p
} = {

#Yp
n(Ḡ′): n ≤ N − 1, p

}
. Now we have #Yp

N(Ḡ
′) = #Yp

N(Ḡ)+ (nN −
mN) · #X jN

N for all p. Hence, #Yp′
N (Ḡ

′) > minp #Yp
N(Ḡ) for all p′. As #Yq′

n̄+1(Ḡ
′) > #Yp′

n̄ (Ḡ
′)

for all n̄, q′, and p′, it follows that minp #Yp
N(Ḡ) does not appear in

{
#Yp

n(Ḡ′)
}

n,p, while it
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appears in
{
#Yp

n(Ḡ)
}

n,p. Hence, Corollary 6.11 implies that Ḡ 
∼= Ḡ′, that is, (A(m), B(m)) 
∼=
(A(n), B(n)). �

All in all, in combination with Corollaries 5.6 and 5.13, we obtain

Theorem 6.13. For every sequence m in Z≥0 and every prescribed Elliott invariant

(G0, G+0 , u, T, r, G1) as in [47, Theorem 1.2] with torsion-free G0 and trivial G1, our

construction produces a topological groupoid Ḡ(m) with the same properties as in

[47, Theorem 1.2] (in particular, C∗r (Ḡ(m)) is a classifiable unital C∗-algebra satisfying

Ell(C∗r (Ḡ(m))) ∼= (G0, G+0 , u, T, r, G1)), such that Ḡ(m)(0) ∼=M , and Ḡ(m) 
∼= Ḡ(n) if m 
= n.

For every sequence m in Z≥0 and every prescribed Elliott invariant (G0, T, ρ, G1) as

in [47, Theorem 1.3] with torsion-free G0 and trivial G1, our construction produces

a topological groupoid Ḡ(m) with the same properties as in [47, Theorem 1.3] (in

particular, C∗r (Ḡ(m)) is a classifiable stably projectionless C∗-algebra with continuous

scale satisfying Ell(C∗r (Ḡ(m))) ∼= (G0, {0} , T, ρ, G1)), such that Ḡ(m)(0) ∼= M\C, and Ḡ(m) 
∼=
Ḡ(n) if m 
= n.

In combination with the classification result in [63], this yields the following

Theorem 6.14. For every prescribed Elliott invariant (G0, G+0 , u, T, r, G1) as in

[47, Theorem 1.2] with torsion-free G0 and trivial G1, our construction produces a

classifiable unital C∗-algebra A with Ell(A) ∼= (G0, G+0 , u, T, r, G1) and continuum many

pairwise non-conjugate C∗-diagonals of A whose spectra are all homeomorphic to M .

For every Elliott invariant (G0, T, ρ, G1) as in [47, Theorem 1.3] with torsion-free G0 and

G1 = {0}, our construction produces a classifiable stably projectionless C∗-algebra A

having continuous scale with Ell(A) ∼= (G0, {0} , T, ρ, G1) and continuum many pairwise

non-conjugate C∗-diagonals of A whose spectra are all homeomorphic to M\C.

This theorem, combined with classification results for all classifiable

C∗-algebras, implies Theorems 1.4 and 1.5.
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