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Abstract. The Stable Roommates problem involves matching a set of
agents into pairs based on the agents’ strict ordinal preference lists. The
matching must be stable, meaning that no two agents strictly prefer each
other to their assigned partners. A number of three-dimensional variants
exist, in which agents are instead matched into triples. Both the original
problem and these variants can also be viewed as hedonic games. We
formalise a three-dimensional variant using general additively separable
preferences, in which each agent provides an integer valuation of every
other agent. In this variant, we show that a stable matching may not
exist and that the related decision problem is NP-complete, even when
the valuations are binary. In contrast, we show that if the valuations
are binary and symmetric then a stable matching must exist and can be
found in polynomial time. We also consider the related problem of finding
a stable matching with maximum utilitarian welfare when valuations are
binary and symmetric. We show that this optimisation problem is NP-
hard and present a novel 2-approximation algorithm.

Keywords: Stable roommates · Stable matching · Three dimensional
roommates · Hedonic games · Coalition formation · Complexity

1 Introduction

The Stable Roommates problem (SR) is a classical problem in the domain of
matching under preferences. It involves a set of agents that must be matched
into pairs. Each agent provides a preference list, ranking all other agents in strict
order. We call a set of pairs in which each agent appears in exactly one pair a
matching. The goal is to produce a matching M that admits no blocking pair,
which comprises two agents, each of whom prefers the other to their assigned
partner in M . Such a matching is called stable. This problem originates from
a seminal paper of Gale and Shapley, published in 1962, as a generalisation of
the Stable Marriage problem [15]. They showed that an SR instance need not
contain a stable matching. In 1985, Irving presented a polynomial-time algorithm
to either find a stable matching or report that none exist, given an arbitrary SR
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instance [20]. Since then, many papers have explored extensions and variants of
the fundamental SR problem model.

In this paper we consider the extension of SR to three dimensions (i.e., agents
must be matched into triples rather than pairs). A number of different formalisms
have already been proposed in the literature. The first, presented in 1991 by Ng
and Hirschberg, was the 3-Person Stable Assignment Problem (3PSA) [24]. In
3PSA, agents’ preference lists are formed by ranking every pair of other agents
in strict order. A matching M is a partition of the agents into unordered triples.
A blocking triple t of M involves three agents that each prefer their two partners
in t to their two assigned partners in M . Accordingly, a stable matching is one
that admits no blocking triple. The authors showed that an instance of this
model may not contain a stable matching and the associated decision problem
is NP-complete [24]. In the instances constructed by their reduction, agents’
preferences may be inconsistent [19], meaning that it is impossible to derive a
logical order of individual agents from a preference list ranking pairs of agents.

In 2007, Huang considered the restriction of 3PSA to consistent preferences.
He showed that a stable matching may still not exist and the decision problem
remains NP-complete [19,18]. In his technical report, he also described another
variant of 3PSA using Precedence by Ordinal Number (PON). PON involves each
agent providing a preference list ranking all other agents individually. An agent’s
preference over pairs is then based on the sum of the ranks of the agents in each
pair. Huang left open the problem of finding a stable matching, as defined here,
in the PON variant. He also proposed another problem variant involving a more
general system than PON, in which agents provide arbitrary numerical “ratings”.
It is this variant that we consider in this paper. He concluded his report by asking
if there exist special cases of 3PSA in which stable matchings can be found using
polynomial time algorithms. This question is another motivation for our paper.

The same year, Iwama, Miyazaki and Okamoto presented another variant
of 3PSA [21]. In this model, agents rank individual agents in strict order of
preference, and an ordering over pairs is inferred using a specific set extension
rule [5,7]. The authors showed that a stable matching may not exist and that
the decision problem remains NP-complete.

In 2009, Arkin et al. presented another variant of 3PSA called Geometric
3D-SR [1]. In this model, preference lists ranking pairs are derived from agents’
relative positions in a metric space. Among other results, they showed that in
this model a stable matching, as defined here, need not exist. In 2013, Deineko
and Woeginger showed that the corresponding decision problem is NP-complete
[14].

All of the problem models described thus far, including SR, can be viewed
as hedonic games [6]. A hedonic game is a type of coalition formation game.
In general, coalition formation games involve partitioning a set of agents into
disjoint sets, or coalitions, based on agents’ preferences. The term ‘hedonic’ refers
to the fact that agents are only concerned with the coalition that they belong to.
The study of hedonic games and coalition formation games is broad and many
different problem models have been considered in the literature [17].
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In particular, SR and its three-dimensional variants can be viewed as hedonic
games with a constraint on permissible coalition sizes [26]. In the context of a
hedonic game, the direct analogy of stability as described here is core stability.
In a given hedonic game, a partition is core stable if there exists no set of agents
S, of any size, where each agent in S prefers S to their assigned coalition [6].

Recently, Boehmer and Elkind considered a number of hedonic game variants,
including 3PSA, which they described as multidimensional roommate games [8].
In their paper they supposed that the agents have types, and an agent’s prefer-
ence between two coalitions depends only on the proportion of agents of each
type in each coalition. They showed that, for a number of different ‘solution con-
cepts’, the related problems are NP-hard, although many problems are solvable
in linear time when the room size is a fixed parameter. For stability in partic-
ular, they presented an integer linear programming formulation to find a stable
matching in a given instance, if one exists, in linear time.

In 2020, Bredereck et al. considered another variation of multidimensional
roommate games involving either a master list or master poset, a central list or
poset from which all agents’ preference lists are derived [10]. They presented two
positive results relating to restrictions of the problem involving a master poset
although they showed for either a master list or master poset that finding a
stable matching in general remains NP-hard or W[1]-hard, for three very natural
parameters.

Other research involving hedonic games with similar constraints has consid-
ered Pareto optimality rather than stability [13]; ‘flatmate games’, in which any
coalition contains three or fewer agents [9]; and strategic aspects [27].

The template of a hedonic game helps us formalise the extension of SR to
three dimensions. In this paper we apply the well-known system of additively
separable preferences [2]. In a general hedonic game, additive separable prefer-
ences are derived from each agent αi assigning a numerical valuation valαi

(αj)
to every other agent αj . A preference between two sets is then obtained by com-
paring the sum of valuations of the agents in each set. This system formalises
the system of “ratings” proposed by Huang [19]. In a general hedonic game
with additively separable preferences, a core stable partition need not exist, and
the associated decision problem is strongly NP-hard [25]. This result holds even
when preferences are symmetric, meaning that valαi

(αj) = valαj
(αi) for any

two agents αi, αj [3].

The three-dimensional variant of SR that we consider in this paper can also
be described as an additively separable hedonic game in which each coalition
in a feasible partition has size three. To be consistent with previous research
relating to three-dimensional variants of SR [19,21], in this paper we refer to
a partition into triples as a matching rather than a partition and write stable
matching rather than core stable partition. We finally remark that the usage of
the terminology “three-dimensional” to refer to the coalition size rather than,
say, the number of agent sets [24], is consistent with previous work in the liter-
ature [1,10,21,26].



4 M. McKay and D. Manlove

Our contribution. In this paper we use additively separable preferences to
formalise the three-dimensional variant of SR first proposed by Huang in 2007
[19]. The problem model can be equally viewed as a modified hedonic game
with additively separable preferences [3,25]. We show that deciding if a stable
matching exists is NP-complete, even when valuations are binary (Section 3).
In contrast, when valuations are binary and symmetric we show that a stable
matching always exists and give an O(|N |3) algorithm for finding one, where N
is the set of agents (Sections 4.1 – 4.4). We believe that this restriction to binary
and symmetric preferences has practical as well as theoretical significance. For
example, this model could be applied to a social network graph involving a sym-
metric “friendship” relation between users. Alternatively, in a setting involving
real people it might be reasonable for an administrator to remove all asymmetric
valuations from the original preferences.

We also consider the notion of utility based on agents’ valuations of their
partners in a given matching. This leads us to the notion of utilitarian wel-
fare [4,11] which is the sum of the utilities of all agents in a given matching. We
consider the problem of finding a stable matching with maximum utilitarian wel-
fare given an instance in which valuations are binary and symmetric. We prove
that this optimisation problem is NP-hard and provide a novel 2-approximation
algorithm (Section 4.5).

We continue in the next section (Section 2) with some preliminary definitions
and results.

2 Preliminary definitions and results

Let N = {α1, . . . , α|N |} be a set of agents. A triple is an unordered set of three
agents. A matching M comprises a set of pairwise disjoint triples. For any agent
αi, if some triple in M contains αi then we say that αi is matched and use
M(αi) to refer to that triple. If no triple in M contains αi then we say that αi is
unmatched and write M(αi) = ∅. Given a matching M and two distinct agents
αi, αj , if M(αi) = M(αj) then we say that αj is a partner of αi.

We define additively separable preferences as follows. Each agent αi supplies
a valuation function valαi : N \ {αi} −→ Z. Given agent αi, let the utility of
any set S ⊆ N be uαi(S) =

∑
αj∈S\{αi}

valαi(αj). We say that αi ∈ N prefers

some triple t1 to another triple t2 if uαi(t1) > uαi(t2). An agent’s preference
between two distinct matchings depends only on that agent’s partners in each
matching, so given a matching M we write uαi

(M) as shorthand for uαi
(M(αi)).

Let V =
⋃

αi∈N
valαi

be the collection of all valuation functions.

Suppose we have some pair (N,V ) and a matching M involving the agents in
N . We say that a triple {αk1 , αk2 , αk3} blocks M in (N,V ) if uαk1

({αk2 , αk3}) >
uαk1

(M), uαk2
({αk1 , αk3}) > uαk2

(M), and uαk3
({αk1 , αk2}) > uαk3

(M). If no
triple in N blocks M in (N,V ) then we say that M is stable in (N,V ). We say
that (N,V ) contains a stable matching if at least one matching exists in (N,V )
that is stable.
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We now define the Three-Dimensional Stable Roommates problem with Ad-
ditively Separable preferences (3D-SR-AS). An instance of 3D-SR-AS is given
by the pair (N,V ). The problem is to either find a stable matching in (N,V )
or report that no stable matching exists. In this paper we consider two differ-
ent restrictions of this model. The first is when preferences are binary, meaning
valαi

(αj) ∈ {0, 1} for any αi, αj ∈ N . The second is when preferences are also
symmetric, meaning valαi

(αj) = valαj
(αi) for any αi, αj ∈ N .

Lemma 1 illustrates a fundamental property of matchings in instances of
3D-SR-AS. We shall use it extensively in the proofs. Throughout this paper the
omitted proofs can be found in the full version [23].

Lemma 1. Given an instance (N,V ) of 3D-SR-AS, suppose thatM andM ′ are
matchings in (N,V ). Any triple that blocks M ′ but does not block M contains
at least one agent αi ∈ N where uαi

(M ′) < uαi
(M).

We also make an observation that unmatched agents may be arbitrarily
matched if required. The proof follows from Lemma 1.

Proposition 1. Suppose we are given an instance (N,V ) of 3D-SR-AS. Suppose
|N | = 3k+ l where k ≥ 0 and 0 ≤ l < 3. If a stable matching M exists in (N,V )
then without loss of generality we may assume that |M | = k.

Finally, some notes on notation: in this paper, we use L = 〈. . . 〉 to construct
an ordered list of elements L. If L and L′ are lists then we write L · L′ meaning
the concatenation of L′ to the end of L. We also write Li to mean the ith element
of list L, starting from i = 1, and e ∈ L to describe membership of an element
e in L. When working with sets of sets, we write

⋃
S to mean

⋃
T∈S T .

3 General binary preferences

Let 3D-SR-AS-BIN be the restriction of 3D-SR-AS in which preferences are bi-
nary but need not be symmetric. In this section we establish the NP-completeness
of deciding whether a stable matching exists, given an instance (N,V ) of 3D-
SR-AS-BIN.

Theorem 1. Given an instance of 3D-SR-AS-BIN, the problem of deciding
whether a stable matching exists is NP-complete. The result holds even if each
agent must be matched.

Proof sketch. Given an instance (N,V ) of 3D-SR-AS-BIN and a matching M ,
it is straightforward to test in O(|N |3) time if M is stable in (N,V ). This shows
that the decision version of 3D-SR-AS-BIN belongs to the class NP.

We present a polynomial-time reduction from Partition Into Triangles (PIT),
which is the following decision problem: “Given a simple undirected graph G =
(W,E) where W = {w1, w2, . . . , w3q} for some integer q, can the vertices of G
be partitioned into q disjoint sets X = {X1, X2, . . . , Xq}, each set containing
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×6q pentagadgets

p2r

p3r

p4rp5r

p1r

bi

a2i

a1i

. . .

bk

bj

for each vertex wi ∈ W
where N(wi) = {wj , wk, . . . }

Fig. 1. The reduction from PIT to 3D-SR-AS-BIN. Each vertex represents an agent.
An arc is present from agent αi to agent αj if valαi(αj) = 1.

exactly three vertices, such that for each Xp = {wi, wj , wk} ∈ X all three of the
edges {wi, wj}, {wi, wk}, and {wj , wk} belong to E?” PIT is NP-complete [16].

The reduction from PIT to 3D-SR-AS-BIN is as follows (see Figure 1). Unless
otherwise specified assume that valαi

(αj) = 0 for any αi, αj ∈ N . For each
vertex wi ∈ W create agents a1i , a

2
i , bi in N . Then set vala1i (a2i ) = vala1i (bi) =

1, vala2i (a1i ) = vala2i (bi) = 1, valbi(a
1
i ) = valbi(a

2
i ) = 1, and valbi(bj) = 1 if

{wi, wj} ∈ E for any wj ∈ N \ {wi}. Next, for each r where 1 ≤ r ≤ 6q
create p1r, p

2
r, p

3
r, p

4
r, p

5
r in N . Then set valp1r (p2r) = valp1r (p3r) = valp1r (p5r) = 1,

valp2r (p3r) = valp2r (p4r) = valp2r (p1r) = 1, valp3r (p4r) = valp3r (p5r) = valp3r (p2r) = 1,
valp4r (p5r) = valp4r (p1r) = valp4r (p3r) = 1, and valp5r (p1r) = valp5r (p2r) = valp5r (p4r) =

1. We shall refer to {p1r, . . . , p5r} as the rth pentagadget. Note that |N | = 39q. In
the full proof of this theorem, contained in [23], we show that a partition into
triangles X exists in G = (W,E) if and only if a stable matching M exists in
(N,V ) where |M | = |N |/3.

4 Symmetric binary preferences

Consider the restriction of 3D-SR-AS in which preferences are binary and sym-
metric, which we call 3D-SR-SAS-BIN. In this section we show that every in-
stance of 3D-SR-SAS-BIN admits a stable matching. We give a step-by-step con-
structive proof of this result between Sections 4.1 – 4.4, leading to an O(|N |3)
algorithm for finding a stable matching. In Section 4.5 we consider an optimisa-
tion problem related to 3D-SR-SAS-BIN.

4.1 Preliminaries

An instance (N,V ) of 3D-SR-SAS-BIN corresponds to a simple undirected graph
G = (N,E) where {αi, αj} ∈ E if valαi

(αj) = 1, which we refer to as the
underlying graph.



The 3D Stable Roommates Problem with Additively Separable Preferences 7

We introduce a restricted type of matching called a P -matching. Recall that
by definition, M(αp) = ∅ implies that uαp

(M) = 0 for any αp ∈ N in an
arbitrary matching M . We say that a matching M in (N,V ) is a P -matching if
M(αp) 6= ∅ implies uαp(M) > 0.

It follows that a P -matching corresponds to a {K3, P3}-packing in the un-
derlying graph [22]. Note that any triple in a P -matching M must contain some
agent with utility two. A stable P -matching is a P -matching that is also stable.
We will eventually show that any instance of 3D-SR-SAS-BIN contains a stable
P -matching.

In an instance (N,V ) of 3D-SR-SAS-BIN, a triangle comprises three agents
αm1

, αm2
, αm3

such that valαm1
(αm2

) = valαm2
(αm3

) = valαm3
(αm1

) = 1. If
(N,V ) contains no triangle then we say it is triangle-free. If (N,V ) is not triangle-
free then it can be reduced by successively removing three agents that belong
to a triangle until it is triangle-free. This operation corresponds to removing
a maximal triangle packing (see [12,22]) in the underlying graph and can be
performed in O(|N |3) time. The resulting instance is triangle-free. We summarise
this observation in the following lemma.

Lemma 2. Given an instance (N,V ) of 3D-SR-SAS-BIN, we can identify an
instance (N ′, V ′) of 3D-SR-SAS-BIN and a set of triples M4 in O(|N |3) time
such that (N ′, V ′) is triangle-free, |N ′| ≤ |N |, and if M is a stable P -matching
in (N ′, V ′) then M ′ = M ∪M4 is a stable P -matching in (N,V ).

4.2 Repairing a P -matching in a triangle-free instance

In this section we consider an arbitrary triangle-free instance (N,V ) of 3D-SR-
SAS-BIN. Since the only instance referred to in this section is (N,V ) so here we
shorten “is stable in (N,V )” to “is stable”, or similar.

We first define a special type of P -matching which is ‘repairable’. We then
present Algorithm repair (Algorithm 1), which, given (N,V ) and a ‘repairable’
P -matching M , constructs a new P -matching M ′ that is stable. We shall see
in the next section how this relates to a more general algorithm that, given a
triangle-free instance, constructs a P -matching that is stable in that instance.

Given a triangle-free instance (N,V ), we say a P -matching M is repairable
if it is not stable and there exists exactly one αi ∈ N where uαi(M) = 0 and
any triple that blocks M comprises {αi, αj1 , αj2} for some αj1 , αj2 ∈ N where
uαj1

(M) = 1, uαj2
(M) = 0, and valαi

(αj1) = valαj1
(αj2) = 1.

We now provide some intuition behind Algorithm repair and refer the reader
to Figure 2. Recall that the overall goal of the algorithm is to construct a stable
P -matching M ′. Since the given P -matching M is repairable, our aim will be
to modify M such that uαi

(M ′) ≥ 1 while ensuring that no three agents that
are ordered to different triples in M ′ block M ′. The stability of the constructed
P -matching M ′ then follows.

The algorithm begins by selecting some triple {αi, αj1 , αj2} that blocks M .
The two agents in M(αj1) \ {αj1} are labelled αj3 and αj4 . We present two ex-
ample scenarios in which it is possible to construct a stable P -matching. First,
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suppose there exists some αz1 where valαj3
(αz1) = 1 and uαz1

(M) = 0. Con-
struct M ′ from M by removing {αj1 , αj2 , αj3} and adding {αi, αj1 , αj2} and
{αj3 , αj4 , αz1}. Now, uαi(M

′) = 1 and uαp(M ′) ≥ uαp(M) for any αp ∈ N \{αi}.
It follows by Lemma 1 that M ′ is stable. Second, suppose there exists no such
αz1 but there exists some αz2 where valαj4

(αz2) = 1 and uαz2
(M) = 0. Now

construct M ′ from M by removing {αj1 , αj2 , αj3} and adding {αi, αj1 , αj2}
and {αj3 , αj4 , αz2}. Note that uαi

(M ′) = 1 and uαp
(M ′) ≥ uαp

(M) for any
αp ∈ N \ {αi, αj3}. It can be shown that αj3 does not belong to a triple that
blocks M ′ since no αz1 exists as described. It follows again by Lemma 1 that
M ′ is stable. Generalising the approach in the two example scenarios, the al-
gorithm constructs a list S of agents, which initially comprises 〈αj1 , αj3 , αj4〉.
The list S has length 3c for some c ≥ 1, where {S3c−2, S3c−1, S3c} ∈ M and
valSp(Sp+1) = 1 for each p (1 ≤ p < 3c). The list S therefore corresponds to a
path in the underlying graph. In each iteration of the main loop, three agents

Algorithm 1 Algorithm repair

Input: a triangle-free instance (N,V ) of 3D-SR-SAS-BIN, repairable P -matching M
in (N,V ) (Section 4.2) with some such αi ∈ N .
Output: stable P -matching M ′ in (N,V )

{αj1 , αj2} ← some αj1 , αj2 ∈ N where {αi, αj1 , αj2} blocks M and uαj1
(M) = 1

{αj3 , αj4} ←M(αj1) \ {αj1} where uαj3
(M) = 2

S ← 〈αj1 , αj3 , αj4〉
c← 1
b← 0
αz1 , αz2 , αy1 , αy2 , αw1 ← ⊥
while true
αz1 ← some αz1 ∈ N \ {αi} where valαz1

(S3c−1) = 1 and uαz1
(M) = 0, else ⊥

αz2 ← some αz2 ∈ N \ {αi, αj2} where valαz2
(S3c) = 1 and uαz2

(M) = 0, else ⊥
αy1 ← some αy1 ∈ N where valS3c(αi) = valαy1

(αi) = 1 and uαy1
(M) = 0, else ⊥

αy2 ← some αy2 ∈ N where valS3c(αj2) = valαy2
(αj2) = 1 and uαy2

(M) = 0, else ⊥
b← some 1 ≤ b < c where valS3b(αj2) = valS3c(S3b) = 1, else 0

αw1 ← some αw1 ∈ N where valS3c(αw1) = 1, uαw1
(M) = 1 and αw1 /∈ S

and there exists some αz3 ∈ N \ {αi} where valαw1
(αz3) = 1 and uαz3

(M) = 0,
else ⊥

if αz1 6= ⊥ or αz2 6= ⊥ or αy1 6= ⊥ or αy2 6= ⊥ or b > 0 or αw1 = ⊥ then
break

else
{αw2 , αw3} ←M(αw1) \ {αw1} where uαw2

(M) = 2
S ← S · 〈αw1 , αw2 , αw3〉
c← c+ 1

end if
end while

continued overleaf
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Algorithm 1 Algorithm repair

continued from previous page

if αz1 6= ⊥ and αz1 6= αj2 then
. Case 1
MS ← {{αi, αj1 , αj2}} ∪

⋃
1≤d<c

{{S3d−1, S3d, S3d+1}} ∪ {{αz1 , S3c−1, S3c}}

else if αz2 6= ⊥ then
. Case 2
MS ← {{αi, αj1 , αj2}} ∪

⋃
1≤d<c

{{S3d−1, S3d, S3d+1}} ∪ {{S3c−1, S3c, αz2}}

else if αz1 6= ⊥ and αz1 = αj2 then
. Case 3
αz4 ← some αz4 ∈ N \ {αi, αj2} where valS3c−2(αz4) = 1 and uαz4

(M) = 0

MS ← {{αi, αj1 , αj3}} ∪
⋃

1≤d<c−1

{{S3d, S3d+1, S3d+2}} ∪ {{S3c−3, S3c−2, αz4}}

∪ {{S3c−1, S3c, αj2}}
else if αy1 6= ⊥ then
. Case 4
MS ← {{αj2 , αj1 , αj3}} ∪

⋃
1≤d<c

{{S3d, S3d+1, S3d+2}} ∪ {{S3c, αi, αy1}}

else if αy2 6= ⊥ then
. Case 5
MS ← {{αi, αj1 , αj3}} ∪

⋃
1≤d<c

{{S3d, S3d+1, S3d+2}} ∪ {{S3c, αj2 , αy2}}

else if b > 0 then
. Case 6
αz5 ← some αz5 ∈ N \ {αi, αj2} where valS3b+1(αz3) = 1 and uαz3

(M) = 0

MS ← {{αi, αj1 , αj3}} ∪
⋃

1≤d<b
{{S3d, S3d+1, S3d+2}} ∪ {{αz4 , S3b+1, S3b+2}}

∪
⋃

b+1≤d<c
{{S3d, S3d+1, S3d+2}} ∪ {{S3c, S3b, αj2}}

else
. Case 7. Note that αw1 = ⊥.
MS ← {{αi, αj1 , αj3}} ∪

⋃
1≤d<c

{{S3d, S3d+1, S3d+2}}

end if
return M ′ = MS ∪ {r ∈M | r ∩ S = ∅}

belonging to some triple in M are appended to the end of S. The loop continues
until S satisfies at least one of six specific conditions. We show that eventually
at least one of these conditions must hold.

These six stopping conditions correspond to seven different cases, labelled
Case 1 – Case 7, in which a stable P -matching M ′ may be constructed. The
exact construction of M ′ depends on which condition(s) caused the main loop to
terminate. Cases 1 and 3 generalise the first example scenario, in which some αz1
exists as described. Case 2 generalises the second example scenario, in which no
such αz1 exists but some αz2 exists as described. Cases 4 – 7 correspond to similar
scenarios. The six stopping conditions and seven corresponding constructions of
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αi

αj2

αj1 αj3 αj4 S4 S5 S6

. . .

S3d−2 S3d−1 S3d

. . .

S3c−2 S3c−1 S3c αw1

. . .

αz3

Fig. 2. Players and triples in M before a new iteration of the while loop

M ′ are somewhat hierarchical. For example, the proof that M ′ is stable in Case
4 relies on the fact that in no iteration did the condition for Cases 1 and 3
hold. A similar reliance exists in the proofs of each of the other cases. The proof
that M ′ is stable in Case 7 is the most complex. It relies on the fact that no
condition relating to any of the previous six cases held in the final or some
previous iteration of the main loop. Further intuition for the different cases is
given in the full version of this paper [23].

Algorithm repair is presented in Algorithm 1 in two parts. The first part
involves the construction of S and exploration of the instance. The second part
involves the construction of M ′. The following lemma establishes the correctness
and complexity of this algorithm.

Lemma 3. Algorithm repair returns a stable P -matching in O(|N |2) time.

4.3 Finding a stable P -matching in a triangle-free instance

In the previous section we supposed that (N,V ) was a triangle-free instance
of 3D-SR-SAS-BIN and considered a P -matching M that was repairable (Sec-
tion 4.2). We presented Algorithm repair, which can be used to construct a
stable P -matching M ′ in O(|N |2) time (Lemma 3). In this section we present
Algorithm findStableInTriangleFree (Algorithm 2), which, given a triangle-
free instance (N,V ), constructs a P -matching M ′ that is stable in (N,V ). Al-
gorithm findStableInTriangleFree is recursive. The algorithm first removes
an arbitrary agent αi to construct a smaller instance (N ′, V ′). It then uses a rec
ursive call to construct a P -matching M that is stable in (N ′, V ′). By Lemma 1,
any triple that blocks M in the larger instance (N,V ) must contain αi or block
M in (N ′, V ′). There are then three cases involving types of triple that block M
in (N ′, V ′). In two out of three cases, M ′ can be constructed by adding to M a
new triple containing αi and two players unmatched in M . In the third case, M
is not stable in (N,V ) but, by design, is repairable (see Section 4.2). It follows
that Algorithm repair can be used to construct a P -matching that is stable in
(N,V ) (Lemma 3). It is relatively straightforward to show that the running time
of Algorithm findStableInTriangleFree is O(|N |3).
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Algorithm 2 Algorithm findStableInTriangleFree

Input: an instance (N,V ) of 3D-SR-SAS-BIN
Output: stable P -matching M ′ in (N,V )

if |N | = 2 then return ∅

αi ← an arbitrary agent in N
(N ′, V ′)← (N \ {αi}, V \ {valαi})
M ← findStableInTriangleFree((N ′, V ′))

if some αl1 , αl2 ∈ N exist where uαl1
(M) = uαl2

(M) = 0
and valαi(αl1) = valαi(αl2) = 1 then

return M ∪ {{αi, αl1 , αl2}}
else if some αl3 , αl4 ∈ N exist where uαl3

(M) = uαl4
(M) = 0

and valαi(αl3) = valαl3
(αl4) = 1 then

return M ∪ {{αi, αl3 , αl4}}
else if some αl5 , αl6 ∈ N exist where uαl5

(M) = 1, uαl6
(M) = 0

and valαi(αl5) = valαl5
(αl6) = 1 then

. M is repairable in (N,V ) (see Section 4.2). Note that αj1 = αl5 and αj2 = αl6 .
return repair((N,V ),M, αi)

else
return M

end if

Lemma 4. Algorithm findStableInTriangleFree returns a stable P -matching
in (N,V ) in O(|N |3) time.

4.4 Finding a stable P -matching in an arbitrary instance

In the previous section we considered instances of 3D-SR-SAS-BIN that are
triangle-free. We showed that, given such an instance, Algorithm findStableIn-

TriangleFree can be used to find a stable P -matching inO(|N |3) time (Lemma 4).
In Section 4.1, we showed that an arbitrary instance can be reduced in O(|N |3)
time to construct a corresponding triangle-free instance (Lemma 2). Algorithm
findStable therefore comprises two steps. First, the instance is reduced by
removing a maximal set of triangles. Call this set M4. Then, Algorithm find-

StableInTriangleFree is called to construct a P -matching M ′ that is stable in
the reduced, triangle-free instance. It is straightforward to show that M4 ∪M ′
is a stable P -matching. The running time of Algorithm findStable is thus
O(|N |3). A pseudocode description of Algorithm findStable can be found in
the full version of this paper [23]. We arrive at the following result.

Theorem 2. Given an instance (N,V ) of 3D-SR-SAS-BIN, a stable P -matching,
and hence a stable matching, must exist and can be found in O(|N |3) time. More-
over, if |N | is a multiple of three then, if required, every agent can be matched
in the returned stable matching.
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4.5 Stability and utilitarian welfare

Given an instance (N,V ) of 3D-SR-SAS-BIN and matching M , let the utilitarian
welfare [4,11] of a set S ⊆ N , denoted uS(M), be

∑
αi∈S

uαi(M). Let u(M) be

short for uN (M). Given a matching M in an arbitrary instance (N,V ) of 3D-
SR-SAS-BIN, it follows that 0 ≤ u(M) ≤ 2|N |. It is natural to then consider
the optimisation problem of finding a stable matching with maximum utilitarian
welfare, which we refer to as 3D-SR-SAS-BIN-MAXUW. This problem is closely
related to Partition Into Triangles (PIT, defined in Section 3), which we reduce
from in the proof that 3D-SR-SAS-BIN-MAXUW is NP-hard.

Theorem 3. 3D-SR-SAS-BIN-MAXUW is NP-hard.

We note that the reduction from PIT to 3D-SR-SAS-BIN-MAXUW also
shows that the problem of finding a (not-necessarily stable) matching with max-
imum utilitarian welfare, given an instance of 3D-SR-SAS-BIN, is also NP-hard.

In Section 4.4 we showed that, given an arbitrary instance (N,V ) of 3D-SR-
SAS-BIN, a stable P -matching exists and can be found in O(|N |3) time. We now
present Algorithm findStableUW (Algorithm 3) as an approximation algorithm
for 3D-SR-SAS-BIN-MAXUW.

This algorithm first calls Algorithm findStable to construct a stable P -matching.
It then orders the unmatched agents into triples such that the produced match-
ing is still stable in (N,V ) (by Lemma 1) but is not necessarily a P -matching.

Algorithm 3 Algorithm findStableUW

Input: an instance (N,V ) of 3D-SR-SAS-BIN
Output: stable matching MA in (N,V )

M1 ← findStable((N,V ))
U ← agents in N unmatched in M1

Y ← maximum2DMatching((N,V ), U)

if |Y | ≥ b|U |/3c then
X ← any b|U |/3c elements of Y

else
. Note that since Y is a set of disjoint pairs, it follows that
|U \

⋃
Y | = |U | − 2|Y | ≥ b|U |/3c − |Y |.

W ← an arbitrary set of b|U |/3c − |Y | pairs of elements in U \
⋃
Y

X ← Y ∪W
end if

Z ← U \
⋃
X

. Suppose X = {x1, x2, . . . , xb|U|/3c} and Z = {z1, z2, . . . , zb|U|/3c}.

. Note that xi is a pair of agents and zi is a single agent for each 1 ≤ i ≤ b|U |/3c.
M2 ← {xi ∪ {zi} for each 1 ≤ i ≤ b|U |/3c}
return M1 ∪M2
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The pseudocode description of Algorithm findStableUW includes a call to maxi-

mum2DMatching. Given an instance (N,V ) and some set U ⊆ N , this subroutine
returns a (two-dimensional) maximum cardinality matching Y in the subgraph
of G, the underlying graph of (N,V ), induced by U . From Y , Algorithm find-

StableUW constructs a set X of pairs with cardinality b|U |/3c. It also constructs
a set Z from the remaining agents, also with cardinality b|U |/3c. Finally, it con-
structs the matching M2 such that each triple in M2 is union of a pair of agents
in X and a single agent in Z. Let MA be an arbitrary matching returned by
Algorithm findStableUW given (N,V ). Suppose Mopt is a stable matching in
(N,V ) with maximum utilitarian welfare. To prove the performance guarantee of
Algorithm findStableUW we show that 2u(MA) ≥ u(Mopt). The proof involves
apportioning the welfare of agents in MA by the triples of those agents in Mopt.

Theorem 4. Algorithm findStableUW is a 2-approximation algorithm for 3D-
SR-SAS-BIN-MAXUW.

In the instance of 3D-SR-SAS-BIN shown in Figure 3, Algorithm find-

StableUW always returns MA = {{α3, α5, α6}} while Mopt = {{α1, α2, α3},
{α4, α5, α8}, {α6, α7, α9}}. Since u(MA) = 6 and u(Mopt) = 12 it follows that
u(Mopt) = 2u(MA). This shows that the analysis of Algorithm findStableUW

is tight. Moreover, this particular instance shows that any approximation al-
gorithm with a better performance ratio than 2 should not always begin, like
Algorithm findStableUW does, by selecting a maximal set of triangles.

5 Open questions

In this paper we have considered the three-dimensional stable roommates prob-
lem with additively separable preferences. We considered the special cases in
which preferences are binary but not necessarily symmetric, and both binary
and symmetric. There are several interesting directions for future research.

α5α4

α8

α6

α9

α7

α3

α2α1

Fig. 3. An instance in which u(Mopt) = 2u(MA).
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• Does there exist an approximation algorithm for 3D-SR-SAS-BIN-MAXUW
(Section 4.5) with a better performance guarantee than 2?

• In 3D-SR-AS, there are numerous possible restrictions besides symmetric and
binary preferences. Do any other restrictions ensure that a stable matching
exists? For example, we could consider the restriction in which preferences
are symmetric and valαi

∈ {0, 1, 2} for each αi ∈ N .
• Additively separable preferences are one possible structure of agents’ pref-

erences that can be applied in a model of three-dimensional SR. Are there
other systems of preferences that result in new models in which a stable
matching can be found in polynomial time?

• The 3D-SR-AS problem model can be generalised to higher dimensions. It
would be natural to ask if the algorithm for 3D-SR-SAS-BIN can be gener-
alised to the same problem in k ≥ 3 dimensions, in which a k-set of agents S
is blocking if, for each of the k agents in S, the utility of S is strictly greater
than that agent’s utility in the matching. We conjecture that when k ≥ 4, a
stable matching need not exist, and that the associated decision problem is
NP-complete, even when preferences are both binary and symmetric.
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Hammond, P., Seidl, C. (eds.) Handbook of Utility Theory, vol. 2, chap. 17, pp.
893–977. Kluwer Academic Publishers (2004)

8. Boehmer, N., Elkind, E.: Stable roommate problem with diversity preferences. In:
Proceedings of IJCAI ’20: the 29th International Joint Conference on Artificial
Intelligence. pp. 96–102. IJCAI Organization (2020)

9. Brandt, F., Bullinger, M.: Finding and recognizing popular coalition structures.
In: Proceedings of AAMAS ’20: the 19th International Conference on Autonomous
Agents and Multiagent Systems. pp. 195–203. IFAAMAS (2020)

10. Bredereck, R., Heeger, K., Knop, D., Niedermeier, R.: Multidimensional stable
roommates with master list. In: Proceedings of WINE ’20: The 16th Conference



The 3D Stable Roommates Problem with Additively Separable Preferences 15

on Web and Internet Economics. Lecture Notes in Computer Science, vol. 12495,
pp. 59–73. Springer (2020)

11. Bullinger, M.: Pareto-optimality in cardinal hedonic games. In: Proceedings of AA-
MAS ’20: the 19th International Conference on Autonomous Agents and Multiagent
Systems. pp. 213–221. IFAAMAS (2020)
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