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Abstract
As the number of cores increases, Non-Uniform Memory
Access (NUMA) is becoming increasingly prevalent in gen-
eral purpose machines. Effectively exploiting NUMA can
significantly reduce memory access latency and thus run-
time by 10-20%, and profiling provides information on how
to optimise. Language-level NUMA profilers are rare, and
mostly profile conventional languages executing on Virtual
Machines (VMs). Here we profile, and develop new NUMA
profilers for, a functional language executing on a runtime
system (RTS).

We start by using existing OS and language level tools to
systematically profile 8 benchmarks from the GHC Haskell
nofib suite on a typical NUMA server (8 regions, 64 cores).
We propose a new metric: NUMA access rate that allows
us to compare the load placed on the memory system by
different programs, and use it to contrast the benchmarks.
We demonstrate significant differences in NUMA usage be-
tween computational and data-intensive benchmarks, e.g.
local memory access rates of 23% and 30% respectively. We
show that small changes to coordination behaviour can sig-
nificantly alter NUMA usage, and for the first time quantify
the effectiveness of the GHC 8.2 NUMA adaption.
We identify information not available from existing pro-

filers and extend both the numaprof profiler, and the GHC
runtime system to obtain three new NUMA profiles: OS
thread allocation locality, GC count (per region and gener-
ation) and GC thread locality. The new profiles not only
provide a deeper understanding of program memory usage,
they also suggest ways that GHC can be adapted to better
exploit NUMA architectures.

CCS Concepts: • Software and its engineering→ Paral-
lel programming languages; Functional languages.
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1 Introduction
Non-uniform memory access (NUMA) architectures provide
performance scalability for many-coremachines by partition-
ing the memory into regions, each associated with several
cores. Every core has access to all memory regions, but access
to the memory in the local region is both faster (currently
2× to 4×) and higher bandwidth (currently 2×) than access-
ing memory in a remote region. As the number of cores in
an architecture rises above 16, NUMA is the best way to
provide fast access to shared memory. Although NUMA ar-
chitectures have been around for more than two decades
they have historically been restricted to specific applications
like Data Analytics. More recently, as the number of cores in
many commodity architectures increases, they are becoming
the dominant architecture for general purpose platforms,
e.g. clusters of small (4 or 8 region) NUMAs are very com-
mon server architectures, and they are coming to laptops,
for example with the AMD Ryzen processors.

In languageswith explicit memorymanagement, like C/C++,
the programmer herself lays out memory, and may go to
great lengths to exploit NUMA. However this is additional
programming effort, and must be repeated for each NUMA
configuration.

Languages with automatic memory management such as
Haskell, Java or Python give the programmer far less control
over memory usage: allocation, layout, and locality. For these
languages the challenge is to minimise the cost of non-local
memory access [6]. Effective use of NUMA is necessary as
studies show that optimisation can reduce runtimes of appli-
cations in conventional languages by 10–20%, e.g. [14, 18].
The performance gains are likely even greater for functional
languages, such as Haskell, with their massive memory res-
idencies and high (de)allocation rates. Automatic memory
management does, however, provide opportunities to bene-
fit from NUMA as the implementation is free to move data

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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around to better exploit locality, and doing so will be invisi-
ble in the program. Moreover the program will not require
refactoring for new NUMA configurations.
Informative profiling of NUMA usage is essential to en-

able effective optimisation, and is available from multiple
layers in the system stack. At the lowest levels there are hard-
ware performance counters and associated tools like Intel
VTune1 and AMD `prof 2. At the OS level are profilers like
Linux perf tools and numaprof [20]. Profilers for languages
with automatic memory management are not common, and
PerfUtil [14] for the JVM is a notable exception.
This paper makes the following research contributions.
The systematic profiling of NUMA memory usage

of parallel GHCHaskell programs using existing com-
piler & OS tools (Section 4). Eight benchmarks from the
GHC nofib suite are profiled, and three are selected for pre-
sentation: two versions of the data intensive sumeuler, and
the compute intensive prsa encryption engine. The study
uses the GHC heap profiler and the OS-level numaprof tool
to provide the first ever quantification of the effectiveness of
GHC NUMA adaption. That is, the policy of local allocation
is effective in increasing local access from a notional 12.5%
to around 30% for data intensive benchmarks, and to around
23% for a compute intensive benchmark. We record and anal-
yse two standard metrics: memory residency and allocation;
and two NUMA-specific metrics: OS thread access locality
within NUMA regions, and OS thread NUMA region counts.
We propose a new metric: NUMA access rate that allows
us to compare the load placed on the memory system by dif-
ferent programs, and use it to contrast the benchmarks. The
study reveals key information about GHC Haskell’s NUMA
usage not available from current profilers, and motivates the
following contributions.

For a thread executing in some region current NUMA pro-
filers record access to memory in each region, but not the
allocation of memory into each region. We design, imple-
ment, and demonstrate an extension to numaprof to
record OS thread allocation locality (Section 5). The ex-
tensions record the NUMA region of the calling thread and
the bytes allocated into each region. The output is integrated
with the numaprof UI to show a heat map of allocations be-
tween regions. The profiles allow developers to detect, and
potentially control, remote allocation. They also provide evi-
dence, not available from existing profilers, to explain why
some regions have very high access rates. The extension to
numaprof is freely available.

The design, implementation, and demonstration of
extensions to GHC garbage collection (GC) to profile
NUMA usage (Section 6). While GC in the current GHC

1https://software.intel.com/content/www/us
/en/develop/tools/oneapi/components/vtune-profiler.html
2https://developer.amd.com/amd-uprof/

RTS reports global statistics like GC counts, and GC run-
times, it provides no information on NUMA usage. We ex-
tend GHC’s GC to record GC count per region and GC count
per generation in each region enabling the programmer to
identify regions with high memory residency or high allo-
cation rates. We also extend GHC’s GC to record GC thread
locality, analogous to access locality, using the numaprof UI
to produce a region × region heat map that identifies op-
portunities to improve locality during GC by reallocating
objects between regions. The extension to the GHC RTS is
freely available.

2 Related Work
2.1 NUMA Architectures
The technology of Non-uniform memory access (NUMA) ma-
chines was developed concurrently by several companies
in the 1990s for super computers. NUMA architectures aim
to provide performance scalability for shared memory ma-
chines by physically partitioning the memory of the system
into regions each associated with several cores, as depicted
in Figure 1. Every core has access to all memory regions,
but access to the memory in the local region is via a bus
and is both faster (currently 2× to 4×) and higher bandwidth
(currently 2×) than accessing memory in a remote region
where the memory access must go via an interconnect [9].

Figure 1. A NUMA architecture showing 2 regions, 4 cores
per region. Cores access local memory via a bus and access
remote regions via the on-chip interconnect.

NUMAs come in varying sizes. Clusters of small NUMAs
(4 or 8 regions) are already the dominant server architecture,
and it is widely predicted that in the next 7 years mid-size (32
– 256 cores, 2 – 16 regions) NUMA architectures will become
increasingly common in servers and desktop/workstations.
Some laptops already use AMD Ryzen NUMA architectures.

2.2 Challenges of Automatically Managing NUMA
Languages with explicit memory management, e.g. C or C++,
offer full control over the NUMA memory usage of the ap-
plication. A great deal of programming effort is required to
efficiently exploit NUMA. This may introduce bugs, espe-
cially if the language is not memory safe [8, 17]. In addition
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to the increased programming effort, the code generally isn’t
portable and must be re-written for NUMAs of a different
size. Therefore, automating themanagement of NUMAusage
is highly desirable.

Languages with automatic memory management such as
Haskell and Java provide far less control over the NUMA
usage of the application. The burden of managing memory
allocation, layout and locality is left to the RTS implemen-
tation. A recent study suggests that NUMA is an issue for
languages with automatic memory management [14], and
are identified as: (1) NUMA aware garbage collection; (2)
scheduling threads onto the region where the data used re-
sides; (3) avoiding high memory controller utilisation.

Although here we focus on NUMA usage at the language
level it is worth mentioning that Operating System (OS) or
Hypervisor tools can allocate memory to exploit NUMA [22].
Here a common heuristic is first touch, that allocates mem-
ory into the region where the first thread to request it is
executing. The OS can also pin processes to regions to assist
with moving processes (OS threads) close to the data. While
this may improve performance, it may also lead to load im-
balance and hence it is often better to allocate in a nearby
remote region [12].

2.3 Opportunities Provided by Automatically
Managing NUMA

Automating the management of NUMA memory provides
opportunities for portable performance across NUMA plat-
forms. The garbage collector (GC) is free to move data across
regions. For example, if the system detects that a lot of re-
mote accesses are made to a region, then the GC can move
the data closer to threads that use it.
Automating the memory management also massively re-

duces programming effort, reducing development time by
simplifying code and improving maintainability. Moreover
the code will not require refactoring for a new NUMA.

In the context of the OpenMP RTS, Broquedis et al [4, 16]
use live profiling information and a graph-based compute
model to efficiently reduce data transfers between NUMA
regions. They report average performance improvements of
1.12× on a 288-core shared-memory system.

2.4 Memory Management in Parallel Haskell
Haskell is a purely functional, non-strict programming lan-
guage, and ideal for a study of automatic NUMA memory
management as Haskell applications typically have much
higher memory requirements than imperative languages.
This is due to two main factors. (1) State is immutable and
the only way to modify a data structure is to allocate a new
one with updated values. This leads to a lot of temporary,
short-lived data. (2) Lazy evaluation results in the continuous
allocation and de-allocation of closures, i.e. thunks represent-
ing Haskell expressions. The

Memory management in the RTS of the Glasgow Haskell
Compiler (GHC) uses a generational policy, by default with
2 generations (for young and old objects) and a separate
heap area for data (static objects) from top level constant
expressions (CAFs) that reside outside the generational struc-
ture. The RTS maintains a Haskell Execution Context (HEC)
for each processor. This contains all the data required for
a sparked thread to execute its share of the program code.
Depending on the parallel Haskell dialect, most of the paral-
lel aspects of the execution is implicitly handled by the RTS.
In the Glasgow parallel Haskell (GpH) dialect, constructs
on source code level indicate potential parallel evaluation
of an expression, which is represented as a spark in the
RTS. These are turned into sparked threads on-demand, i.e.
when the RTS perceives the need for more parallelism. Since
GHC 8.2 sparked threads are pinned to the HEC’s region.
In contrast, the main thread, which is not generated from a
spark, is unpinned, and thus its location (region) may vary
between runs of a program. An abstraction layer of evalua-
tion strategies helps to orchestrate the (parallel) execution
of the program and the forcing of data structures.
In Haskell NUMA memory is managed by the RTS, and

identifying where allocations occur in the code can be dif-
ficult in a lazy language. In most other languages, such as
Java, allocations are more easily linked to lines in the source
code. This creates the need for strong NUMA profiling in
Haskell.

2.5 Adapting languages with automatic memory
management to NUMA

There has been a significant body of research aiming to adapt
Java implementations to NUMA. Recent studies focus on
characterising the garbage collector’s scalability bottlenecks
or on introducing various NUMA-aware thread scheduling
and memory management policies, as follows.
Gidra’s GiC garbage collector (GC) [7] for Big Data ap-

plications executing on the JVM, uses a mostly distributed
design, utilising message passing techniques. GC threads
normally only collect within the region that they reside in.
Despite the additional overhead, NumaGiC achieves end-to-
end performance improvements of up to 45%, and reduces
GC time by up to 5.4×, on mid-size (e.g. 48-core 8-region)
AMD and Intel machines.

Alnowaiser shows that in the Java Virtual Machine (JVM),
on average, 80% of the vertices in a garbage collection refer-
ence graph all reside in the same region [2]. Reference graphs
are directed graphs, composed by tracing references from a
root object to all objects reachable from the root. Alnowaiser
& Singer incorporate this knowledge into the JVM garbage
collector [3], by pinning a GC thread to the region of a root
in the reference graph, demonstrating speedups by up to
2.5×, relative to not adding region locality.
The GUMSMP Haskell RTS is designed for NUMA and

clusters of NUMA [1]. It has a mostly distributed design that
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utilises shared-memory within a region and message passing
between regions. On NUMA GUMSMP delivers better per-
formance compared with the standard GHC RTS that uses
only shared memory parallelism.

2.6 NUMA Profiling Levels
Hardware Performance Counters are at the lowest level
of the system stack. They typically capture compute cycles,
L1/L2 cache misses, and NUMA local/remote access counts.
Applications can interact with hardware counters via sam-
pling. Relevant NUMA tools using these counters include
the numastat/numatop3 tools for Linux on Intel Xeon. Intel
VTune and AMD `Prof provides native support for Intel and
AMD architectures respectively, offering rich graphical in-
terfaces and data export capabilities. The PAPI interface [19]
provides a uniform API across different hardware vendors
to allow programs to access hardware counter information.
The Linux perf tools4 provide access to hardware counters
but are currently restricted to Intel-based architectures.

OS Level Profiling Tools build on hardware counters,
providing more abstraction and adding flexibility. For ex-
ample to track not only the memory location accessed, but
also the region of the executing thread, making it possible
to discover the access & allocation locality of OS threads.
The latency for accessing different regions in a NUMA

architecture varies, and Figure 2 shows the relative (access)
latencies between regions on Togian (the machine used in
our experiments, Section 3.2). We use numactl to access
this information: a command-line front-end that accesses
hardware architecture information through the hwloc library
from the Linux kernel. On AMD architectures numaprof [20]
records OS access thread locality using the Intel Pin Tool [11],
and is the tool we use in the experiments in Section 4 and
Section 5. 

10 16 16 22 16 22 16 22
16 10 22 16 16 22 22 16
16 22 10 16 16 16 16 16
22 16 16 10 16 16 22 22
16 16 16 16 10 16 16 22
22 22 16 16 16 10 22 16
16 22 16 22 16 22 10 16
22 16 16 22 22 16 16 10


Figure 2. Relative access latencies (distances) between re-
gions on Togian, the 8 region NUMA used. Accessing a re-
mote region increases latency from 10 to 16 or 22 (data from
numactl).

Other OS level profilers include the following. Linux perf
tools4 captures some events at OS level. MemProf [10] is a
higher level tool that focuses on NUMA access patterns using
3https://man7.org/linux/man-pages/man8/numastat.8.html
4https://perf.wiki.kernel.org/index.php/Main_Page

a kernel module and AMD’s Instruction Based Sampling [5]
to reduce overhead. NumaPerf [23] tracks sharing patterns
between threads, instead of remote accesses, to identify load
imbalances and potential thread migrations.

Language Implementation Tools. The VM or RTS for a
language with automatic memory management has more
information about memory usage patterns of an application
than the OS. The state of all objects is tracked within the
language implementation and potentially provides scope for
identifying hotspots and making optimisations.

Very few languages with automatic memory management
provide NUMA profiling, and the work that has been done
mostly uses the VMs for managed languages. For example
PerfUtil [14] provides NUMA specific metrics for the JVM,
and was measured on a small 2-region NUMA. GHC Haskell
currently has no NUMA profiling, and in Section 6 we de-
scribe extensions to record per region GC counts and GC
thread locality measures. The new RTS-level NUMA profil-
ing is novel both in profiling a non-strict functional language
that places massive demands on the memory system, and in
profiling programs executing under a RTS rather than a VM.

3 NUMA Metrics and Experiment Setup
This section defines the NUMA metrics used and describes
the GHC Haskell experiment methodology.

3.1 Metrics
We start by defining two standard and five NUMA specific
memory usage metrics.

Residency: is the number of bytes of live (non-garbage)
data in the heap during program execution. Residency is
commonly plotted against execution time, and the maximum
residency is a key statistic.

Total Allocation: is the product of memory allocated
and execution time, typically measured as bytes*s. In GHC
allocation is attributed to cost centres in the program source,
and allocation is plotted as a graph of bytes against execu-
tion time. The slope of these graphs is the Allocation Rate
typically measured as bytes/s

OS thread access locality: is an access matrix, where en-
try (𝑖, 𝑗) is the total number of accesses made by threads in re-
gion 𝑖 to data in region 𝑗 . In numaprof the data is normalised
with respect to all accesses and visualised as a heat-map.

OS thread NUMA region counts: is the number of ac-
cesses made by each thread at different access latencies (10,
16 or 22 on Togian as in Figure 2), recorded by numaprof.

OS thread allocation locality: is an allocation matrix
where entry (𝑖, 𝑗) is the total number of bytes allocated by
OS threads in region 𝑖 to region 𝑗 . We extend numaprof to
record this, and present the results as a heat map.

GHCGCcount per region&generation: is the number
of times a GC occurs in a particular region and generation.
Here we extend GHC’s GC to record the information, and
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present the results as a table. This metric may highlight load
imbalance if some regions have far more GCs.

GHC GC thread locality: is a matrix where entry (𝑖, 𝑗)
records the number of times a GC thread in region 𝑖 processes
data in region 𝑗 . Here we extend the GHC’s GC to record the
information, and present the results as a table. This metric
identified what percentage of objects processed by the GC
are local, and what percentage are remote.

3.2 Experimental Setup
All measurements were made on a typical NUMA server,
and specifically the Togian Linux server at the School of
Computing Science at University of Glasgow. Togian features
64 cores, using the AMD™Opteron Processor 6366 HE; 64GB
RAM, 8 NUMA regions so 8GB per region; 8 cores per region;
running CentOS Linux 7 (Core). All applications are compiled
with GHC version 8.4.3, although this version is relatively
old there have been no NUMA adaptions since its release. To
account for non-deterministic scheduling and other factors:
(1) reported runtimes are the median of 5 measurements, and
(2) all profiles are collected from the same program execution
with the exception of the GHC heap profiles.

3.3 Benchmarks
A set of eight benchmarks from the parallel nofib [15] suite
have been profiled, and the profiles are publicly available5. In
the remaining sections we use three versions of two bench-
marks as running examples.

The sumeuler benchmark is data intensive: creating and
traversing huge lists. The computation maps the Euler to-
tient function (𝜙) over the list, and then computes the sum of
the results. We use two implementations of this benchmark
using two different evaluation strategies. Namely, divide &
conquer (DNC) and a data parallel (data parallel) method,
with a focus on earlier evaluation. These two methods of
computation were chosen from a number of nofib imple-
mentations as the DNC has the greatest runtime and data
parallel the least. The runtimes and speedups with different
inputs are listed in Table 1 and Table 2, and other runtimes
are available online 5. The relatively low parallel efficiencies,
i.e. speedups of 33.2 and 37.7 on 64 cores for DNC and data
parallel versions, are typical of GHC on large NUMA [1]. The
DNC implementation is not part of the nofib suite however,
and uses the divConq algorithmic skeleton from [13]. The
input size is set to 100K to provide good speedups while min-
imising profiling time. Already numaprof imposes a 40-100×
slowdown, and the GHC profiling extensions raise this to a
500× slowdown.

The prsa benchmark is compute intensive, and drawn
from the GHC nofib suite. It is a parallel implementation of
the RSA public key encryption algorithm. The input used
is 300K, and the runtimes on 1 core and 64 cores are 2.43s

5https://github.com/ruairidhm98/Profiles

Input Size Runtime (s)
(1 core)

Runtime (s)
(64 cores) Speedup

50K 80.97 3.85 21.0
100K 341.03 13.91 24.5
150K 787.34 29.70 26.5
200K 1428.23 43.01 33.2

Table 1. Divide-and-Conquer (DNC) sumeuler runtimes &
speedups.

Input Size Runtime (s)
(1 core)

Runtime (s)
(64 cores) Speedup

50K 81.28 2.55 31.9
100K 341.89 9.56 35.8
150K 787.39 21.23 37.1
200K 1435.31 38.04 37.7

Table 2. Data parallel (DP) sumeuler runtimes & speedups.

and 0.45s respectively. For the purposes of profiling the mod-
est parallel performance isn’t an issue: often programs are
profiled to improve their performance.

Figure 3. DNC sumeuler Heap Profile (GHC).

4 NUMA Profiling GHC with Existing
Tools

4.1 Heap Profiles
Figure 3 shows thememory profile for the divide-and-conquer
(DNC) sumeuler recorded by the GHCmemory profiler. Heap
residency is recorded against execution time, and is attrib-
uted to cost centres in the program. The maximum residency
is less than 900KB, and the total allocation is 493MBs. Heap
residency is fairly consistent throughout execution. In the
DNC implementation, each of the sparked threads generates
an interval list to process, and the allocation and residency
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likely represents the interval lists being generated, and con-
sumed.

Figure 4. Data parallel sumeuler Heap Profile (GHC).

Figure 4 shows thememory profile for data parallel sumeuler.
Compared to the DNC profile the maximum residency is
more than 5× higher at around 5MB, and total allocation is
3× higher: 1811MBs. In this version of the program the main
thread creates the entire list before sparking tasks to process
intervals of it. This is reflected in the profile where in the
first 1 or 2s the program allocates a large amount of memory
(5MB), thereafter heap residency declines throughout execu-
tion as the sparked threads consume the list. So in contrast
to the DNC version, little of the allocation is performed by
the sparked threads.

Figure 5 shows the memory profile for prsa. For this com-
pute intensive program the maximum residency is fairly low
at 1.7MB, and total allocation is very low at 8.45MBs. Resi-
dency shows a different pattern again: it steadily increases
during execution, and the increase is fairly uniformly attrib-
uted to cost centres.

Figure 5. prsa Heap Profile (GHC).

GHC overall heap profiles are oblivious to NUMA, and
hence lack key information about parallel execution onNUMA.

It is not apparent what memory regions hold the resident
objects, which threads allocate and access those objects, nor
what region those threads execute in. Fortunately some OS
level tools can provide some additional information.

4.2 OS Thread Access Locality
Figure 6a shows the OS Thread Access Locality heat-map for
DNC sumeuler produced by numaprof. Here the colour of
the cells should be interpreted as follows: grey means zero
so no accesses from one region to the other, blue is a small
number of accesses, purple is more accesses, and red is a large
number of accesses. So the purple diagonal shows significant
local access within each region: 28.7% of accesses. These
are likely data that GHC allocates locally, so for sumeuler
the list of integers being searched by each thread. However,
without information about thread memory allocation we can
only speculate, and this motivates our extension of numaprof
in Section 5. The red of column 7 shows that some 82% of all
memory accesses are to this region (7).

Figure 6b shows the OS Thread Access Locality heat-map
for the data parallel sumeuler. As in Figure 6a it has a pur-
ple diagonal showing slightly more local accesses (29.6% of
accesses), and a hot column, in this case in region 3 (81% of
accesses).

Figure 6c shows the OS Thread Access Locality heat-map
for prsa. As in the sumeuler benchmarks the purple diag-
onal shows some local accesses, but slightly fewer (22.9%
of accesses). The hot region (1) accounts for 89.4% of ac-
cesses. This accords with our expectations: in a compute
intensive program like prsa sparked threads do fewer mem-
ory accesses, and likely fewer allocations: a conjecture that
is suggested by the total allocation (Figure 5), and that our
new profiler in Section 6 allows us to confirm: the great-
est amount of allocation within a single region is from an
unpinned thread, and is just 9444 bytes.

4.3 OS Thread NUMA Access Latencies
The different NUMA access latencies are outlined in Figure 2,
and are 10, 16 and 22 on Togian. Figure 7 shows the NUMA
access latency counts for both DNC & data parallel sumeuler
recorded by numaprof. For DNC sumeuler 28.7% of memory
accesses are in the same region with latency 10, and also
reported in the access locality heat map. The majority of
accesses (41.6%) are at a latency of 16, and some 29.7% are
at latency 22. For data parallel sumeuler 29.6% of memory
accesses are at latency 10. As for DNC most of the accesses
are at latency 16 (41.3%), with 29.1% at latency 22. Figure 8
shows the NUMA access counts for prsa. 22.9% of memory
accesses are at latency 10. Most of the accesses are at latency
16 (45.3%), with 30.8% at latency 22.

From the access latency matrix Figure 2, we see that en-
tirely random accesses between regions would give 12.5%
latency 10 accesses (i.e. 1 out of 8 regions), 50% latency 16
accesses (i.e. 4 out of 8 regions), and 37.5% latency 22 accesses



Improving GHC Haskell NUMA Profiling FHPNC’21, August, 2021, Virtual

(a) DNC sumeuler OS thread access local-
ity heat-map (numaprof ).

(b) Data parallel sumeuler OS thread ac-
cess locality heat-map (numaprof ).

(c) prsa OS thread access locality heat-map
(numaprof ).

Figure 6. OS thread access locality heat-maps

(i.e. 3 out of 8 regions). We conclude that the existing GHC pol-
icy of preferring local allocation is effective in increasing local
access from the notional 12.5% to around 30% for data inten-
sive benchmarks, and to around 23% for a compute-intensive
benchmark. The increased number of local accesses reduce
access to remote regions at latencies 16 and 22 approximately

equally. These profiles, together with the results in Table 3,
are the first ever quantification of the effectiveness of GHC
NUMA adaption.

Figure 7. OS thread NUMA region counts for sumeuler
(numaprof ).

Figure 8. OS thread NUMA region counts for prsa
(numaprof ).

We propose a new metric to characterise the load a
program places on a NUMA memory system. A pro-
gram’s NUMA access rate is the sum of memory accesses
weighted by their NUMA latency and divided by program
runtime, with unit object accesses× latency/s. So on a NUMA
with access latencies or distances𝑑𝑖 (10, 16 and 22 on Togian),
a program that makes 𝑎𝑖 accesses at each distance in runtime
𝑡 seconds has

NUMA access rate =
Σ𝑖𝑑𝑖 ∗ 𝑎𝑖

𝑡
The unit is informally abbreviated to (weighted) accesses/s,

and the metric allows us to compare the load placed on the
memory system by different programs.
The NUMA access rate for divide-and-conquer sumeuler

is 1223 × 109/13.91𝑠 = 87.9 ∗ 109 accesses/s. In comparison
the NUMA access rate for data parallel sumeuler is twice
as high: 1591 × 109/9.56𝑠 = 166.4 × 109 accesses/s. Clearly
the initial list allocation by the main thread forces sparked
threads in other regions threads to make many more remote
accesses, placing a higher load on the memory system. The
NUMA access rate for prsa is 255 × 109/0.45𝑠 = 566.7 ×
109 accesses/s showing that the large percentage of remote
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accesses (Figure 8) places the highest demand on the memory
system.

Another potential metric is NUMAmemory allocation rate
We don’t report this as allocation costs are comparatively
low, despite the fact that allocation determines much larger
the NUMA access rate.

Benchmark % Local % Hot
Column

NUMA
Speedup

blackscholes 11.8 60.2 1.07
DNC sumeuler 28.7 69.0 1.11
DP sumeuler 29.6 70.0 1.03
matmult 26.9 50.9 1.01
partak 38.0 60.0 1.23
prsa 22.6 76.8 1.21
queens 19.1 68.0 1.13
transclos 14.9 83.7 1.03

Geo. Mean Speedup 1.10
Table 3. Percentage local accesses, most highly accessed
region, and speedup due to NUMA optimisation for 8 nofib
benchmarks.

Multiple Benchmarks. Table 3 shows the percentage of
local accesses, and the maximum percentage of remote ac-
cesses to a single region, e.g. in Figure 6a this would be
the sum of (0, 7) to (6, 7) divided by the total number of
accesses. The rightmost column shows the speedup obtained
by turning on GHC 8.2 NUMA adaption to keep allocation
local.

Existing Profilers Summary. Existing profilers identify
patterns of GHC NUMA memory access for the 3 bench-
marks. There is some locality of access, varying from 30% for
data intensive sumeuler to 23% for compute intensive prsa.
In each benchmark there is a single hot region with a high
percentage of accesses identified as a red column in the heat
maps. The hot region changes between executions of the
same program. However, from existing profiles we can only
speculate as to what is causing the hot region. Perhaps the
imbalance is caused by how memory is allocated? We design
and implement our first new NUMA profiler to explore this
possibility.

5 Profiling GHC NUMA Allocation
Locality with numaprof

In the implementations of many languages with automatic
memory management the access pattern during program ex-
ecution is determined bywhere objects are allocated. Once an
object is allocated into some region, all accesses are directed
to that region. This is similar to the OS level first-touch pol-
icy (Section 2.2). Moreover the RTS can potentially change
NUMA access patterns by choosing where to allocate new
objects.

No profiler was found to provide allocation locality infor-
mation. The information could be obtained by extending the
GHC RTS or numaprof. We elected to extend numaprof as it
provides a malloc tracker in the form of the MALT tool [21].
MALT tracks the region where the data was allocated. Thus,
the only extensions that were required were to: (1) track the
region of the calling thread; (2) store this in an access matrix
at runtime; and (3) integrate it into the numaprof web based
UI. The implementation is freely available 6.
Figure 9a shows the new OS thread allocation locality

heat map for DNC sumeuler. The red diagonal shows that
all allocations made by GHC sparked threads are local, as
conjectured from the access locality heat map (Figure 6a),
and due to the GHC 8.2 NUMA locality optimisation. The
bottom row of the heat map shows the allocations made by
the main thread in GHC: the only thread that is not pinned
to a specific region. The purple entry at (7, 8) reveals that
97% of the bytes allocated by the unpinned thread (54334
bytes) are allocated into region 7.
Figure 9b shows the OS thread allocation locality heat-

map for data parallel sumeuler. As for DNC sumeuler all
allocations made by GHC sparked threads are local, and the
purple entry at (3, 8) reveals 97% (5.0MB) of the unpinned
allocated bytes are in a single region.

Figure 9c shows the OS thread allocation locality heat-map
for prsa. All allocations by GHC sparked threads are local.
The diagonal is purple as the compute-intensive threads
allocate less memory. The red entry in (1, 8) shows that
the main thread allocates a high percentage of the memory,
although it’s only 9.1KB.

The new profiler explains the hot regions. In all three
of the allocation heat maps the purple (unpinned) main
thread allocation region (regions 8, 3 and 1 respectively)
accounts for the high access rates seen in the corresponding
access heat maps: Figure 6a, Figure 6b, and Figure 6c. More-
over we see that in prsa the unpinned main thread does far
more allocation than the computationally intensive sparked
threads. In both cases the new allocation profiles provide
new information to confirm speculations based on access
profiles.

6 Profiling NUMA In The GHC GC
6.1 Per Region GC Count
GHC garbage collection provides global statistics reporting
bytes moved/copied, GC counts, GC runtimes (overall & per
cycle) etc. However no information about NUMA usage is
recorded. Here we extend GHC memory profiling to record
GC counts per region and GC counts per generation in each
region. By identifying regions where GC is occurring most
frequently, these metrics allow the programmer to identify

6https://github.com/ruairidhm98/numaprof in branch AllocationLocality
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(a) DNC sumeuler allocation locality heat-
map (numaprof extension).

(b) Data parallel sumeuler allocation local-
ity heat-map (numaprof extension)

(c) prsa allocation locality heat-map
(numaprof extension)

Figure 9. OS thread allocation locality

imbalances in memory usage between regions, e.g. to identify
regions with high memory residency or high allocation.
To implement the GC counts, the counts for each gener-

ation are stored in each Haskell Execution Context (HEC).

GHC’s GC is typically local to a HEC, and uses a stop-the-
world policy. When a Generation 1 GC starts in a HEC, and
hence in a region, a newGeneration 1 counter is incremented
in the HEC, and similarly for a Generation 2 GC. Storing the
counts within each HEC means that no synchronisation is
required as there is only one GC thread per HEC. At the end
of the execution the counts for all HECs are output, and the
HEC counts associated with each region are aggregated.

The second and third lines of Table 4 show the GC counts
per region & generation for the DNC sumeuler, using bold-
face to highlight the hot region as in Figures 6a to 6c. There
are a total of 3983 Generation 1 collections, and just 18 Gen-
eration 2 collections. Both Generation 1 and 2 collections are
evenly spread between the regions, and this concurs with the
heap profile in Figure 3 that shows constant heap residency
throughout the execution. The high total allocation is con-
firmed in Table 5 that shows the numbers of objects accessed
by each benchmark in static, Generation 1, and Generation 2
collections. It shows that DNC sumeuler accesses muchmore
memory from Generation 1, i.e. newly allocated objects.
The fourth and fifth lines of Table 4 show the GC counts

per region & generation for the data parallel sumeuler. There
are a total of 2634 Generation 1 collections, and 49 Genera-
tion 2 collections. The increased number of Generation 2 col-
lections compared to the DNC sumeuler is almost certainly
because most allocations are done early in the program exe-
cution (Figure 4), leading to objects with long lifetimes that
are promoted into Generation 2. Interestingly, Table 5 shows
that GC accesses only a small number of Generation 2 ob-
jects, 1.87M compared with 3.63M for DNC. This indicates
that in this memory intensive program, only a small fraction
of the old objects are live, and that the amount of allocation
is high enough to more frequently trigger major collections
involving Generation 2.

The sixth and seventh lines of Table 4 show the GC counts
per region & generation for prsa. There are a total of 647
Generation 1 collections, and 190 Generation 2 collections.
Table 5 shows 0.88M Generation 1 objects accessed during
GC compared with 2.51M Generation 2 objects. The small
number of Generation 1 collections, and the small number
of objects accessed reflects the expectation that compute in-
tensive programs do less allocation than data intensive ones.
The large number of Generation 2 collections, and greater
number of objects accessed, shows that the allocated data is
long-lived, and concurs with the heap profile (Figure 5).
The emboldened columns in the table correspond to the

hot region for each benchmark execution, but the GC counts
don’t provide information to help understand these regions.

6.2 GHC GC Thread Locality
We also extend GHC’s GC memory profiling to record GC
thread locality, analogous to thread access locality (Section 4.2).
For each Generation 1 or Generation 2 GC in a given region
we record the location of each object accessed. As for access
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Benchmark Gen Rg 0 Rg 1 Rg 2 Rg 3 Rg 4 Rg 5 Rg 6 Rg 7

DNC 1 493 643 461 509 499 408 509 461
sumeuler 2 4 1 2 3 2 1 2 3

data parallel 1 390 165 175 432 345 288 488 351
sumeuler 2 11 7 6 4 6 6 5 4

prsa 1 153 81 80 90 68 70 35 70
2 49 24 23 22 23 20 10 19

Table 4. Garbage Collection counts per region & generation
for DNC sumeuler, data parallel sumeuler, and prsa (GHC
RTS extension).

Area DNC
sumeuler

Data Parallel
sumeuler prsa

Static 1.45 1.12 3.38
Generation 1 4.60 0.89 0.88
Generation 2 3.63 1.87 2.51

Table 5. Objects accessed during garbage collections (Mil-
lions) by area/generation for DNC sumeuler, data parallel
sumeuler, and prsa (GHC RTS extension).

locality the results produce a region × region heat map that
reveals access locality properties. Crucially, the information
identifies opportunities to improve locality during GC by re-
allocating objects between regions, a common technique for
adapting language implementations for NUMA, e.g. in [3, 7].
The GHC RTS extensions are freely available 7.

As for GC counts the thread locality information is recorded
in each HEC to minimise synchronisation. We record the lo-
cation of the GC thread (known as it is pinned to the HEC’s
region), and the location of each object processed by the
GC thread, and use the numaprof visualisation technology.
The profiling currently has a high overhead as it uses expen-
sive OS system calls to discover the object locations. The
overheads could be reduced by caching the object locations.
Figure 10 – Figure 12 shows the GC thread locality heat

maps for the DNC sumeuler. Figure 10 is for static objects, i.e.
top-level Constant Applicative Forms (CAFs) in the program,
and shows no locality: the GC threads access all regions. This
is likely due to the lazy evaluation of CAFs, as demanded by
expressions in sparked threads. As sparked threads execute
in all regions, the CAF objects are associated with all regions.
It is likely that locality could be improved if the GC moved
CAF objects into the region with most accesses.
In contrast to the lack of locality for CAFs, Generation 1

and Generation 2 collections show good locality. Figure 11
is for Generation 1 objects and shows strong locality with
86.4% of objects processed locally. Figure 12 is for Genera-
tion 2 objects and also shows strong locality (93.2%). Good
locality arises as the sparked threads generate and process
lists locally, and corresponds to the strong allocation locality
identified in Figure 9a.
Figure 13 – Figure 15 shows the GC thread locality heat

maps for the data parallel sumeuler. Figure 13 is for static ob-
jects (CAFs) and again shows no locality, only 13.2% of static
objects are processed locally. Figure 14 is for Generation 1

7https://github.com/ruairidhm98/ghc

Figure 10. DNC sumeuler GC thread locality: Static objects
(CAFs)

Figure 11. DNC sumeuler GC thread locality: Generation 1
objects

Figure 12. DNC sumeuler GC thread locality: Generation 2
objects

objects and shows good locality, with 61.7% of objects pro-
cessed locally, and no access to many remote regions (grey
entries). Figure 15 is for Generation 2 objects and shows good
locality (57.7%). Remote GC accesses likely arise in the data
parallel implementation as fragments of the list may reside
in a different region from the HEC that uses it. Table 5 shows
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that, compared with DNC the GC visits far fewer Gen 1 ob-
jects (0.89M vs 4.60M), and fewer Gen 2 objects (1.87M vs
3.63M).
The GC thread locality heat maps for prsa are similar to

those for the sumeuler benchmarks. There is little locality
for static objects (CAFs): only 13.3% of static objects are
processed locally. Both Generation 1 and Generation 2 have
good locality, with 61.8% and 73.2% of objects processed
locally respectively. So both short and long lived objects are
processed locally.

7 Conclusion
NUMA architectures are increasingly important as general
purpose multicore architectures. Since release 8.2 GHC pro-
vides some simple adaption for NUMA: sparked threads allo-
cate objects into the region where they execute. This paper
is one of the few studies of NUMA usage in a functional
language, and reports a systematic study of GHC Haskell on
a typical NUMA server (8 regions, 64 cores).

We report the systematic profiling ofNUMAmemory
usage by GHC 8.4 parallel Haskell programs using ex-
isting compiler & OS tools. The study uses the GHC heap
profiler and the OS-level numaprof tool to profile eight GHC
nofib benchmarks (Table 3), and three are presented in de-
tail: two versions of the data intensive sumeuler, and the
compute intensive prsa encryption engine. We record and
analyse two standard metrics: (1) memory residency; and (2)
total allocation, and the profiles reveal significant differences
in the memory management required by the benchmarks.
We also record and analyse two NUMA-specific metrics.

(3) OS thread access locality reveals some locality of access
to NUMA regions, with local access varying from 30% for
data intensive sumeuler to 23% for compute intensive prsa.
Moreover in each benchmark there is a single hot region
with a high percentage of accesses. From existing profiles
we can only speculate as to what is causing the hot region.
(4) OS thread NUMA region counts from numaprof provide
the first ever quantification of the effectiveness of GHC NUMA
adaption. That is, the policy of local allocation is effective
in increasing local access from a notional 12.5% to around
30% for data intensive benchmarks, and to around 23% for a
compute-intensive benchmark (Section 4.3).

We propose a newmetric:NUMA access rate that allows
us to compare the load placed on the memory system by dif-
ferent programs. We show that the data parallel sumeuler
generates twice the load of the DNC version, and that prsa
generates the highest load. The study exposes key informa-
tion about GHC Haskell NUMA usage not available from
current profilers, and motivates the development of new
NUMA profiling (Section 4).

We design, implement, and demonstrate an exten-
sion to numaprof to record OS thread allocation local-
ity. The openly available extension records the NUMA re-
gion of the calling thread and the bytes allocated into each
region. The output is integrated into the numaprof UI to
show a heat map of allocations between regions. The pro-
files reveal 100% allocation locality for sparked threads, and
that the GHC main thread allocates a significant amount of
memory into a single region. Hence the profiles provide new
information to confirm speculations based on access profiles
(Section 5).

We design, implement, and demonstrate extensions
to profileNUMAusage duringGHCgarbage collection.
We extend GHC’s global GC statistics to record GC count
per region and GC count per generation in each region. These
counts reveal that in the constantly allocating DNC sumeuler
Generation 1 and 2 collections are evenly spread between
the regions. For the data parallel sumeuler there are far more
Generation 2 collections compared to the DNC sumeuler as
most allocations are done early and long-lived objects are
promoted into Generation 2. For the compute intensive prsa
there are fewer Generation 1 collections representing the low
allocation, but many Generation 2 collections showing that
the data that is allocated is long-lived. We also extend GHC’s
GC to recordGC thread locality, again using the numaprof UI
to produce a region × region heat map. For all benchmarks
the heat maps reveal no locality for static objects: the GC
threads access all regions to collect GHC Constant Applica-
tive Forms (CAFs), but excellent locality for Generation 1
and Generation 2 collections, between 60% and 75% local
accesses (Section 6).

Future Work. There are two main avenues for future
work. The first is to provide additional NUMA profiling for
GHC parallel Haskell. Integrating NUMA latencies into the
GC thread locality heat-maps would provide more informa-
tion on the NUMA access costs of GC. The per region GC
count profiler could record GC cycle runtimes per region
to identify regions with high GC overheads. It would also
be desirable to record the memory bandwidth consumption
per region, as in Intel VTune (no such tool for Togian’s AMD
Opteron processors). Optimising the profiler tools to reduce
runtime overheads is also desirable, e.g. as outlined in Sec-
tion 6.

The NUMAprofiles reveal areas where the GHCRTS could
better exploit NUMA, and the second line of future work is
to explore these possibilities. For example GC thread locality
identifies opportunities to move remote data closer to the
thread(s) that access it during garbage collection. It may also
be possible to adapt the unpinned GHC main thread to move
CAFs to the region with the most accesses, as identified by
the OS thread access locality profiles.
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Figure 13. Data parallel sumeuler GC thread locality: Static
objects (CAFs)

Figure 14. Data parallel sumeuler GC thread locality: Gen-
eration 1 objects

Figure 15. Data parallel sumeuler GC thread locality: Gen-
eration 2 objects
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