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Abstract—Aiming to develop methods for real-time 3D scan-
ning of building interiors, this work evaluates the performance
of state-of-the-art LiDAR-based approaches for 3D simultaneous
localisation and mapping (SLAM) in indoor environments. A
simulation framework using ROS and Gazebo have been imple-
mented to compare different methods based on LiDAR odometry
and mapping (LOAM). The featureless environments typically
found in interiors of commercial and industrial buildings pose
significant challenges for LiDAR-based SLAM frameworks, re-
sulting in drift or breakdown of the processes. The results from
this paper provide performance criteria for indoor SLAM appli-
cations, comparing different room topologies and levels of clutter.
The modular nature of the simulation environment provides a
framework for future SLAM development and benchmarking
specific to indoor environments.

Index Terms—SLAM, Lidar Odometry, Indoor Mapping

I. INTRODUCTION

With autonomous vehicles becoming more popular for a
range of commercial and industrial applications, such as
autonomous driving or autonomous inspection, it is critical
to develop robust solutions for simultaneous localisation and
mapping (SLAM). In the past two decades, the robotics
community has put a great effort into developing SLAM solu-
tions. Among these solutions, vision-based and LiDAR-based
methods are most popular. With many SLAM frameworks
available in the public domain, this work aims to evaluate
the latest open source LiDAR-based 3D SLAM frameworks
specifically for the application in indoor environments.

In GPS-denied indoor environments, localisation based on
GPS is not feasible. Autonomous mobile robots such as
unmanned aerial vehicles (UAVs) and unmanned ground vehi-
cles (UGVs) required dedicated localisation methods such as
SLAM to navigate the indoor setting and perform autonomous
tasks. Current visual-based SLAM frameworks such as [5]
and [6] rely on monocular or RGB-D cameras for real time
mapping of the environment. These methods have advantages
in loop-closure detection, however as they are sensitive to
illumination and range, they are unreliable when used for
autonomous tasks without fusion of additional sensors. On
the other hand, LiDAR is insensitive to illumination change.
High resolution and long range of 3D LiDARs permit the
capture of fine details of the environment which makes them
favourable for large scale mapping tasks. In particular, in
this work we consider the automated inspection of large
indoor environments UAVs or UGVs. This task requires the

vehicles to localise accurately within the space and build 3D
maps of large infrastructures. For these applications we favour
a LiDAR-based SLAM approach which is able to perform
building inspection with high resolution and detailed depth
information.

When LiDAR is used to generate 3D maps of the sur-
rounding through a 3D SLAM approach, the sensor odometry
estimation and map optimization are performed by processing
consecutive scans. Due to the amount of data collected, it
usually requires high computational resources and hence poses
a limitation on real time applications. Moreover, indoor en-
vironments are considered as degraded environments as there
are significantly less features compared to outdoor feature-rich
environments. Featureless environments strongly impair the
performance of LiDAR-based SLAM frameworks, resulting
in large drift or breakdown of the process.

Many LiDAR-based 3D SLAM frameworks have been pro-
posed in the past. The LiDAR odometry and mapping (LOAM)
method [10] is among the first real-time LiDAR-based 3D
SLAM methods that achieves state-of-the-art results. Among
the latest 3D SLAM frameworks, a lightweight and ground-
optimized LiDAR odometry and mapping (LeGO-LOAM)
method [8] and LiDAR inertial odometry via smoothing and
mapping (LIO-SAM) method [9] were developed based on the
underlying LOAM concept proposed in [cite]. Both LeGO-
LOAM and LIO-SAM are available in the public domain and
have been demonstrated extensively for outdoor applications
as mentioned in [8] and [9].

In this paper, we aim to implement a robust 3D SLAM
approach for indoor applications. Focusing on LeGO-LOAM
and LIO-SAM, we aim to evaluate the performance of these
state-of-the-art SLAM approaches for indoor environments. To
evaluate their performance and pinpoint challenges in indoor
SLAM, we propose a simulation environment which allows
the SLAM methods to be tested against different geometries.
These geometries include empty square rooms, long narrow
corridors or circular rooms, which are representative of chal-
lenging indoor scenarios with lack of distinct features, and can
occur in modern building designs. We further populate these
environments with everyday objects to compare the behaviour
of the SLAM frameworks in featureless against feature-rich
environments. The latter has been demonstrated for a realistic
warehouse setting where the SLAM methods provide excellent
results.



II. RELATED WORK

Among the many LiDAR-based 3D SLAM methods, LOAM
[10] is a widely used real-time LiDAR odometry estimation
and mapping framework that uses a LiDAR sensor and option-
ally an inertial measurement unit (IMU). This method achieves
real-time performance by separating the SLAM problem into
odometry estimation algorithm and mapping optimization al-
gorithm. The odometry estimation algorithm runs at high
frequency with low fidelity while the mapping optimization
algorithm runs at an order of magnitude lower frequency with
high accuracy for scan-matching. Since its publication, LOAM
has remained at the top rank in the odometry category of the
KITTI Vision Benchmark Suite [2]. LOAM has since then
been commercialized and its framework is no longer available
in the public domain.

LeGO-LOAM is similar to LOAM whereby two algorithms
running at different frequencies are implemented. It performs
cloud segmentation using a range image before features ex-
traction to further lighten the computational load. A two-step
Levenberg-Marquardt optimization method is used to perform
a 6 degree of freedom pose estimation. LeGO-LOAM achieves
similar or better results than LOAM when evaluated using the
same KITTI datasets.

LIO-SAM [9] utilized factor graph to incorporate multiple
measurement factors for odometry estimation and global map
optimization. The framework incorporates an IMU preintegra-
tion to deskew the incoming point cloud data and performs fast
computation using keyframes rather than consecutive scans.
The IMU preintegration factor is served as an initial guess as
well. LIO-SAM allows the incorporation of GPS factor as an
option for additional key factor.

Both LeGO-LOAM and LIO-SAM use incremental smooth-
ing and mapping (iSAM2) [3] method to perform factor graph
optimization processes. The same iterative closest point (ICP)
[1] method is implemented in these two frameworks for loop
closure.

III. SYSTEM OVERVIEW

In this paper, we utilized the Robot Operating System (ROS)
[7] and Gazebo simulator [4] to perform various simulation
scenarios. ROS is an open source robot operating system that
provides a structured communications layer above the host
operating systems. Gazebo is a well-known open source robot
simulation tool that allows accurate and efficient simulation of
robots in complex indoor and outdoor environments.

For each test case a Gazebo world model is generated.
A “Turtlebot3 Waffle” mobile robot model (as shown in
Fig. 1) equipped with a Velodyne VLP-16 3D-LiDAR and a
9-DOF IMU sensor travels around the environment to collect
measurements. These measurements are then published to the
mentioned frameworks running in ROS for LiDAR odometry
and mapping optimization process. The estimated trajectory
from the SLAM frameworks can then be used to compare
with the ground truth of the trajectory of the mobile robot
extracted from Gazebo.

Fig. 1. A “Turtlebot3 Waffle” Gazebo model by Open Robotics is equipped
with a Velodyne VLP-16 LiDAR, an Intel Realsense RGB-D camera and a
9-DOF IMU. The RGB-D camera was not used in our simulations.

IV. SIMULATION

This section describes a series of simulations to qualitatively
and quantitatively analyze LeGO-LOAM and LIO-SAM in
different indoor environments. We proposed 3 basic layout
geometries, namely circular room, square room and long and
narrow corridor for evaluation. We further populated these
environments with everyday objects to compare the result of
a featureless environment against a feature rich environment.
Furthermore, we performed 4 additional simulations on dif-
ferent scenarios. These scenarios are L-shape environment,
T-shape environment, a closed square loop and a complex
warehouse environment. The estimated trajectories from the
two frameworks are then plotted against the ground truth
trajectory. The endpoint translation errors of each trajectory
estimated by both frameworks are tabulated at Table I at the
end of this section.

A. Circular Room Environment

(a) Simulation Environment (b) LeGO-LOAM

(c) LIO-SAM
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Fig. 2. Simulation results for circular room with features.

A circular room is made up of curved walls. This simulation
demonstrates the behaviour and accuracy of the frameworks in



the presence of planar surfaces with curvature. In featureless
setting, both LeGO-LOAM and LIO-SAM fail to produce
meaningful results. This is due to the highly degraded envi-
ronment for LiDAR odometry estimation, i.e. the environment
consists of only planar features and no edge features. The
situation changes immediately with the introduction of objects
in the same circular room. The LeGO-LOAM experienced
drifting in clockwise direction while LIO-SAM produced a
high resolution and accurate map. The estimated trajectories
of both frameworks are shown in Fig. 2 along with ground
truth.

B. Square Room Environment

(a) Simulation Environment (b) LeGO-LOAM

(c) LIO-SAM
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Fig. 3. Simulation results for square room.

This simulation sets in a square room which is encountered
in almost every indoor environment. In featureless setting, both
LeGO-LOAM and LIO-SAM are able to estimate trajectories
close to the ground truth. With LeGO-LOAM showed inaccu-
rate orientation estimation resulting in angular misalignment
of the map. Both frameworks performed well in the feature
rich setting. The estimated trajectories of both frameworks for
featureless and feature-rich square room are shown in Fig. 3
and 4 along with ground truth.

C. Corridor Environment

The corridor environment is created to simulate the “endless
corridor” scenario. The “endless corridor” is a well-known
highly degraded environment in the SLAM community. Sim-
ilar to the case in a circular room, in featureless setting, only
planar features are detected and both LeGO-LOAM and LIO-
SAM fail to produce meaningful results. With the introduction
of objects along the corridor, both methods able to estimate the
trajectory with LeGO-LOAM exhibiting drift at the bottleneck

(a) Simulation Environment (b) LeGO-LOAM

(c) LIO-SAM
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Fig. 4. Simulation results for square room with features.
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Fig. 5. Simulation results for corridor with features.



section. The estimated trajectories of both frameworks are
shown in Fig. 5 along with ground truth.

D. L-Shape, T-Shape and Loop Environment

(a) Simulation Environment (b) LeGO-LOAM

(c) LIO-SAM
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Fig. 6. Simulation results for T-shape layout.

(a) Simulation Environment (b) LeGO-LOAM

(c) LIO-SAM
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Fig. 7. Simulation results for L-shape layout.

This series of simulations demonstrate the behaviour and
accuracy of the frameworks in L-shape, T-shape and a closed
loop environment . In featureless setting, both LeGO-LOAM
and LIO-SAM struggle to estimate an accurate trajectory.

(a) Simulation Environment (b) LeGO-LOAM

(c) LIO-SAM
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Fig. 8. Simulation results for closed square loop.

For a T-shape and L-shape environments, LIO-SAM suffered
from poor LiDAR odometry estimation. Once the robot starts
moving, the mapping process becomes stable as the IMU
preintegration factor weights in. LeGO-LOAM suffered the
most during the closed loop simulation scenario. The drift
is most severe at the middle of each side where distinctive
features of other sides are blocked. The estimated trajectories
of both frameworks are shown in Fig. 6, 7 and 8 along with
ground truth.

E. Small Warehouse Environment

This Gazebo world model is created by AWS Robotics and
is freely available for download on GitHub. This simulation
demonstrates the accuracy of the frameworks for mobile robots
in a complex warehouse environment. At such a feature rich
environment, both LIO-SAM and LeGO-LOAM are able to
perform seamlessly and accurately. The estimated trajectories
of both frameworks are shown in Fig. 9 along with ground
truth.

TABLE I
ENDPOINT TRANSLATION ERROR (METER)

Environments LeGO-LOAM LIO-SAM
Circular with features 2.062 0.077
Square room 0.659 0.298
Square with features 0.128 0.313
Corridor with features 1.381 0.310
T-shape 0.835 0.564
L-shape 1.110 1.444
Closed loop 1.876 0.183
Small warehouse 0.372 0.203



(a) Simulation Environment

(b) LeGO-LOAM
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Fig. 9. Simulation results for a small warehouse.

V. CONCLUSION

This work evaluates the performance of state-of-the-art 3D
approaches for SLAM in indoor environments. Typical SLAM
applications, such as autonomous driving, focus on feature-
rich outdoor environments. However, most indoor scenarios
lack features which pose a challenge for 3D SLAM methods.
With the development of a modular simulation framework
using ROS and Gazebo in this work, we have shown that
the lack of features can lead to significant drift even in state-
of-the-art LiDAR odometry and mapping (LOAM) methods.
The evaluation focused on different environment topologies
and interior arrangements, such as furniture and shelves. The
additional clutter in indoor settings has been shown for a rep-
resentative warehouse environment to result in very accurate
3D point clouds. However, this work has also demonstrated
that scanning of empty interiors, usually found in surveying
of newly built office buildings, can provide poor results
using common LOAM methods for 3D mapping. Using the
simulation environment developed in this work provides a
framework for benchmarking SLAM approaches in indoor
environments and isolates detrimental performance issues spe-
cific to featureless environments. These developments will
lead to improved 3D LiDAR-based SLAM methods tailored
towards indoor applications.
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