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Featured Application: To detect the cemento-enamel junction (CEJ) in B-mode intraoral ultra-
sound images for periodontal diagnosis and orthodontic treatment planning.

Abstract: The cemento-enamel junction (CEJ) is an important reference point for various clinical
measurements in oral health assessment. Identifying CEJ in ultrasound images is a challenging
task for dentists. In this study, a computer-assisted detection method is proposed to identify the
CEJ in ultrasound images, based on the curvature change of the junction outlining the upper edge
of the enamel and cementum at the cementum–enamel intersection. The technique consists of
image preprocessing steps for image enhancement, segmentation, and edge detection to locate the
boundary of the enamel and cementum. The effects of the image preprocessing and the sizes of
the bounding boxes enclosing the CEJ were studied. For validation, the algorithm was applied to
120 images acquired from human volunteers. The mean difference of the best performance between
the proposed method and the two raters’ measurements was an average of 0.25 mm with reliability
≥ 0.98. The proposed method has the potential to assist dental professionals in CEJ identification on
ultrasonographs to provide better patient care.

Keywords: high-frequency ultrasound; landmark detection; dento-periodontium; cemento-enamel
junction; oral health; image processing

1. Introduction

Periodontitis or periodontal (gum) disease is one of the most common oral diseases,
affecting 20–50% of the population globally [1]. Periodontitis can result in eventual tooth
loss as a consequence of gradual weakening and loss of the tooth-supporting periodontium.
Aggressive periodontitis, characterized by an early onset rapid progression of destruction,
is more common in children and adolescents. Diagnosis of periodontitis is based on clinical
signs and symptoms such as gingival recession, bleeding on probing, increased pocket
depth, clinical attachment loss, alveolar bone loss, and root resorption [2].

The cemento-enamel junction (CEJ) or cervical line is a line on the tooth’s surface
where the cementum on the root meets the enamel on the crown. The CEJ is considered
one of the most relevant landmarks to diagnose periodontal disease and its distance to
other reference points such as gingival margin, alveolar bone crest, or furcation entrance is
used to evaluate gingival recession, clinical attachment loss [3,4], alveolar bone loss [5–7],
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or furcation involvement [8]. Thus, CEJ identification to diagnose periodontal disease and
design an orthodontic treatment plan is paramount for clinical success.

In clinical practice, several methods have been used to locate CEJ. A common approach
is the visual localization method, in situations where the CEJ is coronal to the gingival
margin. Most often, CEJ is covered by the gingival tissue and is apical to the gingival
margin; hence, a tactile method using a periodontal probe is the preferred approach [4].
Occasionally, probe sensitivity can erroneously identify root surface irregularities as CEJ.

In contrast to probing, radiography allows for noninvasive imaging of the CEJ
and alveolar bone crest with no errors in identification caused by inflamed gingival
tissues [5–7,9]. The work of Pecoraro and his colleagues showed accuracy in alveolar
bone height measurements using digital radiography in comparison to the conventional
method in measuring the CEJ–bone crest distance [6]. Although the reported absolute
differences between the two examiners were significant, the standard deviation was less
than 1 mm, which was acceptable when compared with measurements obtained using
a 1-mm graduated periodontal probe. Intraoral 2D periapical radiographs are useful for
identifying CEJ and alveolar bone in the interproximal areas. However, overlapping of 3D
anatomic structures prevents accurate visualization of CEJ and bone crest on the buccal
(cheek) or lingual/palatal (tongue) side of the teeth. Computer-assisted detection of CEJ in
2D digital dental radiographs was reported in early 1989, with the same limitations as film
radiographic images in the identification of CEJ [10].

Cone beam computed tomography (CBCT), which is an X-ray-based imaging tech-
nique, generates 3D volumetric image reconstruction and visualization of internal anatomi-
cal features [11,12]. In comparison with 2D radiography, CBCT has much better accuracy
and resolution due to the absence of overlapping tissues, but it exposes the patient to a
much higher radiation dose [13]. Therefore, CBCT is not recommended for routine use in
young growing patients or repeated imaging.

The applications and development of ultrasound in dentistry, especially in peri-
odontics, have been extensively reported [14–23]. Ultrasound is a noninvasive, ionizing-
radiation-free, economical, and portable diagnostic tool for hard and soft tissue imag-
ing. A high correlation in alveolar bone level (CEJ—alveolar bone crest) was demon-
strated between ultrasound and microscopy (R = 0.79) and between ultrasound and CBCT
(R = 0.98) [15,19]. Chan’s study also showed a high correlation in measuring the facial
crestal bone level (CEJ—alveolar bone crest) between ultrasound and CBCT (R = 0.78)
or direct measurement (R = 0.88) [16]. However, identifying CEJ in ultrasound images
demands clinicians to have extensive knowledge and experience in ultrasound and scan-
ning operations, which is deemed difficult as the imaging modality is new in the field of
dentistry. In addition, ultrasound images contain the multiplicative speckle or granular
noises caused by backscatters from small inhomogeneities in the target tissue as well as
salt and pepper noises by the device. Their inherent existence greatly lowers the signal-to-
noise ratio and degrades the image quality [24]. Noise removal methods such as spatial
averaging [25], homomorphic filtering [26], Weiner filtering [25], adaptive median filter-
ing [24], and soft-thresholding techniques [27] have been studied to filter out noises and
enhance signals.

The objective of this study is to develop a computer-assisted method for detecting
CEJ in B-mode intraoral ultrasound images and to evaluate the efficacy of the proposed
method. A combination of homomorphic filtering, contrast enhancement, and adaptive
median filtering was used to reduce the effects of speckle noise and enhance the structures
of interest.

2. Materials and Methods
2.1. Data Collection

Forty incisors from fifteen adolescent volunteers (aged 12–17 years) and one adult vol-
unteer (25 years old from the author’s (LHL) research laboratory) were scanned at Kaye Ed-
monton dental clinic, University of Alberta with University ethics approval (Pro00062355).
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Ultrasound scanning was performed at 20 MHz using a SonixTablet portable medical
ultrasonic system (Analogic, Vancouver, BC, Canada) and a linear phased array transducer
(L40-8/12, Analogic, Vancouver, Canada). The long axis of the transducer was positioned
on a piece of 5 mm-thick gelatin-based gel pad located on the labial side of the tooth
and gingiva in alignment with the longitudinal axis of the tooth [21]. The gel pad also
functioned to ensure the region of interest (ROI) within the focal zone of the ultrasound
beam for optimum resolution. Three different ultrasound images were selected for each
tooth to make up a data set of 120 images for this study.

2.2. Image Preprocessing

Figure 1 illustrates the components of the proposed process to identify CEJ including
the image preprocessing.
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Figure 1. The image preprocessing and detection processes of the proposed method to identify CEJ.

2.2.1. Homomorphic Filtering

In this study, a 2D ultrasound image d(i, j) is a matrix of pixels with intensity, where i
is the index along the horizontal direction parallel to the long axis of the transducer and j
is the index along the depth axis perpendicular to the transducer surface. Homomorphic
filtering was used to remove speckle multiplicative noises by breaking up the multiplicative
noise into additive noise. Recently, it was used to denoise the ultrasound images from
porcine samples prior to segmentation of alveolar bone [18]. The filter consists of five
stages as indicated in Figure 2 [20] where d̂(i, j) is the filtered image. The homomorphic
filtering balances the illuminance of the image by reducing the effect of the dominant
intensities while enhancing the contribution of the low intensities so that the low-intensity
features can be visible. The reflectance of features such as interfaces, characterized by high
frequencies, can also be sharpened. Following [28] closely, the transfer function of the
filter is

H(u, v) = (γH − γL)

{
1− exp

[
−c
(

D(u, v)
Do

)2
]}

+ γL, (1)

where γH and γL are the high and low frequency gains, respectively; Do is the cut-off
frequency; c is a constant that controls the steepness of the slope of the function between
γH and γL; and D(u, v) is the distance between a point (u, v) and the center of the PxQ
frequency map, i.e.,

D(u, v) = [(u− P/2)2 + (v−Q/2)2]
1/2

, (2)

where P and Q are the padded size.

2.2.2. Contrast Enhancement

Due to the inherent properties of ultrasound imaging, the selected ROI had low
contrast. Therefore, a linear contrast enhancement approach was utilized to enhance the
contrast of the images by expanding the original image intensity values linearly, which
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improved the detection of the tissue boundary [20]. The image contrast enhancement was
achieved by linearly scaling the histogram. It mapped the pixel intensities d̂(i,j)’s to new
values such that 1% of the data was saturated at low and high intensities, which aided in
distinguishing the structures of enamel and cementum from other blurred areas.
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2.2.3. Adaptive Median Filtering

The adaptive median filter is a nonlinear filter that outputs the median value of the
input samples of an array. The array size was 7 × 7 in this study. Median filtering is very
effective at removing spurious or “salt and pepper” noise [29].

2.3. Image Segmentation

To obtain an accurate and repeatable detection of the CEJ location, an initial ROI
consisting of the CEJ and a portion of the enamel and cementum was manually selected
and extracted for further analysis. We chose the ROI as a rectangular bounding box. Since
the box size or shape was determined to include features such as alveolar bone and exclude
features such as enamel and gingiva as much as possible, the aspect ratio could be varied.
In practice, the clinician can select the aspect ratio to suit the problem at hand. K-means
clustering was used to identify the foreground and background regions within the initial
ROI. The K-means (K = 2) was used to set two preclassified labels and build the initial graph.
The proposed K-means approach partitioned pixel intensities into two initial clusters based
on their similarity to the clustering centers [30]. The centers were automatically adjusted
based on the average intensity of pixels in each cluster. This step was repeated until
convergence, where the average values were no longer changing.

2.4. CEJ Selection

After the bounding box was selected, the algorithm extracted every point in the
foreground region and detected the edge corresponding to the upper border of the enamel–
cementum region. Since enamel and cementum are strong ultrasound reflectors, their
intensities are very large in comparison with those of gingiva [17]. The contour of the
tooth has a small V-shaped valley at the neck of the tooth where the enamel and cementum
meet [31]. The bottom of the valley is the location of the CEJ. Based on these characteristics,
the detection algorithm calculated the absolute value of the vertical change, ∆j, of the two
consecutive pixels along the detected enamel–cementum border, and then compared the
value with that of the previous location. The position of the CEJ was determined by the
location with the greatest absolute change |∆j|max. Finally, remapping the coordinate of the
CEJ back to its original coordinate, the algorithm marked the CEJ in the original image.

The algorithm was implemented on a 64-bit Windows 10 operating system with an
Intel Core i5-2500 Quad-Core (3.30 GHz) CPU and 8 GB random access memory (RAM).
The image processing and CEJ detection were realized through MATLAB version R2020b
(MathWorks, Natick, MA, USA). Our user interface allows the user to select the images
directly from the monitor’s screen with the option to manually select the CEJ location or to
detect it using the proposed detection method.
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2.5. Validation

The CEJ detection results by the proposed method were validated by comparing the
detected CEJ locations with the manually labeled ground truth by two raters. Raters R1 (a
biomedical engineer) and R2 (an experienced orthodontist) have about 8 years and 2 years
of experience with dental ultrasound, and 10 years and 20 years of experience in their field,
respectively. To evaluate the intrarater reliability, each rater performed the measurements
twice with one week apart to avoid bias.

The impact of image preprocessing including homomorphic filtering, adaptive median
filtering, and contrast enhancement was investigated. We also examined the effect of the
bounding box size on the accuracy of the method by comparing three sizes: small (SBB,
31 × 41 pixels), medium (MBB, 51 × 71 pixels), and large (LBB, 81 × 101 pixels) with the
same center pixel (Figure 3). For example, 31× 41 pixels, 51× 71 pixels, and 81 × 101 pixels
correspond to 1.4 mm2, 3.9 mm2, and 8.9 mm2 respectively. Therefore, the areas of MBB
and LBB were approximately 3 and 6 times of SBB’s area, respectively.
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Figure 3. An example shows three different bounding box sizes: SBB in yellow, MBB in green, and
LBB in red in the same image.

The locations of the CEJ identified by the proposed method for the three bounding
boxes with and without image preprocessing scenarios were compared with the two
raters’ labels. The discrepancies or differences in locating the CEJ between the proposed
method and each rater for 120 ultrasound images were measured in Euclidean distances. A
descriptive analysis was performed using the mean difference (MD), standard deviation
(SD), and box plots. The intraclass correlation coefficients (ICC) were calculated to assess
the intrarater, interrater, and intermethod reliabilities based on a single-rating (k = 1),
absolute-agreement, and 2-way mixed-effects model. ICC values < 0.5, between 0.5 and
0.75, between 0.75 and 0.9, and > 0.90 are indicative of poor reliability, moderate reliability,
good reliability, and excellent reliability, respectively [32]. A two-tailed power analysis
was performed to determine the sample size using the following parameters: minimum
acceptable reliability = 0.90, expected reliability = 0.95, significance level = 0.05, and
power = 80%.

3. Results

A schematic of the tooth and normal periodontium showing the V-shaped identifi-
cation of the CEJ was illustrated in Figure 4a. The ultrasound images before and after
image preprocessing are shown in Figure 4b,c. The homomorphic filtering with a Gaussian
filter removed multiplicative noise significantly and sharpened features of the image. By
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enhancing contrast, the structures of enamel and cementum become much sharper and
are clearly distinguishable from other regions. Adaptive median filtering suppressed
subtle speckle noise while preserving edge detail. Compared to the original image, the
preprocessing improved the clarity of the images, making the following extraction more
reliable and tenable. The average computational time for the preprocessing steps was 0.09 s
for each image.
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Figure 4. (a) A schematic cross-section of a tooth and its periodontium; (b) the in vivo intraoral
ultrasound images before image processing; (c) the processed image after homomorphic filtering,
contrast enhancement, and adaptive median filtering.

Figure 5 illustrates the segmentation and CEJ detection by the proposed method. The
algorithm initially required a bounding box (81 × 101 pixels in this example) containing
the CEJ (Figure 5a). Then, the image was classified into several areas based on the gray-
level values. Figure 5b presents a color plot of the ROI where the high-intensity areas
correspond to the enamel, cementum, or bone structures. Finally, K-means clustering
accurately extracted the two clusters of interest while rejecting other areas, resulting in
a binary map where the hard tissues (enamel or bone) are indicated in black (Figure 5c).
It took approximately 0.69 s for the segmentation on average. Figure 5d shows a curve
joining the upper borders of the identified pixels of the extracted region. The numerical
differential between adjacent pixels along the curve was estimated (Figure 5e), and the CEJ
was determined at the position of the maximum absolute of the differential (Figure 5f). The
average time of the CEJ detection process was 0.27 s. The total time for the CEJ prediction
including preprocessing steps was 1.05 s. The identified position was then incorporated
into the image as a red dot (Figure 5g).
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Table 1 summarizes the CEJ detection results between two manual labels by the same
rater (intrarater), between two raters (interrater), and the difference between raters and
the method (intermethod) with and without image preprocessing and for three bounding
box sizes, i.e., small (SBB), medium (MBB), large (LBB). The two scenarios are with all
three image preprocessing steps (A or proposed method) and without image preprocessing
steps (B). The clinical tolerance limit of 0.5 mm based on direct probing measurements was
used as a reference [33]. The MDs ± SDs of the mismatches vary from 0.21 ± 0.24 mm to
0.31 ± 0.32 mm for the intrarater and around 0.23± 0.24 mm for the interrater. The average
ICC values and percentages of images that have less than 0.5 mm mismatch between the
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proposed method and two raters were 0.990 and 96%; 0.985 and 92%; and 0.982 and 90%
for SBB, MBB, and LBB, respectively. These values were close to the interrater (93%) and
higher than the intrarater average (88%). The results without image preprocessing (B)
provide higher MD (average 0.32–0.55 mm), lower ICC values (average 0.943–0.983), and a
smaller percentage of images with <0.5 mm difference (average 55–85%) in comparison
with image preprocessing (A) for all three box sizes. The mean differences between the two
raters and the proposed method (A) increase slightly on average from 0.25 mm to 0.30 mm
with the increase of the bounding box size. The distributions of the differences between
the proposed method and raters 1 and 2 are also displayed in the box plots (Figure 6).
The data dispersion, measured by the interquartile range (IQR), covers 50% of the data
points [34]. The IQRs are small or tight for scenarios A for all box sizes and within the
0.5 mm clinical limit.
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Figure 6. Box plots show the difference between the proposed method and rater 1 (a) or rater 2 (b)
for different bounding box sizes (SBB, MBB, LBB) and two scenarios (A) with image preprocessing
and (B) without image preprocessing. The red line in each box denotes the median value; the top and
bottom hinges of the box correspond to the 25th (Q1) and 75th (Q3) percentiles, respectively. The
interquartile range (IQR) is given by the interval bounded by Q1 and Q3. The minimum (Q1 − 1.5 ×
IQR) and maximum (Q3 + 1.5 × IQR) limits (indicated by horizontal bars) are linked to the hinges
using whiskers. Data points outside these extreme values are considered potential outliers, which
are indicated by the red plus signs.
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Table 1. Comparison of CEJ identification between the proposed method and the two raters for different bounding box
sizes (SBB, MBB, LBB) with image preprocessing scenarios (A) and without (B). The full size refers to the whole image
size (e.g., 360 × 386 pixels). SBB, MBB, and LBB denote the small (31 × 41 pixels), medium (51 × 71 pixels), and large
(81 × 101 pixels) bounding boxes, respectively.

MD
(mm)

SD
(mm) ICC Images with Difference

< 0.5 mm (%)

Full size

R11–R12 0.21 0.24 0.983 [0.978,0.987] 90

R21–R22 0.31 0.32 0.969 [0.960,0.978] 85

R1–R2 0.23 0.24 0.983 [0.979,0.987] 93

SBB
31 × 41
(pixel)

R1–A 0.23 0.12 0.991 [0.989,0.993] 98
R2–A 0.26 0.15 0.988 [0.984,0.991] 94
R1–B 0.30 0.20 0.985 [0.980,0.988] 87
R2–B 0.33 0.19 0.980 [0.974,0.985] 83

MBB
51 × 71
(pixel)

R1–A 0.28 0.16 0.985 [0.981,0.989] 92
R2–A 0.30 0.17 0.984 [0.979,0.987] 91
R1–B 0.46 0.33 0.959 [0.948,0.968] 62
R2–B 0.47 0.33 0.957 [0.945,0.967] 63

LBB
81 × 101

(pixel)

R1–A 0.29 0.18 0.983 [0.978,0.986] 90
R2–A 0.30 0.20 0.981 [0.976,0.985] 89
R1–B 0.54 0.38 0.944 [0.928,0.956] 57
R2–B 0.56 0.38 0.941 [0.924,0.954] 53

4. Discussion

Innovations in medical imaging have helped mankind to achieve an enhanced quality
of life. Although X-rays have been the mainstay in medical imaging, the concern about
the harmful effects of ionizing radiation, especially for pediatric and adolescent patients
due to its frequent use in medicine and dentistry, is ever-growing. Current research has
been focused on developing new modalities such as ultrasound and magnetic resonance
for medical and dental imaging. Ultrasound uses compressional waves to image the
internal structures of the tissues. The ultrasound technique has numerous benefits which
include portability, cost savings, and especially safety for not using ionizing radiation.
This imaging modality has the advantage of being able to measure the thickness and
elasticity of the gingiva, which is deemed difficult with conventional radiographic imaging
modalities. Beyond these advantages, ultrasound imaging has some drawbacks. The
images lack resolution and contrast. The signal-to-noise ratio is low with speckle noise.
Furthermore, interpreting the ultrasound images is challenging due to the interference
of wave propagation characteristics. Increasing the frequency to enhance the resolution
for fine details can be investigated, but the depth penetration becomes limited, and more
ultrasound scattering is expected to deteriorate the image quality.

CEJ is considered an important reference landmark for various clinical measurements
in oral health assessment, such as gingival attachment level and alveolar bone crest level.
Since CEJ is stable over time, it provides an excellent reference for evaluating disease
progression and treatment intervention. The challenge of accurately localizing the CEJ
is not only limited by errors in the measurement systems, but is compounded by the
fact that the enamel and cementum boundaries are irregular, and their curvatures vary
among different teeth. Based on the gradual thinning characteristics of the enamel toward
the cementum, the ultrasound response shows a valley in the B-mode image with a low
corresponding to the position of CEJ, and a detection method is proposed in this study to
locate CEJ in ultrasound images.

The proposed technique includes image processing steps prior to CEJ detection to
minimize the multiplicative speckle noise and impulsive noise by homomorphic filtering
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and adaptive median filtering. Using 120 intraoral ultrasound images from human volun-
teers as validation samples, the evaluation showed that the proposed method had high
conformance with the raters within the clinical limit. The validation result suggests that
the MDs of the intermethod (between the proposed method and the raters) were not much
different from the manual interrater and intrarater mismatches, i.e., 0.23–0.30 mm versus
0.21–0.31 mm. The average intrarater reliabilities (ICC = 0.976) and interrater reliability
(ICC = 0.983) are smaller than the reliabilities between the proposed method and two
raters for all small (ICC = 0.990) and medium (ICC = 0.985) bounding box sizes. The
MD increases and the reliability decreases with the box size. In practice, the box size is
determined by including the anatomical structures of interest in the ultrasound image. The
results also showed the contribution of image preprocessing steps in the improvement
of the proposed method. The bigger the bounding box, the more likely the additional
irrelevant low and high frequency (isolated) structures will be included, which might affect
the identification result. Our results have shown that image preprocessing played a role in
reducing the impact of those structures, which are prominent in the larger bounding box.
The proposed image processing would be quite beneficial for novice clinicians who tend to
choose a larger region of interest corresponding to a larger box. The proposed method took
around a second to identify the CEJ, much faster than manual human visualization and
interpretation.

Previous studies have reported visualization improvements with the segmentation of
ultrasound images, including soft tissue [35] and cortical bone [36]. In dentistry, computer-
assisted methods have been studied to identify the dental structures in ultrasound images
such as gingival sulcus [37] and alveolar bone [20,21,38]. However, previous research
did not focus on CEJ detection. Dental clinicians are not typically trained in ultrasound
image interpretation. Therefore, this algorithm may assist clinicians in identifying CEJ in
ultrasound images automatically with limited training. The location of the CEJ is difficult
to detect due to the low contrast-to-noise ratio of the ultrasound images. The proposed
method could provide a reference check to clarify the ambiguous situation and increase
efficiency and productivity.

The findings of this study are subject to several limitations. First, this study focused
on using ultrasound images of the incisor teeth. This is due to the fact that the size of the
transducer restricts its reach intraorally. Research using more ultrasound images of canine,
molar, and premolar teeth in other parts of the oral cavity should be performed to further
validate the method. Second, though the method has been demonstrated to be feasible, the
manual selection of the bounding box depends on the subjective expertise of the examiner,
which, in turn, would induce a considerable degree of examiner-dependent bias. Third,
this is preliminary work with a small sample size for feasibility. Recent developments in
machine learning offer options to automatically select the bounding box, which eliminates
subjective bias and can strengthen the validity of our current method [39,40]. For the first
time, the application of machine learning algorithms to detect alveolar bones in ultrasound
images was reported by our research group [21,38]. Deep learning techniques with a
very large database to train the convolution neural networks for CEJ detection should be
explored in future research.

5. Conclusions

CEJ is an important landmark, and accurate identification of the CEJ location from
diagnostic images is important for oral clinicians. This study presents a computer-assisted
detection method to identify CEJ in ultrasound images, utilizing the characteristic response
of CEJ in B-mode ultrasound images. Using 120 in vivo human ultrasound images, the
proposed method demonstrated that the computer-assisted detection of CEJ is reasonably
accurate for clinical applications.

Author Contributions: Conceptualization, K.-C.T.N., P.W.M., L.H.L. and N.R.K.; methodology,
K.-C.T.N., Y.Y., N.R.K., K.P., E.H.L. and L.H.L.; software, K.-C.T.N., Y.Y. and K.P.; validation, K.-
C.T.N., Y.Y. and N.R.K.; formal analysis, K.-C.T.N. and Y.Y.; investigation, L.H.L. and K.P.; resources,



Appl. Sci. 2021, 11, 5850 11 of 12

E.H.L., L.H.L., N.R.K. and P.W.M.; data curation, K.-C.T.N., Y.Y. and N.R.K.; writing—original draft
preparation, K.-C.T.N., Y.Y., N.R.K., K.P. and L.H.L.; writing—review and editing, K.-C.T.N., Y.Y.,
N.R.K., E.H.L., L.H.L., K.P. and P.W.M.; visualization, K.-C.T.N., Y.Y., K.P. and L.H.L., supervision,
P.W.M., L.H.L. and K.P.; project administration, K.-C.T.N., K.P. and L.H.L.; funding acquisition, L.H.L.
and P.W.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been funded by the generous support of the Stollery Children’s Hospital
Foundation through the Women and Children’s Health Research Institute. The authors would
like to acknowledge the support from the Natural Sciences and Engineering Research Council of
Canada (NSERC), Alberta Innovates Technology Futures Graduate studentship, MITACS and Chinese
Scholarship Council internship.

Institutional Review Board Statement: The study was carried out successfully under the approval
by the University Research Ethics Office (HRED No: Pro00062355).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data available on request due to privacy or ethical restrictions.

Acknowledgments: The authors thank Susan Helwig, Manuel Lagravere Vich, and Tarek El-Bialy,
School of Dentistry—Kaye Edmonton Clinic, for their assistance in acquiring the ultrasound data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Sanz, M.; D’Aiuto, F.; Deanfield, J.; Fernandez-Avilés, F. European workshop in periodontal health and cardiovascular disease–

scientific evidence on the association between periodontal and cardiovascular diseases: A review of the literature. Eur. Heart J.
Suppl. 2010, 12, B3–B12. [CrossRef]

2. Dentino, A.; Lee, S.; Mailhot, J.; Hefti, A.F. Principles of periodontology. Periodontol. 2000 2013, 61, 16–53. [CrossRef]
3. Charalampakis, G.; Dahlén, G.; Carlén, A.; Leonhardt, Å. Bacterial markers vs. clinical markers to predict progression of chronic

periodontitis: A 2-yr prospective observational study. Eur. J. Oral Sci. 2013, 121, 394–402. [CrossRef] [PubMed]
4. Khaw, A.; Liberali, S.; Logan, R.; Keefe, D.; Bartold, P.M. Influence of periodontitis on the experience of oral mucositis in cancer

patients undergoing head and neck radiotherapy: A pilot study. Support. Care Cancer 2014, 22, 2119–2125. [CrossRef]
5. Cairo, F.; Carnevale, G.; Nieri, M.; Mervelt, J.; Cincinelli, S.; Martinolli, C.; Pini-Prato, G.P.; Tonetti, M.S. Benefits of fibre retention

osseous resective surgery in the treatment of shallow infrabony defects. A double-blind, randomized, clinical trial describing
clinical, radiographic and patient-reported outcomes. J. Clin. Periodontol. 2013, 40, 163–171. [CrossRef]

6. Pecoraro, M.; Azadivatan-Le, N.; Janal, M.; Khocht, A. Comparison of observer reliability in assessing alveolar bone height on
direct digital and conventional radiographs. Dentomaxillofac. Radiol. 2005, 34, 279–284. [CrossRef] [PubMed]

7. Hou, G.-L.; Hung, C.-C.; Yang, Y.-S.; Shieh, T.-Y.; Tsai, C.-C. Radiographic alveolar bone loss in untreated Taiwan Chinese subjects
with adult periodontitis measured by the digital scanning radiographic image analysis method. Dentomaxillofac. Radiol. 2003, 32,
104–108. [CrossRef] [PubMed]

8. Wang, H.-L.; Burgett, F.G.; Shyr, Y.; Ramfjord, S. The Influence of Molar Furcation Involvement and Mobility on Future Clinical
Periodontal Attachment Loss. J. Periodontol. 1994, 65, 25–29. [CrossRef]

9. Tihanyi, D.; Gera, I.; Eickholz, P. Influence of individual brightness and contrast adjustment on accuracy of radiographic
measurements of infrabony defects. Dentomaxillofac. Radiol. 2011, 40, 177–183. [CrossRef]

10. Haralick, R.; Ramesh, V.; Haußmann, E.; Allen, K. Computerized detection of cemento-enamel junctions in digitized dental
radiographs. In The Images of the Twenty-First Century, Proceedings of the Annual International Engineering in Medicine and Biology
Society, Seattle, WA, USA, 9–12 November 1989; Institute of Electrical and Electronics Engineers (IEEE): Piscataway Township, NJ,
USA, 2003.

11. Vasconcelos, K.D.F.; Evangelista, K.M.; Rodrigues, C.D.; Estrela, C.; De Sousa, T.O.; Silva, M.A.G. Detection of periodontal bone
loss using cone beam CT and intraoral radiography. Dentomaxillofac. Radiol. 2012, 41, 64–69. [CrossRef]

12. Leung, C.C.; Palomo, L.; Griffith, R.; Hans, M.G. Accuracy and reliability of cone-beam computed tomography for measuring
alveolar bone height and detecting bony dehiscences and fenestrations. Am. J. Orthod. Dentofac. Orthop. 2010, 137, S109–S119.
[CrossRef]

13. Ludlow, J.B.; Davies-Ludlow, L.E.; Brooks, S.L.; Howerton, W.B. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology:
CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac. Radiol. 2014. [CrossRef]

14. Chen, Y.-L.; Chang, H.-H.; Chiang, Y.-C.; Lin, C.-P. Application and development of ultrasonics in dentistry. J. Formos. Med Assoc.
2013, 112, 659–665. [CrossRef]

http://doi.org/10.1093/eurheartj/suq003
http://doi.org/10.1111/j.1600-0757.2011.00397.x
http://doi.org/10.1111/eos.12080
http://www.ncbi.nlm.nih.gov/pubmed/24028586
http://doi.org/10.1007/s00520-014-2186-3
http://doi.org/10.1111/jcpe.12042
http://doi.org/10.1259/dmfr/13900561
http://www.ncbi.nlm.nih.gov/pubmed/16120877
http://doi.org/10.1259/dmfr/67162332
http://www.ncbi.nlm.nih.gov/pubmed/12775664
http://doi.org/10.1902/jop.1994.65.1.25
http://doi.org/10.1259/dmfr/56018062
http://doi.org/10.1259/dmfr/13676777
http://doi.org/10.1016/j.ajodo.2009.07.013
http://doi.org/10.1259/dmfr/14340323
http://doi.org/10.1016/j.jfma.2013.05.007


Appl. Sci. 2021, 11, 5850 12 of 12
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