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Homogenization of composites with extended general interfaces:
Comprehensive review and unified modeling

S. Firoozb, P. Steinmannb,c, A. Javilia,∗
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Abstract

Interphase regions that form in heterogeneous materials through various underlying mechanisms such as poor me-
chanical or chemical adherence, roughness, and coating, play a crucial role in the response of the medium. A well-
established strategy to capture a finite-thickness interphase behavior is to replace it with a zero-thickness interface
model characterized by its own displacement and/or traction jumps, resulting in different interface models. The
contributions to date dealing with interfaces commonly assume that the interface is located in the middle of its cor-
responding interphase. This manuscript revisits this assumption and introduces an extended general interface model,
wherein a unifying approach to the homogenization of heterogeneous materials embedding interfaces between their
constituents is developed within the framework of linear elasticity. Through utilizing a weighted average operator, we
demonstrate that the assumption of enforcing the interface to coincide with the mid-layer is not required and thereby
develop a new class of interfaces where the interface is allowed to take any arbitrary position between its bulk neigh-
bors. The proposed novel interface model can recover any of the classical interface models. Next, via incorporating
this extended general interface model into homogenization, we develop bounds and estimates for the overall moduli
of fiber-reinforced and particle-reinforced composites as functions of the interface position and properties. Finally, we
carry out a comprehensive numerical study to highlight the influence of interface position, stiffness ratio and interface
parameters on the overall properties of composites. The developed interface-enhanced homogenization framework
also successfully captures size effects, which are immediately relevant to emerging applications of nano-composites
due their pronounced interface effects at small scales.

Keywords: Homogenization, Weighted average, Interface position, General interface, Cohesive interface, Surface
elasticity, Gurtin–Murdoch elasticity

1. Introduction

Over the last few decades, composites have been playing a promising role in many engineering applications due to
their superb physical and mechanical properties. The overall behavior of a composite mainly depends on its underlying
micro-structure or more specifically, on orientation, distribution, volume fraction and the shape of their constituents.
The complexity of the micro-structure escalates by incorporating interface effects, interaction of the constituents and
debonding or damage between the constituents. Predicting the overall response of composites is a challenging task.
Many micro-mechanical methods have been developed to determine the overall behavior of composites among which,
homogenization has been particularly well-established. A major shortcoming of the classical homogenization is that
it fails to account for size-dependent material behavior, often referred to as size effects. Size effects in composites
are essentially attributed to surface and interface effects due to the pronounced area-to-volume ratio at small scales,
for example in nano-composites. In addition, to conduct more realistic analyses, various interface models have been
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developed to incorporate imperfect bonding between the constituents of a heterogeneous material. Therefore, it is
important to extend the homogenization method to account for interface effects between the constituents of heteroge-
neous materials, thereby capturing size-dependent effective properties.

Although a plethora of contributions are available in the literature investigating interfaces and the role they play in
the overall response of heterogeneous materials, a comprehensive review on this subject is yet missing. This section
provides an exhaustive literature review on this subject. The first part provides a brief review on homogenization.
This is then followed by a comprehensive review on the contributions incorporating interphases into homogenization.
Next, commonly accepted interface models to capture interphases are reviewed. Afterwards, the significance of
interface position is highlighted giving rise to an extended general interface model elaborated in the remainder of the
manuscript. Any attempt to provide a comprehensive review of this caliber on the subject is a challenging task. We
believe that the current structure forms a continuous and rigorous composition.

1.1. State of the art review of homogenization
Homogenization has proven to be a powerful technique in determining the overall behavior of heterogeneous ma-
terials. The main objective of homogenization is to estimate the macroscopic behavior of a heterogeneous material
from the response of its underlying micro-structure, thereby allowing to substitute the heterogeneous material with an
equivalent homogeneous medium. There exist extensive contributions on both analytical and computational homog-
enization. Hence, only selected representative papers are included here to establish an appropriate context. Table 1
gathers the major analytical and computational contributions on homogenization for mechanical problems.

1.1.1. Analytical homogenization
Pioneering works on analytical homogenization were carried out by Voigt [1] and Reuss [2] where they assumed a
uniform strain and stress field within the heterogeneous medium resulting in upper and lower bounds on the strain
energy [3], respectively. The nonlinear equivalents to Voigt’s and Reuss’ assumptions are usually referred to as
Taylor’s [10] and Sachs’ [11] bounds, respectively, which were later derived for polycrystals [12]. Although being

Table 1: Major analytical and computational contributions on homogenization

an
al
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Voigt [1], Reuss [2], Hill [3–9], Taylor [10], Sachs [11], Bishop and Hill [12], Hashin and shtrikman [13–16], Hashin [17–19], Beran
and Molyneux [20], Walpole [21–23], Fan [24], Zimmerman [25], Hashin and Rosen [26, 27], Milton,[28], Bornert et al. [29], Nemat-
Nasser et al. [30], Aboudi [31], Torquato [32], Milton and Kohn [33], Bisegna and Luciano [34, 35], Hori and Nemat-Nasser [36–
38], Li and Dunn [39], Gibiansky and Torquato[40], Eshelby [41], Rodin [42], Markenscoff [43], Mura [44], Lubarda and Marken-
scoff [45], Zohdi and Wriggers [46], Hershey [47], Kroner [48], Budiansky [49], Laws [50], Kerner [51], Christensen and Lo [52],
Huang et al. [53], Huang and Hu [54], Benveniste and Berdichevsky [55], Benveniste and Milton [56], Chatzigeorgiou et al. [57],
Boucher [58], McLaughlin [59], Norris [60], Mori and Tanaka [61], Pierard et al. [62], Benveniste [63], Luo and Weng[64, 65],
Weng [66], Qiu and Weng [67], Tandon and Weng [68], Hu and Weng [69], Aboutajeddine and Neale [70], Riccardi and Mon-
theillet [71], Ogden [72], Talbot and Willis [73–75], Willis [76–78], Ponte Castañeda et al. [79], Ponte Castañeda and Willis[80],
Suquet [81], DeBotton and Ponte Castañeda [82], Olson [83], Ponte Castañeda [84–89], Ponte Castañeda and Suquet [90], Leroy and
Ponte Castañeda [91], Lopez-Pamies and Ponte Castañeda [92], Mura [93], Charalambakis [94], Firooz et al. [95], Mandel [96]
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Tvergaard [97], Smit et al. [98], Bao et al. [99], van der Sluis et al. [100, 101], Nemat-Nasser and Hori [102], Miehe [103], Kacz-
marczyk et al. [104], Terada et al. [105], Drago and Pindera [106], Irving and Kirkwood [107], Mercer et al. [108], Fritzen and
Böhlke [109], Yuan and Tomita [110], Jiang and Cheung [111], Inglis et al. [112], Larsson et al. [113], Glüge [114], Saroukhani
et al. [115], Nguyen et al. [116], Drugan and Willis [117], Kanit et al. [118], Gitman et al. [119], Khisaeva and Ostoja-
Starzewski [120], Temizer and Zohdi [121], Thomas et al. [122], Temizer et al. [123], Dirrenberger et al. [124], Dai et al. [125],
Ostoja-Starzewski [126], Ghosh et al. [127], Ghosh and Moorthy [128, 129], Moulinec and Suquet [130], Michel et al. [131], Vino-
gradov and Milton [132], Lee et al. [133], Monchiet and Bonnet [134], Moulinec and Silva [135], Kabel et al. [136], Kamiński [137],
Okada et al. [138], Procházka [139], Renard and Marmonier [140], Takano et al. [141], Feyel and Chaboche [142], Terada and
Kikuchi [143], Miehe and Koch [144], Segurado and Llorca [145, 146], Miehe and Schröder [147], Feyel [148], Terada et al. [149],
Klinge and Hackl [150], Moës [151], Spieler et al. [152], Savvas et al. [153], Patil et al. [154], Lee and Mear [155], Wang and
Weng [156], Monette et al. [157], Böhm et al. [158], Ghosh et al. [159], Brockenbrough et al. [160], Kouznetsova et al. [161], Chawla
et al. [162], Kanoute et al. [163], Geers et al. [164], Nguyen et al. [165], Saeb et al. [166], Firooz et al. [95], Matouš et al. [167]
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general and simple, these bounds are very rough estimates and have been improved in the past decades. Using
extremum and variational principles, Hashin and Shtrikman [13–15, 17], Hill [4–6], Beran and Molyneux [20] and
Walpole [21, 22] determined more restrictive bounds compared to Voigt and Reuss bounds for the overall bulk and
shear modulus of composites. See Fan et al. [24] for bounds on the Young’s modulus and Zimmerman [25] for bounds
on the Poisson ratio.

Two specific branches of analytical homogenization based on variational methods are the composite cylinder as-
semblage (CCA) [26] and composite sphere assemblage (CSA) [18] suitable to analyze fiber-reinforced and particle-
reinforced composites, respectively. While no restriction is considered for the shapes of the heterogeneities in the
original variational approach, CCA and CSA require morphological and geometrical information about the micro-
structure. Using perturbations, Milton and Phan-Thein [28] introduced more geometrical features of the micro-
structure and improved the accuracy the Hashin–Shtrikman bounds and Walpole bounds from second-order error
to fourth-order error resulting in tighter bounds. Further generalizations of variational principles include accounting
for anisotropy [29], periodic micro-structures [30, 31], random micro-structures [32], magnetic permeability [16],
piezoelectricity [33–36, 39] and thermal expansion [27, 40].

A more sophisticated method, compared to variational principles, to examine heterogeneous media was developed
by Eshelby [41] where he derived a solution for the stress and strain fields within ellipsoidal inhomogeneities in
an infinite matrix subjected to uniform remote tractions. Eshelby assumed that the inhomogeneities are so dilutely
distributed that their interactions could be neglected. Investigation of Eshelby’s formulation for other inclusion shapes
are discussed in [42–45]. The assumption of neglecting the interactions of inhomogeneities makes Eshelby’s model
unrealistic for heterogeneous media with random distribution of inhomogeneities [46]. To overcome this drawback,
other methods such as the self-consistent method (SCM) [7, 8, 23, 47–50, 76], the generalized self-consistent method
(GSCM) [51–57] and the differential method [58–60] have been established. Besides offering implicit formulations
that makes SCM and GSCM convenient to use, these two methods treat the matrix and the inclusions similarly and
therefore, they can be used for cases with very high concentrations of inclusions. However, the morphology of the
inclusions is limited to spheres and short fibers. Parallel to these studies, the Mori–Tanaka method [61] was developed
based on the mean field approximation [62]. This model yields a better and more explicit solution for composite
properties where limited information about strain or stress concentrations in the constituents are available [63–65].
Weng [66] studied the connections between the Mori–Tanaka method [61] and the variational theory proposed by
Hashin and Shtrikman [15] and Walpole [21, 22] and found that Mori–Tanaka equivalent polarization stress and strain
in Eshelby’s equivalent inclusion equation [41] are essentially those that Hashin and Shtrikman [15] and Walpole [21,
22] used to construct their bounds. Also, he reported that the average stress and strain in the matrix in the Mori–
Tanaka method are exactly the image stress and strain imposed by Walpole, see also [67]. Tandon and Weng [68]
combined Eshelby’s theory and Mori–Tanaka’s method to obtain a closed form solutions for finite concentrations of
ellipsoidal inclusions with a wide range of inclusion aspect ratios. Hori and Nemat-Nasser [37, 38], via generalizing
the self-consistent scheme and the Mori–Tanaka method, proposed a double-inclusion model in which the interaction
between the constituents are taken into account more appropriately. They showed that the self-consistent scheme and
the Mori–Tanaka method are special cases of their framework. Further contributions on the double inclusion model
include [69, 70]. Riccardi and Montheillet [71] compared the Mori–Tanaka method and the generalized self-consistent
scheme and showed that the generalized self-consistent method predicts a stronger dependence on the inclusion aspect
ratio.

Extensions of the application of analytical homogenization to nonlinear composites and finite deformation elastic-
ity was studied in the pioneering works of Hill [9] and Ogden [72]. A significant advancement is due to the derivation
of nonlinear variational principles by Talbot and Willis [73] based on the original work of Willis [77]. Later, Ponte
Castañeda [89] proposed an alternative variational approach in which the properties of a nonlinear composite can
be found via the properties of its linear counterpart with the same micro-structure. Using the two methods in [73]
and [89], improved bounds and estimates were obtained for nonlinear dielectric composites [74, 79], two-phase ran-
dom composites made of nonlinearly viscous phases [80], power-law composites [81], plastic and elastoplastic non-
linear composites [82, 83, 88] and general classes of nonlinear composites [75, 78, 84, 90]. Ponte Castañeda [85] used
second-order Taylor expansion for phase potentials in a nonlinear composite and developed second-order estimates
for mechanical properties of such media. Comparing their results with “exact” numerical results, they found that their
new method provided more accurate estimates for the effective behavior of nonlinear composites than the presented
approaches by Talbot and Willis [73] and Ponte Castañeda [89]. Later, Leroy and Ponte Castañeda [91] demonstrated
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that such a methodology may violate Hashin–Shtrikman bounds in some special cases. This issue was addressed by
Ponte Castañeda [86, 87] via proposing an improved form of the second-order method, see also [92]. For further
studies on analytical homogenization see the reviews [19, 93, 94] and the references therein.

1.1.2. Computational homogenization
Computational homogenization proves to be a compelling alternative to analytical homogenization, especially for
complex micro-structures and nonlinear material behavior. In computational homogenization, one of the widely
adopted approaches in modeling heterogeneous materials is the unit-cell method. In this method, it is assumed that the
constitutive material behavior at the micro-scale is known and via solving the boundary value problem and proper av-
eraging throughout the sample, the macroscopic material properties are determined [97–100]. An energy equivalence
between the micro- and macro-scales must be imposed, commonly referred to as the Hill–Mandel condition [9, 96],
to bridge between the scales.

Among many boundary conditions satisfying the Hill–Mandel condition, the canonical ones are (i) linear dis-
placement boundary condition (DBC), (ii) constant traction boundary condition (TBC) and (iii) periodic displacement
and anti-periodic traction boundary condition (PBC). It is commonly known that in mechanical problems, the overall
material behavior obtained using PBC is bounded by DBC from above and TBC from below [101–104]. Nonetheless,
Terada et al. [105] argued that this statement should not imply that the results obtained by PBC are always closest to
the exact solution. Also, Drago and Pindera [106] demonstrated that the effective transverse Poisson’s ratio obtained
by PBC is not necessarily bounded between the Poisson ratios obtained by TBC and DBC. Inspired by the classi-
cal Irving–Kirkwood method [107], Mercer et al. [108] developed a broader set of admissible boundary conditions.
These boundary conditions filled the gap between the canonical boundary conditions and predict the overall material
response more precisely. Aspects of the numerical solution and computational cost associated with various types of
boundary conditions are investigated by Fritzen and Böhlke [109]. Further details on the formulation, implementation
and application of appropriate boundary conditions in the context of the computational homogenization can be found
in [110–116].

Another important and yet delicate task in the computational homogenization framework is the definition of the
representative volume element (RVE). It is widely accepted that the response of the material must be independent of
the choice of boundary conditions imposed on the RVE. A proper RVE must be selected such that it contains enough
details to sufficiently represent the micro-structure and it has to be small enough to fulfill the assumption of scale
separation [117–125]. According to Hill [4], an RVE is well defined when it contains enough number of inclusions and
the responses under DBC and TBC coincide. This definition forms the basis of the work of Ostoja-Starzewski [126] to
determine the RVE size where he demonstrates that the RVE size greatly depends on the problem type and in particular,
the inclusion to matrix stiffness ratio. A similar study has been carried out by Temizer and Zohdi [121] where they
report that depending on the mesh resolution of the finite element discretization of the micro-structure, different RVE
sizes may be obtained.

To perform computational analyses over the RVE, various schemes have been developed such as Voronoi cell finite
element scheme [127–129], fast Fourier transform [130–136], boundary element method (BEM) [137–139], finite
element method (FEM) [140–145, 147–150] and extended finite element method (XFEM) [151–154]. Using these
schemes, numerous contributions have investigated the effects of the inclusion shape, distribution, volume fraction
and stiffness on the overall behavior of composites, see for instance [155–159]. Brockenbrough et al. [160] analyzed
the effect of volume fraction, shape and distribution of particles in a metal-matrix composite and showed that the
distribution pattern of the particles has stronger effect on the overall response compared to their shapes. Kouznetsova
et al. [161] examined the influence of the randomness of the micro-structure on the macroscopic behavior for a constant
volume fraction of voids. They demonstrated that for elastic materials, a micro-structure with a random distribution of
voids renders more compliant behavior compared to a micro-structure with a periodic distribution of voids. Segurado
and Llorca [146] investigated the influence of particle clustering in a cubic RVE embedding stiff spherical particles and
found that the spatial distribution of particles has an insignificant effect on the effective properties of a composite in
the elastic and plastic regimes. On the other hand, Chawla et al. [162] studied the influence of different particle shapes
(spherical, ellipsoidal, and angular) on the elastic-plastic behavior of particle-reinforced composites and reported that
the shape of the particles may have a considerable impact on the behavior of the composite even for very small strains.
For further studies on computational homogenization see the reviews [163–167] and the references therein.
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1.2. State of the art review of interphase models

In heterogeneous materials, it is often assumed that the constituents are perfectly bonded together. The assumption
of a perfect bonding between the constituents of a heterogeneous medium is, however, inadequate to describe the
mechanical behavior and physical nature of the material. In real heterogeneous materials, processing and other factors
such as poor mechanical or chemical adherence, roughness, coating, damage or fracture can lead to imperfect bonding
between the constituents [168–177]. The degree of bonding between the constituents and the bond conditions has
been examined via experimental methods such as scanning electron microscopy, polarized light microscopy, dynamic
mechanical analysis, Rayleigh surface wave measurement and photoelasticity [178–181]. Imperfections give rise to
formation of a distinct interphase region [182–184] that can significantly influence the behavior of materials [185–
193]. Table 2 gathers major analytical and computational contributions on interphases in composite materials.

Since the properties of interphases depend on the manufacturing process, they cannot be directly determined from
the bulk material. An efficient way to determine the elastic properties of interphases is to utilize micro-mechanical
models and compare the results with the elastic properties of an equivalent homogeneous medium. Papanicolaou et
al. [327, 328] introduced the concept of interphase in composites and investigated the thermomechanical properties
and volume fraction of an interphase layer for a large group of composites via comparing the experimental data against
the results obtained from the rule of mixture. Chu and Rokhlin [329] presented a method for inverse determination
of elastic moduli of a carbon interphase in a ceramic-SiC composite. They obtained an analytical expression for the
effective transverse shear modulus using the generalized self-consistent method and compared the results against ex-
perimentally measured elastic moduli and calculated the properties of the interphase. Their work was extended by
Huang and Rokhlin [330] to incorporate graded and multi-layered interphases. Rohklin and Huang [331] measured
the wave velocity in a SiC fiber composite using low frequency ultrasound to calculate the effective elastic moduli
of the material. Using the generalized self-consistent method, they determined the effective elastic moduli and via
an inverse determination method, they calculated the elastic properties of the interphase. A similar study has been
carried out by Hashin and Monteiro [332] and Ramesh et al. [333] to obtain the elastic properties of an interfacial
transition zone between cement and aggregates in a concrete. Meurs et al. [334], via measuring the displacement
field around an interphase with the aid of scanning electron microscopy and using finite element analysis, presented
a mixed numerical-experimental method to characterize the interphase properties in a composite using an iterative
estimation procedure. Matzenmiller and Gerlach [335], using the generalized method of cells [336] together with

Table 2: Major analytical and computational contributions on interphases in composite materials

an
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Adams [173], Wang and Jasiuk [184], Walpole [194], Theocaris and Papanicolaou [195], Rosen [196], Lou and Weng [64, 65], Ben-
veniste et al. [197, 198], Chen et al. [199], Carman et al. [200], Mikata, Taya and Hatta [201–203], Pagano and Tandon [204, 205],
Duan et al. [206], Sullivan and Hashin [207], Maurer [208], Qiu and Weng [209], Cherkaoui et al. [210, 211], Barhdadi et al. [212], El-
Mouden et al. [213], Sarvestani [214], Nazarenko et al. [215–217], Seidel and Lagoudas [218], Xu et al. [219–222], Wu et al. [223],
Nie and Basaran[224], Lu et al. [225], Shi et al. [226], Marcadon et al. [227], Liu and Sun [228], Deng and Van Vliet [229], Gardner
et al. [230–232], Ordónéz-Miranda et al. [233], Pham and Torquato [234], Tong and Jasiuk [235], Chouchaoui and Benzeggagh [236],
Guinovart-Dı́az [237], Lurie et al. [238], Lebon and Rizzoni [239, 240], Papanicolaou et al. [241], Ostaja-Starzewski et al. [242], Sot-
tos et al. [243], Jayaraman et al. [244–246], Mikata [247], Ru [248], Theocaris et al. [249, 250], Sideridis [251], Theocaris [252, 253],
Dasgupta and Bhandarkar [254], Shabana [255], Hervé and Zaoui [256, 257], Berbenni, M. Cherkaoui [258], Bonfoh et al. [259], Ja-
siuk and Kouider [260], Wang and Jasiuk [184], Wu et al. [261], Zhong et al. [262], Xu et al. [263], Lutz and Zimmerman [264–267],
Low et al. [268, 269], Li [270], Shen et al. [271–273], Sevostianov and Kachanov [274], Jiang et al. [275], Li et al. [276], Hernández-
Pérez and Avilés [277], Mahiou and Béakou [278], Kiritsi and Anifantis [279], You et al. [280], Yao et al. [281], Sabiston et al. [282],
Sburlati and Cianci [283, 284], Rao and Dai [285], Yang et al. [286]

co
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l Broutman and Agarwal [287, 288], Tsai et al. [289], Nassehi et al. [290, 291], Wu and Dong [292], Tsui et al. [293], Al-Ostaz and
Jasiuk [294], Kari et al. [295], Pathan et al. [296], Riaño et al. [297], Chang et al. [298], Gosz et al. [299], Gulrajani et al. [300], Liu et
al. [301], Chen and Liu [302], Yao et al. [303], Mogilevskaya and Crouch [304], Wacker et al. [191], Ozmusul and Picu [305], Wang
et al. [306], Lagache et al. [307], Pan et al. [308], Hayes et al. [309], Lane et al. [310], Fisher and Brinson[311], Wang et al. [306],
Wang et al. [312], Han et al. [313, 314], Xu et al. [315] Lee et al. [316], Jiang et al. [317], Sabiston et al. [318], Sokolowski and
Kamiński [319–321], Kamiński and Ostrowski [322], Tac and Gürses [323], Cheng et al. [324], Huang et al. [325], Le [326]
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a gradient-based optimization scheme, developed a numerical algorithm for the inverse identification of elastic pa-
rameters of interphases in fiber composites, see also [337]. Other examples of experimental methods suitable to
identify the properties of interphases include the fiber pull-out method, the fiber fragmentation method and the fiber
micro-compression method [338–345].

1.2.1. Analytical studies
Besides experimental methods, several analytical schemes have been developed to study the effects of interphases on
the overall behavior of composites. Considering the interphase as a homogeneous independent phase between the
constituents has been the primary idea of accounting for interphase effects in analytical studies and has been widely
adopted in the literature.

The first analytical study on homogeneous interphases was carried out by Walpole [194] where he presented a
mathematical model to analyze the effects of interphases on local fields in a composite medium with coated inclusions.
Assuming that the stresses and strains in the inclusion are similar to those in the absence of the interphase, Walpole has
shown that a thin interphase around an inclusion considerably influences the elastic fields in the surrounding medium.
Theocaris and Papanicolaou [195] developed a methodology based on the work of Rosen [196] to investigate the role
of the interphase on the thermomechanical load transfer across the fiber-matrix interphase in a Glass-Resin composite
with short fibers. Lou and Weng [64, 65] proposed a modified Mori–Tanaka method to determine the elastic fields
within the constituents of composites with coated particles and fibers. Applying appropriate strain fields, they obtained
the elastic moduli of such composites and observed that all moduli lie within the Hashin–Shtrikman bounds. Similar
studies on local fields in composites with interphases were carried out by Benveniste et al. [197] where they employed
the Mori–Tanaka method based on the work in [63] to evaluate both the effective moduli and the local stresses in
the constituents of a composite with coated fibers. Their work was later extended in [198, 199] to incorporate phase
anisotropy. Carman et al. [200] investigate the effect of coatings applied to the fibers in a composite on the stress
distribution throughout the medium subjected to transverse loading. They develope an optimization procedure to
determine an optimal interphase property which minimizes the composite transverse stress, hence the increase in the
material transverse failure resistance. Further studies on stress fields analysis has been conducted by Mikata, Taya and
Hatta [201–203] and Pagano and Tandon [204, 205] for composites with coated fibers under mechanical, thermal and
thermo-mechanical loadings. Duan et al. [206] investigated the problem of an arbitrarily oriented spheroidal inclusion
surrounded by an interphase embedded in an infinite medium and developed a methodology to determine the displace-
ment and stress fields inside and around the inhomogeneity. Besides the analysis of local fields, determination of the
overall moduli of composites has been another interesting subject in analytical studies on homogeneous interphases.
Sullivan and Hashin [207] exploited the composite cylinder assemblage and the generalized self-consistent scheme
to determine the elastic properties of a fiber composite with an interphase layer surrounding the fibers, see [208]
for a similar study on thermal and electrical problems. Later, Qiu and Weng [209] extended Hashin’s methodology
in [18, 26] and obtained bounds and estimates on the effective properties of coated fibrous and particulate-composites.
They compared their results against the bounds reported by Hashin and Shtrikman [18], Hill [4] and Walpole [23]
and observed that all their estimates lie within these bounds. Cherkaoui et al. [210, 211] claimed that the assumption
made by Walpole [194] about the elastic fields in the inclusion could lead to a non-realistic analysis. Via considering
the interaction between the inclusions, they developed a new micro mechanical model based on the Green’s function
technique and interfacial operators and then using the self-consistent scheme, they determined the effective properties
of composites embedding coated inclusions, see also [212]. Their work was extended to the case of composites with
periodic distribution of coated inclusions by El-Mouden et al. [213].

Analyses of composites containing multiple coated inclusions was carried out by Sarvestani [214] where he de-
termines the effective elastic moduli of particulate-composites based on the extended Eshelby’s equivalent inclusion
method [346]. Thermo-elastic properties of random composites containing anisotropic interphases have been ob-
tained by Nazarenko et al. [216, 217]. For further analytical contributions on homogeneous interphases, the reader
is referred to the following references studying the generalized self-consistent method [218, 219], the Mori–Tanaka
method [220, 223], the composite sphere assemblage [224], the double/multiple-inclusion model [222, 225, 226], the
equivalent inclusion method [215, 227–229], the method of cells [230–232], the differential effective medium approx-
imation [221, 233], the strong-contrast expansions [234], the successive iteration method [235] and the asymptotic
analysis [236–240].
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A more general model to analyze interphases is to consider that the interphase has non-uniform spatial properties.
That is, the interphase properties may vary in the domain. Examples of such interphases include graded interphases,
multi-layered interphases or non-homogeneous interphases. A pioneering work on these types of interphases was
carried out by Papanicolaou et al. [241]. They extended the works further in [327, 328] and investigated the adhesion
efficiency between the fiber and matrix in a fiber-reinforced polymer composite via considering an inhomogeneous
interphase between the components. In view of the heterogeneity of the interphase, the inhomogeneous continuum
model should also account for local anisotropy and randomness of the constitutive laws which has been investigated
by Ostaja-Starzewski et al. [242] for functionally graded interphases. Sottos et al. [243] studied thermal stresses in
the proximity of a fiber in a unidirectional fiber composite with hexagonal arrangement of fibers. In their analysis, the
interphase elastic modulus and thermal expansion coefficient were assumed to vary linearly in the radial direction. Few
years later, Jayaraman et al. [244–246] extended the work by Benveniste et al. [197] to account for inhomogeneous
interphases and investigated the local thermal and mechanical stress fields near the fiber in a unidirectional fiber
composite. Mikata [247] used a model based on a four concentric circular cylinders for thermomechanical analysis
of stress fields in composites with variable interphase properties. Ru [248] considered a circular inclusion embedded
in an infinite matrix with a multi-layered graded interphase and proposed a new method to determine the exact stress
fields within the inclusion and the matrix under thermomechanical loadings.

So far, the authors in the aforementioned papers [243–248] have been concerned with the local fields throughout
the composite medium. Investigation of the effective properties of composites with inhomogeneous interphases was
carried out in the seminal works of Theocaris et al. [249, 250]. They proposed a multi cylinder model based on the
work of Hashin and Rosen [26] to determine the overall properties of fiber composites with variable interphase prop-
erties, see [251, 253] for similar works by the same authors. The contributions of Theocaris and his coworkers in this
area were summarized in a book by Theocaris [252]. Dasgupta and Bhandarkar [254] employed the Mori–Tanaka
method and the generalized self-consistent method to determine the overall thermomechanical properties of unidirec-
tional composites with multiply-coated cylindrical fibers, see [255] for ellipsoidal fibers. Hervé and Zaoui [256, 257]
derived the elastic strain and stress fields in an infinite medium comprised of a multi layered isotropic inclusion
embedded in a matrix subjected to uniform stress or strain conditions at infinity. Via considering some of the in-
clusion layers as a multi-layer interphase, this model is suited to analyze graded interphases, see [258, 259]. Jasiuk
and Kouider [260] employed the generalized self-consistent method and composite cylinder assemblage to predict
the overall elastic moduli of fiber composites embedding inhomogeneous interphases with variable elastic constants
changing in the radial direction. Their work was later extended for particulate-composites by Wang and Jasiuk [184].
They showed that, compared to a uniform interphase, the effect of lacking interphase homogeneity on the overall
properties is more significant when the particles are stiffer than the matrix, and the effect is negligible when the matrix
is stiffer than the particles, see also [261–263]. Lutz and Zimmerman [264, 266, 267] obtained closed-form solutions
for the effective bulk modulus, shear modulus, conductivity and diffusivity of particulate-composites with inhomoge-
neous interphases. In their work they allowed the interphase elastic properties to vary smoothly from the particle to
the matrix with a power-law. This methodology was also employed by the same authors to estimate the local elastic
properties of concretes considering interfacial transition zones [265].

Composites with rectangular fibers with variable interphase properties have been examined by Low et al. [268,
269] where they establish a micro-mechanical model based on the method of cells to analyze the stress fields and
the effective transverse shear properties of such media. The thermoelastic behavior of composites with multiple in-
clusions with functionally graded interphases was examined by Li [270] and closed-form expressions for effective
thermoelastic moduli of such composites were obtained. Shen et al. [271–273] proposed a new energy balance equa-
tion and derived a generalized non-interacting solution for the effective properties of particulate-composites. They
used a method in which the inclusion/interphase system was replaced by an equivalent inclusion and then extended
the solution to account for a random distribution of inclusions. Via testing a broad range of parameters such as in-
clusion to matrix stiffness ratios or interphase thicknesses, Sevostianov and Kachanov [274] improved the Shen’s
methodology [271–273]. Analysis of composites with periodic distribution of particles surrounded by inhomoge-
neous interphases was carried out by Jiang et al. [275] where they exploited the Mori–Tanaka method and developed
a micro-mechanic model to examine the overall properties of such media. Li et al. [276] conducted a comprehensive
study to investigate the influence of size, interphase thickness, and inclusion shape on the enhancement mechanism
of composites, see [277] for carbon nano-tube composites. Further analytical studies on inhomogeneous interphases
include [278–286].
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1.2.2. Computational studies
Computational analysis of interphase effects on the overall behavior of heterogeneous materials have been growing
rapidly during the last decades. The two main techniques that have been widely adopted to carry out computational
studies in this context are the finite element method and the boundary element method.

Broutman and Agarwal [287, 288] elaborated on homogeneous interphases embedded in a fiber composite via
proposing a three-dimensional finite element solution. They evaluated the stress fields within the constituents, stress
concentrations at the interphase and the overall mechanical properties of the medium and showed that for a composite
medium with aligned fibers, an interphase can improve the overall medium’s toughness. Motivated by the work of
Mandell et al. [347], Tsai et al. [289] conducted a comprehensive study on the effects of homogeneous interphase
properties on stress and fracture toughness of composites. Developing an axisymmetric finite element method, they
determined the shear strength of the composite medium and the relationship between the thickness and shear modulus
of the interphase. They concluded that some factors like fiber diameter, fiber Young’s modulus, interphase shear
strength and interphase thickness greatly contribute to the toughness of the composite. For further studies on failure
analysis of composites with interphases see [348–355]. Finite element analysis on polymer composites with coated
fibers was carried out by Nassehi et al. [290, 291] where the effects of the interphase on stress distribution around
the fibers were examined. Similar analyses have been carried out by Wu and Dong [292] and Tsui et al. [293] for
coated particles. The study of interphases in composites with multiple inclusions was initially conducted by Al-
Ostaz and Jasiuk [294] where they studied the local stress fields in a composite with coated disk-like inclusions
with both random and periodic distribution throughout the medium. They observed that random distribution of the
inclusions yield higher stress concentrations than the periodic distribution owing to stress localizations. Later, Kari et
al. [295] studied the influence of a homogeneous interphase parameters such as stiffness and volume fraction on overall
properties of (transversely) randomly distributed unidirectional fiber composites and randomly distributed spherical
particle composites. Using finite element analysis, they reported that the overall properties are significantly affected
if the interphase is not stiff enough to transmit the load between the constituents. Further computational studies on
composites with randomly distributed inclusions with interphases include [296–298].

Gosz et al. [299] are the pioneers of developing the boundary element method to analyze heterogeneous media
with interphases. They utilized a variationally coupled finite element and boundary element method to determine
the mechanical response of a cell containing fibers and concluded that the transverse strength of composites may be
enhanced in the manufacturing process by avoiding the occurrence of isolated fibers or isolated group of fibers in
the matrix. Gulrajani et al. [300] employed a direct differentiation approach and the boundary element method to
obtain optimal values of interphase parameters that minimize the possibility of failure in a composite. Later, Liu
et al. [301] employed the boundary element method to model a unit cell embedding a single fiber surrounded by
an interphase layer representing a composite material. They examined the effects of stiffness and thickness of the
interphases on the micro-mechanical behavior of the composites. Later, Chen and Liu [302] extended the work to
include multiple cells. Yao et al. [303] incorporated the fast multi-pole method in a sub-structuring boundary element
method to model fiber composites with homogeneous interphases. Mogilevskaya and Crouch [304] also presented
a boundary element method to solve the problem of an infinite, isotropic elastic plane embedding a large number of
randomly dispersed circular elastic inclusions surrounded by uniform interphase layers. Via extending the work of
Mogilevskaya and Crouch [304], Wang et al. [306] employed a boundary element method to examine radially graded
interphases. Computational analysis of inhomogeneous interphases was first carried out by Wacker et al. [191] where
they investigated the effects of the Young’s modulus and the thickness of an interphase layer on the effective properties
of fiber composites using the finite element method, see also [305]. For further contributions to computational analyses
of composites with interphases, the reader is referred to [306–315, 326] for homogeneous and to [316–321, 323–325]
for inhomogeneous interphases.

1.3. State of the art review of interface models

A well-established strategy to capture a finite-thickness interphase, proposed by Sanchez-Palencia and Pham-Huy [356,
357], is to replace the interface by a zero-thickness interface model characterized by certain field jumps. In elasticity
problems, the interfacial field jumps are displacement jump and traction jump. The seminal works of Hashin [358–
360] and Benveniste and Miloh [361] have meticulously investigated the correlation between the interphase properties
and the field jumps that occur across the interfaces, see [362] for a related work. As the characteristic length of a
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Figure 1: Classification of the classical interface models together with the extended general interface model.

medium decreases, the significance of the surface and interface effects become more pronounced, since the area-to-
volume ratio is proportional to the inverse of the dimension. Accounting for interfaces results in a size-dependent
material response [363–365]. Lack of a physical length-scale and therefore inability to capture size effects, has been
regarded as one of the major shortcomings of classical homogenization.

This section introduces the most common interface models within the framework of elasticity and elaborates on
how these interface models have been taken into account for analysis of heterogeneous media. Figure 1 categorizes all
the classical interface models together with the extended general interface model developed in this manuscript based
on the continuity of the displacement field across the interface, the continuity of traction field across the interface and
the interface position.

1.3.1. Perfect interface model
A trivial assumption to analyze the overall behavior of composites is the “perfect condition” at the interface between
the constituents such that the displacement and the traction fields across the interface remain continuous, as depicted in
Fig. 1. This assumption defines the perfect interface model. Hence, other interface models with admissible displace-
ment or the traction discontinuities across the interface, are commonly referred to as imperfect interfaces. Analysis of
composite materials with perfect interfaces is, in principle, identical to classical homogenization discussed in detail
in Section 1.1. By contrast, imperfect interface models, gathered in Table 3, shall be discussed next.

1.3.2. Cohesive interface model
The second option is to assume that the traction field is continuous whereas the displacement field experiences a jump
across the interface, coaxial to the interface traction, see Fig. 1. This interface model is commonly referred to as
the cohesive (spring-type) interface model. The cohesive interface model allows one to represent intermediate states
between perfect bonding and complete debonding. Pioneering works on cohesive interfaces can be traced back to
1960s in the works of Barenblatt [366, 367] studying finite strength of brittle materials, Dugdale [368] investigating
the yield phenomenon at a crack tip and size of the plastic zone, and Jones and Whittier [369] examining elastic
wave propagation between two dissimilar planes connected with an elastic bond. The cohesive interface model has
experienced a prolific growth and has been extensively employed in studying fracture [641–648], adhesive joints [649–
656], delamination [657–662], crack growth [663–668], bond failure [669, 670], screw dislocations [671], grain
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boundaries [672–674] and peeling [675]. There are a myriad of other contributions in the literature investigating these
phenomena that are not mentioned to avoid digression. Here, we focus our attention on contributions studying the
overall behavior of composites embedding cohesive interfaces within the framework of homogenization from both
analytical and computational perspectives.

Table 3: Major analytical and computational contributions on interface models
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Barenblatt [366, 367], Dugdale [368], Jones and Whittier [369], Mal and Bose [370], Theocaris et al. [371], Benveniste [372], Ben-
veniste and Miloh [373], Aboudi [374, 375], Takahashi and Shan and Chou [376, 377], Karihaloo and Viswanathan [378, 379],
Hashin [358–360, 380], Lipton and Vernescu [364] Levy [381, 382], Qu [383], Gao [384], Lee and Pyo [385], Ju and Chen [386],
Esteva and Spanos [387], Othmani et al. [388], Xu et al. [389], Yanase and Ju [390], Hosseini Kordkheili and Toozandehjani [391],
Lee et al. [392, 393], Qu [394], Tan et al. [395–397], Zhao and Weng [398], Liu et al. [399], Shao et al. [400], Brassart et al. [401],
Teng [402], Koyama et al. [403], NafarDastgerdi et al. [404], Duan et al. [405–407], Shen et al. [408, 409], Ru and Schiavone [410],
Sudak et al. [411], Ru [412, 413], Pagano and Tandon [414, 415], Teng [416], Sudak and Mioduchowski [417], Sangani and
Mo [418], Bigoni et al. [419], Sabina et al. [420], Artioli et al. [421], Sevostianov et al. [422], Ghahremani [423], Mura, Jasuik and
Tsuchida [424, 425], Mura and Furuhashi [426], Zhong and Meguid [427], Furuhashi et al. [428], Huang et al. [429], Lee et al. [430],
Kouris and Mura [431], Benveniste and Aboudi [432], Shibata et al. [433], Devries [434, 435], Jasiuk et al. [436, 437], Lubarda and
Markenscoff [438, 439], Königsberger et. al. [440, 441], Fritsch et. al. [442], He and Jiang [443], Funn and Dutta [444], Qu et.
al. [445], He and Liu [446], Shahidi et. al. [447–450], Eberhardsteiner et. al. [451], Chaboche et. al. [452], Nair et. al. [453], Chen
and Li [454]
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Owen and Lyness [455], Lene and Leguillon [456], Needleman [457], Steif and Hayson [458], Xu and Needleman [459], Bisegna
and Luciano [460], Wriggers et al. [461], Würkner et al. [462, 463], Zheng et al. [464], Caporale et al. [465], Achenbach and
Zhu [466, 467], Zhu et al. [468], Fritzen and Leuschner [469, 470], Koutsawa [471], Nairn [472], Yeh [473], Camacho and Or-
tiz [474], de-Andrés et al. [475], Ortiz and Pandolfi [476], Alfano and Crisfield [477], Mi et al. [478], Gasser and Holzapfel [479],
Mergheim and Steinmann [480], Hansbo and Hansbo [481, 482], van den Bosch et al. [483–485], Vossen et al. [486], Ottosen et
al. [487, 488], Heitbreder et al. [489, 490], Hillerborg et al. [491], Ghosh et al. [492], Wells and Sluys[493], Guo et al. [494], Se-
gurado and Llorca [495], Aghdam and Falahatgar [496], Raghavan and Ghosh [497], Fagerström and Larsson [498], Charlotte et
al. [499], Ghosh et al. [500], Aymerich et al. [501], Paggi and Wriggers [502, 503], Bouhala et al. [504], Wang et al. [505], Tu and
Pindera [506], Pike and Oskay [507], Wu et al. [508], Rezaei et. al. [509, 510], Bayat et. al. [511]
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Cammarata [512–515], Shuttlewoth [516], Chen et al. [517], Povstenko [518], Gurtin and Murdoch [519–521], Cahn and
Lärché [522], Nix and Gao [523], Gao et al. [524, 525], Caillerie [526], Lemrabet and Lions [527], Benveniste and Miloh [361],
Rubin and Benveniste [528], Rizzoni et al. [529], Fried and Todres [530], Fried and Gurtin [531], Dingreville and Qu [532, 533],
Dingreville et al. [534, 535], Dumont et al. [536], Sharma et al. [537, 538], Yang [539], Sun et al. [540], Duan et al. [406, 407, 541–
543], Huang and Wang [544], Monteiro et al. [545], Huang and Sun [546], He [547], Lim et al. [548], Chen et al. [549, 550], Mi
and Kouris [551, 552], Mi [553], Le-Quang and He [554–556], Mogilevskaya et al. [557–560], Jammes et al. [561], Kushch et
al. [562–564], Muskhelishvili [565], Kushch and Sevostianov [566], Benveniste and Miloh [567], Gao et al. [525], Dormieux and
Kondo [568, 569], Monchiet and Bonnet [134], Brach et al. [570], Kushch [571] Sharma and Wheeler [572], Yang [573], Chen and
Dvorak [574], Chen [575], Chen et al. [576], Fischer and Svoboda [577], Brisard et al. [578], Li et al. [579], Dong [580], Javili [581],
Javili et al. [582] Nazarenko et al. [583], Chatzigeorgiou et al. [584–586], Dai et al [587] Steigmann and Ogden [588, 589], Chhapadia
et al. [590], Zemlyanova and Mogilevskaya [591, 592], Han et al. [593], Ban and Mi [594], Le [595, 596]
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p. Tian and Rajapakse [597, 598], Yvonnet et al. [599], Dong and Pan [600], Dai et al. [601], Javili et al. [602–604] Koutsawa et
al. [605], Chen et al. [606–608], Dong and Pan [600], Dong and Lo [609], Dong and Zhang[610], Zhao et al. [611], Gao et al. [612],
Farsad et al. [613], Parvanova et al. [614], Liu et al. [615]
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. Hashin [616], Benveniste [617–619], Bövik [620], Monchiet and Bonnet [621], Gu and He [622], Gu et al. [623, 624], Serpilli et
al. [625], Wang and Ye [626], Xu et al. [627], Firooz et al. [628, 629], Chatzigeorgiou et al. [630]
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Gu et al. [631], Javili et al. [632, 633], Kaessmair et al. [634], Javili [635], Saeb et al. [636–638], Firooz and Javili [639], Firooz [640]

12



1.3.2.1 Analytical studies

Mal and Bose [370] conducted the first study on the overall behavior of composites embedding randomly distributed
inclusions that were imperfectly bonded to the matrix. They determined the velocity and attenuation of the average
harmonic elastic waves propagating through such a medium. Four years later, Theocaris et al. [371] investigated the
overall elastic behavior of composites with cohesive interfaces. Analyzing a three-dimensional model including an el-
lipsoidal inclusion embedded in an infinitely extended matrix, they reported that the particle shape does not influence
the effective moduli. This statement was later contradicted by Hashin [380]. Benveniste [372] established the fun-
damental concepts in the theory of composite materials with interfacial displacement discontinuities, see also [432].
Formulating a general theory, Benveniste defined the representative volume averages of the stress and strain fields on
the basis of surface integrals via exploiting average stress and strain theorems developed by Hashin [676]. Applying
the methodology to composite sphere assemblage, he derived the effective shear modulus of particulate-composites.
Similar studies for thermal problems have been done by Benveniste and Miloh [373]. A continuum theory to determine
the average behavior of unidirectional fiber composites with admissible interfacial debonding between the constituents
was proposed by Aboudi [374]. Following [375], he defined two parameters representing the interfacial resistance
against debonding in normal and tangential directions and developed closed form expressions for the effective trans-
versely isotropic properties of such composites. A mathematical model to predict the transverse elastic moduli of
unidirectional fiber composites with cohesive interfaces was presented by Takahashi, Shan and Chou [376, 377]. To
analyze complete debonding, they adopted the cavity formation model [677] and replaced the fiber and surrounding
cavities by an imaginary anisotropic inclusion that could only sustain compression. See [378, 379, 381] for analysis
of stress and displacement fields of debonded inclusions in an infinite elastic medium.

At the beginning of the 1990s, Hashin carried out a series of studies on the overall behavior of composites embed-
ding cohesive interfaces [358–360, 380] and demonstrated that the cohesive interface model is suitable to represent
very thin and compliant interphases. In [358, 360], Hashin employed the generalized self-consistent scheme to obtain
the thermal and elastic properties of fiber-reinforced and particle reinforced composites embedding cohesive inter-
faces. He then showed that for fiber composites, the cohesive interface influence on the thermal expansion coefficient,
transverse shear modulus and Young’s modulus is significant, whereas its influence on the axial thermal expansion
coefficient and axial Young’s modulus is negligible. In [358, 359], Hashin derived the relations between the cohe-
sive interface parameters and interphase elastic properties and thickness for particulate-composites. In [380], Hashin
generalized the classical extremum principles of elasticity theory to account for cohesive interfaces in composites and
obtained bounds on the overall elastic moduli of such media. He concluded that unlike the bounds for a medium
with perfect interface, which depend only on volume fractions, the bounds for a medium with cohesive interface are
substantially influenced by the interface shape. After the works of Hashin, investigation of the behavior of compos-
ites with interfacial debonding gained a considerable attention and various extensions have been proposed ever since.
A nonlinear cohesive interface model for dilatational response of fiber composites was presented by Levy [382].
Qu [383] developed a modified Eshelby tensor to incorporate cohesive interfaces and presented an integral form to
predict the strain field within an ellipsoidal inclusion. The advantage of his proposed methodology was that it was
generic and not restricted to certain geometries or approximations. A similar study has been conducted by Gao [384]
for circular inclusions using Airy stress functions. Lee and Pyo [385] proposed a multi-level elastic damage model for
particulate-composites based on a combination of a micro-mechanical model and a multi-level damage model. Using
the micro-mechanical model of Ju and Chen [386], Lee and Pyo adopted Eshelby’s tensor for an ellipsoidal inclusion
with cohesive interfaces and predicted the effective elastic behavior of composites embedding cohesive interfaces.
Further studies on Eshelby’s formulation incorporating cohesive interface models include [387–393].

Qu [394] modified the Mori–Tanaka method to account for cohesive interfaces and determined the effective moduli
of composites with spherical and ellipsoidal inclusions. Tan et al. [395] used the Mori–Tanaka method to examine
the effect of interface debonding on the overall behavior of particulate-composites with large volume fractions. They
demonstrated that particle size plays an important role on the behavior of the material with small particles stiffening
the material and large ones leading to lower overall stiffness, see also [396]. A two dimensional study using the
Mori–Tanaka method was carried out by Zhao and Weng [398]. To model the debonding, they replaced the isotropic
debonded inclusion with a fictitious transversely isotropic one whose tensile and shear stresses associated with vertical
direction were zero. Further studies on the Mori–Tanaka method in the context of cohesive interfaces can be found
in [397, 399–404] among others.
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The interfacial bonding conditions have been thoroughly investigated by Duan et al. [405]. They derived the local
and average stress concentration tensors for inhomogeneities using four different interface models of which two had
admissible displacement jumps across the interface. Few years later, Duan et al. [406, 407] proposed a framework
based on a replacement procedure and the generalized self-consistent method. Via replacing the inhomogeneity/in-
terface system with an equivalent inclusion, they obtained the elastic properties of fiber and particulate-composites.
Analysis of the stress fields throughout the constituents of a composite medium comprising a cohesive interface was
carried out by Shen et al. [408] where they proposed a semi-analytic solution using the complex variable technique for
the problem of an elliptic inclusion with homogeneously imperfect interface in anti-plane shear. They showed that the
effect of the cohesive interface parameter on the average stress inside the inclusion increases in correlation with the
aspect ratio of the ellipse, see also [409]. Ru and Schiavone [410] and Sudak et al. [411] developed rigorous solutions
for the problem of a circular inclusion in an infinite matrix with a circumferentially inhomogeneous interface in be-
tween. They showed that, in contrast to the results reported by Hashin [359] and Gao [384], for antiplane deformation,
under a remote uniform antiplane stress field, the state of stress inside a circular inclusion remains uniform, see [413]
for similar studies. Later, Ru [412] utilized the cohesive interface model to propose a framework for designing com-
posites with neutral inclusions. In such media, the inclusions do not disturb the prescribed uniform stress field in the
surrounding elastic body. Thermoelastic properties of fiber composites with interfacial debonding and slippage have
been investigated by Pagano and Tandon [414, 415]. They demonstrated that interfacial debonding has negligible ef-
fects on the longitudinal Young’s modulus and thermal expansion coefficient. In addition, they showed that imperfect
interface conditions yield a mathematical and physical mismatch between the strain field calculated using the volume
average theory versus surface measurements and reported that this mismatch renders the effective stiffness tensor to
be unsymmetric, see also [416, 417].

Failure of brittle composites has been investigated by Königsberger et. al. [440, 441] where they extended the
continuum micromechanics framework to analyze cracking in the interfacial transition zone in concrete. They pro-
posed a multi-scale model that relates the macroscopic stress to the average of the stresses in the aggregates as well
as the tractions acting on the aggregates surfaces, thereby predicting the location of the potential micro-cracks due to
macroscopic loading. Further studies on brittle failure of interfaces include [442].

Most of the aforementioned studies considered single inclusions in their analyses. The works considering multi-
ple inclusions include Sangani and Mo [418] in which they considered the problem of multiple spherical inclusions
interacting with each other in a matrix and developed a method to calculate the effective properties of such medium.
Bigoni et al. [419] applied the problem of circular inclusions with imperfect bonding to crack propagation and ho-
mogenization of dilute, periodic composites. Sabina et al. [420] utilized the asymptotic homogenization method to
determined the complete set of effective elastic moduli for two-phase fibrous periodic composites with imperfect con-
tact conditions of linear spring type, see also [421]. Sevostianov et al. [422] conducted a comprehensive comparative
study on different approaches to model imperfect interfaces for fiber reinforced composites with a periodic distribution
of fibers. They demonstrated that the differential approach, the three-phase model with consequent homogenization,
and the spring interface model yield almost the same solutions for the effective elastic moduli when the inclusion to
matrix stiffness ratio is between 0.01 and 100.

A simplification that can be applied to the cohesive interface model is to assume that the displacement jump only
occurs in the interface tangential direction and not in its normal direction. Such problems are commonly referred
to as sliding inclusions. Ghahremani [423] investigated the sliding phenomenon in composites for the first time and
obtained the solution for a sliding spherical inhomogeneity embedded in an isotropic elastic medium subjected to
uniform tension at infinity. Further studies on spherical sliding inclusions were carried out by Mura, Jasuik and
Tsuchida [424, 425] where they analyzed the elastic fields in a composite under pure shear and uniaxial tension
loading at infinity. They reported that unlike the perfect bonding condition, the stress field is not uniform in a sliding
inclusion and this effect is more pronounced when the inclusions is stiffer than the matrix. Mura and Furuhashi [426]
extended the work by Ghahremani [423] to ellipsoidal inclusions using the Somigliana dislocation theory [678].
They concluded that under uniform shear eigenstrains, a sphere always deforms to an ellipsoid whereas an ellipsoid
restores its shape and orientation by rotation after the material deformation. For further studies on modeling interfacial
debonding in composites using Somigliana dislocation theory see [427, 679]. Furuhashi et al. [428] compared the
elastic fields within the spherical and ellipsoidal inclusions subject to various loadings. Huang et al. [429] extended
the work [426] via introducing friction at the interface of an inclusion and matrix, and presented exact analytical
solutions for the stress fields in constituents via modifying Eshelby’s problem to incorporate sliding inclusions. Lee
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et al. [430] presented an exact elasticity solution for a circular sliding inclusion embedded in a half plane matrix
and determined the stress and displacement fields in the constituents. They observed that the sliding yields higher
stress concentrations whose magnitude depends on the size and location of the inclusion. A similar study was carried
out by Kouris and Mura [431]. A continuum theory for a fiber composite with admissible tangential debonding
between the constituents was developed by Benveniste and Aboudi [432]. They applied their theory to investigate
debonding effects on wave propagation in a boron/epoxy composites with rectangular fibers. Prediction of the overall
properties of composites containing sliding inclusions has been originally addressed by Shibata et al. [433] where they
determined the overall shear modulus and the Poisson ratio of a composite embedding sliding spherical inclusions.
They first analyzed the problem with a single inclusion in order to determine the tangential traction due to sliding
and then incorporated the effects of other inclusions using a successive iteration method. Later, Devries [434, 435]
presented closed-form constitutive relations for the overall behavior of periodic fiber composites. Considering only
tangential slipping between the fibers and the matrix, Devries obtained bounds and estimates for the effective moduli
of such media. Jasiuk et al. [436, 437] determined the overall elastic moduli of composites with sliding inclusions
using four micro-mechanical techniques; the generalized self-consistent method, the self-consistent method, the Mori–
Tanaka method and the differential scheme. For further studies on sliding inclusions in heterogeneous materials see
Lubarda and Markenscoff [438, 439].

The cohesive interface model can also be extended to account for viscosity effects, commonly referred to as the
viscous interface models. In the viscous interface model, the interface is regarded as a viscous membrane type medium
where the interface traction is related to the displacement jump across the interface including interface viscosity [443,
447]. The viscous interface model can be employed to understand the behavior of materials with organic-inorganic
phases or materials rendering damping behavior, but such interface models can also allow for sliding inclusions
as well as fluid interfaces. It has been shown [444, 445, 448, 449] that the viscosity at the interface can play an
important role in the structural integrity and creep behavior of composites. For instance, He and Liu [446] studied
mechanical damping of fiber reinforced composites with viscous interfaces. Using the composite cylinder assemblage
approach, they obtained explicit expressions for specific damping capability composites embedding viscous interfaces.
Shahidi et. al. [447] adopted a micromechanics continuum theory to formulate viscous interfaces into creep laws at
the continuum scale for materials embedding a non-creeping solid matrix with confined fluid-filled interfaces. Further
studies on viscous interfaces can be found in [450–454].

1.3.2.2 Computational studies

Computational studies on the cohesive interface model in composites can be traced back to the work of Owen and
Lyness [455] where they examined debonding of a single fiber embedded in a matrix using the finite element method.
Lene and Leguillon [456] employed the homogenization method in conjunction with finite element analysis to find the
effects of imperfect bonding on the effective moduli of fiber composites. They found that there exists a specific spring
constant for the interface beyond which the overall material stiffness decreases drastically. Employing a cohesive
interface model, Needleman [457] developed a unified framework to describe the process of void nucleation in pe-
riodic particulate-composites starting from initial debonding until complete separation. In his constitutive equations,
increasing the interfacial separation requires the traction across the interface to increase until it reaches a maximum.
Further separation results in a decrease in traction until it vanishes which signifies complete decohesion. Steif and
Hayson [458] showed that the longitudinal modulus of fiber composites embedding dilute concentration of fibers
with interfacial debonding condition can be written in terms of the perturbations that a single fiber induces in the
displacement field in a homogeneous medium subject to a far field uniaxial tension. Formulating the proper boundary
value problem, they calculated the perturbed displacement field and determined the medium longitudinal modulus in
terms of the potential energy using the finite element method. Bisegna and Luciano [460] formulated the homoge-
nization problem of periodic composites with non-linear hyperelastic constituents embedding debonded frictionless
interfaces. Using the finite element method, they obtained bounds on the homogenized free-energy density functional
of the medium. Wriggers et al. [461], conducted a computational investigation on the effects of interface strength and
debonding on the macroscopic response of fiber-reinforced composites with a random distribution of aligned fibers.
They showed that the degree of debonding directly correlates with the loss of macroscopic stiffness of the material.
Periodic fiber composites embedding cohesive interfaces were studied by Würkner et al. [462, 463] using the finite
element method where they determined the overall moduli of such medium and compared them with the results ob-
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tained with composite cylinder assemblage. Inspired by the works [680, 681], Zheng et al. [464] proposed a dual
effective-medium and finite-element study to examine the interfacial partial debonding effects on the elastic stiffness
of composites with aligned elliptic fibers, see also Caporale et al. [465].

Besides the finite element method, various techniques have been developed to model interfacial debonding in
composites. The pioneering works on cohesive interfaces using the boundary element method were carried out by
Achenbach and Zhu [466, 467] where they studied transverse loading of a composite with rectangular distribution of
fibers. Substituting the interphase with a cohesive interface model, they determined the overall moduli of the medium
and found that the interface parameters significantly influence the stress fields in the constituents. Zhu et al. [468]
developed an efficient three-dimensional extended finite element method to model curved cohesive interfaces and then
predicted the effective elastic moduli of composites embedding such interfaces. Fritzen and Leuschner [469, 470] de-
veloped a reduced order model to predict the nonlinear response of heterogeneous materials embedding nonlinear co-
hesive interfaces. They examined unidirectional fiber composite consisting of a viscoplastic matrix and a viscoelastic
interface and demonstrated that the reduced order model can be exploited to analyze rate-dependent effective moduli
and interface-induced size effects. Koutsawa [471] extended the mechanics of structure genome to piezoelasticity and
investigated the effective electro-elastic properties of composites embedding the spring-type interface model.

While the majority of the contributions on the topic, from a computational perspective, are dealing with FEM and
BEM, other approaches such as the material point method [472] have also been utilized to formulate the cohesive inter-
face model. In the context of computational analysis on fracture and failure of composites, numerous contributions are
available in the literature. Yeh [473], developed a finite element method to investigate failure mechanisms and the ul-
timate strength of fiber-reinforced composites with admissible interfacial debonding between the fiber and the matrix.
Xu and Needleman [459] conducted a numerical analysis on size dependent dynamic crack growth in a continuum
composed of a set of cohesive surfaces. Their constitutive relation for the cohesive surfaces allowed for formation of
new surfaces and their dimensional analysis was capable of capturing size effects. Camacho and Ortiz [474] developed
a Lagrangian finite element method for fracture and fragmentation in brittle materials using a cohesive-law fracture
model. Later, via generalizing the cohesive element of de-Andrés et al. [475] and Ortiz and Pandolfi [476] extended
the work in [474] to the three-dimensional setting and developed a cohesive element with a class of irreversible cohe-
sive laws suitable to accurately track dynamic growth of cracks. Alfano and Crisfield [477], carried out a finite element
analysis of the delamination in laminated composites using an interface damage model [478]. For further computa-
tional studies on applications of cohesive interfaces in fracture and failure in composites see [479, 491–495, 497–511],
among others.

1.3.3. Elastic interface model
The third option is to assume that the displacement field is continuous across the interface while the traction field
across the interface is allowed to experience a jump due to (tangential) interfacial stresses [512, 516] in accordance
with the generalized Young–Laplace equation [517, 518, 682]. This interface model is commonly referred to as the
elastic (stress-type) interface model since it is an immediate consequence of the surface elasticity theory [519].

1.3.3.1 Analytical studies

The pioneering works of Gurtin and Murdoch [519, 521] laid the mathematical foundation of incorporating surface
stresses into classical continuum mechanics leading to the elastic interface model [520], see also [683]. In Gurtin–
Murdoch surface elasticity theory, a surface can be regarded as a thin layer perfectly attached to the bulk with no
slipping nor delamination. The material parameters of a surface/interface are assumed to be independent of the
bulk material. Various theoretical studies have been carried out to generalize the Gurtin–Murdoch model [522–
525, 588, 589]. For further studies investigating surface and interface effects in solids see [513–515, 530, 532–
535, 590, 684–695] and the review by Javili et al. [602]. Applications of the Gurtin–Murdoch theory have emerged
in a wide spectrum of studies among which, investigation of interface effects in heterogeneous materials has been
a subject of increasing interest. Caillerie [526] showed that the elastic interface model is suitable to represent stiff
interphases and depending on the degree of the interphase stiffness with respect to the matrix and inclusions, four
different regimes of elastic interfaces could be identified, see also [527].

After almost two decades, Benveniste and Miloh [361] have carried out a more generic study and demonstrated
that depending on the degree of stiffness of interphases with respect to their neighboring materials, there exists seven
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distinct regimes of interface options which essentially boil down to perfect bonding and the two elastic and cohesive
interface models with various interface parameters. Concentrating on the elastic interfaces, they derived the interface
conditions and parameters based on a formal asymptotic expansion for the displacement and stress fields in the inter-
phase, see [528, 529, 536] for similar studies. After the seminal work of Benveniste and Miloh [361], a significant
body of literature has been dedicated to finding the elastic states in the constituents and overall properties of heteroge-
neous materials. Sharma et al. [537, 538], combined the surface elasticity theory with Eshelby’s formalism to analyze
inhomogeneities of circular and spherical shapes bonded to their surrounding medium with an elastic interface. They
derived closed-form expressions for the elastic state of inhomogeneities in a variational manner and concluded that the
inclusions with a constant curvature admit a uniform elastic state. Yang [539] examined the influence of the surface
energy on the effective modulus of an elastic composite material containing spherical nano-voids and reported that the
effective moduli of such composites are not only size dependent but also strain dependent. Sun et al. [540], derived
a new expression for the bulk modulus for a particle-reinforced composite at large deformations and questioned the
results reported by Yang [539] by demonstrating that a constant surface stress independent of the elastic strain should
have no influence on the effective shear modulus. Later, Duan et al. [541] derived the interior and exterior field solu-
tions for a spherical inclusion embedded in a matrix with interface stress effects subjected to a uniform eigenstrain in
the inclusion and a remote uniform stress.

Exploiting the composite sphere assemblage method, the Mori–Tanaka method and the generalized self-consistent
method, Duan et al. [542] established a generalized micro-mechanical framework to account for interface stress effects
on the effective moduli of composites containing nano-inhomogeneities. Theoretical frameworks to study elasticity
problems for multi-phase materials embedding elastic interfaces at finite deformations were proposed by Huang and
Wang [544] and Monteiro et al. [545]. Afterwards, Huang and Sun [546] examined the change of the elastic fields
induced by the interface energy and interface stresses in a finite deformation setting. They concluded that during
the deformation, the shape, size and curvature tensor of the interface will change, which is in contradiction to the
works of Sharma and Ganti [538] and Duan et al. [541]. He [547] studied surface stresses in elastic isotropic solids
with nano-voids and showed that when the voids are spherical with identical sizes, certain hydrostatic loads applied
on the outer boundary result in uniform stress and strain fields within the medium. Afterwards, Lim et al. [548]
considered a solid with nano-inclusion under a non-hydrostatic load and demonstrated that the interface stress renders
the elastic field in the inclusion to depend on both inclusion size and non-uniformity. Using a variational approach,
Chen et al. [549] derived the energy potential incorporating surface effects for fiber composites. A similar study has
been carried out for particulate-composites in Chen et al. [550]. Through a displacement potential formulation, Mi
and Kouris [551] demonstrated that the interface effects on the stress distribution in the matrix are more pronounced
when the particles are soft whereas an opposite effect holds within the particles themselves. See [551–553] for the
solutions of similar problems with a single circular or spherical inhomogeneity embedded in an infinite half-space.
Le-Quang and He [554, 556] extended the generalized self-consistent method to account for elastic interfaces to
determine thermoelastic properties of fiber- and particle-reinforced composites, see [555] for the associated bounds
on effective elastic moduli. Duan et al. [406, 407] employed the generalized self-consistent method and the Eshelby
equivalent inclusion method to predict the effective moduli of multiphase composites embedding spherical particles
or cylindrical fibers with elastic interfaces.

The solution of the nano inhomogeneity in an infinite matrix is an important fundamental problem and its utility
becomes more apparent when its extensions are considered. These extensions include considering non-circular or
non-spherical inhomogeneities or having multiple inclusions interacting with each other throughout the medium. A
remarkable contribution on this topic by Mogilevskaya et al. [557] compares the original Gurtin–Murdoch interface
model with a thin membrane-type interphase layer and demonstrates the validity of the approach in solving multi
inclusion problems, see also [561]. They also highlight the differences between the original theory of Gurtin and
Murdoch and the simplified models in [206, 537, 538, 541, 696–698] and clarify the shortcomings that each simpli-
fication entail. Following their work [699], Mogilevskaya et al. [558] established a framework where periodic and
random composites with inclusions interacting with each other were replaced by an equivalent inhomogeneity in an
infinite plane. Their work was followed by a systematic study on nano-composite systems in [559]. Similar studies
using a vectorial spherical harmonics approach for multiple interacting inclusions have been carried out by Kushch
et al. [562–564]. Tian and Rajapakse [597, 598] studied the elastic field of a nano-scale elliptical inhomogeneity
embedded in an infinite matrix with elastic interface in between. Via employing the complex variable technique of
Muskhelishvili [565], they showed that the elastic field of an elliptic inhomogeneity under uniform eigenstrain is no
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longer uniform when interfacial stress effects are taken into account, see also [566]. Benveniste and Miloh [567]
investigated the possibility of modifying the contact mechanism between the inhomogeneity and the matrix in a com-
posite medium using the elastic interface model so as to achieve inhomogeneity neutrality that would maintain the
stress field within the matrix undisturbed. Moreover, the strength properties of ductile nano-porous materials with
interface stress effects has been studied in [568–570] in a non-linear homogenization framework.

One of the major shortcomings of the Gurtin–Murdoch theory was that the interface was modeled as a zero
thickness layer without resistance against bending. This issue was addressed by Steigmann and Ogden [588, 589]
where they generalized the Gurtin–Murdoch model via incorporating the flexural resistance into the interface model.
Via connecting the Steigmann–Ogden theory to atomistic simulation, Chhapadia et al. [590] investigated the ef-
fective elastic modulus of a nano-structured beam using a curvature-dependent surface energy. Zemlyanova and
Mogilevskaya [591, 592] proposed a solution for the problem of single spherical and circular inhomogeneity em-
bedded in a matrix with Steigmann–Ogden interface. Han et al. [593] extended their studies to account for multiple
interacting inclusions. Gao et al. [525] studied the curvature-dependence of the interfacial energy and formulated
an interfacial energy together with an interface stress model resulting in a micro-mechanical framework to deter-
mine the overall elastic properties, see also [594]. Further analytical studies on the subject of the overall behavior of
heterogeneous materials embedding elastic interfaces can be found in [571–587, 595, 596, 603, 604].

1.3.3.2 Computational studies

Beside the analytical approaches, substantial progress has been made in computational studies of interface elasticity.
Tian and Rajapakse [700] presented a two-dimensional finite element formulation for analysis of multiple arbitrary
shaped anisotropic inclusions in an anisotropic matrix having elastic interfaces in between. Yvonnet et al. [599]
developed a computational technique combining the level set method and the extended finite element method to
analyze interface effects described by the elastic interface model and to determine the size-dependent effective elastic
moduli of nano-composites. Dong and Pan [600] proposed a boundary element method to analyze the stress field
in nano-inhomogeneities with elastic interface effects. Considering the inhomogeneities’ interactions, they studied
the effects of different inhomogeneities’ shapes and interface material parameters on the overall material response.
Javili et al. [602] presented a couple-field finite element method to study the thermomechanical behavior of materials
embedding Kapitza interfaces. Later, Javili et al. [603] developed a computational homogenization framework for
micro-to-macro transitions of porous media that accounts for size effects due to surface elasticity at the micro-scale.
See [604] for a curvilinear-coordinate-based finite element methodology for the computational implementation of the
surface elasticity theory.

Dai et al. [601] developed a new methodology to analyze composites with periodic distributions of inclusions
connected to the matrix with elastic interfaces imposing periodic boundary conditions. Using FEM, they showed that
when the shear modulus of the inclusions exceeds twice the shear modulus of the matrix, inclusion and matrix can be
treated as being perfectly bonded. Moreover, they demonstrated that when the volume fraction of the inclusions is less
than 9%, the interfacial stress can be approximated using a single inclusion with the same volume fraction embedded
in an infinite plane. Koutsawa et al. [605] proposed the mechanics of structure genome model to analyze nano-
composites embedding elastic interfaces. They exploited the full field micro-mechanics approach to predict the overall
properties of composites containing nano-inhomogeneities. Chen et al. [606, 607] incorporated interface elasticity into
a finite-volume based homogenization theory in order to analyze materials embedding nano sized cylindrical voids
with circular and ellipsoidal cross-sections. See Chen et al. [608] for a critical comparison between the performance of
the finite element and finite volume method in determining the response of nano-porous materials embedding energetic
surfaces and interfaces. Dong and Pan [600] examined the stress field in nano-inhomogeneities with different shapes.
They proposed a boundary element method formulation in conjunction with the Gurtin–Murdoch interface model
and investigates the elastic behavior of composites embedding inclusions with arbitrary shapes. Dong and Lo [609]
employed BEM to analyze the stress state in an elastic half-plane containing nano-inhomogeneities with surface and
interface effects. Their method was extended to 3D in [610]. Zhao et al. [611] developed a hybrid smoothed extended
finite element/level set method to model nano-inhomogeneities with interfacial energy effects. In their methodology,
the finite element mesh can be completely independent of the interface geometry. They showed that considering
interfacial effects, the energetically favorable shape for the inhomogeneities depends on the inhomogeneity size, misfit
strain as well as the elastic properties of the surrounding bulk material. Further computational studies on surface and
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interface elasticity include [612–615].

1.3.4. General interface model
The fourth option assumes that both displacement and traction jumps across the interface are admissible as illustrated
in Fig. 1. This interface model is a more inclusive model compared to the previously introduced interface models and
is referred to as the general interface model. Note, for the general interface model, the interface always coincides with
the mid-layer. From the perspective of deriving the previous interface models as asymptotic limits of thin interphases,
the cohesive interface model is derived as the limit case of soft interphases and the elastic interface model is obtained
as the limit case of stiff interphases, see Wang et al. [362] while the general interface model covers the whole spectrum
in between.

1.3.4.1 Analytical studies

The general interface model was originally proposed by Hashin [616] where he derived “imperfect” interface condi-
tions representing the effect of thin interphases with no restriction on the magnitude of the interphase stiffness. Hashin
also derived the effective elastic moduli of a unidirectional coated fiber composite embedding general imperfect inter-
faces and showed that the general interface model is valid for the whole range of interphase stiffness, from very small
to very large. The analysis carried out by Hashin was restricted to isotropic interphases. Benveniste [617] generalized
the approach adopted by Bövik [620] and developed a general interface model to capture the effects of an anisotropic
interphase between two anisotropic media. Based on the works of Bövik [620] and Benveniste [617], Monchiet and
Bonnet [621] extended the concept of a general imperfect interface to viscoplastic materials via a Taylor expansion
approach. Later, Benveniste [618] formulated approximate models of thin interphases in plane-strain elasticity in
which interphase properties were variables. Benveniste replaced the interphase by the general interface model and
calculated the interfacial displacement and traction jump conditions, see Benveniste [619] for a similar study on ther-
mal problems. Gu and He [622] introduced two orthogonal projection operators determining interfacial continuity
and discontinuity of the field variables and obtained coordinate-free interfacial relations involving the surface decom-
position of linear constitutive laws. Using their relations, Gu and He derived a general imperfect interface model for
coupled multi-field phenomena by applying a Taylor expansion to a three-dimensional curved thin interphase em-
bedded between its two neighboring materials, see a similar study carried out by Gu et al. [623] in the context of
thermal conduction. Serpilli et al. [625] derived the governing equations for general imperfect interfaces in a linear
multi-physics framework for a composite material. They adopted the asymptotic expansions technique via defining a
general multi-physics interface law and derived zero and higher order interface models for soft, hard and rigid inter-
phases. Gu et al. [624] derived estimates for the effective bulk and shear moduli of isotropic particulate-composites
with general interfaces by using the generalized self-consistent scheme. They compared their results against a three-
phase model comprising an interphase between the constituents and observed excellent agreements, see also [626]. A
similar study was conducted by Xu et al. [627] for fiber reinforced composites.

Firooz et al. [628, 629] developed a unifying framework to determine the overall behavior of fiber- and particle-
reinforced composites embedding general interfaces. In their study, they extended the composite cylinder assemblage,
the composite sphere assemblage and the generalized self-consistent scheme to account for general interfaces and ob-
tained size-dependent effective elastic properties of composites. Furthermore, via incorporating the general interface
model into the Mori–Tanaka method, they proposed a methodology to determine the average strain and stress fields
within the constituents of a composite. They compared their analytical solutions against computational results ob-
tained by the finite element method and observed a remarkable agreement, see also Chatzigeorgiou et al. [630].

1.3.4.2 Computational studies

Computational studies on general interfaces are fairly limited since this class of interfaces is comparatively new. Gu
et al. [631] provided the preliminary steps for a numerical implementation of the work presented in [622] via es-
tablishing the weak form for the boundary value problem of composites embedding general imperfect interfaces in
the context of transport phenomena, elasticity and piezoelectricity. Javili et al. [632] established the computational
framework for the general interface model at finite deformations. They presented a thermodynamically consistent
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formulation and governing equations of general imperfect interfaces and provided a detailed finite element implemen-
tation to study the behavior of heterogeneous materials embedding general interfaces; a similar study was conducted
for thermal problems in [633]. Kaessmair et al. [634] developed a thermodynamically consistent theory for general
interfaces in view of their thermomechanical behavior. They established a unified computational framework to model
all classes of such interfaces using the finite element method. The variational formulation of generalized interfaces
within the finite deformation continuum mechanics setting was presented by Javili [635] where he showed that elastic
and cohesive interface models naturally represent two limit cases of the general interface model. A parametric study
on the role of generalized interfaces in the overall material response has been carried out by Saeb et al. [636] for fiber
composites and Firooz and Javili [639] for particulate-composites. Saeb et al. [637] presented a systematic study to
obtain size-dependent bounds on the response of composites embedding general interfaces within a computational
homogenization framework. Conducting computational analyses on periodic micro-structures, they found that their
response approaches asymptotically to an upper bound. Saeb et al. [638] investigated the influence of a degrading
general interface on the failure of composites. They observed that in the presence of general interfaces with damage,
DBC and TBC may not necessarily provide bounds for random micro-structures, in contrast to classical computational
homogenization.

1.4. Significance of the interface position
Although numerous contributions in the literature have studied the aforementioned interface models, only very few
have investigated the importance of the interface position. For the elastic interface model, due to the vanishing dis-
placement jump, the interface always coincides with the two interphase sides and thus, the interface position becomes
irrelevant. For the cohesive interface model, the topic of the interface position is commonly dismissed since the
traction-separation law relates the traction to the displacement jump across the interface. Clearly, the interface po-
sition plays no role in evaluating the displacement jump and thus, it does not contribute to the governing equations
associated with the interfacial behavior. When developing cohesive zone laws, special care must be taken to suf-
ficiently satisfy the angular momentum balance at large deformations. In a continuum body, the symmetry of the
Cauchy stress a priori ensures the angular momentum balance. This cannot be enforced for the cohesive zone models
since the stress tensor does not exist by definition. The only equilibrium requirement is the continuity of traction
which does not guarantee the moment balance at large deformations.

A commonly accepted methodology to overcome this difficulty is to postulate that the traction vector is coaxial
to the displacement jump across the interface. Ortiz and Pandolfi [476] developed a three-dimensional cohesive
element for finite deformation analysis together with a class of irreversible cohesive laws which were compatible
with the conventional finite element discretization of the bulk material. While considering different weights for the
sliding and normal opening displacements at the interface, the interface in their model was intuitively assumed to be
in the middle of the two dissimilar opening materials. Gasser and Holzapfel [479] developed three different finite
element formulations with embedded strong discontinuities on the basis of the enhanced assumed strain method.
They proposed an explicit expression for a transversely isotropic traction law in the form of a displacement-energy
function assuming that softening phenomena in the cohesive zone are modeled by a damage law. To model the
cohesive zone, they introduced a fictitious discontinuity surface in the deformed configuration which, conventionally,
was located in the middle of its adjacent surfaces. Mergheim and Steinmann [480] introduced a discontinuous finite
element method for computational modeling of strong and weak discontinuities in a geometrically nonlinear elasticity
setting. They applied Nitsche’s method [701] in their variational formulation for weak discontinuities which yielded
a weighted average term for the Piola stress in their interfacial cohesive energy where they assumed the interface
to be at the mid-plane of its adjacent constituents. Hansbo and Hansbo [481] also adopted a weighting factor for
averaging the parameters across the interface and proposed a computational approach for the finite element solution
of elliptic interface problems, using Nitsche’s method, see also [482]. van den Bosch et al. [483] showed that most
of the cohesive zone models are suited for small deformations only and proposed a large displacement formulation
to overcome the issues of the classical approaches. They also introduced a 3D cohesive zone element and elaborated
its numerical implementation in which the formulations were derived with respect to a mid-line between the two
opening parts of the cohesive zone, see also van den Bosch et al. [484, 485]. Vossen et al. [486] and Ottosen et
al. [487] demonstrated that the commonly adopted traction-separation laws do not necessarily satisfy the balance of
angular momentum at the cohesive element level resulting in an error which becomes significant at large deformations
concluding that the traction vector must be collinear with the displacement jump, see also [488, 489].
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Figure 2: Schematic illustration of a finite-thickness interphase and its equivalent zero-thickness interface model. For a uniform interphase (left),
the interface is situated at the center of its associated interphase. For a graded interphase (right), the interface is off-center and its position must be
shifted towards the stiffer side of its corresponding interphase.

Figure 2 schematically illustrates a finite-thickness interphase and its equivalent zero-thickness interface model.
For a uniform interphase (left), the interface is situated at the center of its associated interphase. For a graded inter-
phase (right), the interface is off-center and its position must be shifted towards the stiffer side of its corresponding
interphase. The correct interface position can be obtained via comparing the interface model with direct numerical
simulations of its associated interphase. While many contributions consider the interphase as an isotropic and homo-
geneous phase, a realistic analysis should take into account the effects of interphase anisotropy and heterogeneity. It
can be shown that if the interface is assumed to coincide with the mid-plane, in general, it cannot capture the over-
all behavior of graded interphases. For the general interface model, since both interface elasticity and opening are
admissible, the position of the interface plays a crucial role at large as well as small deformations. Nonetheless, the
interface position has been commonly disregarded in the development of the general interface model by assuming
that the interface is located at the mid-layer between its bulk neighbors. This simplification sufficiently satisfies the
interface rotational equilibrium and can lead to the conclusion that the only admissible position for the interface is
the mid-plane [702]. We argue that not only this simplification is not necessary, but also it defeats the utility of the
general interface model to replace non-uniform interphases, as demonstrated in [703]. Therefore, it is imperative to
introduce an extended general interface model that allows for arbitrary interface positions.

1.5. Objectives and key features

In this contribution we revisit the controversial issue of the interface position in general interfaces via introducing a
weighted average operator and demonstrate that the interface does not need to be necessarily restricted to the mid-
layer. Therefore, we rigorously establish an extended general interface model that can assume any arbitrary position
between its neighbors and still fulfill the rotational equilibrium condition. Our proposed interface model is capable of
recovering all the aforementioned interface models in Section 1.3, see Fig. 1. In addition to the detailed review on the
subject, the key features and contributions of this manuscript are:

• to develop an extended general interface model as depicted in Fig. 1, with arbitrary interface positions via
introducing the weighted average operator;

• to show that the commonly accepted general interface model is a subclass of the extended general interface
model and can be recovered if the weighted average operator is replaced by the classical average operator;

• to incorporate the extended interface model into homogenization and to develop bounds and estimates on the
size-dependent effective properties of fiber-reinforced and particle-reinforced composites;

• to provide a comprehensive comparison between the extended general interface model and the already existing
interface models;

• to carry out an exhaustive numerical study to compare the analytical and computational results.

Remark on accounting for softening at the interface. The proposed extended general interface model encloses the
general interface model, see Fig. 1. The general interface model itself recovers both the cohesive interface model and
the elastic interface model. Hence, the extended general interface model recovers anything that a cohesive interface
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model or an elastic interface model can capture, but it also covers more complex interfacial behavior. The extended
general interface model here can, in principle, account for softening too. However, we have limited the discussion here
to linear elasticity for the sake of simplicity only. More precisely, the interface orthogonal (out-of-plane) response,
commonly referred to as traction-separation law, can be nonlinear and it may as well include damage and softening.
Accounting for softening in the traction-separation description of a cohesive zone model translates in the current
context to accounting for interface damage in the constitutive law. In the current model, since the interface has both
out-of-plane response (similar to the cohesive interface model) and in-plane response (similar to the elastic interface
model), accounting for interface damage requires further elaboration to distinguish between orthogonal damage and
tangential damage on the interface, similar to taking damage into account for the general interface model investigated
in [638]. The framework here is focused on the kinematics and kinetics of the problem at hand. More complex traction-
separation laws can be introduced through a different constitutive model at the interface. Leaving out “softening” in
the discussion here is not a shortcoming of the model but it is rather an assumption to have less complicated analytical
expressions. Similar to softening, the interface model itself is generic enough to allow for debonding and damage too.
Nonetheless, we have excluded this aspect for the sake of brevity. See for instance [704, 705] for debonding and
damage at the interface. Apart from softening at the interface, softening of the bulk material itself is important too,
but it is also omitted from the discussion here. In particular, according to [706] it may not be possible to define an
RVE in the presence of softening. For the current zero-thickness interface model, however, it is possible to retain the
notion of RVE if softening and damage occurs only at the interface enclosed within the domain.

1.6. Notations and definitions

Throughout this manuscript, vector quantities are denoted by lowercase bold letters, tensorial quantities are denoted
by uppercase bold letters, third-order tensors are denoted by lowercase blackboard letters and fourth-order tensors
are denoted by uppercase blackboard letters. For instance α is a scalar, a is a vector, A is a second-order tensor, a
is a third-order tensor and A is a fourth-order tensor. The dot product of two vectors a and b is a scalar α = a · b
with α = [a]i[b]i. The cross product of two vectors a and b is a vector c = a × b with [c]k = [a]i[b] j[e]i jk where
[e]i jk is the third-order Levi-Civita permutation tensor with symbol e. The dyadic product of two vectors a and b is
a second-order tensor C = a ⊗ b with [C]i j = [a]i[b] j. The composition of two second-order tensors A and B is a
second-order tensor C = A · B with components [C]i j = [A]ik[B]k j. The (double) contraction of two second-order
tensors A and B is a scalar α = A : B with α = [A]i j[B]i j. The action of a second-order tensor A on a vector b
results in a vector c = A · b with [c]i = [A]i j[b] j. The standard dyadic product of two second-order tensors A and B
is a fourth-order tensor C = A ⊗ B with [C]i jkl = [A]i j[B]kl. Two non-standard dyadic products of two second-order
tensors A and B are fourth-order tensors D = A⊗B and E = A⊗B with [D]i jkl = [A]ik[B] jl and [E]i jkl = [A]il[B] jk,
respectively.

Interface quantities are distinguished from bulk quantities by a bar placed on top of them. That is, {•} denotes
an interface quantity with its bulk counterpart {•}. Moreover, the average and the jump operators across the interface
are defined by {{{•}}} := 1

2
[
{•}+ + {•}−

]
and [[{•}]] = {•}+ − {•}−, respectively. The quantities at the macro-scale are

distinguished from their counterparts at the micro-scale by a left superscript “M”. For instance, M{•} is a macroscopic
quantity counterpart to {•} at the micro-scale. The notation and abbreviations of the manuscript is listed in Table 4.

1.7. Organization of the manuscript

The remainder of this contribution is organized as follows. Section 2 presents the governing equations for continua em-
bedding the proposed extended general interface model. This is then followed by establishing analytical solutions in
Sections 3 and 4 for the overall properties of fiber-reinforced and particle-reinforced composites embedding extended
general interfaces between their constituents, respectively. Through a series of numerical examples, a comprehen-
sive study to examine the effects of the interface position on the overall material response is carried out. Section 5
summarizes this work and provides further outlooks.

2. Governing equations

This section elaborates on the governing equations of a continuum body accounting for the extended general interface
model in the context of linear elasticity. The formulation presented here demonstrates that the interface is allowed to
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Table 4: Summary of notation and abbreviations.

Nomenclature

Grad gradient operator Grad interface gradient operator
Div divergence operator Div interface divergence operator
α weighted average parameter {•} an arbitrary bulk quantity
{•} an arbitrary interface quantity M{•} macroscopic counterpart of {•}
{{{•}}} classical average of {•} {•}α weighted average of {•}
{•}[1−α] complimentary weighted average of {•} [[{•}]] jump of {•}
δ Kronecker delta e Levi-Civita permutation tensor
I second-order identity tensor I second-order interface identity tensor
B bulk domain ∂B boundary of B
B+ bulk domain on the plus side of the interface ∂B+ boundary of B+

B− bulk domain on the minus side of the interface ∂B− boundary of B−

Bh discretized bulk domain I interface domain
Ih discretized interface domain ∂I boundary of I
I+ plus side of the interface domain I− minus side of the interface domain
n unit normal to the boundary of the bulk n unit normal across interface
ñ unit normal along the interface x position vector for a point in the domain
u displacement field in the bulk u displacement field on the interface
u+ displacement on plus side of the interface u− displacement on minus side of the interface
ε strain field in the bulk ε strain field on the interface
σ stress field in the bulk σ stress field on the interface
σ+ stress on plus side of the interface σ− stress on minus side of the interface
t traction field in the bulk t traction field on the interface
ψ bulk free energy density ψ interface free energy density
C bulk constitutive fourth-order tensor C‖ interface tangential constitutive tensor
C⊥ interface orthogonal constitutive tensor k interface orthogonal resistance
µ shear modulus of the bulk µ shear modulus of the interface
λ first Lamé parameter of the bulk λ first Lamé parameter of the interface
κ1 inclusion bulk modulus κ2 matrix bulk modulus
µ1 inclusion shear modulus µ2 matrix shear modulus
λ1 inclusion first Lamé parameter λ2 matrix first Lamé parameter
r1 radius of the inclusion r2 radius of the matrix
f inclusion volume fraction size size of the RVE
Mκ macroscopic bulk modulus Mµ macroscopic shear modulus
Mµupper upper bound on macro shear modulus Mµlower lower bound on macro shear modulus

Abbreviations

CCA composite cylinder assemblage CSA composite sphere assemblage
DBC displacement boundary condition FEM finite element method
GSCM generalized self-consistent method PBC periodic boundary condition
PD problem dimension RVE representative volume element
SCM self-consistent method TBC traction boundary condition
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have any arbitrary position between its bulk neighbors. The differences and similarities between our novel formulation
and the classical interface models are highlighted.

2.1. Kinematics

Figure 3 depicts a continuum body, corresponding to a heterogeneous medium, occupying the configuration MB at the
macro-scale with its underlying representative volume element (RVE) at the micro-scale denoted as B. The boundary
of the domains at the macro- and micro-scale is denoted as ∂MB and ∂B, respectively. At the micro-scale, it is assumed
that the constitutive behavior of the constituents is known. Via solving the associated boundary value problem and
proper averaging over the RVE, the overall macroscopic response of the material is obtained, see [163, 164, 166, 167,
707–709], among others. Within the framework of homogenization, a proper RVE must be chosen (i) large enough
to include enough information about the micro-structure and at the same time (ii) small enough to guarantee the
separation of length scales [119–121]. To capture isotropic behavior, the RVE is assumed circular in the 2D setting
and spherical in the 3D setting representing fiber-reinforced and particle-reinforced composites, respectively. As
shown in Fig. 3, the finite thickness interphase region is replaced by a zero-thickness interface model characterized
by displacement and traction jumps. The interface I divides the micro-structure into two disjoint subdomains B+ and
B− corresponding to bulk domains on the plus and minus sides of the interface, respectively. The intersection of the
interface I with B+ is denoted as I+ and the intersection of the interface with B− is denoted as I−. The unit normal
to the RVE boundary ∂B is denoted as n and the unit normal to the interface I, pointing from the interface minus to the
plus side, is denoted as n . The outward unit vector ñ is defined such that it is normal to the boundary of the interface
but it is tangential to the interface itself. Let u and u define the displacement fields in the bulk and on the interface,
respectively. Since interface opening is admissible for the extended general interface model, the two sides B+ and B−

Figure 3: Problem definition for homogenization including the extended general interface model. The macro-structure is shown with its underlying
RVE. At the micro-scale, the constitutive laws are assumed to be known and the macroscopic behavior is obtained via solving the boundary value
problem at the micro-scale. A finite-thickness interphase is replaced with a zero-thickness interface model.
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are allowed to depart from each other resulting in a displacement jump across the interface as

[[u]] := u+ − u− , (1)

where u+ and u− denote the displacements on the plus and minus sides of the interface, respectively. In the (classical)
general interface model the interface displacement is commonly [616, 617, 631, 632] defined as the average of the
displacements between its two sides as

u := {{u}} :=
1
2

[
u+ + u−

]
. (2)

The extended general interface model allows the interface to occupy any arbitrary position between its two sides. In
doing so, we first define the weighted average and the complimentary weighted average operators

{{{•}}}α = α {•}+ + [1 − α] {•}− ,
{{{•}}}[1−α] = [1 − α] {•}+ + α {•}− ,

(3)

respectively, where α is the weighting coefficient determining the interface position. These average operators are
indeed the weighted forms of the classical average operator (2). As shown in Fig. 4, we have 0 6 α 6 1. That is,
α < 0.5 implies that the interface is closer to the minus side (inclusion) while α > 0.5 indicates that the interface is
closer to the plus side (matrix). Clearly, α = 0.5 recovers the classical definition where the interface coincides with
the mid-layer and thus the extended general interface model coincides with the general interface model. We define

Figure 4: Illustration of the interface position. The parameter α determines the position of the interface. When α < 0.5 the interface is closer to the
inclusion and when α > 0.5 the interface is closer to the matrix.
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the extended general interface displacement as the weighted average of the displacements u+ and u−. That is

u := {{u}}α = αu+ + [1 − α] u− . (4)

Having the displacement fields, the strains in the bulk and on the interface can be expressed as

ε =
1
2

[
I · Grad u + [Grad u] T · I

]
in B ,

ε =
1
2

[
I · Grad u +

[
Grad u

]T
· I

]
on I ,

(5)

where I is the second-order identity tensor. The operator Grad {•} is the interface gradient operator defined by
Grad {•} := Grad {•} · I in which I is the interface identity tensor I := I − n ⊗ n. Thus, the interface strain ε is
not only a superficial tensor possessing the property ε · n = 0, but it is also tangential since n · ε = 0.

2.2. Balance equations
Equipped with the kinematics description of the problem, we derive the balance equations and allow the interface
to coincide with any arbitrary surface between its bulk neighbors. Evidently, the choice of the interface position α
does not alter the governing equations for the bulk. To pinpoint the novelty of our proposed methodology, we first
elaborate the interface balance equations for the general interface model theory and after highlighting its shortcomings
and limitations, we introduce our new formalism. Since we limit our discussion to the micro-scale problem, the body
forces are omitted henceforth.

Let σ denote the stress in the bulk B and t the traction acting on the boundary ∂B. According to Cauchy’s
postulate, on the boundary we have t = σ · n. In the absence of body forces, the force balance over the bulk reads∫

∂B

t dA =

∫
∂B

σ · ndA =

∫
B

Divσ dV = 0 , (6)

which can be explicitly stated as

Divσ = 0 ∀x ∈ B . (7)

For rotational equilibrium we write the moments acting on the body with respect to an arbitrary point. That is∫
∂B

x × t dA =

∫
∂B

x × [σ · n] dA =

∫
B

Div[x × σ] dV =

∫
B

x × Divσ dV +

∫
B

e : σT dV = 0 , (8)

where e is the Levi–Civita permutation tensor. The first term in (8) vanishes due to balance of forces (7), thus the
moment balance can explicitly be written as

e : σT = 0 ⇒ σ = σT ∀x ∈ B . (9)

Next, we proceed with the interface balance equations. Let σ denote the stress on the interface. The interface
traction t is defined by

t = {{σ}} · n =
1
2
σ+ · n +

1
2
σ− · n . (10)

The balance of forces on a portion of the body containing the interface reads1∫
∂B+\I+

t dA +

∫
∂B−\I−

t dA +

∫
∂I

σ · ñdL = 0 , (11)

1Usually, cutout volumes and their boundaries are denoted by different letters, to avoid confusion. Nonetheless, we use the same letter for a
domain and a cutout thereof to avoid clutter.
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where ∂B+ and ∂B− are the boundaries of cutouts of B+ and B−, respectively, as shown in Fig. 5. In the limit of
vanishing bulk, the normal vector to ∂B+\I+ is identical to interface unit normal n and the unit normal to ∂B−\I−

points in the opposite direction to n, see Fig. 5. The interface here denoted as I is essentially a two-sided surface with
its two sides distinguished as I− and I+. Prior to deformation, the two sides coincide with the interface itself and,
therefore, I−, I+ and I collapse altogether. Therefore, Eq. (11) can be rewritten as

Figure 5: Illustration of the unit normals to the body and the interface in the limit of vanishing bulk.

∫
I+

σ+ · ndA −
∫
I−
σ− · ndA +

∫
∂I

σ · ñdL

=

∫
I

[[σ]]· ndA +

∫
∂I

σ · ñdL

=

∫
I

[[σ]]· ndA +

∫
I

Divσ dA +

∫
I

C σ · ndA = 0 ,

(12)

where C = −Divn is the interface curvature. The interface divergence operator is defined by Div{•} := Grad{•} : I.
The last term integral in Eq. (12) vanishes due to the superficiality of the interface stress σ. The force balance on the
interface therefore reads

Divσ + [[σ]]· n = 0 . (13)

Similar to the bulk, for the interface rotational equilibrium, we write the moments acting on the interface with respect
to an arbitrary origin as∫

I+

x × t dA +

∫
I−

x × t dA +

∫
∂I

x × σ · ñdL

=

∫
I+

x + × σ+ · ndA −
∫
I−

x− × σ− · ndA +

∫
∂I

x × σ · ñdL

=

∫
I

[[x × σ]]· ndA +

∫
I

Div
[
x × σ

]
dA +

∫
I

C x × σ · n︸︷︷︸
0

dA

=

∫
I

[[x × σ]]· ndA +

∫
I

e : σT dA +

∫
I

x × Divσ dA

=

∫
I

[[x × σ]]· ndA +

∫
I

e : σT dA −
∫
I

x × [[σ]] · ndA = 0 ,

(14)

which can be expressed as

[[x × σ]]· n + e : σT
− x × [[σ]] · n = 0 . (15)
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To simplify the first term in relation (15), we utilize the following property that holds for the classical average and
jump operators

[[{•} × {◦}]] = {{{•}}} × [[{◦}]] + [[{•}]] × {{{◦}}} , (16)

which yields

[[x × σ]]· n = {{x}} × [[σ]]· n + [[x]] × {{σ}}· n , (17)

resulting in the classical form of the interface moment balance

[[x]] × {{σ}}· n︸ ︷︷ ︸
t

+e : σT
+

[
{{x}} − x

]
× [[σ]] · n = 0 . (18)

Three sufficient (yet not necessary) conditions to fulfill the rotational equilibrium (18) are

• [[x]]
∣∣∣∣∣∣ t ⇒ [[x]] × t = 0 ,

• σT
= σ ⇒ e : σ = 0 ,

• {{x}} = x ⇒
[
{{x}} − x

]
× [[σ]] · n = 0 .

(19)

The first two conditions can be achieved via a proper definition of interface constitutive laws. The last condition,
however, is achieved by constraining the interface to the mid-layer. Such a restriction limits the applicability of the
general interface model since it is only suitable to capture uniform isotropic interphases. For example, for graded
interphases, the effective position of the interface may not necessarily coincide with the mid-layer.

Remark on how the canonical interface models satisfy the rotational equilibrium (19). In view of the rotational equi-
librium conditions (19), it can be readily shown that the canonical interface models fulfill these conditions differently,
as follows.

• Perfect interface model: Both the displacement jump and traction jump at the interface are zero. That is,
[[x]] = 0 and [[σ]] · n = 0 and therefore the first and third conditions are trivially fulfilled. Also, the perfect
interface model does not possess elasticity along the interface and thus, σ = 0 satisfying the second condition.

• Cohesive interface model: The interface stress and traction jump are zero but the displacement jump is not
necessarily vanishing. That is, σ = 0 and [[σ]] · n = 0 and therefore the second and third conditions are
fulfilled. Since [[x]] , 0, in order to satisfy the first condition, the displacement jump must be co-axial to the
interface traction. This requirement can be imposed via the interface traction-separation law.

• Elastic interface model: The displacement is continuous across the interface and therefore [[x]] = 0 that
immediately satisfies the first condition. Consequently, {{x}} = x and therefore, the third condition is a priori
fulfilled. The rotational equilibrium reduces to the second condition which must be imposed via a consistent
constitutive law for the interface elasticity.

• General interface model: Both the displacement jump and traction jump at the interface are admissible. In
order to satisfy the first condition, the displacement jump must be co-axial to the interface traction that is
enforced via the interface traction-separation law. The second condition is fulfilled via introducing an interface
constitutive law that renders symmetric interface stresses σ. The third condition is fulfilled via constraining the
interface to coincide with the mid-layer by imposing {{x}} = x.

Here, we propose an extended general interface model where the interface is no longer enforced to coincide with
the mid-layer. In doing so, we incorporate the weighted average and the complimentary weighted average operators
introduced in Eq. (3) into the identity (16) resulting in

[[{•} × {◦}]] = {{{•}}}α × [[{◦}]] + [[{•}]] × {{{◦}}}[1−α] . (20)
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Table 5: Summary of fundamental governing equations for the bulk and the extended general interface model.

Linear momentum balance Divσ = 0 in B Divσ + [[σ]]· n = 0 on I

Angular momentum balance e : σ = 0 in B [[x]] × t + e : σ = 0 on I

Traction t = σ · n on ∂B t = {{σ}}[1−α] · n on I

Accordingly, Eq. (17) reads

[[x × σ]]· n = {{x}}α × [[σ]]· n + [[x]] × {{σ}}[1−α] · n , (21)

which yields

[[x]] × {{σ}}[1−α] · n + e : σ + {{x}}α × [[σ]] · n− x × [[σ]] · n = 0 . (22)

Motivated by the structure of Eq. (22), we define the interface position x := {{x}}α and the interface traction t =

{{σ}}[1−α] · n as

x := {{x}}α = αx+ +
[
1 − α

]
x− ,

t = {{σ}}[1−α] · n =
[
1 − α

]
σ+ · n + ασ− · n .

(23)

Note that while the interface kinematics is enforced by the weighted average operator, it is the complementary
weighted average operator that defines the interface kinetics. For example, when the interface coincides with its
minus side, α = 0, the interface displacement solely depends on the displacement of the minus side whereas the
interface traction consists of only the contribution from the plus side. On the other hand, when the interface coincides
with its plus side, α = 1, the interface displacement solely depends on the displacement of the plus side whereas the
interface traction consists of only the contribution from the minus side. Based on the definition (23)1, the third and
fourth terms in Eq. (22) cancel each other and the interface momentum balance reads

[[x]] × t + e : σ = 0 , (24)

which is sufficiently fulfilled if

• [[x]]
∣∣∣∣∣∣ t ⇒ [[x]] × t = 0 ,

• σT
= σ ⇒ e : σ = 0 .

(25)

The new form of interface rotational equilibrium (24) is fulfilled via a suitable choice of the interface material behavior
without constraining the interface position. Table 5 gathers the fundamental equations governing the bulk and the
extended general interface model.
Remark on interface curvature and Young–Laplace equation. The governing equation (13) is local and does not
explicitly take advantage of the geometry of the problem. That is, the interface may or may not be curved, or a self-
closed geometry for that matter. Equation (13) guarantees the tangential equilibrium at the interface. For example, if
the interface is flat and if σ is constant, then the equilibrium on the interface reduces to [[σ]] ·n = 0, indicating that the
traction jump across the interface is zero, as expected. On the other hand, in the case of a uniform surface-tension-like
interface stress σ = γI, with γ being the surface tension, any traction jump across the interface involves the curvature
of the interface according to

Divσ + [[σ]]· n = 0 with σ = γI ⇒ Div( γI ) + [[σ]]· n = 0 ⇒ C n = −[[σ]]· n , (26)

that is indeed the generalized Young–Laplace equation. In the case of inviscid fluids, the bulk stress reads σ = p I
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and Eq. (26) reduces to its classical format C = [[p]] with C being twice the mean curvature, or simply the curvature,
and [[p]] being the pressure jump across the interface. Note that the interface curvature C is captured via the interface
divergence operator and Div(I ) = C n. It shall be emphasized that the interface model here, similar to all other
canonical interface models to date, is a zero-thickness model and therefore, the interface does not possess a “flexural
resistance” against bending. More precisely, the in-plane elastic response of the interface follows the Gurtin–Murdoch
interface elasticity theory [519] and mimics a membrane behavior rather than a shell theory. In principle, it is possible
to introduce flexural stiffness to the interface model similar to the Steigmann–Ogden extension [589] of the Gurtin–
Murdoch theory.

2.3. Strain energy density-based elastic modeling

In the context of elasticity, the constitutive material behavior of a body embedding an extended general interface can
be obtained in a variationally consistent manner based on the existence a free energy density. The free energy density
of the medium is composed of the bulk free energy density ψ and the interface free energy density ψ. The bulk free
energy density is only a function of the strain field in the bulk as ψ = ψ(ε). The interface free energy density, however,
is a function of both interface strain and interface displacement jump as ψ = ψ(ε, [[u]]). More complicated choices for
energy densities can be obtained via introducing implicit constitutive theories [710], however, they are not considered
here to avoid digression. That bulk and interface free energy densities read

ψ =
1
2
ε : C : ε in B ,

ψ =
1
2

[
ε : C‖ : ε + [[u]] · C⊥ · [[u]]

]
onI ,

(27)

with C being the fourth-order constitutive tensor in the bulk. The fourth-order constitutive tensor of the interface is
C‖, and C⊥ is a second-order tensor characterizing the interface cohesive behavior2. The resulting linear stresses and
traction relate to the energy densities (27) via the constitutive laws

σ =
∂ψ

∂ε
= C : ε in B ,

σ =
∂ψ

∂ε
= C‖ : ε along I ,

t =
∂ψ

∂[[u]]
= C⊥ · [[u]] across I .

(28)

The bulk material response is assumed to be standard and (linear) isotropic elastic taking the form

C = µ
[
I⊗ I + I⊗ I

]
+ λ I ⊗ I ⇒ σ = 2 µ ε + λ [ε : I] I , [µ] = [λ] = [σ] =

N
m2 , (29)

with λ and µ being the bulk Lamé parameters. For the interface, the material response reads

C‖ = µ
[
I⊗ I + I⊗ I

]
+ λ I ⊗ I ⇒ σ = 2 µ ε + λ

[
ε : I

]
I , [µ] = [λ] = [σ] =

N
m
,

C⊥ = k I ⇒ t = k [[u]] , [k] =
[t]
m

=
N
m3 ,

(30)

corresponding to its tangential and normal directions, respectively. The parameters λ and µ are the interface Lamé-
like parameters representing the interface tangential elasticity relating to the resistance against the stretches along
the interface. The interface normal resistance is denoted k representing the stiffness against its opening. It shall

2The tangential interface stress σ accounts only for the elastic interface response assuming a stress-free interface in the absence of strains. In
other words, for the sake of brevity, we preclude surface tension from the discussion here. Accounting for a stress-tension-like behavior is fairly
straightforward and can be achieved by adding a term γI to σ, where γ is the isotropic surface tension.
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be emphasized that depending on the choice of the interface parameters, the extended general interface model can
recover any of the classical interface models, schematically illustrated in Fig. 6. The general interface model can
be recovered by setting α = 0.5. The cohesive interface model is recovered when λ = µ = 0 and α = 0.5. The
conditions λ , 0, µ , 0 and k → ∞ and α = 0.5 recover the elastic interface model. Finally, the perfect interface
model is recovered when λ = µ = 0 and k → ∞ and α = 0.5. It can be shown that in a two-dimensional setting,
associated with fiber-reinforced composites, the resistance along the interface can be sufficiently captured with only
one interface Lamé parameter hence the assumption λ = 0 in 2D. Similar to the bulk material, the form of the energy
of the interface as well as its parameters can be obtained from fundamental reasoning or from atomistic modeling as it
has been established for the surface elasticity theory [365, 532–534, 695]. For instance, Yvonnet et al. [711] extracted
the surface elastic parameters from ab initio calculations. Moreover, an interface energy can be constructed using the
surface/interface Cauchy–Born hypothesis [712, 713]. In general, mechanical constants can be obtained using inverse
parameter identification.

2.4. Micro to macro transition

The final step to complete our homogenization framework is to elaborate the micro-to-macro transition. Following
classical homogenization, macroscopic quantities are related to their microscopic counterparts through volume averag-
ing over the RVE. Accordingly, it is possible to define the macroscopic strain and stress fields Mε and Mσ, respectively,
as surface integrals of microscopic quantities over the RVE’s boundary as

Mε =
1
V

∫
S

1
2

[u ⊗ n + n⊗ u] dA ,

Mσ =
1
V

∫
S

t ⊗ x dA .
(31)

Using the extended divergence theorem [632], both relations can be written as a summation of integrals in the bulk
and on the interface. That is

Mε =
1
V

∫
B

ε dV +
1
V

∫
I

1
2

[
[[u]] ⊗ n + n⊗ [[u]]

]
dA ,

Mσ =
1
V

∫
B

σ dV +
1
V

∫
I

σ dA .
(32)

The incremental energy at the macro-scale reads

δMψ = Mσ : δMε . (33)

At the micro-scale, the incremental energy densities read

δψ = σ : δε in B ,

δψ = σ : δε + t · δ[[u]] on I .
(34)

Central to homogenization is the Hill–Mandel condition which imposes an incremental energy equivalence between
the scales. The Hill–Mandel condition extended to account for interfaces reads

δMψ
!
=

1
V

∫
B

δψ dV +
1
V

∫
I

δψ dA , (35)

with !
= indicating that the equality is a condition. Inserting the incremental energies (34) and (33) at both scales into

the Hill–Mandel condition (35) yields

1
V

∫
B

σ : δε dV +
1
V

∫
I

[
σ : δε + t · δ[[u]]

]
dA − Mσ : δMε

!
= 0 . (36)
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Finally, importing the macro strain and macro stress relations from Eq. (32) into Eq. (36) furnishes the extended
Hill–Mandel condition in terms of the boundary integral∫

S

[
δu − δMε · x

]
·
[
t − Mσ · n

]
dA !

= 0 . (37)

Figure 6: Illustration of recovering all the previously introduced interface models by the current proposed interface model. The classical general
interface model can be recovered by setting α = 0.5. The cohesive interface model is recovered when λ = µ = 0 and α = 0.5. The conditions λ , 0,
µ , 0 and k → ∞ and α = 0.5 recover the elastic interface model. Finally, the perfect interface model is recovered when λ = µ = 0 and k → ∞ and
α = 0.5.
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Figure 7: Heterogeneous medium (left) with its simplified RVE (right) and a cylindrical coordinate system (middle) to examine such a medium.

Among all boundary conditions satisfying the condition (37), the linear displacement boundary condition (DBC) and
constant traction boundary condition (TBC) are of particular interest here. This choice of boundary conditions is
suitable to make meaningful comparisons between the computational and analytical solutions. See Firooz et al. [95]
for a comprehensive study on the boundary conditions and the RVE types within the framework of homogenization.

3. Fiber-reinforced composites

The objective of this section is to derive the bounds and estimates of the overall bulk and shear moduli of fiber-
reinforced composites embedding extended general interfaces between the fibers and the matrix. In doing so, the
composite cylinder assemblage approach (CCA) and the generalized self-consistent method (GSCM) are extended
to account for extended general interfaces where the interface position is not restricted to the mid-layer. Firstly,
the preliminaries of the RVE problem for fiber-reinforced composites are introduced. Afterwards, CCA and GSCM
are enhanced with interfaces. Our methodology is commonly accepted for transversely isotropic problems, see [57]
among others. Throughout this section, the fiber and matrix quantities are distinguished by superscripts (1) and (2),
respectively.

3.1. Preliminaries

Figure 7 depicts a fiber-reinforced composite with its underlying simplified RVE together with a cylindrical coordinate
system appropriate to analyze such a medium. The RVE consists of a fiber located at the center of the matrix. The
volume fraction of the fiber is f = r2

1/r
2
2. Figure 8 illustrates a schematic definition of the size and how it is related to

the volume fraction and the radii of the constituents. The term size here refers to the physical “size” of the RVE. Given
a length scale ` and the volume fraction f , the radii of the fiber and the matrix can be calculated. Note, ` refers to the
side length of a unit square. The unit circle is chosen such that it satisfies the area equivalence `2 = πr2

2 hence ` ∝ r2.
The constitutive material behavior for a isotropic material, in Voigt notation, reads


σrr
σθθ
σzz
σrθ
σrz
σθz

 =


λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ



εrr
εθθ
εzz

2εrθ
2εrz
2εθz

 , (38)

under the assumption that the transverse shear modulus is equal to the axial shear modulus. Note that in plane-strain
linear elasticity, the bulk modulus κ relates to the Lamé parameters via κ = λ + µ. In a cylindrical coordinate system,
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the strains in the bulk read

εrr =
∂ur

∂r
, εθθ =

1
r
∂uθ
∂θ

+
ur

r
, εzz =

∂uz

∂z
,

2εrθ =
∂uθ
∂r

+
1
r
∂ur

∂θ
−

uθ
r
,

2εθz =
1
r
∂uz

∂θ
+
∂uθ
∂z

,

2εrz =
∂uz

∂r
+
∂ur

∂z
,

(39)

and the balance equations associated with the bulk (7) expand as

∂σrr

∂r
+

1
r
∂σrθ

∂θ
+
∂σrz

∂z
+
σrr − σθθ

r
= 0 ,

∂σrθ

∂r
+

1
r
∂σθθ
∂θ

+
∂σθz
∂z

+
2
r
σrθ = 0 ,

∂σrz

∂r
+

1
r
∂σθz
∂θ

+
∂σzz

∂z
+

1
r
σrz = 0 .

(40)

For the interface, the constitutive tangential behavior readsσθθσzz
σθz

 =

 λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ


 εθθεzz

2εθz

 , (41)

under the assumption that the interface transverse shear modulus is equal to the interface axial shear modulus. For
fiber-reinforced composites, the resistance along the interface can be sufficiently captured with only one interface
Lamé parameter, thus we assume λ = 0. According to Eq. (30), the interface cohesive response reads tr

tθ
tz

 =

 k [[ur]]
k [[uθ]]
k [[uz]]

 , (42)

Figure 8: Definition of the size for fiber-reinforced composites. Given the size ` and the volume fraction f , the radii of the fiber and the matrix can
be calculated.
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assuming isotropic cohesive behavior. The strains on the interface read

εθθ =
1
r1

∂uθ
∂θ

+
ur

r1
,

εzz =
∂uz

∂z
,

2εθz =
1
r1

∂uz

∂θ
+
∂uθ
∂z

,

(43)

and the interface balance equations (13) can be written as

σθθ
r1
− [[σrr]] = 0 ,

1
r1

∂σθθ
∂θ

+
∂σθz
∂z

+ [[σrθ]] = 0 ,

1
r1

∂σθz
∂θ

+
∂σzz

∂z
+ [[σrz]] = 0 .

(44)

The three normal basis vectors in cylindrical coordinates are

nr =

[ cos θ
sin θ

0

]
, nθ =

[
− sin θ
cos θ

0

]
, nz =

[ 0
0
1

]
, (45)

and the displacements and stresses can accordingly be expressed as

u = ur nr + uθ nθ + uz nz ,

σ = σrr nr ⊗ nr + σθθ nθ ⊗ nθ + σzz nz ⊗ nz

+σrθ[nr ⊗ nθ + nθ ⊗ nr] + σrz[nr ⊗ nz + nz ⊗ nr] + σθz[nθ ⊗ nz + nz ⊗ nθ] ,
σ = σθθ nθ ⊗ nθ + σzz nz ⊗ nz + σθz[nθ ⊗ nz + nz ⊗ nθ] .

(46)

The mechanical energy stored in the RVE reads

U(RVE) =
1
2

∫
B

σ : ε dV +
1
2

∫
I

σ : ε dA +
1
2

∫
I

t · [[u]] dA =
1
2

∫
∂B

[σ · n] · u dA =
1
2

∫
∂B

t · u dA . (47)

Under prescribed boundary conditions associated with expansion and in-plane shear, the average mechanical energy
density stored in the RVE reads

U(RVE) =
1

4πr2
2L

∫ L

−L

∫ 2π

0

[
σ(2)

rr u(2)
r + σ(2)

rθ u(2)
θ

]
r=r2

r2 dθ dz , (48)

where L is half of the height of the RVE in the z-direction shown in the middle of Fig. 7. Accordingly, the mechanical
energy stored in an equivalent homogeneous medium reads

U(eq) =
1
2

∫
B

σ(eq) : ε(eq) dV =
1
2

∫
∂B

[
σ(eq) · n

]
· u(eq) dA =

1
2

∫
∂B

t(eq) · u(eq) dA . (49)

Under prescribed boundary conditions associated with expansion and in-plane shear, the average mechanical energy
density stored in the equivalent homogeneous medium reads

U(eq) =
1

4πr2
2L

∫ L

−L

∫ 2π

0

[
σ

(eq)
rr u(eq)

r + σ
(eq)
rθ u(eq)

θ

]
r=r2

r2 dθ dz . (50)
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Equating the energies (48) and (50) renders the overall macroscopic properties. Note that the generic form of the
average mechanical energy density in principle include other components of stress and displacement but they vanish
for expansion and in-plane shear boundary conditions that are imposed here.

In CCA [26], the RVE resembles the right micro-structure in Fig. 7. Applying expansion and simple shear under
both displacement and traction boundary conditions renders bounds on the overall bulk and shear moduli. While
the bounds on the shear modulus are distinct, they coincide for the bulk modulus and therefore, they are collectively
referred to as the effective bulk modulus. To obtain an estimate for the effective shear modulus, Christensen and
Lo [52] developed GSCM via introducing an infinite effective medium surrounding the matrix whose properties are the
unknowns of the problem. Here, we extend CCA and GSCM to account for extended general interfaces with arbitrary
interface positions and obtain bounds and estimates for the effective bulk and shear moduli of fiber composites.

3.2. Effective bulk modulus

In order to calculate the effective bulk modulus Mκ, the RVE is subject to a uniform radial expansion characterized by

u0
(r,θ,z) =

[ βr
0
0

]
, (51)

where the superscript 0 denotes the prescribed deformation mode. Demonstrated by Hashin and Rosen [26], the
developed displacement fields within each constituent read

u(1)
r = βr

[
X1 + X2

1
[r/r1]2

]
,

u(1)
θ = u(1)

z = 0 ,

u(2)
r = βr

[
X3 + X4

1
[r/r1]2

]
,

u(2)
θ = u(2)

z = 0 ,

(52)

resulting in the four unknowns X1 to X4 that can be determined via imposing the boundary and interface conditions

• finite displacement at r = 0:

u(1)
r (r = 0) 9 ∞ ⇒ X2 = 0 , (53)

• radial equilibrium at r = r1:

tr = k [[ur]] ⇒ [1 − α]σ(2)
rr (r1) + ασ(1)

rr (r1) = k
[
u(2)

r (r1) − u(1)
r (r1)

]
, (54)

• tangential equilibrium at r = r1:[
divσ

]
r

+ [[tr]] = 0 ⇒ −
σθθ
r1

+ σ(2)
rr (r1) − σ(1)

rr (r1) = 0 , (55)

• prescribed displacement at r = r2:

u(2)
r (r2) = βr2 . (56)

The conditions (53)–(56) lead to the system of equations
2ακ(1) + kr1

k

2[1 − α]κ(2) − kr1

k

−2[1 − α]µ(2) − kr1

k
−2κ(1)r1 − 2[1 − α]µ

r1

2κ(2)r1 − 2αµ
r1

−2µ(2)r1 − 2αµ
r1

0 1 f




X1

X3

X4

 =


0

0

1

 . (57)
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Applying the same displacement (51) to the equivalent homogeneous medium leads to the displacement field u(eq)
r = βr

and u(eq)
θ = u(eq)

z = 0. Using Eqs. (48) and (50), the overall energy densities in the RVE and the equivalent homogeneous
medium read

U(RVE) = 2β2
[
X3κ

(2) − X4 fµ(2)
]
,

U(eq) = 2β2 Mκ .
(58)

Imposing U(RVE) = U(eq) results in a closed-form explicit expression for the overall bulk modulus Mκ as

Mκ =

[
κ(2) + fµ(2)

][
kµr1 + 2α2κ(1)µ + kκ(1)r2

1

]
+ 2κ(2)µ(2)

[
1 − f

][
µ(1 − α)2 + κ(1)r1 + kr2

1/2
]

[
µ(2) + f κ(2)

][
2µ(1 − α)2 + 2κ(1)r1 + kr2

1

]
+

[
1 − f

][
kµr1 + 2α2κ(1)µ + kκ(1)r2

1

] , (59)

with α determining the interface position. Figure 9 shows the overall bulk modulus Mκ versus α for the extended
general interface model against the classical interface models. Three different inclusion to matrix stiffness ratios are
considered. The ratio incl./matr. = 0.1 represents an inclusion being 10 softer than the matrix whereas incl./matr. = 10
implies a 10 times stiffer inclusion than the matrix. Obviously, incl./matr. = 1 corresponds to identical inclusion and
matrix properties. The position of the interface does not influence the effective material response for perfect, elastic,
cohesive and general interface models. For the extended general interface model, it is observed that for small α the
material renders a closer behavior to the cohesive interface model. Increasing α yields a stiffer response where the
solution due to the extended general interface model approaches that of the elastic interface model.

Figure 9: Effective bulk modulus Mκ versus interface position α for fiber-reinforced composites. Different interface models are compared against
each other.

Remark on the choice of interface parameters. The material parameters are chosen to clearly illustrate the sig-
nificance of interfaces on the effective material parameters and to demonstrate the analytical expressions. To avoid
clutter, the units are omitted throughout but obviously they must be consistent. For example, assuming that size is
expressed in mm, the bulk material properties λ and µ will be in N/mm2 while the interface parameters λ and µ will
be in N/mm. The interface orthogonal resistance k is then measured in N/mm3. In other words, we treat the mate-
rial parameters as numerical values to perform parametric studies without limiting our attention to any particular
material.

3.3. Upper bound on shear modulus
To obtain the upper bound on the overall in-plane shear modulus, the simple shear boundary condition

u0
(r,θ,z) =

[
βr sin (2θ)
βr cos (2θ)

0

]
, (60)
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is applied to the RVE boundary at r = r2. For this boundary condition, following Christensen and Lo [52], the
displacement fields developed in the constituents read

u(1)
r = βr sin (2θ)

[
κ(1) − µ(1)

[2κ(1) + µ(1)]
[r/r1]2X1 + X2 −

X3

[r/r1]4 +
κ(1) + µ(1)

µ(1)

X4

[r/r1]2

]
,

u(1)
θ = βr cos (2θ)

[
[r/r1]2X1 + X2 +

X3

[r/r1]4 +
X4

[r/r1]2

]
,

u(1)
z = 0 ,

u(2)
r = βr sin (2θ)

[
κ(2) − µ(2)

[2κ(2) + µ(2)]
[r/r1]2X5 + X6 −

X7

[r/r1]4 +
κ(2) + µ(2)

µ(2)

X8

[r/r1]2

]
,

u(2)
θ = βr cos (2θ)

[
[r/r1]2X5 + X6 +

X7

[r/r1]4 +
X8

[r/r1]2

]
,

u(2)
z = 0 ,

(61)

with the eight unknowns X1 to X8 which can be determined via applying the boundary and interface conditions

• finite displacement at r = 0:

u(1)
r (r = 0) 9 ∞ and u(1)

θ (r = 0) 9 ∞ ⇒ X3 = 0 and X4 = 0 , (62)

• radial equilibrium at r = r1:

tr = k [[ur]] ⇒ [1 − α]σ(2)
rr (r1) + ασ(1)

rr (r1) = k
[
u(2)

r (r1) − u(1)
r (r1)

]
, (63)

• circumferential equilibrium at r = r1:

tθ = k [[uθ]] ⇒ [1 − α]σ(2)
rθ (r1) + ασ(1)

rθ (r1) = k
[
u(2)
θ (r1) − u(1)

θ (r1)
]
, (64)

• tangential equilibrium in r direction at r = r1:[
divσ

]
r

+ [[tr]] = 0 ⇒ −
σθθ
r1

+ σ(2)
rr (r1) − σ(1)

rr (r1) = 0 , (65)

• tangential equilibrium in θ direction at r = r1:[
divσ

]
θ

+ [[tθ]] = 0 ⇒
1
r1

∂σθθ
∂θ

+ σ(2)
rθ (r1) − σ(1)

rθ (r1) = 0 , (66)

• prescribed displacements at r = r2:

u(2)
r (r2) = βr2 sin(2θ) and u(2)

θ (r2) = βr2 cos(2θ) . (67)

The conditions (62)–(67) lead to the system of equations
D11 D12 D13 D14 D15 D16
D21 D22 D23 D24 D25 D26
D31 D32 D33 D34 D35 D36
D41 D42 D43 D44 D45 D46
D51 D52 D53 D54 D55 D56
D61 D62 D63 D64 D65 D66




X1
X2
X5
X6
X7
X8

 =


0
0
0
0
1
1

 , (68)

with the components of D detailed in Appendix A.1. For an equivalent homogeneous medium subject to the same
boundary conditions, the displacement field reads

u(eq)
r = βr sin(2θ) , u(eq)

θ = βr cos(2θ) , u(eq)
z = 0 . (69)
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Subsequently, using Eqs. (48) and (50), the average mechanical energy densities in the RVE and the equivalent homo-
geneous medium read

U(RVE) =
β2

2

 6µ(2)κ(2)r2
2

2κ(2) + µ(2) X5 + 4µ(2)X6 −
2κ(2)

r2
2

X8

 ,
U(eq) = 2β2 Mµ .

(70)

Imposing U(RVE) = U(eq) renders the upper bound on the effective in-plane shear modulus

Mµupper =
1
4

 6µ(2)κ(2)r2
2

2κ(2) + µ(2) X5 + 4µ(2)X6 −
2κ(2)

r2
2

X8

 , (71)

where X5, X6 and X8 can be calculated via solving the system of equations (68). Figure 10 illustrates the effective
shear modulus and its bounds with respect to the interface position α for various interface models. The top row
corresponds to the upper bound on the shear modulus Mµupper. The middle row corresponds to the lower bound on
the shear modulus Mµlower which will be discussed in the next section. The last row corresponds to the effective shear
modulus Mµ which will be discussed in Section 3.5. Similar to the bulk modulus, it is observed that for small α
the material associated with the extended general interface model renders a closer behavior to the cohesive interface
model. However, increasing α results in a stiffer response but not as stiff as the elastic interface.

3.4. Lower bound on shear modulus

To obtain the lower bound on the overall in-plane shear modulus, a traction field is applied to the RVE boundary as

t0
(r,θ,z) =

[
β sin 2θ
β cos 2θ

0

]
. (72)

The displacement fields developed in the constituents due to the prescribed traction (72) mimic Eq. (61) with eight
unknowns. The boundary and interface conditions are similar to Eqs. (62)–(66) and instead of condition (67), we have

• prescribed stresses at r = r2:

σ(2)
rr (r2) = β sin(2θ) and σ(2)

rθ (r2) = β cos(2θ) , (73)

leading to the system of equations
E11 E12 E13 E14 E15 E16
E21 E22 E23 E24 E25 E26
E31 E32 E33 E34 E35 E36
E41 E42 E43 E44 E45 E46
E51 E52 E53 E54 E55 E56
E61 E62 E63 E64 E65 E66




X1
X2
X5
X6
X7
X8

 =


0
0
0
0
1
1

 . (74)

The components of E are given in Appendix A.2. For an equivalent homogeneous medium subject to the same
boundary condition, the displacement field reads

u(eq)
r =

β

2Mµ
r sin(2θ) , u(eq)

θ =
β

2Mµ
r cos(2θ) , u(eq)

z = 0 . (75)
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Figure 10: Effective shear modulus Mµ and its bounds versus interface position α for fiber-reinforced composites. Different interface models are
compared against each other.

Using Eqs. (48) and (50), the average mechanical energies stored in the RVE and the equivalent homogeneous medium
are

U(RVE) =
β2

2

 3κ(2)r2
2

2κ(2) + µ(2) X5 + 2X6 +
κ(2) + 2µ(2)

µ(2)r2
2

X8

 ,
U(eq) =

β2

2Mµ
.

(76)

Imposing U(RVE) = U(eq) renders the lower bound on the macroscopic in-plane shear modulus

Mµlower =
1

3κ(2)r2
2

2κ(2) + µ(2) X5 + 2X6 +
κ(2) + 2µ(2)

µ(2)r2
2

X8

, (77)

where X5, X6, and X8 are the solution of the system (74). See Fig. 10 for the illustration of the lower bound on the
shear modulus Mµlower versus the interface position α. Similar to the upper bound, it is observed that small α associated
with the extended general interface model renders a closer behavior to the cohesive interface. However, increasing α
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results in a stiffer response but not as stiff as the elastic interface.

3.5. Effective shear modulus

To obtain the effective shear modulus Mµ, we employ GSCM developed by Christensen and Lo [52] where an infinite
effective medium is bonded to the matrix and the properties of the effective medium are the unknowns of the problem.
To obtain an estimate for the effective shear modulus, let the medium be subject to the displacement

u0
(r,θ,z) =

[
βr sin (2θ)
βr cos (2θ)

0

]
. (78)

The displacement (78) is applied on the boundary of the effective medium. The displacement fields generated in the
fiber and the matrix due to the boundary condition (78) are similar to Eq. (61), hence the eight unknowns X1 to X8. In
addition, the displacement field in the effective medium reads

u(eff)
r = βr sin (2θ)

[
1 −

X9

r4 +
Mκ + Mµ

Mµ

X10

r2

]
,

u(eff)
θ = βr cos (2θ)

[
1 +

X9

r4 +
X10

r2

]
,

u(eff)
z = 0 ,

(79)

with X9 and X10 being the ninth and the tenth unknowns. Note, the displacement field in the effective medium indeed
mimics the ones in Eq. (61), and the first and second unknowns are determined considering the conditions at r → ∞.
Before considering the boundary and the interface conditions, the additional energetic criterion∫ 2π

0

[
σ(eff)

rr u(eq)
r + σ(eff)

rθ u(eq)
θ − σ

(eq)
rr u(eff)

r − σ
(eq)
rθ u(eff)

θ

]
r=r2

dθ = 0 , (80)

deduced from the Eshelby’s energy principle [52] must be imposed and yields X10 = 0. The remaining nine unknowns
can be determined via imposing the boundary and interface conditions which are similar to Eqs. (62)–(66) and instead
of condition (67), we have

• displacement continuity at r = r2:

u(2)
r (r2) = u(eff)

r (r2) and u(2)
θ (r2) = u(eff)

θ (r2) , (81)

leading to the system of equations
F11 F12 F13 F14 F15 F16
F21 F22 F23 F24 F25 F26
F31 F32 F33 F34 F35 F36
F41 F42 F43 F44 F45 F46
F51 F52 F53 F54 F55 F56
F61 F62 F63 F64 F65 F66




X1
X2
X5
X6
X7
X8

 =


0
0
0
0
1
1

 +


0
0
0
0
− f 2

f 2

 X9 , (82)

with F = D thus, see Appendix A.1. The remaining six unknowns can be written as a function of X9 as
X1
X2
X5
X6
X7
X8

︸︷︷︸
X

= F−1


0
0
0
0
1
1

︸   ︷︷   ︸
a

+ F−1


0
0
0
0
− f 2

f 2

︸       ︷︷       ︸
b

X9 =


a1a2a5a6a7a8

 +


b1
b2
b5
b6
b7
b8

 X9 . (83)
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Note, the components of the arrays a and b are numbered according to the indices in X to facilitate the understanding
of the procedure. Imposing the stress continuity between the matrix and the effective medium yields

σ(2)
rr (r2) = σ(eff)

rr (r2) =⇒ g1 + h1X9 = Mµ + 3 f 2X9
Mµ ,

σ(2)
rθ (r2) = σ(eff)

rθ (r2) =⇒ g2 + h2X9 = Mµ − 3 f 2X9
Mµ ,

(84)

with

g1 = a6µ
(2) + 3 f 2µ(2)a7 − 2 f κ(2)a8 ,

h1 = b6µ
(2) + 3 f 2µ(2)b7 − 2 f κ(2)b8 ,

g2 =
3κ(2)µ(2)

f
[
2κ(2) + µ(2)

]a5 + µ(2)a6 − 3 f 2µ(2)a7 + f κ(2)a8 ,

h2 =
3κ(2)µ(2)

f
[
2κ(2) + µ(2)

]b5 + µ(2)b6 − 3 f 2µ(2)b7 + f κ(2)b8 .

(85)

Adding up equations (84)1 and (84)2 renders

X9 =
2Mµ − [g1 + g2]

h1 + h2
, (86)

and via replacing X9 from Eq. (86) into (84)1 we obtain

6 f 2Mµ2 +
[
h2 − h1 − 3 f 2[g1 + g2]

]
Mµ +

[
h1g2 − h2g1

]
= 0 . (87)

From the two possible solutions of the quadratic equation (87), the positive value is the effective shear modulus Mµ.
See Fig. 10 for the illustration of the effective shear modulus Mµ versus the interface position α. Similar to the bounds,
it is observed that small α associated with the extended general interface model renders a closer behavior to the
cohesive interface. However, increasing α results in a stiffer response but not as stiff as the elastic interface.

Table 6: Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding general interfaces

general interface model

Mκ =

[
κ(2) + fµ(2)

][
kµr1 + 1

2κ
(1)µ + kκ(1)r2

1

]
+ 2κ(2)µ(2)

[
1 − f

][
1
4µ + κ(1)r1 + kr2

1/2
]

[
µ(2) + f κ(2)

][
1
2µ + 2κ(1)r1 + kr2

1

]
+

[
1 − f

][
kµr1 + 1

2κ
(1)µ + kκ(1)r2

1

]
Mµupper =

1
4

 6µ(2)κ(2)r2
2

2κ(2) + µ(2) X5 + 4µ(2)X6 −
2κ(2)

r2
2

X8

 see Appendix B.1

Mµlower =
1

3κ(2)r2
2

2κ(2) + µ(2) X5 + 2X6 +
κ(2) + 2µ(2)

µ(2)r2
2

X8

see Appendix B.2

6 f 2Mµ2 +
[
h2 − h1 − 3 f 2[g1 + g2]

]
Mµ +

[
h1g2 − h2g1

]
= 0 see Appendix B.1
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Table 7: Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding elastic interfaces

elastic interface model

Mκ =

[
κ(2) + fµ(2)

][
µr1 + κ(1)r2

1

]
+ κ(2)µ(2)

[
1 − f

]
r2

1[
µ(2) + f κ(2)

]
r2

1 +
[
1 − f

][
µr1 + κ(1)r2

1

]
Mµupper =

1
4

 6µ(2)κ(2)r2
2

2κ(2) + µ(2) X5 + 4µ(2)X6 −
2κ(2)

r2
2

X8

 see Appendix C.1

Mµlower =
1

3κ(2)r2
2

2κ(2) + µ(2) X5 + 2X6 +
κ(2) + 2µ(2)

µ(2)r2
2

X8

see Appendix C.2

6 f 2Mµ2 +
[
h2 − h1 − 3 f 2[g1 + g2]

]
Mµ +

[
h1g2 − h2g1

]
= 0 see Appendix C.1

Table 8: Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding cohesive interfaces

cohesive interface model

Mκ =

[
κ(2) + fµ(2)

][
kκ(1)r2

1

]
+ 2κ(2)µ(2)

[
1 − f

][
κ(1)r1 + kr2

1/2
]

[
µ(2) + f κ(2)

][
2κ(1)r1 + kr2

1

]
+

[
1 − f

][
kκ(1)r2

1

]
Mµupper =

1
4

 6µ(2)κ(2)r2
2

2κ(2) + µ(2) X5 + 4µ(2)X6 −
2κ(2)

r2
2

X8

 see Appendix D.1

Mµlower =
1

3κ(2)r2
2

2κ(2) + µ(2) X5 + 2X6 +
κ(2) + 2µ(2)

µ(2)r2
2

X8

see Appendix D.2

6 f 2Mµ2 +
[
h2 − h1 − 3 f 2[g1 + g2]

]
Mµ +

[
h1g2 − h2g1

]
= 0 see Appendix D.1

3.6. Recovering general, elastic, cohesive and interface models

This section briefly provides the previously obtained solutions for the bounds and estimates on the elastic moduli for
the general, cohesive, elastic and perfect interface models. As mentioned before, the general interface model can be
recovered by setting α = 0.5. The cohesive interface model is recovered when λ = µ = 0 and α = 0.5. The elastic
interface model is recovered when λ , 0, µ , 0 and k → ∞ and α = 0.5. Finally, the perfect interface model is
recovered when λ = µ = 0 and k → ∞ and α = 0.5. Tables 6–9 show the formulations for the effective bulk and shear
moduli and the bounds on the shear modulus for fiber-reinforced composites embedding the general, elastic, cohesive
and perfect interfaces, respectively.
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Table 9: Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding perfect interfaces

perfect interface model

Mκ =

[
κ(2) + fµ(2)

]
κ(1) + κ(2)µ(2)

[
1 − f

]
[
µ(2) + f κ(2)

]
+

[
1 − f

]
κ(1)

Mµupper =
1
4

 6µ(2)κ(2)r2
2

2κ(2) + µ(2) X5 + 4µ(2)X6 −
2κ(2)

r2
2

X8

 see Appendix E.1

Mµlower =
1

3κ(2)r2
2

2κ(2) + µ(2) X5 + 2X6 +
κ(2) + 2µ(2)

µ(2)r2
2

X8

see Appendix E.2

6 f 2Mµ2 +
[
h2 − h1 − 3 f 2[g1 + g2]

]
Mµ +

[
h1g2 − h2g1

]
= 0 see Appendix E.1

4. Particle-reinforced composites

This section aims to examine particle-reinforced composites accounting for extended general interfaces between the
constituents where the interface is allowed to occupy any arbitrary position between the particle and the matrix.
Bounds and estimates for the overall bulk and shear moduli of such composites are obtained via extending the com-
posite sphere assemblage approach (CSA) and the generalized self-consistent method (GSCM) to account for the
extended general interface model. First, the preliminaries of the RVE problem for these composites are introduced.
Second, the interface enhanced CSA and GSCM approaches are elaborated resulting in bounds and estimates on the
overall moduli of composites. Throughout this section, the particle related properties are denoted by superscript (1)
whereas the matrix-related properties are denoted by superscript (2). We intentionally develop this section in a man-
ner that reflects the similarities between the particle-reinforced composites here and the fiber-reinforced composites
elaborated in Section 3.

4.1. Preliminaries

Figure 11 shows a particle-reinforced composite with its underlying simplified RVE together with a spherical coordi-
nate system suitable to analyze such a medium. The RVE consists of a particle located at the center of the matrix. The
particle volume fraction is f = r3

1/r
3
2. Figure 12 illustrates a schematic definition of the size and how it is related to

the volume fraction and the radii of the constituents. Clearly, having the size ` and the volume fraction f , one can
determine the radii of the particle and the matrix. Note, ` refers to the side length of an equivalent unit cube and is
introduced for simplicity. The unit sphere is chosen such that it satisfies the volume equivalence `3 = 4/3πr3

2 hence
` ∝ r2. The constitutive material behavior for the bulk, in Voigt notation, reads


σrr
σθθ
σφφ
σrθ
σrφ
σθφ

 =


λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ



εrr
εθθ
εφφ
2εrθ
2εrφ
2εθφ

 . (88)
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For this case, the bulk modulus κ relates to the Lamé parameters via κ = λ + 2µ/3. In a spherical coordinate system,
the strain field in the bulk reads

εrr =
∂ur

∂r
, εθθ =

1
r
∂uθ
∂θ

+
ur

r
,

εφφ =
1

r sin θ
∂uφ
∂φ

+
ur

r
+

uθ cos θ
r sin θ

,

2εrφ =
∂uφ
∂r

+
1

r sin θ
∂ur

∂φ
−

uφ
r
,

2εθφ =
1
r
∂uφ
∂θ

+
1

r sin θ
∂uθ
∂φ
−

uφ cos θ
r sin θ

,

2εrθ =
∂uθ
∂r

+
1
r
∂ur

∂θ
−

uθ
r
,

(89)

Figure 11: Heterogeneous medium (left) with its simplified RVE (right) and a spherical coordinate system (middle) to examine such a medium.

Figure 12: Definition of the size for particle-reinforced composites. Given the size ` and the volume fraction f , the radii of the fiber and the matrix
can be calculated.
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and the balance equations for the bulk expand to

∂σrr

∂r
+

1
r
∂σrθ

∂θ
+
σrθ cos θ

r sin θ
+

2σrr − σθθ − σφφ

r
+

1
r sin θ

∂σrφ

∂φ
= 0 ,

∂σrθ

∂r
+

1
r
∂σθθ
∂θ

+
3σrθ

r
+

[
σθθ − σφφ

]
cos θ

r sin θ
+

1
r sin θ

∂σθφ

∂φ
= 0 ,

∂σrφ

∂r
+

1
r
∂σθφ

∂θ
+

3σrφ

r
+

2σθφ cos θ
r sin θ

+
1

r sin θ
∂σφφ

∂φ
= 0 .

(90)

The interface tangential behavior follows from the constitutive relation σθθσφφ
σθφ

 =

 λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ


 εθθεφφ

2εθφ

 . (91)

The interface cohesive behavior is characterized by tr
tθ
tφ

 =

 k [[ur]]
k [[uθ]]
k [[uφ]]

 , (92)

under the assumption of identical cohesive stiffness in all the three directions. The (tangential) strain field on the
interface reads

εθθ =
1
r1

∂uθ
∂θ

+
ur

r1
,

εφφ =
1

r1 sin θ
∂uφ
∂φ

+
ur

r1
+

uθ cos θ
r1 sin θ

,

2εθφ =
1
r1

∂uφ
∂θ

+
1

r1 sin θ
∂uθ
∂φ
−

uφ cos θ
r1 sin θ

,

(93)

and the interface balance equations can be expanded to

σθθ + σφφ

r1
− [[σrr]] = 0 ,

1
r1

∂σθθ
∂θ

+
1

r1 sin θ
∂σθφ

∂φ
+

[σθθ − σφφ] cos θ
r1 sin θ

+ [[σrθ]] = 0 ,

1
r1

∂σθφ

∂θ
+

1
r1 sin θ

∂σφφ

∂φ
+

2σθφ cos θ
r1 sin θ

+ [[σrφ]] = 0 .

(94)

The normal basis vectors in spherical coordinates are

nr =

[sin θ cos φ
sin θ sin φ

cos θ

]
, nθ =

[cos θ cos φ
cos θ sin φ
− sin θ

]
, nφ =

[
− sin φ
cos φ

0

]
, (95)

and the displacements and stresses can be accordingly expressed as

u = ur nr + uθ nθ + uφ nφ ,
σ = σrr nr ⊗ nr + σθθ nθ ⊗ nθ + σφφ nφ ⊗ nφ

+σrθ[nr ⊗ nθ + nθ ⊗ nr] + σrφ[nr ⊗ nφ + nφ ⊗ nr] + σθφ[nθ ⊗ nφ + nφ ⊗ nθ] ,
σ = σθθ nθ ⊗ nθ + σφφ nφ ⊗ nφ + σθφ[nθ ⊗ nz + nz ⊗ nθ] .

(96)
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The mechanical energy stored in the RVE reads

U(RVE) =
1
2

∫
B

σ : ε dV +
1
2

∫
I

σ : ε dA +
1
2

∫
I

t · [[u]] dA =
1
2

∫
∂B

[σ · n] · u dA =
1
2

∫
∂B

t · u dA . (97)

Under prescribed boundary conditions associated with expansion and in-plane shear, the average mechanical energy
density stored in the RVE reads

U(RVE) =
3

8πr3
2

∫ 2π

0

∫ π

0

[
σ(2)

rr u(2)
r + σ(2)

rθ u(2)
θ + σ(2)

rφ u(2)
φ

]
r=r2

sin θ dθ dφ . (98)

Accordingly, the mechanical energy stored in an equivalent homogeneous medium reads

U(eq) =
1
2

∫
B

σ(eq) : ε(eq) dV =
1
2

∫
∂B

[
σ(eq) · n

]
· u(eq) dA =

1
2

∫
∂B

t(eq) · u(eq) dA . (99)

Under prescribed boundary conditions associated with expansion and in-plane shear, the average mechanical energy
density stored in the equivalent homogeneous medium reads

U(eq) =
3

8πr3
2

∫ 2π

0

∫ π

0

[
σ

(eq)
rr u(eq)

r + σ
(eq)
rθ u(eq)

θ + σ
(eq)
rφ u(eq)

φ

]
r=r2

sin θ dθ dφ . (100)

Equating the energies (98) and (100) renders the overall macroscopic properties. Note that the generic form of the
average mechanical energy density in principle include other components of stress and displacement but they vanish
for expansion and in-plane shear boundary conditions that are imposed here.

In CSA [14], the RVE resembles the right micro-structure in Fig. 11. Applying expansion and simple shear under
both displacement and traction boundary conditions renders bounds on the overall bulk and shear moduli. While the
bounds for the shear modulus are distinct, for the bulk modulus the bounds coincide and therefore, they are collectively
referred to as the effective bulk modulus. To obtain an estimate for the effective shear modulus, Christensen and
Lo [52] developed GSCM via introducing an infinite effective medium surrounding the matrix whose properties are
the unknowns of the problem. Here, we extend CSA and GSCM to account for extended general interfaces with
arbitrary interface positions and obtain bounds and estimates for the effective bulk and shear moduli of particulate-
composites.

4.2. Effective bulk modulus

To obtain the effective bulk modulus Mκ, consider the RVE subject to a uniform radial expansion via

u0
(r,θ,φ) =

[ βr
0
0

]
, (101)

where the superscript 0 denotes the prescribed deformation mode. Demonstrated by Hashin [14], the generated
displacement fields in the constituents due to the boundary condition (101) are

u(1)
r = βr

[
X1 +

1
[r/r1]3 X2

]
,

u(1)
θ = u(1)

φ = 0 ,

u(2)
r = βr

[
X3 +

1
[r/r1]3 X4

]
,

u(2)
θ = u(2)

φ = 0 ,

(102)

with the four unknowns X1 to X4 that can be determined via imposing the boundary and interface conditions

• finite displacement at r = 0:
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u(1)
r (r = 0) 9 ∞ ⇒ X2 = 0 , (103)

• radial equilibrium at r = r1:

tr = k [[ur]] ⇒ [1 − α]σ(2)
rr (r1) + ασ(1)

rr (r1) = k
[
u(2)

r (r1) − u(1)
r (r1)

]
, (104)

• tangential equilibrium at r = r1:[
divσ

]
r

+ [[tr]] = 0 ⇒ −
σθθ + σφφ

r1
+ σ(2)

rr (r1) − σ(1)
rr (r1) = 0 , (105)

• prescribed displacement at r = r2:

u(2)
r (r2) = βr . (106)

The conditions (103)–(106) lead to the system of equations

3ακ(1) + kr1

k

3[1 − α]κ(2) − kr1

k

−4[1 − α]µ(2) − kr1

k
−4

[
1 − α

] [
λ + µ

]
− 3κ(1)r1

r1

−4α
[
λ + µ

]
+ 3κ(2)r1

r1

−4α
[
λ + µ

]
− 4µ(2)r1

r1

0 1 f




X1

X3

X4

 =


0

0

1

 . (107)

Applying the same boundary condition (101) to the equivalent homogeneous medium leads to the displacement field
u(eq)

r = βr and u(eq)
θ = u(eq)

φ = 0. Employing Eqs. (98) and (100), the average mechanical energy densities in the RVE
and the equivalent homogeneous medium read

U(RVE) =
3β2

[
3κ(2)X3 − 4 fµ(2)X4

]
2r2

2

,

U(eq) =
9β2Mκ

2r2
2

,

(108)

where X3 and X4 are the solutions of the system (107). Imposing U(RVE) = U(eq) renders the overall bulk modulus

Mκ =
3κ(2)S 1 + 4 fµ(2)S 2

3S 3
,

with

S 1 =4k
[
λ + µ

]
r1 + kr2

1

[
3κ(1) + 4µ(2)

]
+ 4

[
λ + µ

][
3α2κ(1) + 4[1 − α]2µ(2)

]
+ 12κ(1)µ(2)r1 ,

S 2 =4k
[
λ + µ

]
r1 + 3kr2

1[κ(1) − κ(2)] + 12
[
λ + µ

][
α2κ(1) − [1 − α]2κ(2)

]
− 9κ(1)κ(2)r1 ,

S 3 =4k
[
λ + µ

]
r1

[
1− f

]
+ kr2

1

[
3κ(1)[1− f ] +3 f κ(2)+ 4µ(2)

]
+4

[
λ + µ

][[
4µ(2)+3 f κ(2)

]
[1−α]2+3α2κ(1)[1− f ]

]
+ 3κ(1)r1

[
4µ(2)+3 f κ(2)

]
,

(109)

where α determines the interface position. Figure 13 shows the overall bulk modulus Mκ versus α for various interface
models. Clearly, the position of the interface does not influence the material response for the classical interface
models. Similar to the two-dimensional case, for the extended general interface model, it is observed that for small
α the material renders a closer behavior to the cohesive interface. Increasing α yields a stiffer response where the
solution due to the extended general interface model approaches that of elastic interface model. The extended general
interface model coincides with the general interface model if α = 0.5.
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Figure 13: Effective bulk modulus Mκ versus interface position α for particle-reinforced composites. Different interface models are compared
against each other.

4.3. Upper bound on shear modulus
To obtain the upper bound on the overall shear modulus, the simple shear deformation

u0
(r,θ,φ) =

 βr sin2 θ cos 2φ
βr sin θ cos θ cos 2φ
−βr sin θ sin 2φ

 , (110)

is applied to the RVE boundary at r = r2. For this boundary condition, following Christensen and Lo [52], the
displacement fields developed in the constituents read

u(1)
r = βr sin2(θ) cos(2φ)

[
X1 +

[
2 − 3

κ(1)

µ(1)

]
[r/r1]2X2 +

3X3

[r/r1]5 +

[
3 + 3

κ(1)

µ(1)

] X4

[r/r1]3

]
,

u(1)
θ = βr sin(θ) cos(θ) cos(2φ)

[
X1 −

[11
3

+ 5
κ(1)

µ(1)

]
[r/r1]2X2 −

2X3

[r/r1]5 +
2X4

[r/r1]3

]
,

u(1)
φ = −βr sin(θ) sin(2φ)

[
X1 −

[11
3

+ 5
κ(1)

µ(1)

]
[r/r1]2X2 −

2X3

[r/r1]5 +
2X4

[r/r1]3

]
,

u(2)
r = βr sin2(θ) cos(2φ)

[
X5 +

[
2 − 3

κ(2)

µ(2)

]
[r/r1]2X6 +

3X7

[r/r1]5 +

[
3 + 3

κ(2)

µ(2)

] X8

[r/r1]3

]
,

u(2)
θ = βr sin(θ) cos(θ) cos(2φ)

[
X5 −

[11
3

+ 5
κ(2)

µ(2)

]
[r/r1]2X6 −

2X7

[r/r1]5 +
2X8

[r/r1]3

]
,

u(2)
φ = −βr sin(θ) sin(2φ)

[
X5 −

[11
3

+ 5
κ(2)

µ(2)

]
[r/r1]2X6 −

2X7

[r/r1]5 +
2X8

[r/r1]3

]
,

(111)

with the eight unknowns X1 to X8 which can be determined via imposing the boundary and interface conditions

• finite displacement at r = 0:

u(1)
r (r = 0) 9 ∞ and u(1)

θ (r = 0) 9 ∞ ⇒ X3 = 0 and X4 = 0 , (112)

• radial equilibrium in r direction at r = r1:

tr = k [[ur]] ⇒ [1 − α]σ(2)
rr (r1) + ασ(1)

rr (r1) = k
[
u(2)

r (r1) − u(1)
r (r1)

]
, (113)

• circumferential equilibrium in θ direction at r = r1:

tθ = k [[uθ]] ⇒ [1 − α]σ(2)
rθ (r1) + ασ(1)

rθ (r1) = k
[
u(2)
θ (r1) − u(1)

θ (r1)
]
, (114)
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• tangential equilibrium in r direction at r = r1:[
divσ

]
r

+ [[tr]] = 0 ⇒ −
σθθ + σφφ

r1
+ σ(2)

rr (r1) − σ(1)
rr (r1) = 0 , (115)

• tangential equilibrium in θ direction at r = r1:[
divσ

]
θ

+ [[tθ]] = 0 ⇒
1
r1

∂σθθ
∂θ

+
1

r1 sin θ
∂σθφ

∂φ
+

[σθθ − σφφ] cos θ
r1 sin θ

+ σ(2)
rθ (r1) − σ(1)

rθ (r1) = 0 , (116)

• prescribed displacements at r = r2:

u(2)
r (r2) = βr2 sin2 θ cos 2φ and u(2)

θ (r2) = βr2 sin θ cos θ cos 2φ . (117)

The conditions (112)–(117) lead to the system of equations
P11 P12 P13 P14 P15 P16
P21 P22 P23 P24 P25 P26
P31 P32 P33 P34 P35 P36
P41 P42 P43 P44 P45 P46
P51 P52 P53 P54 P55 P56
P61 P62 P63 P64 P65 P66




X1
X2
X5
X6
X7
X8

 =


0
0
0
0
1
1

 , (118)

where the components of P are detailed in Appendix A.3. Applying the same boundary condition to the equivalent
homogeneous medium results in the displacement field

u(eq)
r = βr sin2 θ cos 2φ ,

u(eq)
θ = βr sin θ cos θ cos 2φ ,

u(eq)
φ = −βr sin θ sin 2φ .

(119)

Equipped with the displacement and stress fields in both constituents, the overall mechanical energy densities in both
RVE and the equivalent homogeneous medium according to Eqs. (98) and (100) read

U(RVE) =
β2

5r2
2

[
10µ(2)X5 − 14

[
3κ(2) + µ(2)

]
f −2/3X6 − 2

[
9κ(2) + 8µ(2)

]
f X8

]
,

U(eq) =
2β2Mµ

r2
2

.

(120)

From U(RVE) = U(eq) the upper bound on the macroscopic shear modulus is obtained as

Mµupper =
1

10

[
10µ(2)X5 − 14

[
3κ(2) + µ(2)

]
f −2/3X6 − 2

[
9κ(2) + 8µ(2)

]
f X8

]
, (121)

where X5, X6 and X8 can be calculated via solving the system of equations (118). Figure 14 illustrates the effective
shear modulus and its bounds with respect to the interface position α for various interface models. The top row
corresponds to the upper bound on the shear modulus Mµupper. The middle row corresponds to the lower bound on
the shear modulus Mµlower which will be discussed in the next section. The last row corresponds to the effective shear
modulus Mµ that we derive in Section 4.5. Similar to the bulk modulus, it is observed that for small α the composite
embedding the extended general interface model renders a closer behavior to the cohesive interface model. Unlike the
fiber-reinforced composites, here, increasing α yields a stiffer response where the solution due to the extended general
interface model approaches that of the elastic interface model.

4.4. Lower bound on shear modulus
To obtain the lower bound on the overall shear modulus, a traction field is applied to the boundary of the RVE as

t0
(r,θ,φ) =

 β sin2 θ cos 2φ
β sin θ cos θ cos 2φ
−β sin θ sin 2φ

 . (122)
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Figure 14: Effective shear modulus Mµ and its bounds versus interface position α for particle-reinforced composites. Different interface models are
compared against each other.

The displacement fields developed in the constituents due to the applied traction are analogous to Eq. (111) with
the eight unknowns X1–X8. The boundary and interface conditions are similar to Eqs. (112)–(116) and instead of
condition (117), we have

• prescribed stresses at r = r2:

σ(2)
rr (r2) = β sin2 θ cos 2φ and σ(2)

rθ (r2) = β sin θ cos θ cos 2φ . (123)

which leads to the system of equations
Q11 Q12 Q13 Q14 Q15 Q16
Q21 Q22 Q23 Q24 Q25 Q26
Q31 Q32 Q33 Q34 Q35 Q36
Q41 Q42 Q43 Q44 Q45 Q46
Q51 Q52 Q53 Q54 Q55 Q56
Q61 Q62 Q63 Q64 Q65 Q66




X1
X2
X5
X6
X7
X8

 =


0
0
0
0
1
1


. (124)
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Further details regarding the components of Q are available in Appendix A.4. Applying the same boundary conditions
to the equivalent homogeneous medium leads to the displacement field

ueq
r =

β

2Mµ
r sin2 θ cos 2φ ,

ueq
θ =

β

2Mµ
r sin θ cos θ cos 2φ ,

ueq
φ = −

β

2Mµ
r sin θ sin 2φ .

(125)

Equipped with the displacement and stress fields in both constituents, the overall mechanical energy in both RVE and
the equivalent homogeneous medium according to Eqs. (98) and (100) read

U(RVE) =
β2

5r2
2

[
5X(2)

5 − 7
[
1 + 3

κ(2)

µ(2)

]
f −2/3X6 + 6

[
2 +

κ(2)

µ(2)

]
f X8

]
,

U(eq) =
β2

2Mµr2
2

.

(126)

Imposing U(RVE) = U(eq) furnishes the lower bound on the macroscopic shear modulus

Mµlower =
5

2
[
5X5 − 7

[
1 + 3

κ(2)

µ(2)

]
f −2/3X6 + 6

[
2 +

κ(2)

µ(2)

]
f X8

] , (127)

where in X5, X6 and X8 can be calculated via solving the system (124). See Fig. 14 for the illustration of the lower
bound on the shear modulus Mµlower versus the interface position α. Similar to the upper bound, it is observed that
smaller α renders a closer behavior to the cohesive interface. Increasing α yields a stiffer response but unlike the
fiber-reinforced composites, the solution due to the general interface model approaches that of the elastic interface
model.

4.5. Effective shear modulus

To obtain the effective shear modulus Mµ, GSCM [52] is employed. No traction or displacement jump between the
matrix and the effective medium is allowed. To obtain the effective shear modulus, let the medium be subject to the
displacement boundary condition

u0
(r,θ,φ) =

 βr sin2 θ cos 2φ
βr sin θ cos θ cos 2φ
−βr sin θ sin 2φ

 . (128)

The resultant displacement fields in the fiber and the matrix due to the boundary condition (128) are similar to
Eq. (111), hence the eight unknowns X1 to X8. Furthermore, the displacement field in the effective medium reads

u(eff)
r = βr sin2 θ cos 2φ

[
1 +

3X9

[r/r1]5 +

[
3 + 3

Mκ
Mµ

] X10

[r/r1]3

]
,

u(eff)
θ = βr sin θ cos θ cos 2φ

[
1 −

2X9

[r/r1]5 +
2X10

[r/r1]3

]
,

u(eff)
φ = −βr sin θ sin 2φ

[
1 −

2X9

[r/r1]5 +
2X10

[r/r1]3

]
,

(129)
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with X9 and X10 being the ninth and the tenth unknowns. Before considering the boundary and interface conditions,
the energetic criterion (130) deduced from the Eshelby’s energy principle [52] is imposed∫ 2π

0

∫ π

0

[
σ(eff)

rr u(eq)
r + σ(eff)

rθ u(eq)
θ + σ(eff)

rφ u(eq)
φ − σ

(eq)
rr u(eff)

r − σ
(eq)
rθ u(eff)

θ − σ
(eq)
rφ u(eff)

φ

]
r=r2

sin θ dθ dφ = 0 , (130)

that yields X10 = 0. The remaining unknowns can be determined via imposing the boundary and interface conditions
which are similar to Eqs. (112)–(116) and instead of condition (117), we have

• displacement continuity at r = r2:

u(2)
r (r2) = u(eff)

r (r2) and u(2)
θ (r2) = u(eff)

θ (r2) , (131)

that lead to the system of equations
R11 R12 R13 R14 R15 R16
R21 R22 R23 R24 R25 R26
R31 R32 R33 R34 R35 R36
R41 R42 R43 R44 R45 R46
R51 R52 R53 R54 R55 R56
R61 R62 R63 R64 R65 R66




X1
X2
X5
X6
X7
X8

 =


0
0
0
0
1
1

 +


0
0
0
0

3 f 5/3

−2 f 5/3

 X9 , (132)

with R = P thus, see Appendix A.3. The remaining six unknowns can be obtained as a function of X9. That is
X1
X2
X5
X6
X7
X8

︸︷︷︸
X

= R−1


0
0
0
0
1
1

︸   ︷︷   ︸
a

+ R−1


0
0
0
0

3 f 5/3

−2 f 5/3

︸          ︷︷          ︸
b

X9 =


a1a2a5a6a7a8

 +


b1
b2
b5
b6
b7
b8

 X9 . (133)

Note, the components of the arrays a and b are numbered according to the indices in X. Imposing the stress continuity
between the matrix and the effective medium yields

σ(2)
rr (r2) = σ(eff)

rr (r2) ⇒ g1 + h1X9 = 2Mµ −
24X9

Mµr5
1

r5
2

,

σ(2)
rθ (r2) = σ(eff)

rθ (r2) ⇒ g2 + h2X9 = 3Mµ +
24X9

Mµr5
1

r5
2

,

(134)

with

g1 = 2µ(2)a5 + [3κ(2) − 2µ(2)] f −2/3a6 − 24µ(2) f 5/3a7 − [18κ(2) + 8µ(2)] f a8 ,

h1 = 2µ(2)b5 + [3κ(2) − 2µ(2)] f −2/3b6 − 24µ(2) f 5/3b7 − [18κ(2) + 8µ(2)] f b8 ,

g2 = 3µ(2)a5 −
[
24κ(2) + 5µ(2)

]
f −2/3a6 + 24µ(2) f 5/3a7 + 9κ(2) f a8 ,

h2 = 3µ(2)b5 −
[
24κ(2) + 5µ(2)

]
f −2/3b6 + 24µ(2) f 5/3b7 + 9κ(2) f b8 .

(135)

Equation (134) furnishes

X9 =
5Mµ − g1 − g2

h1 + h2
, (136)

and via replacing X9 from Eq. (136) into (134)1 we obtain
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120 f 5/3Mµ2 +

[
3h1 − 2h2 − 24

[
g1 + g2

]
f 5/3

]
Mµ +

[
g1h2 − g2h1

]
= 0 . (137)

From the two possible solutions of the quadratic equation (137), the positive one is the effective shear modulus. See
Fig. 14 for the illustration of the effective shear modulus Mµ versus the interface position α. Again, smaller α renders
a closer behavior to the cohesive interface model and increasing α yields a stiffer response closer to that of the elastic
interface model.

Table 10: Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding general interfaces

general interface model

Mκ =
3κ(2)S 1 + 4 fµ(2)S 2

3S 3

S 1 =4k
[
λ + µ

]
r1 + kr2

1

[
3κ(1) + 4µ(2)

]
+

[
λ + µ

][
3κ(1) + 4µ(2)

]
+ 12κ(1)µ(2)r1

S 2 =4k
[
λ + µ

]
r1 + 3kr2

1[κ(1) − κ(2)] + 3
[
λ + µ

][
κ(1) − κ(2)

]
− 9κ(1)κ(2)r1

S 3 =4k
[
λ + µ

]
r1

[
1− f

]
+ kr2

1

[
3κ(1)[1− f ] +3 f κ(2)+ 4µ(2)

]
+
[
λ + µ

][[
4µ(2)+3 f κ(2)

]
+3κ(1)[1− f ]

]
+ 3κ(1)r1

[
4µ(2)+3 f κ(2)

]

Mµupper =
1

10

[
10µ(2)X5 − 14

[
3κ(2) + µ(2)

]
f −2/3X6 − 2

[
9κ(2) + 8µ(2)

]
f X8

]
see Appendix B.3

Mµlower =
5

2
[
5X5 − 7

[
1 + 3

κ(2)

µ(2)

]
f −2/3X6 + 6

[
2 +

κ(2)

µ(2)

]
f X8

] see Appendix B.4

120 f 5/3Mµ2 +

[
3h1 − 2h2 − 24

[
g1 + g2

]
f 5/3

]
Mµ +

[
g1h2 − g2h1

]
= 0 see Appendix B.3

Table 11: Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding elastic interfaces

elastic interface model

Mκ =

3κ(2)
[
4
[
λ + µ

]
r1 + r2

1

[
3κ(1) + 4µ(2)

]]
+ 4 fµ(2)

[
4
[
λ + µ

]
r1 + 3r2

1[κ(1) − κ(2)]
]

3
[
4
[
λ + µ

]
r1

[
1− f

]
+ r2

1

[
3κ(1)[1− f ] +3 f κ(2)+ 4µ(2)

]]
Mµupper =

1
10

[
10µ(2)X5 − 14

[
3κ(2) + µ(2)

]
f −2/3X6 − 2

[
9κ(2) + 8µ(2)

]
f X8

]
see Appendix C.3

Mµlower =
5

2
[
5X5 − 7

[
1 + 3

κ(2)

µ(2)

]
f −2/3X6 + 6

[
2 +

κ(2)

µ(2)

]
f X8

] see Appendix C.4

120 f 5/3Mµ2 +

[
3h1 − 2h2 − 24

[
g1 + g2

]
f 5/3

]
Mµ +

[
g1h2 − g2h1

]
= 0 see Appendix C.3
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Table 12: Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding cohesive interfaces

cohesive interface model

Mκ =

3κ(2)
[
kr2

1

[
3κ(1) + 4µ(2)

]
+ 12κ(1)µ(2)r1

]
+ 4 fµ(2)

[
3kr2

1[κ(1) − κ(2)] − 9κ(1)κ(2)r1

]
3
[
kr2

1

[
3κ(1)[1 − f ] + 3 f κ(2) + 4µ(2)

]
+ 3κ(1)r1

[
4µ(2) + 3 f κ(2)

]]
Mµupper =

1
10

[
10µ(2)X5 − 14

[
3κ(2) + µ(2)

]
f −2/3X6 − 2

[
9κ(2) + 8µ(2)

]
f X8

]
see Appendix D.3

Mµlower =
5

2
[
5X5 − 7

[
1 + 3

κ(2)

µ(2)

]
f −2/3X6 + 6

[
2 +

κ(2)

µ(2)

]
f X8

] see Appendix D.4

120 f 5/3Mµ2 +

[
3h1 − 2h2 − 24

[
g1 + g2

]
f 5/3

]
Mµ +

[
g1h2 − g2h1

]
= 0 see Appendix D.3

Table 13: Explicit formulations for the bounds and estimates on the overall bulk and shear moduli of fiber-composites embedding perfect interfaces

perfect interface model

Mκ =
κ(2)

[
3κ(1) + 4µ(2)

]
+ 4 fµ(2)[κ(1) − κ(2)]

3κ(1)[1 − f ] + 3 f κ(2) + 4µ(2)

Mµupper =
1

10

[
10µ(2)X5 − 14

[
3κ(2) + µ(2)

]
f −2/3X6 − 2

[
9κ(2) + 8µ(2)

]
f X8

]
see Appendix E.3

Mµlower =
5

2
[
5X5 − 7

[
1 + 3

κ(2)

µ(2)

]
f −2/3X6 + 6

[
2 +

κ(2)

µ(2)

]
f X8

] see Appendix E.4

120 f 5/3Mµ2 +

[
3h1 − 2h2 − 24

[
g1 + g2

]
f 5/3

]
Mµ +

[
g1h2 − g2h1

]
= 0 see Appendix E.3

4.6. Recovering general, elastic, cohesive and interface models
This section briefly provides the previously obtained solutions for the bounds and estimates on the elastic moduli for
the general, cohesive, elastic and perfect interface models. As mentioned before, the general interface model can be
recovered by setting α = 0.5. The cohesive interface model is recovered when λ = µ = 0 and α = 0.5. The cohesive
interface model is recovered when λ , 0, µ , 0 and k → ∞ and α = 0.5. Finally, the perfect interface model is
recovered when λ = µ = 0 and k → ∞ and α = 0.5. Tables 10–13 show the formulations for the effective bulk and
shear moduli and the bounds on the shear modulus for particle-reinforced composites embedding the general, elastic,
cohesive and perfect interfaces, respectively.

Remark on computational implementation using FEM. Limiting the analysis here to mono-disperse particles/fibers
is an underlying assumption to derive meaningful analytical estimates. While analytical homogenization proves useful
in understanding the behavior of composites accounting for extended general interfaces, it is virtually impossible to
explain the effective response of more complex micro-structures with poly-disperse particles/fibers, shown in Fig. 15,
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Figure 15: Schematic illustration of complex poly-disperse micro-structures for fiber-composites (left) and particulate-composites (right).

without recourse to computational methods such as FEM. The first step towards the finite element implementation of
our theory is to derive the weak form of the governing equations. To do so, the strong form of the linear momentum
balance for the bulk and interface is contracted from left by a vector-valued test function δϕ ∈ H1(B) and δϕ ∈ H1(I),
respectively, where H1 denotes the Sobolev space of order one. Then the resulting equation is integrated over the
corresponding domain. The test functions are specified to be zero on the Dirichlet part of the boundary. Integrating
equations (7) and (13) over their respective domains, the integral form of the linear momentum balance reads∫

B

Divσ dV +

∫
I

Divσ dA +

∫
I

[[σ]] · ndA = 0 . (138)

Upon contracting with the test functions and using the divergence theorem, after some mathematical steps, the weak
form of the linear momentum balance reads∫

B

σ : Grad δϕ dV +

∫
I

σ : Grad δϕ dA +

∫
I

t · [[δϕ]] dA −
∫
∂B

δϕ · t0 dA = 0 , (139)

where t0 is the prescribed traction on the boundary of the body. In view of the weak form (139), the interface position
enters through α reflected in t = {{σ}}[1−α] · n. As mentioned earlier, the body forces are neglected since we limit
our discussion to the micro-scale problem. The last integral in Eq. (139) acts on the boundary of the domain and is
therefore not influenced by the interface at the micro-scale. This term is standard in all computational homogenization
schemes dependent on the boundary condition imposed on the RVE. For further details on implementing boundary
conditions in computational homogenization, see e.g. Saeb et al. [166]. Note that in this context, it proves convenient
to use a curvilinear-coordinate-based finite element method [633] since it mimics the underlying geometrical and
mathematical concepts for two dimensional manifolds embedded into a three dimensional space. Further details of
the computational implementation of the scheme is omitted, for the sake of brevity. The analytical solutions here are
compared with our computational simulations and an excellent agreement is observed consistently.

Figures 16 and 17 provide a thorough comparison between the extended general interface model and the classical
interface models for both fiber-reinforced and particle-reinforced composites. The general interface model is recov-
ered via setting α = 0.5. The elastic interface model can be recovered from our model via setting k → ∞ and α = 0.5,
the cohesive interface model can be recovered via setting λ = 0, µ = 0 and α = 0.5. The top segment in each figure
corresponds to the effective bulk modulus and the bottom segment corresponds to the effective shear modulus. For the
top segments, volumetric expansion is prescribed on the RVE to compute the effective bulk modulus Mκ and the stress
distribution throughout the RVEs is depicted. Pressure-like quantities [σxx + σyy]/2 for the two-dimensional case and
[σxx + σyy + σzz]/3 for the three-dimensional case are illustrated as relevant stress measures. On the other hand, for
the bottom segments, simple shear is prescribed on the RVE to compute the effective shear modulus Mµ in which case
the shear stress σxy is provided as a more appropriate quantity. The left and right plots in each segment exhibit two
different views of the same graph representing the variation of the overall modulus with respect to stiffness ratio as
well as RVE size. In these graphs the extended general interface model with various interface positions α is compared
against the general, cohesive and the elastic interface models. To better understand the surface plots, the two plots at
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Figure 16: Comparison of the overall material response obtained from the extended general interface model, general interface model, cohesive
interface model and elastic interface model. The top segment corresponds to the effective bulk modulus and the bottom segment corresponds to the
effective shear modulus. The left and right plots in each segment exhibit two different views of the same graph representing the variation of the
overall modulus with respect to stiffness ratio as well as RVE size. To better illustrate the variation of the moduli, the two plots at the center depict
two cut-outs of the side plots; one cut at incl./matr. = 1 with varying size and one cut at size = 1 with varying stiffness ratio.
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Figure 17: Comparison of the overall material response obtained from the extended general interface model, general interface model, cohesive
interface model and elastic interface model. The top segment corresponds to the effective bulk modulus and the bottom segment corresponds to the
effective shear modulus. The left and right plots in each segment exhibit two different views of the same graph representing the variation of the
overall modulus with respect to stiffness ratio as well as RVE size. To better illustrate the variation of the moduli, the two plots at the center depict
two cut-outs of the side plots; one cut at incl./matr. = 1 with varying size and one cut at size = 1 with varying stiffness ratio.
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the center depict two sections of the plots on the sides; one at incl./matr. = 1 with varying size and one at size = 1 with
varying stiffness ratio. In these plots, the solutions associated with the extended general interface model are illustrated
by points and the solutions obtained by the cohesive and elastic interface models are depicted by lines. Again, note that
the extended general interface model at α = 0.5 coincides with the general interface model. The stress distributions
are elaborated for incl./matr. = 1 and at size = 1. It is observed that the material response due to extended general
interfaces is always bounded between the response due the cohesive interface from below and the elastic interface
from above. When α = 0 the material response is closer to the cohesive interface. Increasing α results in a stiffer
response where the material behavior tends to approach the elastic interface model. Another interesting observation is
that the effective properties obtained by the elastic interface model is identical to the extended general interface model
with α = 1 for compliant inclusions or in other words small stiffness ratios (left surface plots). However, for large
stiffness ratios, the elastic interface response overestimates the response due to the extended general interface model
with α = 1 (right surface plots). An opposite trend can be seen between the cohesive interface model and the extended
general interface model with α = 0. For very stiff inclusions, the material renders identical behavior for these two
interface models whereas for compliant inclusions, their responses deviate from each other with the cohesive interface
model rendering a more compliant response. This trend can be observed more clearly in the bottom plots at the center
in each figure where the effective moduli versus the stiffness ratio is shown at size = 1. Looking at the top plots at
the center associated with incl./matr. = 1, we observe that all the interface models tend to converge at large sizes that
is intuitive due to diminishing interface effects. On the other hand, at small sizes, the solutions are distinct from each
other. Moving the interface from the inclusion towards the matrix (increasing α) leads the overall material response
to shift from smaller-weaker to smaller-stronger.

5. Conclusion

This manuscript provides a comprehensive review on homogenization of composites embedding interfaces. First, the
historical development of analytical and computational methods available in the literature to model heterogeneous
materials has been reviewed; their specific features were extensively discussed and compared in several cases. Next,
interphases between the constituents of a heterogeneous medium were introduced. Various interphase types as well
different analytical and computational schemes developed to analyze them were extensively studied. This was then
followed by an extensive review on canonical interface models developed to capture interphases. Balance equations
governing the interface models were revisited and a major conjecture restricting the position of the interface to the mid-
layer in the general interface model was pointed out. We demonstrated that the assumption of enforcing the interface to
coincide with the mid-layer is unnecessary and consequently, we developed an extended general interface model where
the interface is allowed to occupy any arbitrary position between its bulk neighbors. We extended the homogenization
technique to account for this novel interface model and, for the first time, proposed explicit expressions for the effective
bulk modulus, effective shear modulus as well as the upper and lower bound on the effective shear modulus of fiber-
reinforced and particle-reinforced composites embedding the extended general interface model. We showed that the
choice of the interface position can lead to smaller-stronger or smaller-weaker responses, which were usually attributed
to the elastic and cohesive interface models, respectively. Our proposed interface model can recover any of the general
interface model, elastic interface model, cohesive interface model and perfect interface model. A finite element
framework suitable for the extended general interface model was established. Finally, we presented an exhaustive
parametric study through numerical examples and examined the overall behavior of composites. Excellent agreements
between the computational and our proposed analytical solutions were observed. The presented examples show the
potential of the extended general interface model to understand and design architected materials with extraordinary
properties. We believe that this manuscript deepens our understanding of the interface effects and size-dependent
behavior of composites which, in turn, paves the way towards computational design of metamaterials.
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Appendix A. Coefficients for bounds and estimates on the shear modulus of composites embedding extended
general interfaces

This section elaborates on the components of the matrices constructed from the system of equations that were obtained
via imposing the boundary and the interface conditions.

Appendix A.1. Upper bound on the shear modulus and effective shear modulus for fiber composites embedding ex-
tended general interfaces

D11 =
λ(1)r1

[2κ(1) + µ(1)]
, D21 =

6αµ(1)κ(1) + k[2κ(1) + µ(1)]r1

k[2κ(1) + µ(1)]
, D31 =

6[1 − α]µ[κ(1) + µ(1)]
r1[2κ(1) + µ(1)]

,

D12 =
2αµ(1) + kr1

k
, D22 =

2αµ(1) + kr1

k
, D32 =

2[1 − α]µ − 2µ(1)r1

r1
,

D13 =
−λ2r1

[2κ(2) + µ(2)]
, D23 =

6[1 − α]κ(2)µ(2) − k[2κ(2) + µ(2)]r1

k[2κ(2) + µ(2)]
, D33 =

6αµ[κ(2) + µ(2)]
r1[2κ(2) + µ(2)]

,

D14 =
2[1 − α]µ(2) − kr1

k
, D24 =

2[1 − α]µ(2) − kr1

k
, D34 =

2αµ + 2µ(2)r1

r1
,

D15 =
6[1 − α]µ(2) + kr1

k
, D25 =

−6[1 − α]µ(2) − kr1

k
, D35 =

6αµ + 6µ(2)r1

r1
,

D16 =
−4[1 − α]κ(2)µ(2) − kr1[κ(2) + µ(2)]

µ(2)k
, D26 =

2[1 − α]κ(2) − kr1

k
, D36 =

−2αµλ2 − 4κ(2)µ(2)r1

µ(2)r1
,

D41 = −
−12[1 − α]µ[κ(1) + µ(1)] − 6µ(1)κ(1)r1

r1[2κ(1) + µ(1)]
, D51 = 0 , D61 = 0 ,

D42 =
−4[1 − α]µ − 2µ(1)r1

r1
, D52 = 0 , D62 = 0 ,

D43 =
−12αµ[κ(2) + µ(2)] + 6µ(2)κ(2)r1

r1[2κ(2) + µ(2)]
, D53 =

λ2

f [2κ(2) + µ(2)]
, D63 =

1
f
,

D44 =
−4αµ + 2µ(2)r1

r1
, D54 = 1 , D64 = 1 ,

D45 =
−12αµ − 6µ(2)r1

r1
, D55 = − f 2 , D65 = f 2 ,

D46 =
4αµλ2 + 2κ(2)µ(2)r1

µ(2)r1
, D56 =

f [κ(2) + µ(2)]
µ(2) , D66 = f .

(A.1)
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Appendix A.2. Lower bound on the shear modulus for fiber composites embedding extended general interfaces

E11 =
λ(1)r1

[2κ(1) + µ(1)]
, E21 =

6αµ(1)κ(1) + k[2κ(1) + µ(1)]r1

k[2κ(1) + µ(1)]
, E31 =

6[1 − α]µ[κ(1) + µ(1)]
r1[2κ(1) + µ(1)]

,

E12 =
2αµ(1) + kr1

k
, E22 =

2αµ(1) + kr1

k
, E32 =

2[1 − α]µ − 2µ(1)r1

r1
,

E13 =
−λ2r1

[2κ(2) + µ(2)]
, E23 =

6[1 − α]κ(2)µ(2) − k[2κ(2) + µ(2)]r1

k[2κ(2) + µ(2)]
, E33 =

6αµ[κ(2) + µ(2)]
r1[2κ(2) + µ(2)]

,

E14 =
2[1 − α]µ(2) − kr1

k
, E24 =

2[1 − α]µ(2) − kr1

k
, E34 =

2αµ + 2µ(2)r1

r1
,

E15 =
6[1 − α]µ(2) + kr1

k
, E25 =

−6[1 − α]µ(2) − kr1

k
, E35 =

6αµ + 6µ(2)r1

r1
,

E16 =
−4[1 − α]κ(2)µ(2) − kr1[κ(2) + µ(2)]

µ(2)k
, E26 =

2[1 − α]κ(2) − kr1

k
, E36 =

−2αµλ2 − 4κ(2)µ(2)r1

µ(2)r1
,

E41 = −
−12[1 − α]µ[κ(1) + µ(1)] − 6µ(1)κ(1)r1

r1[2κ(1) + µ(1)]
, E51 = 0 , E61 = 0 ,

E42 =
−4[1 − α]µ − 2µ(1)r1

r1
, E52 = 0 , E62 = 0 ,

E43 =
−12αµ[κ(2) + µ(2)] + 6µ(2)κ(2)r1

r1[2κ(2) + µ(2)]
, E53 = 0 , E63 =

6κ(2)µ(2)

f [2κ(2) + µ(2)]
,

E44 =
−4αµ + 2µ(2)r1

r1
, E54 = 2µ(2) , E64 = 2µ(2) ,

E45 =
−12αµ − 6µ(2)r1

r1
, E55 = 6µ(2) f 2 , E65 = −6µ(2) f 2 ,

E46 =
4αµλ2 + 2κ(2)µ(2)r1

µ(2)r1
, E56 = −4κ(2) f , E66 = 2κ(2) f .

(A.2)
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Appendix A.3. Upper bound on the shear modulus and effective shear modulus for particulate composites embedding
extended general interfaces

P11 =
2αµ(1) + kr1

k
, P12 =

[
αµ(1) − kr1

][
3κ(1) − 2µ(1)

]
kµ(1)

,

P13 =
2[1 − α]µ(2) − kr1

k
, P14 =

[
3κ(2) − 2µ(2)

][
[1 − α]µ(2) + kr1

]
kµ(2)

,

P15 =
−24[1 − α]µ(2) − 3kr1

k
, P16 =

−2[1 − α]µ(2)
[
9κ(2) + 4µ(2)

]
− 3kr1

[
κ(2) + µ(2)

]
kµ(2)

,

P21 =
2αµ(1) + kr1

k
, P22 =

−2αµ(1)
[
24κ(1) + 5µ(1)

]
− kr1

[
15κ(1) + 11µ(1)

]
3kµ(1)

,

P23 =
2[1 − α]µ(2) − kr1

k
, P24 =

−2[1 − α]µ(2)
[
24κ(2) + 5µ(2)

]
+ kr1

[
15κ(2) + 11µ(2)

]
3kµ(2)

,

P25 =
16[1 − α]µ(2) + 2kr1

k
, P26 =

6[1 − α]κ(2) − 2kr1

k
,

P31 =
2[1 − α]

[
λ + µ

]
− 2µ(1)r1

r1
, P32 =

−2[1 − α]
[
λ + µ

][
9κ(1) + 15µ(1)

]
− µ(1)r1

[
3κ(1) − 2µ(1)

]
µ(1)r1

,

P33 =
2α

[
λ + µ

]
+ 2µ(2)r1

r1
, P34 =

−2α
[
λ + µ

][
9κ(2) + 15µ(2)

]
+ µ(2)r1

[
3κ(2) − 2µ(2)

]
µ(2)r1

,

P35 = −

24
[
α
[
λ + µ

]
+ µ(2)r1

]
r1

, P36 = −

2
[
6ακ(2)

[
λ + µ

]
+ µ(2)r1

[
9κ(2) + 4µ(2)

]]
µ(2)r1

,

P41 =
−2[1 − α]

[
λ + 3µ

]
− 2µ(1)r1

r1
, P42 =

2[1 − α]κ(1)
[
27λ + 57µ

]
+ 2[1 − α]µ(1)

[
45λ + 67µ

]
+ 2µ(1)r1

[
24κ(1) + 5µ(1)

]
3µ(1)r1

,

P43 =
−2α

[
λ + 3µ

]
+ 2µ(2)r1

r1
, P44 =

2ακ(2)
[
27λ + 57µ

]
+ 2αµ(2)

[
45λ + 67µ

]
− 2µ(2)r1

[
24κ(2) + 5µ(2)

]
3µ(2)r1

,

P45 =

8
[
α
[
3λ + 4µ

]
+ 2µ(2)r1

]
r1

, P46 =

2
[
6ακ(2)

[
λ + µ

]
− 4αµ(2)µ + 3κ(2)µ(2)r1

]
µ(2)r1

,

P51 = 0 , P52 = 0 ,

P53 = 1 , P54 =

[
2 − 3

κ(2)

µ(2)

]
f −2/3 ,

P55 = 3 f 5/3 , P56 =

[
3 +

3κ(2)

µ(2)

]
f ,

P61 = 0 , P62 = 0 ,

P63 = 1 , P64 = −

[
11
3

+ 5
κ(2)

µ(2)

]
f −2/3 ,

P65 = −2 f 5/3 , P66 = 2 f ,

(A.3)
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Appendix A.4. Lower bound on the shear modulus for particulate composites embedding extended general interfaces

Q11 =
2αµ(1) + kr1

k
, Q12 =

[
αµ(1) − kr1

][
3κ(1) − 2µ(1)

]
kµ(1)

,

Q13 =
2[1 − α]µ(2) − kr1

k
, Q14 =

[
3κ(2) − 2µ(2)

][
[1 − α]µ(2) + kr1

]
kµ(2)

,

Q15 =
−24[1 − α]µ(2) − 3kr1

k
, Q16 =

−2[1 − α]µ(2)
[
9κ(2) + 4µ(2)

]
− 3kr1

[
κ(2) + µ(2)

]
kµ(2)

,

Q21 =
2αµ(1) + kr1

k
, Q22 =

−2αµ(1)
[
24κ(1) + 5µ(1)

]
− kr1

[
15κ(1) + 11µ(1)

]
3kµ(1)

,

Q23 =
2[1 − α]µ(2) − kr1

k
, Q24 =

−2[1 − α]µ(2)
[
24κ(2) + 5µ(2)

]
+ kr1

[
15κ(2) + 11µ(2)

]
3kµ(2)

,

Q25 =
16[1 − α]µ(2) + 2kr1

k
, Q26 =

6[1 − α]κ(2) − 2kr1

k
,

Q31 =
2[1 − α]

[
λ + µ

]
− 2µ(1)r1

r1
, Q32 =

−2[1 − α]
[
λ + µ

][
9κ(1) + 15µ(1)

]
− µ(1)r1

[
3κ(1) − 2µ(1)

]
µ(1)r1

,

Q33 =
2α

[
λ + µ

]
+ 2µ(2)r1

r1
, Q34 =

−2α
[
λ + µ

][
9κ(2) + 15µ(2)

]
+ µ(2)r1

[
3κ(2) − 2µ(2)

]
µ(2)r1

,

Q35 = −

24
[
α
[
λ + µ

]
+ µ(2)r1

]
r1

, Q36 = −

2
[
6ακ(2)

[
λ + µ

]
+ µ(2)r1

[
9κ(2) + 4µ(2)

]]
µ(2)r1

,

Q41 =
−2[1 − α]

[
λ + 3µ

]
− 2µ(1)r1

r1
, Q42 =

2[1 − α]κ(1)
[
27λ + 57µ

]
+ 2[1 − α]µ(1)

[
45λ + 67µ

]
+ 2µ(1)r1

[
24κ(1) + 5µ(1)

]
3µ(1)r1

,

Q43 =
−2α

[
λ + 3µ

]
+ 2µ(2)r1

r1
, Q44 =

2ακ(2)
[
27λ + 57µ

]
+ 2αµ(2)

[
45λ + 67µ

]
− 2µ(2)r1

[
24κ(2) + 5µ(2)

]
3µ(2)r1

,

Q45 =

8
[
α
[
3λ + 4µ

]
+ 2µ(2)r1

]
r1

, Q46 =

2
[
6ακ(2)

[
λ + µ

]
− 4αµ(2)µ + 3κ(2)µ(2)r1

]
µ(2)r1

,

Q51 = 0 , Q52 = 0 ,

Q53 = 2µ(2) , Q54 =
[
3κ(2) − 2µ(2)

]
f −2/3 ,

Q55 = −24µ(2) f 5/3 , Q56 = −2
[
9κ(2) + 4µ(2)

]
f ,

Q61 = 0 , Q62 = 0 ,

Q63 = 2µ(2) , Q64 = −
2
3

[
24κ(2) + 5µ(2)

]
f −2/3 ,

Q65 = 16µ(2) f 5/3 , Q66 = 6κ(2) f ,

(A.4)

Appendix B. Coefficients for bounds and estimates on the shear modulus of composites embedding general
interfaces

In this section, the coefficient matrices matrices corresponding to the bounds and estimates on the shear modulus of
composites embedding general interfaces are presented.
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Appendix B.1. Upper bound on the shear modulus and effective shear modulus for fiber composites embedding gen-
eral interfaces

D11 =
λ(1)r1

[2κ(1) + µ(1)]
, D21 =

3µ(1)κ(1) + k[2κ(1) + µ(1)]r1

k[2κ(1) + µ(1)]
, D31 =

3µ[κ(1) + µ(1)]
r1[2κ(1) + µ(1)]

,

D12 =
µ(1) + kr1

k
, D22 =

µ(1) + kr1

k
, D32 =

µ − 2µ(1)r1

r1
,

D13 =
−λ2r1

[2κ(2) + µ(2)]
, D23 =

3κ(2)µ(2) − k[2κ(2) + µ(2)]r1

k[2κ(2) + µ(2)]
, D33 =

3µ[κ(2) + µ(2)]
r1[2κ(2) + µ(2)]

,

D14 =
µ(2) − kr1

k
, D24 =

µ(2) − kr1

k
, D34 =

µ + 2µ(2)r1

r1
,

D15 =
3µ(2) + kr1

k
, D25 =

−3µ(2) − kr1

k
, D35 =

3µ + 6µ(2)r1

r1
,

D16 =
−2κ(2)µ(2) − kr1[κ(2) + µ(2)]

µ(2)k
, D26 =

κ(2) − kr1

k
, D36 =

−µλ2 − 4κ(2)µ(2)r1

µ(2)r1
,

D41 = −
−6µ[κ(1) + µ(1)] − 6µ(1)κ(1)r1

r1[2κ(1) + µ(1)]
, D51 = 0 , D61 = 0 ,

D42 =
−2µ − 2µ(1)r1

r1
, D52 = 0 , D62 = 0 ,

D43 =
−6µ[κ(2) + µ(2)] + 6µ(2)κ(2)r1

r1[2κ(2) + µ(2)]
, D53 =

λ2

f [2κ(2) + µ(2)]
, D63 =

1
f
,

D44 =
−2µ + 2µ(2)r1

r1
, D54 = 1 , D64 = 1 ,

D45 =
−6µ − 6µ(2)r1

r1
, D55 = − f 2 , D65 = f 2 ,

D46 =
2µλ2 + 2κ(2)µ(2)r1

µ(2)r1
, D56 =

f [κ(2) + µ(2)]
µ(2) , D66 = f .

(B.1)
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Appendix B.2. Lower bound on the shear modulus for fiber composites embedding general interfaces

E11 =
λ(1)r1

[2κ(1) + µ(1)]
, E21 =

3µ(1)κ(1) + k[2κ(1) + µ(1)]r1

k[2κ(1) + µ(1)]
, E31 =

3µ[κ(1) + µ(1)]
r1[2κ(1) + µ(1)]

,

E12 =
µ(1) + kr1

k
, E22 =

µ(1) + kr1

k
, E32 =

µ − 2µ(1)r1

r1
,

E13 =
−λ2r1

[2κ(2) + µ(2)]
, E23 =

3κ(2)µ(2) − k[2κ(2) + µ(2)]r1

k[2κ(2) + µ(2)]
, E33 =

3µ[κ(2) + µ(2)]
r1[2κ(2) + µ(2)]

,

E14 =
µ(2) − kr1

k
, E24 =

µ(2) − kr1

k
, E34 =

µ + 2µ(2)r1

r1
,

E15 =
3µ(2) + kr1

k
, E25 =

−3µ(2) − kr1

k
, E35 =

3µ + 6µ(2)r1

r1
,

E16 =
−2κ(2)µ(2) − kr1[κ(2) + µ(2)]

µ(2)k
, E26 =

κ(2) − kr1

k
, E36 =

−µλ2 − 4κ(2)µ(2)r1

µ(2)r1
,

E41 = −
−6µ[κ(1) + µ(1)] − 6µ(1)κ(1)r1

r1[2κ(1) + µ(1)]
, E51 = 0 , E61 = 0 ,

E42 =
−2µ − 2µ(1)r1

r1
, E52 = 0 , E62 = 0 ,

E43 =
−6µ[κ(2) + µ(2)] + 6µ(2)κ(2)r1

r1[2κ(2) + µ(2)]
, E53 = 0 , E63 =

6κ(2)µ(2)

f [2κ(2) + µ(2)]
,

E44 =
−2µ + 2µ(2)r1

r1
, E54 = 2µ(2) , E64 = 2µ(2) ,

E45 =
−6µ − 6µ(2)r1

r1
, E55 = 6µ(2) f 2 , E65 = −6µ(2) f 2 ,

E46 =
2µλ2 + 2κ(2)µ(2)r1

µ(2)r1
, E56 = −4κ(2) f , E66 = 2κ(2) f .

(B.2)
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Appendix B.3. Upper bound on the shear modulus and effective shear modulus for particulate composites embedding
general interfaces

P11 =
µ(1) + kr1

k
, P12 =

[
1
2µ

(1) − kr1

][
3κ(1) − 2µ(1)

]
kµ(1)

,

P13 =
µ(2) − kr1

k
, P14 =

[
3κ(2) − 2µ(2)

][
1
2µ

(2) + kr1

]
kµ(2)

,

P15 =
−12µ(2) − 3kr1

k
, P16 =

−µ(2)
[
9κ(2) + 4µ(2)

]
− 3kr1

[
κ(2) + µ(2)

]
kµ(2)

,

P21 =
µ(1) + kr1

k
, P22 =

−µ(1)
[
24κ(1) + 5µ(1)

]
− kr1

[
15κ(1) + 11µ(1)

]
3kµ(1)

,

P23 =
µ(2) − kr1

k
, P24 =

−µ(2)
[
24κ(2) + 5µ(2)

]
+ kr1

[
15κ(2) + 11µ(2)

]
3kµ(2)

,

P25 =
8µ(2) + 2kr1

k
, P26 =

3κ(2) − 2kr1

k
,

P31 =

[
λ + µ

]
− 2µ(1)r1

r1
, P32 =

−
[
λ + µ

][
9κ(1) + 15µ(1)

]
− µ(1)r1

[
3κ(1) − 2µ(1)

]
µ(1)r1

,

P33 =

[
λ + µ

]
+ 2µ(2)r1

r1
, P34 =

−
[
λ + µ

][
9κ(2) + 15µ(2)

]
+ µ(2)r1

[
3κ(2) − 2µ(2)

]
µ(2)r1

,

P35 =
−12

[
λ + µ

]
− 24µ(2)r1

r1
, P36 = −

6κ(2)
[
λ + µ

]
+ 2µ(2)r1

[
9κ(2) + 4µ(2)

]
µ(2)r1

,

P41 =
−
[
λ + 3µ

]
− 2µ(1)r1

r1
, P42 =

κ(1)
[
27λ + 57µ

]
+ µ(1)

[
45λ + 67µ

]
+ 2µ(1)r1

[
24κ(1) + 5µ(1)

]
3µ(1)r1

,

P43 =
−
[
λ + 3µ

]
+ 2µ(2)r1

r1
, P44 =

κ(2)
[
27λ + 57µ

]
+ µ(2)

[
45λ + 67µ

]
− 2µ(2)r1

[
24κ(2) + 5µ(2)

]
3µ(2)r1

,

P45 =
12λ + 16µ + 16µ(2)r1

r1
, P46 =

6κ(2)
[
λ + µ

]
− 4µ(2)µ + 6κ(2)µ(2)r1

µ(2)r1
,

P51 = 0 , P52 = 0 ,

P53 = 1 , P54 =

[
2 − 3

κ(2)

µ(2)

]
f −2/3 ,

P55 = 3 f 5/3 , P56 =

[
3 +

3κ(2)

µ(2)

]
f ,

P61 = 0 , P62 = 0 ,

P63 = 1 , P64 = −

[
11
3

+ 5
κ(2)

µ(2)

]
f −2/3 ,

P65 = −2 f 5/3 , P66 = 2 f ,

(B.3)
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Appendix B.4. Lower bound on the shear modulus for particulate composites embedding general interfaces

Q11 =
µ(1) + kr1

k
, Q12 =

[
1
2µ

(1) − kr1

][
3κ(1) − 2µ(1)

]
kµ(1)

,

Q13 =
µ(2) − kr1

k
, Q14 =

[
3κ(2) − 2µ(2)

][
1
2µ

(2) + kr1

]
kµ(2)

,

Q15 =
−12µ(2) − 3kr1

k
, Q16 =

−µ(2)
[
9κ(2) + 4µ(2)

]
− 3kr1

[
κ(2) + µ(2)

]
kµ(2)

,

Q21 =
µ(1) + kr1

k
, Q22 =

−µ(1)
[
24κ(1) + 5µ(1)

]
− kr1

[
15κ(1) + 11µ(1)

]
3kµ(1)

,

Q23 =
µ(2) − kr1

k
, Q24 =

−µ(2)
[
24κ(2) + 5µ(2)

]
+ kr1

[
15κ(2) + 11µ(2)

]
3kµ(2)

,

Q25 =
8µ(2) + 2kr1

k
, Q26 =

3κ(2) − 2kr1

k
,

Q31 =

[
λ + µ

]
− 2µ(1)r1

r1
, Q32 =

−
[
λ + µ

][
9κ(1) + 15µ(1)

]
− µ(1)r1

[
3κ(1) − 2µ(1)

]
µ(1)r1

,

Q33 =

[
λ + µ

]
+ 2µ(2)r1

r1
, Q34 =

−
[
λ + µ

][
9κ(2) + 15µ(2)

]
+ µ(2)r1

[
3κ(2) − 2µ(2)

]
µ(2)r1

,

Q35 =
−12

[
λ + µ

]
− 24µ(2)r1

r1
, Q36 =

−6κ(2)
[
λ + µ

]
− 2µ(2)r1

[
9κ(2) + 4µ(2)

]
µ(2)r1

,

Q41 =
−
[
λ + 3µ

]
− 2µ(1)r1

r1
, Q42 =

κ(1)
[
27λ + 57µ

]
+ µ(1)

[
45λ + 67µ

]
+ 2µ(1)r1

[
24κ(1) + 5µ(1)

]
3µ(1)r1

,

Q43 =
−
[
λ + 3µ

]
+ 2µ(2)r1

r1
, Q44 =

κ(2)
[
27λ + 57µ

]
+ µ(2)

[
45λ + 67µ

]
− 2µ(2)r1

[
24κ(2) + 5µ(2)

]
3µ(2)r1

,

Q45 =
12λ + 16µ + 16µ(2)r1

r1
, Q46 =

6κ(2)
[
λ + µ

]
− 4µ(2)µ + 6κ(2)µ(2)r1

µ(2)r1
,

Q51 = 0 , Q52 = 0 ,

Q53 = 2µ(2) , Q54 =
[
3κ(2) − 2µ(2)

]
f −2/3 ,

Q55 = −24µ(2) f 5/3 , Q56 = −2
[
9κ(2) + 4µ(2)

]
f ,

Q61 = 0 , Q62 = 0 ,

Q63 = 2µ(2) , Q64 = −
2
3

[
24κ(2) + 5µ(2)

]
f −2/3 ,

Q65 = 16µ(2) f 5/3 , Q66 = 6κ(2) f ,

(B.4)

Appendix C. Coefficients for bounds and estimates on the shear modulus of composites embedding elastic
interfaces

In this section, the coefficient matrices matrices corresponding to the bounds and estimates on the shear modulus of
composites embedding elastic interfaces are presented.
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Appendix C.1. Upper bound on the shear modulus and effective shear modulus for fiber composites embedding elas-
tic interfaces

D11 =
λ(1)r1

[2κ(1) + µ(1)]
, D21 = r1 , D31 =

3µ[κ(1) + µ(1)]
r1[2κ(1) + µ(1)]

,

D12 = r1 , D22 = r1 , D32 =
µ − 2µ(1)r1

r1
,

D13 =
−λ2r1

[2κ(2) + µ(2)]
, D23 = −r1 , D33 =

3µ[κ(2) + µ(2)]
r1[2κ(2) + µ(2)]

,

D14 = −r1 , D24 = −r1 , D34 =
µ + 2µ(2)r1

r1
,

D15 = r1 , D25 = −r1 , D35 =
3µ + 6µ(2)r1

r1
,

D16 =
−r1[κ(2) + µ(2)]

µ(2) , D26 = −r1 , D36 =
−µλ2 − 4κ(2)µ(2)r1

µ(2)r1
,

D41 = −
−6µ[κ(1) + µ(1)] − 6µ(1)κ(1)r1

r1[2κ(1) + µ(1)]
, D51 = 0 , D61 = 0 ,

D42 =
−2µ − 2µ(1)r1

r1
, D52 = 0 , D62 = 0 ,

D43 =
−6µ[κ(2) + µ(2)] + 6µ(2)κ(2)r1

r1[2κ(2) + µ(2)]
, D53 =

λ2

f [2κ(2) + µ(2)]
, D63 =

1
f
,

D44 =
−2µ + 2µ(2)r1

r1
, D54 = 1 , D64 = 1 ,

D45 =
−6µ − 6µ(2)r1

r1
, D55 = − f 2 , D65 = f 2 ,

D46 =
2µλ2 + 2κ(2)µ(2)r1

µ(2)r1
, D56 =

f [κ(2) + µ(2)]
µ(2) , D66 = f .

(C.1)
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Appendix C.2. Lower bound on the shear modulus for fiber composites embedding elastic interfaces

E11 =
λ(1)r1

[2κ(1) + µ(1)]
, E21 = r1 , E31 =

3µ[κ(1) + µ(1)]
r1[2κ(1) + µ(1)]

,

E12 = r1 , E22 = r1 , E32 =
µ − 2µ(1)r1

r1
,

E13 =
−λ2r1

[2κ(2) + µ(2)]
, E23 = −r1 , E33 =

3µ[κ(2) + µ(2)]
r1[2κ(2) + µ(2)]

,

E14 = −r1 , E24 = −r1 , E34 =
µ + 2µ(2)r1

r1
,

E15 = r1 , E25 = −r1 , E35 =
3µ + 6µ(2)r1

r1
,

E16 =
−r1[κ(2) + µ(2)]

µ(2) , E26 = −r1 , E36 =
−µλ2 − 4κ(2)µ(2)r1

µ(2)r1
,

E41 = −
−6µ[κ(1) + µ(1)] − 6µ(1)κ(1)r1

r1[2κ(1) + µ(1)]
, E51 = 0 , E61 = 0 ,

E42 =
−2µ − 2µ(1)r1

r1
, E52 = 0 , E62 = 0 ,

E43 =
−6µ[κ(2) + µ(2)] + 6µ(2)κ(2)r1

r1[2κ(2) + µ(2)]
, E53 = 0 , E63 =

6κ(2)µ(2)

f [2κ(2) + µ(2)]
,

E44 =
−2µ + 2µ(2)r1

r1
, E54 = 2µ(2) , E64 = 2µ(2) ,

E45 =
−6µ − 6µ(2)r1

r1
, E55 = 6µ(2) f 2 , E65 = −6µ(2) f 2 ,

E46 =
2µλ2 + 2κ(2)µ(2)r1

µ(2)r1
, E56 = −4κ(2) f , E66 = 2κ(2) f .

(C.2)
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Appendix C.3. Upper bound on the shear modulus and effective shear modulus for particulate composites embedding
elastic interfaces

P11 = r1 , P12 =
−r1

[
3κ(1) − 2µ(1)

]
µ(1) ,

P13 = −r1 , P14 =
r1

[
3κ(2) − 2µ(2)

]
µ(2) ,

P15 = −3r1 , P16 =
−3r1

[
κ(2) + µ(2)

]
µ(2) ,

P21 = r1 , P22 =
−r1

[
15κ(1) + 11µ(1)

]
3µ(1) ,

P23 = −r1 , P24 =
r1

[
15κ(2) + 11µ(2)

]
3µ(2) ,

P25 = 2r1 , P26 = −2r1 ,

P31 =

[
λ + µ

]
− 2µ(1)r1

r1
, P32 =

−
[
λ + µ

][
9κ(1) + 15µ(1)

]
− µ(1)r1

[
3κ(1) − 2µ(1)

]
µ(1)r1

,

P33 =

[
λ + µ

]
+ 2µ(2)r1

r1
, P34 =

−
[
λ + µ

][
9κ(2) + 15µ(2)

]
+ µ(2)r1

[
3κ(2) − 2µ(2)

]
µ(2)r1

,

P35 =
−12

[
λ + µ

]
− 24µ(2)r1

r1
, P36 = −

6κ(2)
[
λ + µ

]
+ 2µ(2)r1

[
9κ(2) + 4µ(2)

]
µ(2)r1

,

P41 =
−
[
λ + 3µ

]
− 2µ(1)r1

r1
, P42 =

κ(1)
[
27λ + 57µ

]
+ µ(1)

[
45λ + 67µ

]
+ 2µ(1)r1

[
24κ(1) + 5µ(1)

]
3µ(1)r1

,

P43 =
−
[
λ + 3µ

]
+ 2µ(2)r1

r1
, P44 =

κ(2)
[
27λ + 57µ

]
+ µ(2)

[
45λ + 67µ

]
− 2µ(2)r1

[
24κ(2) + 5µ(2)

]
3µ(2)r1

,

P45 =
12λ + 16µ + 16µ(2)r1

r1
, P46 =

6κ(2)
[
λ + µ

]
− 4µ(2)µ + 6κ(2)µ(2)r1

µ(2)r1
,

P51 = 0 , P52 = 0 ,

P53 = 1 , P54 =

[
2 − 3

κ(2)

µ(2)

]
f −2/3 ,

P55 = 3 f 5/3 , P56 =

[
3 +

3κ(2)

µ(2)

]
f ,

P61 = 0 , P62 = 0 ,

P63 = 1 , P64 = −

[
11
3

+ 5
κ(2)

µ(2)

]
f −2/3 ,

P65 = −2 f 5/3 , P66 = 2 f ,

(C.3)
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Appendix C.4. Lower bound on the shear modulus for particulate composites embedding elastic interfaces

Q11 = r1 , Q12 =
−r1

[
3κ(1) − 2µ(1)

]
kµ(1)

,

Q13 = −r1 , Q14 =
r1

[
3κ(2) − 2µ(2)

]
kµ(2)

,

Q15 = −3r1 , Q16 =
−3r1

[
κ(2) + µ(2)

]
µ(2) ,

Q21 = r1 , Q22 =
−r1

[
15κ(1) + 11µ(1)

]
3µ(1) ,

Q23 = −r1 , Q24 =
r1

[
15κ(2) + 11µ(2)

]
3µ(2) ,

Q25 = 2r1 , Q26 = −2r1 ,

Q31 =

[
λ + µ

]
− 2µ(1)r1

r1
, Q32 =

−
[
λ + µ

][
9κ(1) + 15µ(1)

]
− µ(1)r1

[
3κ(1) − 2µ(1)

]
µ(1)r1

,

Q33 =

[
λ + µ

]
+ 2µ(2)r1

r1
, Q34 =

−
[
λ + µ

][
9κ(2) + 15µ(2)

]
+ µ(2)r1

[
3κ(2) − 2µ(2)

]
µ(2)r1

,

Q35 =
−12

[
λ + µ

]
− 24µ(2)r1

r1
, Q36 =

−6κ(2)
[
λ + µ

]
− 2µ(2)r1

[
9κ(2) + 4µ(2)

]]
µ(2)r1

,

Q41 =
−
[
λ + 3µ

]
− 2µ(1)r1

r1
, Q42 =

κ(1)
[
27λ + 57µ

]
+ µ(1)

[
45λ + 67µ

]
+ 2µ(1)r1

[
24κ(1) + 5µ(1)

]
3µ(1)r1

,

Q43 =
−
[
λ + 3µ

]
+ 2µ(2)r1

r1
, Q44 =

κ(2)
[
27λ + 57µ

]
+ µ(2)

[
45λ + 67µ

]
− 2µ(2)r1

[
24κ(2) + 5µ(2)

]
3µ(2)r1

,

Q45 =
12λ + 16µ + 16µ(2)r1

r1
, Q46 =

6κ(2)
[
λ + µ

]
− 4µ(2)µ + 6κ(2)µ(2)r1

µ(2)r1
,

Q51 = 0 , Q52 = 0 ,

Q53 = 2µ(2) , Q54 =
[
3κ(2) − 2µ(2)

]
f −2/3 ,

Q55 = −24µ(2) f 5/3 , Q56 = −2
[
9κ(2) + 4µ(2)

]
f ,

Q61 = 0 , Q62 = 0 ,

Q63 = 2µ(2) , Q64 = −
2
3

[
24κ(2) + 5µ(2)

]
f −2/3 ,

Q65 = 16µ(2) f 5/3 , Q66 = 6κ(2) f ,

(C.4)

Appendix D. Coefficients for bounds and estimates on the shear modulus of composites embedding cohesive
interfaces

In this section, the coefficient matrices matrices corresponding to the bounds and estimates on the shear modulus of
composites embedding cohesive interfaces are presented.
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Appendix D.1. Upper bound on the shear modulus and effective shear modulus for fiber composites embedding
cohesive interfaces

D11 =
λ(1)r1

[2κ(1) + µ(1)]
, D21 =

3µ(1)κ(1) + k[2κ(1) + µ(1)]r1

k[2κ(1) + µ(1)]
, D31 = 0 ,

D12 =
µ(1) + kr1

k
, D22 =

µ(1) + kr1

k
, D32 = −2µ(1) ,

D13 =
−λ2r1

[2κ(2) + µ(2)]
, D23 =

3κ(2)µ(2) − k[2κ(2) + µ(2)]r1

k[2κ(2) + µ(2)]
, D33 = 0 ,

D14 =
µ(2) − kr1

k
, D24 =

µ(2) − kr1

k
, D34 = 2µ(2) ,

D15 =
3µ(2) + kr1

k
, D25 =

−3µ(2) − kr1

k
, D35 = 6µ(2) ,

D16 =
−2κ(2)µ(2) − kr1[κ(2) + µ(2)]

µ(2)k
, D26 =

κ(2) − kr1

k
, D36 = −4κ(2) ,

D41 = −
6µ(1)κ(1)r1

r1[2κ(1) + µ(1)]
, D51 = 0 , D61 = 0 ,

D42 = −2µ(1) , D52 = 0 , D62 = 0 ,

D43 =
6µ(2)κ(2)r1

r1[2κ(2) + µ(2)]
, D53 =

λ2

f [2κ(2) + µ(2)]
, D63 =

1
f
,

D44 = 2µ(2) , D54 = 1 , D64 = 1 ,

D45 = −6µ(2) , D55 = − f 2 , D65 = f 2 ,

D46 = 2κ(2) , D56 =
f [κ(2) + µ(2)]

µ(2) , D66 = f .

(D.1)
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Appendix D.2. Lower bound on the shear modulus for fiber composites embedding cohesive interfaces

E11 =
λ(1)r1

[2κ(1) + µ(1)]
, E21 =

3µ(1)κ(1) + k[2κ(1) + µ(1)]r1

k[2κ(1) + µ(1)]
, E31 = 0 ,

E12 =
µ(1) + kr1

k
, E22 =

µ(1) + kr1

k
, E32 = −2µ(1) ,

E13 =
−λ2r1

[2κ(2) + µ(2)]
, E23 =

3κ(2)µ(2) − k[2κ(2) + µ(2)]r1

k[2κ(2) + µ(2)]
, E33 = 0 ,

E14 =
µ(2) − kr1

k
, E24 =

µ(2) − kr1

k
, E34 = 2µ(2) ,

E15 =
3µ(2) + kr1

k
, E25 =

−3µ(2) − kr1

k
, E35 = 6µ(2) ,

E16 =
−2κ(2)µ(2) − kr1[κ(2) + µ(2)]

µ(2)k
, E26 =

κ(2) − kr1

k
, E36 = −4κ(2) ,

E41 = −
6µ(1)κ(1)r1

r1[2κ(1) + µ(1)]
, E51 = 0 , E61 = 0 ,

E42 = −2µ(1) , E52 = 0 , E62 = 0 ,

E43 =
6µ(2)κ(2)r1

r1[2κ(2) + µ(2)]
, E53 = 0 , E63 =

6κ(2)µ(2)

f [2κ(2) + µ(2)]
,

E44 = 2µ(2) , E54 = 2µ(2) , E64 = 2µ(2) ,

E45 = −6µ(2) , E55 = 6µ(2) f 2 , E65 = −6µ(2) f 2 ,

E46 = 2κ(2) , E56 = −4κ(2) f , E66 = 2κ(2) f .

(D.2)
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Appendix D.3. Upper bound on the shear modulus and effective shear modulus for particulate composites embedding
cohesive interfaces

P11 =
µ(1) + kr1

k
, P12 =

[
1
2µ

(1) − kr1

][
3κ(1) − 2µ(1)

]
kµ(1)

,

P13 =
µ(2) − kr1

k
, P14 =

[
3κ(2) − 2µ(2)

][
1
2µ

(2) + kr1

]
kµ(2)

,

P15 =
−12µ(2) − 3kr1

k
, P16 =

−µ(2)
[
9κ(2) + 4µ(2)

]
− 3kr1

[
κ(2) + µ(2)

]
kµ(2)

,

P21 =
µ(1) + kr1

k
, P22 =

−µ(1)
[
24κ(1) + 5µ(1)

]
− kr1

[
15κ(1) + 11µ(1)

]
3kµ(1)

,

P23 =
µ(2) − kr1

k
, P24 =

−µ(2)
[
24κ(2) + 5µ(2)

]
+ kr1

[
15κ(2) + 11µ(2)

]
3kµ(2)

,

P25 =
8µ(2) + 2kr1

k
, P26 =

3κ(2) − 2kr1

k
,

P31 = −2µ(1) , P32 = −3κ(1) + 2µ(1) ,

P33 = 2µ(2) , P34 = 3κ(2) − 2µ(2) ,

P35 = −24µ(2) , P36 = −18κ(2) − 8µ(2) ,

P41 = −2µ(1) , P42 =
48κ(1) + 10µ(1)

3
,

P43 = 2µ(2) , P44 =
−48κ(2) − 10µ(2)

3
,

P45 = 16µ(2) , P46 = 6κ(2) ,

P51 = 0 , P52 = 0 ,

P53 = 1 , P54 =

[
2 − 3

κ(2)

µ(2)

]
f −2/3 ,

P55 = 3 f 5/3 , P56 =

[
3 +

3κ(2)

µ(2)

]
f ,

P61 = 0 , P62 = 0 ,

P63 = 1 , P64 = −

[
11
3

+ 5
κ(2)

µ(2)

]
f −2/3 ,

P65 = −2 f 5/3 , P66 = 2 f ,

(D.3)

74



Appendix D.4. Lower bound on the shear modulus for particulate composites embedding cohesive interfaces

Q11 =
µ(1) + kr1

k
, Q12 =

[
1
2µ

(1) − kr1

][
3κ(1) − 2µ(1)

]
kµ(1)

,

Q13 =
µ(2) − kr1

k
, Q14 =

[
3κ(2) − 2µ(2)

][
[1 − α]µ(2) + kr1

]
kµ(2)

,

Q15 =
−12µ(2) − 3kr1

k
, Q16 =

−µ(2)
[
9κ(2) + 4µ(2)

]
− 3kr1

[
κ(2) + µ(2)

]
kµ(2)

,

Q21 =
µ(1) + kr1

k
, Q22 =

−µ(1)
[
24κ(1) + 5µ(1)

]
− kr1

[
15κ(1) + 11µ(1)

]
3kµ(1)

,

Q23 =
µ(2) − kr1

k
, Q24 =

−µ(2)
[
24κ(2) + 5µ(2)

]
+ kr1

[
15κ(2) + 11µ(2)

]
3kµ(2)

,

Q25 =
8µ(2) + 2kr1

k
, Q26 =

3κ(2) − 2kr1

k
,

Q31 = −2µ(1) , Q32 = −3κ(1) + 2µ(1) ,

Q33 = 2µ(2) , Q34 = 3κ(2) − 2µ(2) ,

Q35 = −24µ(2) , Q36 = −18κ(2) − 8µ(2) ,

Q41 = −2µ(1) , Q42 =
48κ(1) + 10µ(1)

3
,

Q43 = 2µ(2) , Q44 =
−48κ(2) − 10µ(2)

3
,

Q45 = 16µ(2) , Q46 = 6κ(2) ,

Q51 = 0 , Q52 = 0 ,

Q53 = 2µ(2) , Q54 =
[
3κ(2) − 2µ(2)

]
f −2/3 ,

Q55 = −24µ(2) f 5/3 , Q56 = −2
[
9κ(2) + 4µ(2)

]
f ,

Q61 = 0 , Q62 = 0 ,

Q63 = 2µ(2) , Q64 = −
2
3

[
24κ(2) + 5µ(2)

]
f −2/3 ,

Q65 = 16µ(2) f 5/3 , Q66 = 6κ(2) f ,

(D.4)

Appendix E. Coefficients for bounds and estimates on the shear modulus of composites embedding perfect
interfaces

In this section, the coefficient matrices matrices corresponding to the bounds and estimates on the shear modulus of
composites embedding perfect interfaces are presented.
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Appendix E.1. Upper bound on the shear modulus and effective shear modulus for fiber composites embedding per-
fect interfaces

D11 =
λ(1)r1

[2κ(1) + µ(1)]
, D21 = r1 , D31 = 0 ,

D12 = r1 , D22 = r1 , D32 = −2µ(1) ,

D13 =
−λ2r1

[2κ(2) + µ(2)]
, D23 = −r1 , D33 = 0 ,

D14 = −r1 , D24 = −r1 , D34 = 2µ(2) ,

D15 = r1 , D25 = −r1 , D35 = 6µ(2) ,

D16 =
−r1[κ(2) + µ(2)]

µ(2) , D26 = −r1 , D36 = −4κ(2) ,

D41 = −
6µ(1)κ(1)r1

r1[2κ(1) + µ(1)]
, D51 = 0 , D61 = 0 ,

D42 = −2µ(1) , D52 = 0 , D62 = 0 ,

D43 =
6µ(2)κ(2)r1

r1[2κ(2) + µ(2)]
, D53 =

λ2

f [2κ(2) + µ(2)]
, D63 =

1
f
,

D44 = 2µ(2) , D54 = 1 , D64 = 1 ,

D45 = −6µ(2) , D55 = − f 2 , D65 = f 2 ,

D46 = 2κ(2) , D56 =
f [κ(2) + µ(2)]

µ(2) , D66 = f .

(E.1)

Appendix E.2. Lower bound on the shear modulus for fiber composites embedding perfect interfaces

E11 =
λ(1)r1

[2κ(1) + µ(1)]
, E21 = r1 , E31 = 0 ,

E12 = r1 , E22 = r1 , E32 = −2µ(1) ,

E13 =
−λ2r1

[2κ(2) + µ(2)]
, E23 = −r1 , E33 = 0 ,

E14 = −r1 , E24 = −r1 , E34 = 2µ(2) ,

E15 = r1 , E25 = −r1 , E35 = 6µ(2) ,

E16 =
−r1[κ(2) + µ(2)]

µ(2) , E26 = −r1 , E36 = −4κ(2) ,

E41 = −
6µ(1)κ(1)r1

r1[2κ(1) + µ(1)]
, E51 = 0 , E61 = 0 ,

E42 = −2µ(1) , E52 = 0 , E62 = 0 ,

E43 =
6µ(2)κ(2)r1

r1[2κ(2) + µ(2)]
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6κ(2)µ(2)

f [2κ(2) + µ(2)]
,

E44 = 2µ(2) , E54 = 2µ(2) , E64 = 2µ(2) ,

E45 = −6µ(2) , E55 = 6µ(2) f 2 , E65 = −6µ(2) f 2 ,

E46 = 2κ(2) , E56 = −4κ(2) f , E66 = 2κ(2) f .

(E.2)
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Appendix E.3. Upper bound on the shear modulus and effective shear modulus for particulate composites embedding
perfect interfaces

P11 = r1 , P12 =
−r1

[
3κ(1) − 2µ(1)

]
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P41 = −2µ(1) , P42 =
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3
,

P43 = 2µ(2) , P44 =
−48κ(2) − 10µ(2)

3
,

P45 = 16µ(2) , P46 = 6κ(2) ,

P51 = 0 , P52 = 0 ,

P53 = 1 , P54 =

[
2 − 3

κ(2)

µ(2)

]
f −2/3 ,

P55 = 3 f 5/3 , P56 =

[
3 +

3κ(2)

µ(2)

]
f ,

P61 = 0 , P62 = 0 ,

P63 = 1 , P64 = −

[
11
3

+ 5
κ(2)

µ(2)
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f −2/3 ,

P65 = −2 f 5/3 , P66 = 2 f ,

(E.3)
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Appendix E.4. Lower bound on the shear modulus for particulate composites embedding perfect interfaces

Q11 = r1 , Q12 =
−r1

[
3κ(1) − 2µ(1)
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r1

[
3κ(2) − 2µ(2)

]
µ(2) ,

Q15 = −3r1 , Q16 =
−3r1

[
κ(2) + µ(2)

]
µ(2) ,

Q21 = r1 , Q22 =
−r1

[
15κ(1) + 11µ(1)

]
3µ(1) ,

Q23 = −r1 , Q24 =
r1

[
15κ(2) + 11µ(2)

]
3µ(2) ,

Q25 = 2r1 , Q26 = −2r1 ,

Q31 = −2µ(1) , Q32 = −3κ(1) + 2µ(1) ,
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Q35 = −24µ(2) , Q36 = −18κ(2) − 8µ(2) ,

Q41 = −2µ(1) , Q42 =
48κ(1) + 10µ(1)

3
,

Q43 = 2µ(2) , Q44 =
−48κ(2) − 10µ(2)

3
,

Q45 = 16µ(2) , Q46 = 6κ(2) ,

Q51 = 0 , Q52 = 0 ,

Q53 = 2µ(2) , Q54 =
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f −2/3 ,
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[
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Q61 = 0 , Q62 = 0 ,
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[87] P. Ponte Castañeda, Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: II-applications, Jour-

nal of the Mechanics and Physics of Solids 50 (2002) 759–782.
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[320] D. Sokołowski, M. Kamiński, Homogenization of carbon/polymer composites with anisotropic distribution of particles and stochastic inter-
face defects, Acta Mechanica 229 (2018) 3727–3765.
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[475] A. De-Andrés, J. L. Pérez, M. Ortiz, Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts

subjected to axial loading, International Journal of Solids and Structures 36 (1999) 2231–2258.
[476] M. Ortiz, A. Pandolfi, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, International

Journal for Numerical Methods in Engineering 44 (1999) 1267–1282.
[477] G. Alfano, M. A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: Mechanical and compu-

tational issues, International Journal for Numerical Methods in Engineering 50 (2001) 1701–1736.
[478] Y. Mi, M. A. Crisfield, G. A. O. Davies, H. B. Hellweg, Progressive delamination using interface elements, Journal of Composite Materials

32 (1998) 1246–1272.
[479] T. C. Gasser, G. A. Holzapfel, Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems

with an application to the dissection analysis of soft biological tissues, Computer Methods in Applied Mechanics and Engineering 192
(2003) 5059–5098.

[480] J. Mergheim, P. Steinmann, A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities, Computer Methods
in Applied Mechanics and Engineering 195 (2006) 5037–5052.

[481] A. Hansbo, P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Computer Methods in
Applied Mechanics and Engineering 191 (2002) 5537–5552.

[482] A. Hansbo, P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Computer Methods
in Applied Mechanics and Engineering 193 (2004) 3523–3540.

[483] M. J. van den Bosch, P. J. G. Schreurs, M. G. D. Geers, On the development of a 3D cohesive zone element in the presence of large
deformations, Computational Mechanics 42 (2008) 171–180.

[484] M. J. van den Bosch, P. J. G. Schreurs, M. G. D. Geers, An improved description of the exponential Xu and Needleman cohesive zone law
for mixed-mode decohesion, Engineering Fracture Mechanics 73 (2006) 1220–1234.

[485] M. J. van den Bosch, P. J. G. Schreurs, M. G. D. Geers, A cohesive zone model with a large displacement formulation accounting for
interfacial fibrilation, European Journal of Mechanics, A/Solids 26 (2007) 1–19.

[486] B. G. Vossen, P. J. G. Schreurs, O. van der Sluis, M. G. D. Geers, On the lack of rotational equilibrium in cohesive zone elements, Computer

92



Methods in Applied Mechanics and Engineering 254 (2013) 146–153.
[487] N. S. Ottosen, M. Ristinmaa, J. Mosler, Fundamental physical principles and cohesive zone models at finite displacements - Limitations and

possibilities, International Journal of Solids and Structures 53 (2015) 70–79.
[488] N. S. Ottosen, M. Ristinmaa, J. Mosler, Framework for non-coherent interface models at finite displacement jumps and finite strains, Journal

of the Mechanics and Physics of Solids 90 (2016) 124–141.
[489] T. Heitbreder, N. S. Ottosen, M. Ristinmaa, J. Mosler, Consistent elastoplastic cohesive zone model at finite deformations – Variational

formulation, International Journal of Solids and Structures 106-107 (2017) 284–293.
[490] T. Heitbreder, N. S. Ottosen, M. Ristinmaa, J. Mosler, On damage modeling of material interfaces: Numerical implementation and compu-

tational homogenization, Computer Methods in Applied Mechanics and Engineering 337 (2018) 1–27.
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