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An introduction to the APL Special Issue on “Hybrid Quantum Devices” by the guest editors.

For applications such as storing quantum states with
rapid access, linking remote quantum processors or sens-
ing sound at the quantum limit, quantum hybrids com-
bining two or more physical systems can achieve more
than the individual components alone. Interfacing differ-
ent quantum degrees of freedom leads to new techniques
and a better understanding of fundamental physics.

This Special Issue provides researchers and students
with a snapshot of today’s hybrid quantum devices that
are generating a great deal of interest and innovation. It
connects atomic and condensed matter physics, quantum
optics and nanoscience, highlights recent developments,
potentially disruptive technologies, and possible future
solutions.

The core building blocks of all quantum devices are
qubits and quantum harmonic oscillators, which can be
used for encoding, storing and processing quantum infor-
mation. These have been implemented using a diverse
range of physical systems, with each architecture offer-
ing its own unique strengths and weaknesses. Hybrid
systems allow combination of disparate technologies to
exploit the unique advantages of each independent com-
ponent, for example pairing long coherence atomic qubits
for storage with solid state qubits offering fast gates, in-
terfaced using a harmonic oscillator17.

In this Special Issue we showcase three distinct qubit
types including quantum dots1,7,8,10, defect centres and
donors2,13,17,20 and atomic systems12,17,19. Atomic sys-
tems are highly scalable, with each qubit being iden-
tical and offering long coherence times ideal for quan-
tum memories12,17, and strong electric dipole matrix el-
ements at both optical wavelengths12,17 and microwave
wavelengths when excited to high-lying Rydberg states19,
however gate times are typically slow compared to other
platforms. Quantum dots offer fast gate operations and
long coherence times1, with strong optical transitions en-
abling coupling to light and opto-mechanical systems7.
Defect centres and donors in solid state systems similarly
offer rapid initialization and gate speeds17, and can fea-
ture long coherence times. These systems are sensitive
to magnetic fields, electric fields, and temperature en-
abling development of precision sensors13 and coupling
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FIG. 1. Connections between different physical systems in-
cluded in this Special Issue. A approximate distinction is
made between qubit-like systems (blue) and harmonic oscil-
lators (magenta).

to microwave circuits2. A common challenge for both
quantum dots and defects is the ability to fabricate large
numbers of uniform qubits to enable scaling to large qubit
numbers.

A wide variety of harmonic oscillators are repre-
sented in this collection. In the context of hybrid
quantum devices, these linear oscillators often serve as
the connection between qubit systems and the classi-
cal world, allowing us to, for example, perform sensi-
tive measurements2,16,18,19 or transfer information be-
tween different objects6,15,17. Electromagnetic waves in
the optical and infrared domain has long been a power-
ful tool for studying the properties of atoms12 and solid
state emitters such as quantum dots8, but are now also
routinely combined other harmonic oscillator systems in
the quantum regime5,6,14. Microwave frequency circuits
can be designed with a large variety of materials11 and
geometries4,15, allowing them to be tailored for interfac-
ing with a wide range of other quantum objects. This
collection also showcases the diversity of mechanical de-
grees of freedom that can be used in hybrid systems,
ranging from the motion of a single electron in a Pen-
ning trap15 to phonons inside macroscopic, solid-state
objects5,6,9,14,21. Finally, magnons, which are collective
spin excitations, are emerging as a useful new quantum
system for hybrid devices due to their high tunability
and strong coupling to electromagnetic fields3,4,16,18. We
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would also like to point out that most of these oscilla-
tors are only approximately harmonic. In fact, some of
the works in this collection focus on studying nonlinear
effects in these systems and how they might play a role
in the performance of hybrid devices9,11.

Figure 1 schematically shows how the hybrid quantum
devices represented in this Special Issue makes connec-
tions made between various physical systems. We see
that, although certainly not all types of hybrid quantum
devices are represented in this collection, it offers some
interesting insights into the field. First, microwave cir-
cuits are becoming quite ubiquitous in hybrid quantum
systems. In addition to perhaps the more straightfor-
ward combinations with other solid-state systems, they
are now also being used to manipulate and probe Ryd-
berg atoms19 and single electrons15. We speculate that
this is not only due to the flexible design of microwave
circuits as mentioned above, but also because of the in-
creased interest and new experimental tools generated
by the field of quantum information with microwave cir-
cuits. Second, the definition of a ”hybrid quantum de-
vice” has some ambiguity, and this Special Issue presents
a broader view of the field than simply linking together
different quantum systems. For example, light has been
used to probe and control atoms for a long time, but
here we highlight new optical devices for cavity QED12

and using light to connect atoms to other systems17. In
addition, we include advances in engineering the proper-
ties of individual systems to make them more compatible
for use in future hybrid quantum devices11.
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14Y. Chu and S. Gröblacher, “A perspective on hybrid quantum
opto- and electromechanical systems,” Applied Physics Letters
117, 150503 (2020), https://doi.org/10.1063/5.0021088.

15A. Cridland Mathad, J. H. Lacy, J. Pinder, A. Uribe,
R. Willetts, R. Alvarez, and J. Verdú, “Coherent coupling
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