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ABSTRACT
In this paper, we propose an augmented Graph Convolutional Net-
work (GCN) mechanism wherein additional information of local
interaction patterns between a node with its neighbors (specifically,
in the form of distribution of cosine similarity values of a pre-
trained node vector with its neighbors) is used to enrich a node’s
representation prior to training a GCN. This provides additional
information about the structural properties of a node, which the
standard convolution operation in a GCN can then leverage for
obtaining potentially improved effectiveness in a down-stream task.
Our experiments demonstrate that adding these node interaction
patterns (NIPs) along with an additional noise-contrastive pairwise
document similarity objective within a GCN improves the linked
document classification task.

CCS CONCEPTS
• Computing methodologies → Supervised learning by clas-
sification.
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Figure 1: A schematic illustration of incorporating node interac-
tion patterns to initialize a Graph Convolutional Network (GCN).
The figure shows how the distribution of the cosine similarity val-
ues between a node 𝑣 and its neighbors 𝑢𝑖 , ui ⊗ v (obtained with
a node embedding algorithm such as node2vec [5]), are discretized
into a fixed length vector (a histogram), and then appended to 𝑣’s
initial 1-hot vector representation.

1 INTRODUCTION
Graphs are one of the most expressive data-structures which have
been used to model a variety of problems. Traditional neural net-
work architectures such as the Convolutional Neural Networks and
Recurrent Neural Networks are constrained to handle only metric
data. Recently, Graph Convolutional Networks (GCNs) [1, 3, 9] have
been proposed to address this shortcoming. It has been successfully
applied to several domains such as social networks [7], knowledge
graphs [17], and natural language processing [14]. In the GCN
framework, a collection of linked documents can be represented
as a heterogeneous graph with documents and words as nodes.
Containment edges between documents and word nodes embody
the bag of words representations of documents, while document-
document citation edges represent document linkage information.
With reference to document classification, information from a docu-
ment’s content as well its inter-relationships with other documents
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has been shown to provide useful cues [9, 19, 22] for document
classification.

A standard approach of text classification with GCN [22] ini-
tializes each node representation as independent of each other
(specifically, one-hot orthogonal representations of the nodes) and
then relies on the convolution operators and the known class labels
to learn abstract representations of the nodes. However, in our
work, we incorporate prior information into each node of a GCN in
the form of node interaction patterns, so that the graph convolution
layers can harness this additional structural cues of the nodes ito
its learning phase.

Interaction-focused models are reported to be useful for the
ad-hoc retrieval task [6, 8, 13, 16]. An interaction based approach
computes the histogram of similarities between the vector represen-
tations of word pairs in a query and the retrieved documents. These
histograms are then used to train a ranking model. In our work, we
exploit the same idea by computing the histogram of the local inter-
actions of a node’s dense vector representation with its neighbors,
and then using it as an additional information to initialize a GCN
(see Figure 1). Since this histogram mapping expresses a node’s
local structure, we hypothesize that this augmented representation
of a node may lead to a more effective learning of a down-stream
task via GCN.

2 RELATEDWORK
Graph Convolution Networks. GCNs, introduced in [1] and

then made scalable through efficient localized filters [3], follows
a message passing framework [4] for node aggregation. A broad
survey on GCNs is presented in [20]. In Text-GCN, an approach that
applied GCN for text classification [22], an entire corpus is modelled
as a heterogeneous graph comprising of nodes each corresponding
to a document or a word. This formulation allowed provision to
learn word and document embedding jointly with GCN.

InteractionModeling. Existing deep matching models for doc-
ument retrieval can broadly be categorized into two major types -
representation-focused, and interaction-driven. ARC-II is an interaction-
focused model [8] which involves learning hierarchical matching
patterns from local interactions using a CNN. DRMM [6], on the
other hand, first builds local interactions between each pair of terms
from a query and a document based on their embedded vector rep-
resentations. For each query term, it then maps the variable-length
local interactions into a fixed-length matching histogram, which
is then supplied as an input to a feed-forward network to learn a
similarity score. The KNRM replaces the histogram computation of
DRMM with kernel smoothing operations along each row of the
query-document interaction matrix [21].

3 PROPOSED METHODOLOGY
Background. Given a graph G = (V , E ,𝒳 ), where V is the set

of vertices, E is the set of edges and 𝒳 ∈ R |V |×𝑑0 represents 𝑑0-
dimensional input features of each node. The node representation
obtained from a single GCN layer is defined as: H = 𝑓 (Â𝒳W).
Here, Â = D̃− 1

2 (A + I)D̃− 1
2 is the normalized adjacency matrix

with added self-connections and D̃ is defined as D̃ii =
∑
𝑗 (A +

I)𝑖 𝑗 . The model parameter is denoted by W ∈ R𝑑0×𝑑1 and 𝑓 is

an activation function. The GCN representation H encodes the
immediate neighborhood of each node in the graph. For capturing
multi-hop dependencies in the graph, several GCN layers can be
stacked, one on the top of another as follows: H𝑘+1 = 𝑓 (ÂH𝑘W𝑘 ),
where 𝑘 denotes the layer number,W𝑘 ∈ R𝑑𝑘×𝑑𝑘+1 is layer-specific
parameter and H0 = 𝒳 .

Graph Creation. We create the graph, by the methodology sim-
ilar to [22]. The constructed graph models a) the containment rela-
tionships of words in documents, b) window-based co-occurrences
between words, and c) the citation relationship between documents.
The weight of an edge between nodes 𝑖 and 𝑗 is specified as:

A𝑖 𝑗 =



PMI(𝑖, 𝑗) if 𝑖, 𝑗 are words, PMI(𝑖, 𝑗) > 0
TF-IDF𝑖 𝑗 if 𝑖 is document, j is word

1 if ∃ a citation relationship
between documents 𝑖 and 𝑗

1 if 𝑖 = 𝑗

0 otherwise

(1)

where PMI denotes the point-wise mutual information between
words 𝑖 and 𝑗 counted within local word windows, similar to [10].
TF-IDF𝑖 𝑗 represents the tf-idf score of word 𝑗 within document 𝑖 .

Node Interaction Pattern Computation. The computation
of node interaction patterns (NIP) proceeds as shown in the NIP
Computation block of Figure 2. We first execute node2vec [5] on
a pruned graph that models only the containment relationships
of words in documents and the inter-document citation links (in
our initial experiments, we found that including word-word edges
would make the graph too dense and difficult to learn meaningful
node representations). For each document node in this pruned
graph, we then compute local interactions as

IS𝑖 = {𝒩𝒱𝑖 ⊗ 𝒩𝒱𝑘 ,∀𝑘 ∈ N (𝑖)}, (2)

where N (𝑖) denotes the set of the neighbouring nodes of node 𝑖 , ⊗
denotes the interaction operator (specifically, the cosine similarity),
𝒩𝒱 ∈ R |V |×𝑛0 denotes the node2vec embeddings of the nodes in
the graph such that 𝒩𝒱𝑖 is the node2vec embedding of node 𝑖 (𝑛0
being the dimension of the embedding).

It should be noted that the size of the set IS𝑖 is not fixed due
to the variations in the degrees of the nodes. We next partition
local interactions (IS𝑖 ) according to different levels of interaction
weights, similar to [6]. Specifically, since interaction weight values
are within the interval [−1, 1], we discretize the interval into a
set of ordered bins and accumulate the count of local interactions
in each bin. We investigate the following two ways of histogram
mapping, as prescribed in [6] -
(1) Normalized Histogram (NH):An 𝐿2 normalization is applied

on the frequencies of each bin to focus on the relative rather
than the absolute number of interactions.

(2) Log Count-based Histogram (LCH): We apply logarithm
over the frequencies mainly to reduce their variations. This
is reported to provide better results in [2].
Next, let ℐ ∈ R |V |×𝑏 denote the interaction vectors (the mapped

histograms) of the nodes in the graph such that ℐ𝑖 is the interaction
vector of node 𝑖 , where 𝑏 is the number of bins for histogram
computation. Since we conduct the interaction operations only for
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document nodes, the interaction vectors for the word nodes are
initialized to zeros.
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Figure 2: A schematic representation of NIP-GCN. The green edges
denote the containment relation of words in a document, the red
edges denote the document citation relationships and the blue edges
denote the word co-occurrence relationships.

Two-Layer GCN with Additional Noise-Contrastive Loss.
In this work, we use two graph convolutional layers followed by
softmax activation on each node (as shown in Figure 2), i.e.,

Z = softmax(Âmax(0, Â𝒳W0)W1) (3)

where,W0 andW1 are the updatable parameter matrices for layers
1 and 2 respectively. The way we set 𝒳 is as follows: Let 𝒪 ∈
R |V |× |V | denote the matrix of one-hot encodings of the nodes in
the graph such that𝒪𝑖 is the one-hot vector of node 𝑖 . We then set
𝒳 to be the concatenation of𝒪 and ℐ , i.e.,𝒳 ∈ R |V |× |V |+𝑏 .

We then optimize the cross-entropy loss over the node labels
corresponding to the documents with known classes, i.e.,

L1 = −
∑
𝑑∈Y

𝐹∑
𝑓 =1

Ydf lnZdf (4)

where Y is the label indicator matrix, Y is the set of document
indices that are associated with known labels (document classes),
and 𝐹 is the dimension of the output features being identical to the
number of classes. In Equation 3, E1 = max(0, Â𝒳W0) denotes the
intermediate outputs of the first GCN layer with ReLU activation,
whereas E2 = Âmax(0, Â𝒳W0)W1 denotes the second GCN layer
embeddings.

Pairwise Document Similarities. In addition to the cross en-
tropy loss of a standard GCN, we incorporate an additional loss
component which is a function of the first layer document embed-
dings (as shown in Figure 2). This additional component (defined
later in Equation 7) seeks to make the vector representations of
two linked documents similar to each other. The motivation behind
this step is that it is less likely that a document of one class would
have a link to a document of another class, e.g., a sports article will
likely have links to other sports articles only and so on. Formally,

L′
2 = − 1

|EY |
∑

(𝑑𝑖 ,𝑑 𝑗 ) ∈EY
log(softmax(E1𝑑 𝑗 · E1𝑑𝑖 )) (5)

where, EY is the set of available information regarding links across
training set document pairs, and E1𝑑 denotes the row of E1 corre-
sponding to the document node 𝑑 . The negative sign at the front

Dataset #Docs #Links #Classes Avg. Len

M10 10,310 77,218 10 7.3
DBLP 60,744 52,890 4 7.5
Covid-Full (title+abstract) 13,678 179,909 15 116.3
Covid-Title (titles only) 10.8

Table 1: Dataset Characteristics

transforms the likelihood maximization problem into a loss min-
imization one. The intractable softmax calculation of Equation 5
is approximated with noise-contrastive estimation with negative
sampling [15], i.e.,

log(softmax(E1𝑑 𝑗 · E1𝑑𝑖 )) ≈

log𝜎 (E1𝑑 𝑗 · E1𝑑𝑖 ) −
𝐾∑
𝑡=1
E𝑑𝑡∼NG (𝑖, 𝑗) log𝜎 (E1𝑑𝑡 · E1𝑑𝑖 )

(6)

where 𝑑𝑡 in Equation (6) is a randomly sampled document from
the set of documents that are not linked with 𝑑𝑖 and have different
labels than that of 𝑑𝑖 . This set of negative samples is denoted as
NG (𝑖, 𝑗). For each linked document pair, the number of random
negative sample used is 𝐾 (a hyper-parameter). Denoting NG as a
multiset,NG =

⋃
𝑖, 𝑗 :(𝑑𝑖 ,𝑑 𝑗 ) ∈EY NG (𝑖, 𝑗), and combining Equations

(5) and (6), the overall loss is expressed as

L2 =
∑

(𝑑𝑖 ,𝑑 𝑗 ) ∈EY

− log𝜎 (E1𝑑 𝑗 · E1𝑑𝑖 )
|EY | +

∑
(𝑑𝑖 ,𝑑𝑡 ) ∈NG

log𝜎 (E1𝑑𝑡 · E1𝑑𝑖 )
𝐾 |EY |

(7)
In our experiments, we use a combination of the cross-entropy

loss of Equation 4 with a regularized version of Equation 7, i.e.,

L = L1 + _L2, (8)

where 0 < _ ≤ 1 is a regularization parameter, the optimal values
of which, for the different datasets in our experiments, were found
to be within a range of 0.001 to 0.004.

4 EXPERIMENTS
Datasets. We conducted experiments on three linked collec-

tions, namely DBLP, CiteSeer-M10, and a newly crawled document
collection on Covid-related research articles. All the three docu-
ment collections are citation networks with explicit links across
documents. We used the title field of each document of DBLP [18]
and CiteSeer-M10 (denoted in this paper as M10) [11] to represent
its content. For the Covid dataset, we used two versions of the
collection - one without the abstracts (i.e. title only) and the other
with both.

The Covid dataset1 was created fromweekly searches of PubMed
and Embase between March and October 2020. Records were re-
trieved and then manually checked for eligibility for inclusion in a
database of research on COVID-19. After checking for eligibility,
records were then manually assigned to one of 15 classes, including
‘case reports’, ‘vaccine development’, ‘health impacts’ etc. More
details about the dataset could be found in [12].

1https://github.com/ManishChandra12/NIP-GCN/tree/master/data
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Table 2: Macro-averaged F1 (%) on the test splits of the datasets.

Model ℒ2 𝒳 M10 DBLP Covid-Title Covid-Full

GCN N BoW 71.61 74.01 37.05 34.51
Text-GCN N 𝒪 74.23 74.42 54.76 60.48
Text-GCN N 𝒩𝒱 72.87 72.42 55.23 53.86

NIP-GCN N 𝒪 + ℐ 75.13 74.90 57.93 62.73
(LCH) Y 𝒪 + ℐ 75.77 75.47 58.19 63.22

NIP-GCN N 𝒪 + ℐ 75.03 75.39 57.45 63.24
(NH) Y 𝒪 + ℐ 75.65 75.51 58.01 63.76

Baselines. We compare our proposed method, NIP-GCN2, with
the following baselines. First, we employ GCN - A graph CNN
model using the first-order approximation of GCNs with Chebyshev
polynomials [9]. The graph models only the document citation re-
lationships and 𝒳 corresponds to the bag-of-words representation
of documents. Second, in Text-GCN an entire corpus is modelled
as a heterogeneous graph with nodes corresponding to a document
or a word [22]. For linked document classification, we additionally
represent links between documents as edges. In addition to the
one-hot encodings of Text-GCN, we also employ another baseline
by setting 𝒳 to the normalized node2vec representations of the
nodes (𝒩𝒱) as a straight-forward application of node2vec embed-
dings within a GCN (without the interaction patterns). These two
baselines correspond to the 2𝑛𝑑 and the 3𝑟𝑑 rows of Table 2.

Hyper-parameter settings. We used a train:test split of 70:30
with 10% of the training set for validation purposes.We used the vali-
dation set for optimizing each hyper-parameter, namely the dropout
rate across both layers, embedding size of the first convolution layer,
learning rate, _ and the number of bins. The hyper-parameters were
tuned on the Covid-Title dataset and then subsequently used for
the experiments on the othe datasets. We noted that the hyper-
parameter _ did not generalize well across the datasets and hence
was tuned individually on each.

We set the embedding size of the first convolution layer to 200,
the sliding window size for PMI calculation to 20, the learning rate
to 0.02 and the dropout rate to 0.5. We set the number of negative
samples (𝐾) to 7 for every linked document pair. We trained our
model for a maximum of 200 epochs using the Adam optimizer. We
set the number of bins (𝑏) to 10. To ensure fair comparisons, we
used an identical setup for hyper-parameter optimization for each
baseline model. For GCN, embedding size of the first convolution
layer was set to 64, learning rate to 0.01, dropout rate to 0.5 and
𝐿2 regularization to 10−3. For Text-GCN, we set embedding size
of the first convolution layer to 200, the sliding window size for
PMI calculation to 20, the learning rate to 0.02 and the dropout rate
to 0.5. The optimal learning rate of the Text-GCN initialized with
node2vec embeddings was found to be 0.05.

Results. The macro-averaged F1 score values obtained by our
model on different datasets are shown in Table 2. For all the experi-
ments involving node2vec, the reported numbers are the average
of 5 different runs of it. First, we observe that initializing Text-GCN

2The code for NIP-GCN is available for research purposes at
https://github.com/ManishChandra12/NIP-GCN.

(a) Text-GCN (𝒪), DBLP (b) NIP-GCN (LCH), DBLP

(c) Text-GCN (𝒪), Covid-Full (d) NIP-GCN (LCH), Covid-Full

Figure 3: 2D t-SNE visualization of the embedded vectors of each
document node in the test split (each ground-truth class plotted
with a different color). Only 5 classes are shown for Covid-Full
dataset to avoid clutter.

with node2vec embeddings does not yield effective results (3𝑟𝑑
row of Table 2), which shows that simply feeding in a pre-trained
representation of the nodes is not helpful for a GCN. However, the
use of interaction patterns (NIP prefixed approaches in Table 2) are
shown to yield effective results. Indeed, we observe the following -
i) LCH-based interactions outperform their NH-based counterparts
for smaller datasets (M10 and Covid-Title) while it is the other way
around for larger datasets (DBLP and Covid-Full), and ii) the pro-
posed noise-contrastive loss (Equation 8) improves the performance
across all the datasets.

For comparison purposes, Figure 3 illustrates the 2D visualiza-
tions (t-SNE) of the document embeddings learned by NIP-GCN
and Text-GCN. Figure 3 demonstrates that the document embed-
dings learned with NIP-GCN are more discriminative. Specifically,
in the DBLP dataset, the documents belonging to the same topic
forms more compact clusters (as perceived visually) with NIP-GCN
(compare the orange and the blue colored points of NIP-GCN vs.
the Text-GCN). Similarly for Covid-Full, the cluster formed by the
documents with the orange colored topic is more compact in the
case of NIP-GCN than with Text-GCN.

5 CONCLUSION AND FUTUREWORK
In this study, we incorporated the node interaction patterns induced
from the linkage structure of a graph into the GCN framework.
This provides the graph convolutional layers with prior informa-
tion which can be harnessed to learn more discriminative node
embeddings. Combining this prior information with an additional
pairwise document similarity objective is demonstrated to yield
superior results to the Text-GCN (with document-document edges
included). In future, we would like to investigate if interaction-
focused models could be used to effectively model the relations
between other types of entities such as authorship, latent topics of
documents etc.
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