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Abstract

CrossMark

We present the quantum theory of the elliptical Penning trap, i.e. the general case where the
cylindrical symmetry of the electrostatic trapping potential around the trapping magnetic field
axis is broken. The theory applies to both slightly and highly elliptical traps, where it is shown
that the difference between the quantum states of particles in these traps corresponds to a
variation of the degree of squeezing of their motional modes in the xy-plane. In a trap with
tunable ellipticity, such as the Geonium Ghip planar Penning trap, it follows that control of the
ellipticity via the trapping voltages enables squeezing of the quantum states of the particle. We
discuss the adiabatic preparation of such squeezed states, which follows naturally from the
appearance of an avoided crossing between the diabatic levels of the coupled motional states

of the particle.
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1. Introduction

Since their initial development [1], Penning traps have become
indispensable in high precision mass spectrometry [2, 3], in
quantum electrodynamics (QED) measurements [4—6], and in
anti-matter experiments [7—10]. The goal of achieving quan-
tum information processing by confinement of single electrons
in Penning traps [11-15] motivated the enterprise of planar
traps [16-20], in an effort to optimise both the scalability of
the system, and addressability of the trapped particles [21]. As
an example, the Geonium Chip [22-25] belongs to the class of
planar, elliptical Penning traps and is, furthermore, designed
to form a compact, mobile device [26]. It is being developed
for applications in quantum technology with trapped electrons,
such as the detection and generation of quantum microwave
radiation [27]. Inspired by the possibilities for enhanced con-
trol of the trapping potential in the Geonium Chip [25], this
article develops the quantum description of charged parti-
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cles in elliptical Penning traps, and discusses methods for the
preparation of their states.

The theory of the elliptical Penning trap is discussed most
notably by Kretzshmar [28], where it was shown that the clas-
sical Hamiltonian of the trap with a general quadrupolar elec-
trostatic trapping potential without cylindric symmetry—as
assumed in earlier work [29]—can be solved exactly by a
proper canonical transformation. The rigorous classical treat-
ment demonstrates how the trap’s ellipticity parameter, ¢, can
be used as a means of controlling the shape and frequency of
the magnetron orbit of the particle. This is verified by numeri-
cal and experimental results in a trap with a tunable elliptic-
ity [30]. The Geonium Chip also incorporates this function
into its design [23], and it has been shown that the tunabil-
ity of € allows the dimensionality of this trap to be modified
[25]. This paper aims to expand upon the theoretical work of
[28] by analysing the quantum solution of the ideal elliptical
Penning trap [31]. Following this, we show how the design
of the Geonium Chip enables enhanced control of the quan-
tum states of a single charged particle in the trap. While the
results have general validity, we are mainly motivated by the
use of trapped electrons, which can be driven into the quan-
tum regime at cryogenic temperatures [32]. Alternatively, laser
cooled ions [33] are also candidates for the novel manipulation
of the quantum states presented here.

© 2021 The Author(s). Published by IOP Publishing Ltd Printed in the UK
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This paper is divided into six sections. In section 2, the ideal
classical circular and elliptical traps are briefly reviewed, and
the discussion extended to the design of the Geonium Chip
trap. The quantum formalism is also introduced. The quantum
solution of the elliptical trap is presented in section 3, in the
context of the well-known classical results [28]. The follow-
ing section 4 reviews the Geonium Chip in more detail, and
the experimental requirements for driving the trap to an ‘ultra-
elliptical regime’ [23] are discussed, with section 5 detailing
the theory of this procedure. We summarise our results in
section 6.

2. The ideal elliptical Penning trap

2.1. Classical theory

2.1.1. The ideal classical circular Penning trap. In a radi-
ally (or cylindric) symmetric Penning trap, the ideal confining
potential is the quadrupole

2 2
o = (#-52). 1)

where the resulting static field is E= —ﬁqﬁ(x,y, z) and the
sign of U, depends upon the charge of the particles being
trapped. Confinement in the radial direction is provided by a
magnetic field B = |B|e. with associated vector potential A(7),
which we treat in the Coulomb gauge V - A(7) = 0 such that
A, = —|Bly/2 and A, = |B|x/2. The classical Hamiltonian of
a particle of mass m and charge ¢ in the presence of these
crossed electromagnetic fields is given by [34]:

1/, = _\2 .

H= - (—aA®) +qo). @
m

In this paper, the trapping of a single electron is considered,

and inserting the explicit forms of £ and B for ¢ <0, (2)

becomes

L, 2 2 We
H= %(px P+ )+ 5 Opy —yp)

1 w2 1
+ Em(%) @+ + Emwfzz, 3)

with definitions

wo= B B e,
m m

4)
and where, as ¢ < 0, we also require Uy < 0. The motion in
the radial plane can be decoupled by canonical transformation
[35], and the Hamiltonian written in terms of three distinct har-
monic oscillators of the cyclotron (4), axial (z), and magnetron
(—) modes. The magnetron motion is a result of the crossing
of the electric and magnetic fields and contributes a negative
energy in the Hamiltonian, and this instability must be min-
imised to prevent the electron striking the edge of the trap [36].
The frequencies of the decoupled modes are given explicitly by

1 1
w+=§(wc+w1), w_=§(wc—w1), 5
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Figure 1. Electrode structure of the Geonium Chip, with V., V., V.,
V indicating the ring, correction, endcap, and side-electrode
voltages, respectively. Typical values of these voltages (in the € ~ 0
regime)are V., ~ -1V, Ve~ -1V, V. = 2.7V, V, =0V, with
the length and width of the chip being ~ 14 mm and ~ 13 mm
respectively. The equilibrium trapping position, (0, y,, 0), above the
chip’s surface is essentially determined by the voltage ratio V./V,,
and V, further determines the overall scale of the trapping potential
[25].

which comprise the rotational components of an epicyclic
orbit in the radial plane of the trap. This is superposed upon
harmonic motion with angular frequency w, along the z axis.

2.1.2. The Geonium Chip and the ideal classical elliptical Pen-
ning trap.  As aconcrete example of an elliptical Penning trap,
but without loss of generality, here we consider the description
of the Geonium Chip trap [22]. This trap essentially consists
of the projection of a conventional cylindric trap [37] onto the
surface of a chip. This results in the magnetic field being paral-
lel to the surface of the chip. Its design aims to implement both
the magnetic field source and the trap electrodes into a single
chip, thus offering the potential of full scalability [23, 24]. A
sketch of the trap is shown in figure 1, where V., V., and V.
indicate the voltages applied to the ring, correction electrodes,
and end-caps, respectively, and V, denotes the voltage at the
side-electrodes. It is these side-electrodes which are used to
control the trap’s ellipticity [25].

In figure 1 the gaps between the electrodes are labelled 7,
and 7,. These must be taken into account when engineering
the total trapping potential ®(7), calculated from the Green’s
function for the Laplace equation which fulfils Dirichlet’s
boundary conditions in a box [25]. The second order series
expansion of this potential around the equilibrium position
(0,0, 0) is written in terms of coefficients C;x, defined

L 0Ty
TR Oxi Oyl 07k

9
(0.y0,0)
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so that the trapping potential ¢(7) is given by [22]:

2 2
() = Coop - <Z2 _ X+(Y2—yo)>
1
+5Con € - (x> =& —y)) - (7)

Here, the ellipticity parameter € is defined as

_ Czooc Cozo, )
002
and —1 < e < 1. In neglecting terms of higher order, we have
assumed that the trap has been tuned sufficiently that these
anharmonicities become vanishingly small [22]. Equation (7)
represents the total potential supplied by the Geonium Chip, in
the ideal elliptical potential approximation of a Penning trap
[28]. Comparing this to (1), the axial frequency in the Geonium

Chip is identified as
[2C
w. = 002 61, 9)
m

so that the Hamiltonian of this elliptical Penning trap can be
written in terms of the radially symmetric Hamiltonian (3):

1
He=H+ Zemwf(xz )

1 We
= —(ps + P} + P2 + = (xpy — yp)
2m ) 2

1 wi\2 1 1
+ Em(i) &+ + Zmewf (xz — yz) + Emwfzz,

(10)

where we draw particular attention to the contribution due to
the ellipticity of the trap, by introducing a term which is pro-
portional to e. The trapping height y, has been absorbed into
the y coordinate, such that (y —y,) — y, and will remain as
such throughout this paper. This trapping height is primarily
determined by the ratio V./V, in the example trap geometry
[22]. The electrodes V, enable variation of trap ellipticity [25],
a feature further discussed in section 4.

2.2. Quantum theory

2.2.1. The temperature of the Penning trap. The total energy
in each of the three modes is determined by their respective
temperatures 74, T_ and T, via the cryogenic cooling of the
system [29]. As the magnetron orbit is unstable and contributes
a negative energy in the Hamiltonian, the temperature of the
magnetron motion is also negative. The average quantum num-
bers of each, 7i,, can be estimated from the simple energy
equality

(11

In the case of trapping an electron at cryogenic temperatures
of T4 = 4.2 K or lower, and for sufficiently strong B fields, a
quantum mechanical description of particle’s cyclotron motion
is required [29]. This is also true for the axial and mag-
netron motions when cooled by sideband-coupling [29] to the

hwyny =kgT,; ~v=+,—,z

cyclotron motion. Treating the Hamiltonian of the trap as hav-
ing three distinct harmonic contributions H ., H_, H_, the state
of a particle in the system is described by the separable state

p+(T) @ p(T-) @ p(T2), (12)
where [38]
5 _ ORCBH) o
Pr= Tr[exp(—ﬂﬁ,fiﬁ,)]’ By =(kseT))", 7=+ —.2
(13)

For the following discussion, it is assumed that the trap is
held at sufficiently low temperatures that only the lowest states
(n < 10) are occupied.

2.2.2. Canonical quantisation. Conventional treatment in
Penning trap theory [28, 29, 35, 39] follows a procedure of
classical canonical transformation followed by quantisation
in order to diagonalise the Hamiltonian of the radially sym-
metric trap (3). In the present work, we first quantize the
Hamiltonian, and introduce creation and annihilation operators
corresponding to motion along the x, y and z axes:

1 mw 2
at = — it N P 14
a, 2h< > i o, x>, (14)
4 = 1 mw1A+1 2 "
Y 2h 2 mw )’
1 mwi 2
a) = — —y—iy/—D |, 15
b 2h< 2 ! mwi ‘) (15
P 1 mw“+1 2
ST V2h 2 mw, <]’
1 mw 2
al = ~z—1 p- |, 16
N \/2h< 2 mw; “) (16)

which obey commutation relations: [dy, al] = [ay, al] =
[a, &I] = 1, with all other commutators being zero. The quan-
tum Hamiltonian is non-diagonal in this basis, so we define the
raising and lowering operators of the cyclotron and magnetron

modes:

1 . ) L
&_}-:ﬁ(&x_lay)’ al:—z(al—FlaI),
a = % (a+ia),  al = % (a —ia}).

(17)

which commute appropriately due to the unitary nature of the
transformation (17). We now write the Hamiltonian of the
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radially symmetric trap in the standard way:

Hozh% <ﬁ++%> —h% (ﬁ_+%> + B, <n+%>

(18)

where 71, = &i,&ﬁ; such notation is adopted throughout the
remainder of this article.

The additional elliptical contribution (< €) in equation (10)

can be written directly in terms of these mode operators, so that

the Hamiltonian of the ideal elliptical Penning trap is given by:

~ . 1 R 1 . 1
He = ﬁw+ <n+ + E) —hw, (}’l —+ 5) +hwz (flz-’— 5)

oo b .
—|—ZmewZ m—m a,a, +ayay

—@a +aay+2i@ha - aim))) : (19)
3. Solving the quantum elliptical Hamiltonian

3.1. Two-mode unitary transformation

We diagonalise Hamiltonian (19) by proceeding in two parts,
and begin by defining a unitary transformation operator U [40]:

N 0 , ,
U = exp {15 (a;a, + alm) } .

The transformation operator (20) is applied to #., and setting

(20)

f = arctan(v); v=—= (21

produces

ﬁﬁ=%(ﬁ++ﬁ_+1)+

hwe/1+9%
NV (g — )

3.2. Squeezing the Hamiltonian

The remaining non-diagonal terms of (22), i.e. those propor-
tional to €, can be written in diagonal form by application
of squeezing operators S‘(CJF) and S(C_), the general form of
which is given by [38] 3:

S(¢) = exp {—C*&” + Cj&i} ;

5 4+ G+ = r4 exp(ipy),

S(¢-) =exp {—CZ&TZ + C&Z_} ; (- =r- exp(ip-),

(23)

3 The notation here has been chosen ip an effort to reduce clutter in calcu-
lations. The arguments of S((;) and S(¢_) additionally ir}dicate tl)e Hilbert
space in which they operate; the notation is shorthand for S, (), S_(C-).

where r, r_ € R. These act upon their appropriate operators
in the following way [38]:
8(¢) a7 $'(¢r) = ar cosh(rr)
+ al sinh(r,)exp(ip,); 7=+, —.
(24)

Following the classical solution in [28], we introduce the
definitions

4k2
1+ 2

C

We
= = K(k) = ¢
K (k) P

— 1] , (25)

and choose the real-valued squeezing parameters

1 K
= —tanh~'(7,); S —
Gt 5 tan (v+) Y+ wr T RK(R)
1
_ = —tanh (); = 26
¢ 3 anh™ () Vy w_+ rK(r) (26)

such that ¢, = ¢_ = 0. Acting S(¢) and S(¢_) in (23) upon
Hamiltonian (22) produces [31]

1o = S(CSCHHLST (ST

- N 1 - . 1 R 1
ha <I’l++2) — hao_ (I’l_+2> + hw; (nz+2),
where [28]
~ / 2 L SN O AR
Wy =/ wi +wikK(k)= E(wc_w1)+§ wiwy + efwz,
~ 2 1 1 2
W_ = y/w? —wikK(k)= E(wc2 —w?) — E\/wgwl + 2wt

(28)

This result corresponds to the classical solution [28], and it is
indeed what we would expect from other treatment of the ellip-
tical trap [20, 41]. However, here we have shown the ultimate
dependence of the squeezing parameters upon the trap volt-
ages, through the dependence of the squeezing parameters on
€ in (25) and (26), and the dependence of € on the expansion
coefficients of the trapping potential (8). This explicit depen-
dence is the central result of this paper, allowing for the possi-
bility of preparing squeezed quantum states of a Penning trap
held at low temperatures. As discussed in [28], the frequency
of the cyclotron motion is little affected by a changing ellip-
ticity parameter, whereas the magnetron frequency decreases
rapidly as |e| — 1. The mode frequencies (28) reduce to w4
and w_ in (5) as € — 0. The eigenstates of the system can be
found by applying UST(¢,)ST(¢_) to solutions of the diago-
nal Hamiltonian (27). One such solution is given by coherent
states, and it is straightforward to show that semiclassical solu-
tions of the trap lead to equations of motion again in agreement
with those found from classical analysis [28].
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4. Tuning the ellipticity of the Penning trap:
classical analysis

The results so far hold for any elliptical Penning trap, and
reduce to those for circular traps when € = 0 [40]. This section
considers a more specific example of where we can exploit the
dependence of the squeezing parameters on the trap voltages:
variation of the ellipticity parameter in the Geonium Chip trap.
A more complete discussion of this can be found in [25].

4.1. The ground planes Vg in the Geonium Chip

As mentioned in section 2.2, the five electrodes in the chip
derived from the conventional cylindrical trap are flanked by
two additional side-electrodes, held at voltages V. The typi-
cal hierarchy of voltages used for trapping is V. > V. ~ V.,
and V, = 0. This section briefly examines the operation of
the Geonium Chip when the side-electrodes are held at finite
voltage.

A finite voltage V, affects the coefficients Cjj (6) in the
series expansion of the trapping potential &(7). According to
equation (8), this modifies the ellipticity parameter € of the
trap, which can be tuned to any particular value —1 < e < 1
[25]. In turn, this alters the mode frequencies (28) and orbits
of the electron, which are given by [28]

x(f) = &4 - Ay cos(@i1) 4+ E- - A_ cos(@_t),

Y(O) = —ny - Ag sin(@ 1) — - - A_sin@-0),  (29)
where
w2 + ew? + /wiw? 4+ Ew?
gﬂ: - ’
20wy \/wgw% + 2w}
w? — ew? £y Jwiw? + Ew?
e = . (30)
20, Jwiy[wiw? + w?
and [22]:
i, = i
(€29)
E. and E_ denote the cyclotron and magnetron energies,
respectively.

The cyclotron frequency, typically in the GHz range, along
with the coefficients {, and 7, in (30), are largely unaf-
fected by the ellipticity: |, | ~ || ~ 1 [28]. In contrast, the
magnetron motion, through the frequency w_ and coefficients
&_, n_, is significantly modified by a non-zero voltage V. As
€ increases, the magnetron motion becomes a narrow ellipse
along the x axis, so that in the limit ¢ — 1, the magnetron orbit
is confined to this axis. This is discussed more extensively in
[25]. The cyclotron orbit is a fast oscillation superposed on
top of the magnetron motion with A+ < A_. Including the
axial oscillation, the motion of the electron therefore becomes

quasi two-dimensional (2D) as € — 1. This is known as the
‘ultra-elliptical regime’ of the Penning trap [25].

4.2. The ultra-elliptical regime

The ultra-elliptical regime is reached by starting with the
trapped electron in the regime where |e| < 0.9. As discussed
in [25], the semi-major axis of the magnetron ellipse becomes
increasingly large with e. Thus, in order that the electron does
not orbit outside the harmonic trapping region while driv-
ing to the € — 1 regime, magnetron-sideband cooling must
be applied between successive small increments of the side-
electrode voltage, V,. The former technique reduces the aver-
age quantum number of the magnetron motion 7z_ until it
equals that of the axial mode [29], which accordingly reduces
the energy of this mode and the size of the amplitude A_.

The series expansion of the potential ®(¥) is around the
equilibrium position (0, y,, 0), where y, itself is determined by
the equation 9,®(0,y,0) = 0. As the C;; coefficients in this
expansion change with V,, in turn anharmonicities of order
3(i+ j+ k =3)and 4(i + j + k = 4) are generated with each
new voltage of the ground plane [25]. These anharmonicities
generate an undesired linear dependence of the motional fre-
quencies with the particle’s energies [22]. In order to com-
pensate for this, the correction-electrode voltage V. must be
adapted to a new optimal value V™ for each new value of
the ground plane, and hence each new y,, so that the linear
dependence of w, with the axial energy is eliminated. The pre-
cise determination of all the frequencies of the trapped particle
critically relies on V¢ being well defined [22, 29].

In summary, increasing the ellipticity in the Geonium Chip
through V, changes y,, and in turn the anharmonic coefficients
in ®(7) (7). These are accordingly eliminated by modifying V.
to some value V', The relationship between the required VP
with increasing V, is extensively discussed in [25]. A partic-
ular relationship between these values must be maintained in
order to achieve experimental adiabaticity. This leads to well-
defined frequencies w, and @w_, enabling magnetron cooling to
be applied at every stage of the ramping process as the trap is
driven towards the ultra-elliptical regime [25].

5. Tuning the ellipticity of the Penning trap:
quantum analysis

This section contains theoretical analysis of the experimental
procedure described in section 4.2 for achieving the regime
€ — 1. Beginning in section 5.1 with the process of increasing
the ellipticity, we then go on to discuss the process of cooling
the magnetron motion in section 5.2.

5.1 Squeezing the axes

As discussed in section 4.2, the ellipticity must be varied step-
wise such that an optimal tuning ratio, VP is maintained at
every increment of e. Denoting the total ellipticity of the trap
€x, and each variation deg, then the ellipticity after each step is
given by

€rt1 = €k + O€g. (32)
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Figure 2. The squeezing parameters a) (, (¢) and b) (_(e) as given in equation (33) with € = d¢; and ¢, = 0. We have plotted values for trap

parameters \E\ =0.5Tand V, = —1V, so that w, ~ 125 MHz, and w.(0) =~ w;(0) ~ 90 GHz. Comparing the scale of the axis on each plot,
it is clear that the x (cyclotron) squeezing parameter is little affected by a changing value of €, whereas that of the y (magnetron) motion

varies significantly.

At each increase ¢, of the ellipticity €, the solutions of the
trap change, with the squeezing parameters ¢, and ¢_ now
dependent on both d¢; and €:

756[( wf/Zdl(ek)
Del€ 2 € Wz 2 @e (€,
w4 (&) + \/(WL(ZW) + (zi:-l,{(e,;)) - (zk)

756[( UJ? /2&)1(6[()

b (( )+ @eleg) 2+ Oeg Wy 2 _ @eler)
—\k 2 251 () 2

Cy(er,d6) = tanh ™!

¢_(e,0¢;) = tanh™!

>

(33)

where @, and @; are givenin (A.2). The rotation angle 6 (21) is
also modified, see (A.1). Figure 2 shows the squeezing param-

eters ¢, and ¢_ from equation (33), with ¢; = ¢p = 0, so that
d€r = € is the total ellipticity, as plotted along the x axis. The
plots illustrate how the physical orbits of the cyclotron and
magnetron motions are so differently affected by the increas-
ing ellipticity: the squeezing parameter ¢, varies very lit-
tle with €, whereas (_ tends to +oc0 as € — 1. Thus, the
cyclotron orbit is largely unaffected by the ellipticity, whereas
the magnetron motion is squeezed to a line along the x (y) axis
whene — 1 (e — —1).

5.2. Cooling the magnetron motion

Sideband-coupling of the axial and magnetron modes is now
considered. As mentioned in section 4.2, this is required
for preventing the magnetron orbit from becoming too large
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Bare and dressed energy of the combined axial and
magnetron spectrum for the NV = 1 levels

6=0

Figure 3. An avoided crossing between the n_ = 1, n, = 0 (upper) and n_ = 0, n, = 1 (lower) levels can be used to discuss quantum
adiabaticity requirements for the axial-magnetron coupling stages of driving to the ultra-elliptical regime [25, 31]. A large enough gap
between the dressed levels (or an instantaneous switching on of the coupling field) means that the system either follows the blue or green
paths as the gap at § = 0 is created, so that the electron remains in an adiabatic state.

when driving the trapping potential towards the ultra-elliptical
regime. A more detailed calculation of the process is presented
in appendix B, with the main results quoted below.

Coupling of the motional modes in the elliptical Penning
trap can be achieved by a time-dependent electric field [42]

E(ex, 1) = Re (£ (xe, + z2,), (34)

where we have included the ellipticity € as a reminder that the
frequency of field will vary with each increment de;. Such a
field (with £ € fR) has an associated potential

V(x,z, €, 1) = —& cos(wW(ex))(xz). (35)

After quantisation and transformation by U, S’(C+) and S'(C_),
the explicit time dependence of the potential can be removed
by transformation to a rotating frame, resulting in the total
Hamiltonian of the system

Her = wolen)Ko + 0K3 — w(en)Ka

huw 1
LGOI P (36)
2 2
where [31]
Ko = =(n_ + 1),
K= ~(ala, +afa),
(37
N 1h
&y = —‘5(&* a, —ala),

. h . R
K5 = E(n— - 1),

and wo(e), wa(€x) are givenin (B.10). These are the Schwinger
boson angular momentum vectors of the 2D harmonic oscilla-
tor system comprised of the magnetron and axial mode oper-
ators of the trap, obeying appropriate commutation relations
[43]

[ki, IA(j] = ih&ijkf(k,

[Ko.Ki] =0; i=1,2,3. (38)

The eigenstates and eigenvalues of K, and K5 are straight-
forward, and the quantum numbers N =n_ +n,,l=n_ —n,
defined so that [43]:

. h
Koln_,n;) = §N|n,,nz>,

. h

Kiln_,n;) = 5 ln_,n;), (39)
where N =0,1,2,3,...,and/ = —-N,—-N+2,...,N —2,N.
5.2.1. Solving the axial-magnetron coupled Hamiltonian: the

avoided crossing. Hamiltonian (36) is rewritten in terms of
dressed mode operators

Helew) = hwor(er) (n + %)

1 1
+ h(&]'u(ek) (fl/l, + 2) h"‘ (:]_A,_ (fl.}r + 2) ,
(40)

where 7., and 71, are number operators of the magnetron and
axial modes, respectively, rotated through the angle

(41)

Om(ex) = arctan {wz((;k)]

around the local x-axis of the basis, K 1. These operators, along
with the frequencies of the dressed modes, w(€x) and w,,(€r),
are defined explicitly in (A.3) and (A.4).

In terms of Schwinger boson operators of the dressed modes
7 and p, Hamiltonian (40) is written:

7‘2@(61() = wo(ek)f((;“’ + (\/ w%(sk) + 52> k;“’

hawo(er)
+ 2

R () (m + ;) L @)
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where the set {k;"} are again obtained from {K;} (B.9) by
rotation through 6,(e;) around K 1. It is straightforward to
interpret the effects of this ‘dressing’: the degeneracy of the
k3 levels in equation (36) of the combined ‘—’ and ‘z” modes
at the point § = 0 is lifted by the non-zero value of w(ex)
in equation (42). This is depicted for the N =1 levels in
figure 3.

5.3. Adiabaticity and the preparation of quantum states

The sequence of elliptical driving and mode coupling in the
Geonium Chip can be used to prepare the squeezed thermal
state of the electron. In order that preparation is robust, each
stage of the experimental process must satisfy the quantum adi-
abaticity theorem. First derived in 1928 by Born and Fock [44],
the theorem states that, during its evolution by a Hamiltonian
H(7), a quantum state prepared in an initial eigenstate |n(0))
remains close to the instantaneous eigenstate |n(r)) as time
evolves [45]. A detailed calculation of the criteria for ensur-
ing quantum adiabaticity is not included in this paper, but a
general discussion is provided below.

The theorem is more easily applied to the present calcula-
tion when formulated in the parameter domain [46, 47] rather
than the time domian. For the squeezing parts of the evolu-
tion the parameter path between an initial value ¢ to a final
value e must be followed, in principle, infinitely slowly [45].
In practice, a finite speed is possible, requiring that the volt-
age ratios controlling progression along this path are adjusted
slowly, but over a finite time. For example, in the case of the
geonium trap of section 2.1.2, if the ring voltage is held at
V. = —1V, a value of the ellipticity ¢ = 0.999941 requires a
voltage of the side-electrodes V, = —1.83 V, with a possible
correction-electrode voltage of Vo' = —1.14 V to ensure the
trap remains harmonic [25]. The voltages V, and V. must be
driven to these values in piecewise steps, as discussed, with the
voltages at each increment used to calculate the resulting ellip-
ticity of the trap, and via the Hamiltonian (27), the initial and
final energy of the system. The speed of the ramping process
at each step will be determined by the relative size of the gap
in the energy spectrum, AE, to the timescale over which the
voltages are changed, 7, such that 7 > h/AE.

For the mode coupling stages of the process, the problem
can be described by analogy with the Landau—Zener (LZ)
model [48, 49]. Figure 3 shows the splitting w,(€) between
the energy levels due to the dressing of the trap potentials by
the external field. Only the lowest split energy levels of the
combined axial and magnetron modes are included. Although
a simplified representation of the spectrum, it illustrates the
adiabaticity condition as applied to this process. During the
coupling stages, the ellipticity is assumed to be held at a con-
stant value. Referring to figure 3, the system will remain in
an adiabatic state (red line) by following either the path indi-
cated by the blue or green arrows as the gap at 6 = 0 is created
when the coupling field in (35) is first switched on. Avoiding
transition between the adiabatic states requires that the time
associated with such a transition — co. This can be satisfied

by achieving a large enough gap Aw,(€), as provided by the
field strength £ in (34).

6. Summary

We have discussed the general quantum theory of the elliptical
Penning trap in this paper, and have presented the explicit rela-
tionship between the variation of the trapping potential, and the
squeezing of the normal modes of the system. In combining
this theory with the tunable mechanism of the Geonium Chip,
we have shown how the trap can be used to prepare these states
with a high degree of control. The quantum theory of mode
coupling was reviewed and discussed in the context of the
combined energy level spectrum of the axial and magnetron
modes, which enables a dressed-atom approach to the solution.
This led to a discussion of the adiabatic preparation of the sys-
tem, prompting future theoretical work into a full derivation of
the adiabaticity constraints. The work highlights the range of
operations which can be performed using the motional degrees
of freedom of an electron in the Geonium Chip, and in other
Penning traps with tunable ellipticity, promoting these traps as
candidates in experimental quantum optics.
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Appendix A. Useful definitions

(A1)

2
0(ex, dex) = arctan [ Ok w; } ;

wi(epwe(er)

we(€r) = W (er) + W (&), wiler) = w(er) — w-(€).

(A.2)
fir = al(ear (), Ay = ()i (e
N Om(er) . . Om(ex) .4
i _ T i
al(ex) = cos > a' —1isin > al,
N em(ek) ~ .. em(ek) ~
a.(€;) = cos Ta_ +1 sin > a, (A.3)
&L(ek) = Cos Gméek) &i —1isin Lm(ek)&i,
~ em(ek) ~ .. em(ek) ~
a,(ex) = cos > a, + 1 sin > a_.
1
wr(e) = 3 (WO(Ek) + 1/ wie) + 52) ,
(A4)

wy(er) = (Wo(ﬁk) —y/wi(er) + 52> .

N =
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Appendix B. Sideband-coupling

The coupling potential (35) is quantized, with the X and Z oper-
ators written as combinations of the z, + and — operators in
(16) and (17):

V(R,2, €1, 1) = —Em COS(Omle)t) X 2
o1 .
= - m t
S _wlwzé“ cos(@p(€ex)1)
x{(a.+al) (ay +al +a +al)}.

(B.1)

This is first transformed to the frame in which the ellipti-
cal Hamiltonian is diagonal, namely by transforming by U,
S(C+(€r)) and S(C_(ex)) in succession, resulting in
V(@2 e 1) = SC S (@)T Ve )
x UISH(¢- (@) (G ()

h 1
=—¢ COS((Dm(Ek)t)% V1w,

x { (@ +al) (A.6,¢oar +ALO,Cal

+A @, ¢+ AT @, g_)a_) } . (B2

where the amplitudes Ai)(ﬁ, (1) are given by

A1(0,(s) = cosh(Ce) exp (i0/2) + sinh(Cx) exp (—if/2)
AL(0, ) = cosh(Ce) exp (—i6/2) + sinh(Ca) exp (i0/2) .
(B.3)

The total Hamiltonian is now

Hi(er) = He + qVelew, 1). (B.4)
The explicit time dependence of the additional potential \74 can
be removed by transforming Hamiltonian (B.4) by the unitary
operator

Un(t) = exp {— %(cbm(ek)t)f(s } , (B.5)
where 5
K; = 5(ﬁ, — 7). (B.6)

Expanding out the cosine function in the applied potential
leads to two stationary terms in qf/c, with the others rotat-
ing at MHz frequencies. A secular approximation [50], and
the choice of coupling frequency

Omler) = @_(€) +w, + 6 (B.7)

results in the total Hamiltonian:
He(e) = UnH()TL0) + ihUn (0 T} (1)

= wo(e)Ko + 6K3 — wae)Kz + wi(e)K,

huw 1
+ 02(6") + iy (m + —) : (B.8)
where
K E(ﬁ + 1)
0 — 2 - /)
o ho
K, = E(GJL +ala-), (B.9)
Ky = —@(aiaz —ala),
2 4
and
wolex) = w; — w-(€p),
e 1 e
wa(er) = N sin — exp(—(-(er) &, (B.10)
e 1 0(er)
wiler) = oo cos — exp(¢—(ex)§.

Referring to figure 3, it is clear that for ¢, > 0, (_ < 0, and so
exp(C_(e)) < linwj(e) (B.10). It follows that the strength of
the K term in (B.8) becomes vanishingly small as the electron
is driven to the ultra-elliptical regime. The coupling strength
in front of K, however, will become increasingly strong as
ex — 1. Indeed, it is as this regime is approached that the mag-
netron frequency decreases, and hence the magnetron quan-
tum number increases, most rapidly [25], corresponding to the
point at which on-resonance magnetron cooling becomes cru-
cial. We therefore neglect the K 1 contribution in the Hamilto-
nian (36), and proceed to define

Her = wolen)Ko + K3 — wa(e)Ks

hawo(ex)
+ 2

+ hiy (m + ;) . (B.1D
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